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Abstract—This paper presents a fast boundary-element method
(BEM) algorithm that is well suited for solving electrostatics
problems that arise in traditional and bio-microelectromecha-
nical systems (bio-MEMS) design. The algorithm, FFTSVD, is
Green’s-function-independent for low-frequency kernels and effi-
cient for inhomogeneous problems. FFTSVD is a multiscale algo-
rithm that decomposes the problem domain using an octree and
uses sampling to calculate low-rank approximations to dominant
source distributions and responses. Long-range interactions at
each length scale are computed using the FFT. Computational
results illustrate that the FFTSVD algorithm performs better than
precorrected-FFT (pFFT)-style algorithms or the multipole-style
algorithms in FastCap.

Index Terms—Bio-MEMS, biomolecule, boundary element,
electrostatic, fast solver, FFTSVD.

I. INTRODUCTION

ICROELECTROMECHANICAL systems (MEMS)

have recently become a popular platform for biological
experiments because they offer new avenues for investigating
the structure and function of biological systems. Their chief
advantages over traditional in vitro methods are reduced sample
requirements, potentially improved detection sensitivity, and
structures of approximately the same dimensions as the systems
under investigation [1]. Devices have been presented for sorting
cells [2], separating and sequencing deoxyribonucleic acid
(DNA) [3], and biomolecule detection [4]. Furthermore,
because arrays of sensors can be batch-fabricated on a single
device, parallel experiments and high-throughput analysis are
readily performed. However, since microfabrication is rela-
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tively slow and expensive, numerical simulation of MEMS de-
vices is an essential component of the design process [5], [6].
Design tools for integrated circuits cannot address multiphysics
problems, and this has motivated the development of several
computer-aided MEMS design software packages, most of
which are based on the finite-element method (FEM) and the
boundary-element method (BEM) [7].

Bio-microelectromechanical MEMS (bio-MEMS), when ap-
plied to such problems as biomolecule detection, are often
functionalized with receptor molecules that bind targets of
interest [8]. Molecular labels can also be used to aid in the
detection process [9]. However, the interactions between these
molecules, the MEMS device, and the solvent environment
are often neglected during computational prototyping. In other
fields, such as computational chemistry and chemical engineer-
ing, continuum models of solvation are often used to study the
electrostatic component of these interactions [10]. These mean-
field models permit the efficient calculation of many useful
properties, including solvation energies and electrostatic fields
[11], [12], and have been shown to correlate well with more
expensive calculations that include explicit solvents [13]. How-
ever, continuum models are unable to resolve specific molecular
interactions between solvent molecules and the solute. A vari-
ety of numerical techniques can be used to simulate the con-
tinuum models, including the finite difference method (FDM),
FEM, and BEM [14]-[16].

The BEM has a number of advantages relative to FDM
and FEM, such as requiring only surface discretizations and
exactly treating boundary conditions at infinity. However, dis-
cretizing boundary integral equations produces dense linear
systems whose memory costs scale as O(n?) and solution costs
scale with O(n?), where n is the number of discretization
unknowns. This rapid rise in cost with increasing problem
complexity has motivated the development of accelerated BEM
solvers. Preconditioned Krylov-subspace techniques, com-
bined with fast algorithms for computing matrix—vector (MV)
products, can require as little as O (n) memory and time to solve
BEM problems [17]. Many such algorithms have been pre-
sented, including the fast multipole method (FMM) [18], [19],
‘H-matrices [20]-[22], the precorrected-fast Fourier trans-
form (pFFT) method [23], wavelet techniques [24], [25],
FFT on multipoles [26], [27], kernel-independent multi-
pole methods [28], [29], the hierarchical SVD method [30],
[31], plane-wave expansion-based approaches [32], and the
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predetermined interaction list oct-tree (PILOT) algorithm
[33]. Some algorithms, such as the original FMM, ex-
ploit the decay of the integral-equation kernel; the pFFT
method makes use of kernel shift invariance. This paper
introduces an algorithm that combines the benefits of both
of these approaches, leading to a method that has excellent
memory and time efficiency even on highly inhomogeneous
problems.

Fast BEM algorithms whose structures depend on kernel
decay suffer from a common, well-known problem: computing
medium- and long-range interactions is still expensive, even
when their numerical low rank is exploited. For instance, in
the FMM, computing the multipole-to-local (M2L) products
dominates the MV product time, because each cube can have
as many as 124 or 189 interacting cubes, depending on the
interaction-list definition, and the work per M2L multiplication
scales as O(p*), where p is the expansion order and is related to
accuracy [18], [19], [34]. Much work has focused on reducing
this cost; for the FMM, plane-wave expansions [32], [35]
and diagonalizing the M2L translation, but are typically only
efficient for large p. The pFFT algorithm [23] does not rely
on the kernel’s decay, but rather its translation invariance to
achieve high efficiency. The pFFT method is Green’s-function
independent, even for highly oscillatory kernels. Consequently,
the method has been applied in a number of different fields,
including wideband-impedance extraction [36], microfluidics
[37]-[39], and biomolecule electrostatics [40]. One weakness
of the pFFT method is that its efficiency decreases as the
problem domain becomes increasingly inhomogeneous [23].

In this paper, we introduce a fast BEM algorithm called
FFTSVD. The method is well suited to MEMS-device sim-
ulation because it is Green’s-function independent and main-
tains high efficiency when solving inhomogeneous problems.
The FFTSVD algorithm is similar to the PILOT algorithm
introduced by Gope and Jandhyala [33], in that our algorithm
is multiscale and based on an octree decomposition of the
problem domain. Similar to PILOT and IES®, our algorithm
uses sampling and QR decomposition to calculate reduced rep-
resentations for long-range interactions. The FFT is used to ef-
ficiently compute the interactions, as in the kernel-independent
multipole method [29]. Numerical results from capacitance-
extraction problems demonstrate that FFTSVD is more mem-
ory efficient than FastCap or pFFT and that the algorithm does
not have the homogeneity problem. In addition, we illustrate
electrostatic-force analysis by simulating a MEMS comb drive
[39]. Finally, we demonstrate the method’s kernel independence
by calculating the electrostatic free energy of transferring a
small fluorescent molecule from the gas phase to an aqueous
solution, using an integral formulation of a popular continuum
electrostatics model [16], [40].

The following section briefly describes a representative
MEMS electrostatics problem, a BEM used to solve the prob-
lem, and a more complicated surface formulation for calcu-
lating the electrostatic component of the solvation energy of
a biomolecule. Section III presents the FFTSVD algorithm.
Computational results and performance comparisons appear in
Section IV. Section V describes several algorithm variants and
summarizes the paper.
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Fig. 1. Electrostatically actuated MEMS comb drive.

II. BACKGROUND EXAMPLES

In this section, we describe two electrostatics problems that
arise in Bio-MEMS design and describe how they can be
addressed using BEM.

A. MEMS Electrostatic-Force Calculation

Consider the electrostatically actuated MEMS comb drive
illustrated in Fig. 1. Two interdigitated polysilicon combs form
the drive; one comb is fixed to the substrate and the other is
attached to a flexible tether. Applying a voltage difference to
the two combs results in an electrostatic force between the
two structures, and the tethered comb moves in response [39].
The electrostatic response of the system to an applied voltage
difference can be calculated by solving the first-kind integral
equation

/J(T')G(T; rdr' =V (r) (1)

where S is the union of the comb surfaces, V (r) is the applied
potential on the comb surfaces, G(r;7’) = 1/||r — r'|| is the
free-space Green’s function, and o () is the charge density on
the comb surfaces. Note that this is a standard capacitance-
extraction problem.

We can compute the axial electrostatic force between the
combs by the relation

d d1 .

F(s) =

where F'(s) is the force in the axial direction, s is the separation
between the combs, E is the electrostatic energy of the system,
V is the vector of conductor potentials, and C'(s) is the capaci-
tance matrix, written as a function of the comb separation.

To solve (1) numerically, we discretize the surfaces into n,
panels and represent o (), the charge density on the surface, as
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Fig. 2. Continuum model for calculating biomolecule solvation.

a weighted combination of compactly supported basis functions
defined on the panels

o(r) = Zmﬁ(r)- 3)

Here, f;(r) is the ith basis function, and z;, the corresponding
weight. Forcing the integral over the discretized surface to
match the known potential at a set of collocation points, we
form the dense linear system

Gz =b. “4)

The Green’s function matrix G is defined by
Gij = /fj(T’)G(ri7 r')da 5)

where r; is the ith collocation point and b; = V (r;). Alterna-
tively, one can use a Galerkin method, in which case

Gij = / / fi(r) £ G (i) drdr’! (6)
and
b; :/fi('r)w(r)dr. (7

The linear system of (4) is solved using preconditioned
GMRES [41].

B. BEM Simulation of Biomolecule Electrostatics

Electrostatic solvation energy, the cost of transferring a mole-
cule from a nonpolar low-dielectric medium to an aqueous solu-
tion with mobile ions, plays an important role in understanding
molecular interactions and properties. To calculate solvation en-
ergy, continuum electrostatic models are commonly employed.
Fig. 2 illustrates one such model. The Richards molecular
surface [42] is taken to define the boundary a that separates
the biomolecule interior and the solvent exterior. The interior is
modeled as a homogeneous region of low permittivity €7, where
the potential ¢(r) is governed by the Poisson equation, and
partial atomic charges on the biomolecule atoms are modeled
as discrete-point charges at the atom centers

V3p(r) = = > 25— 1) ®)

where n. is the number of discrete-point charges and ¢; and
r; are the ith charge’s value and location, respectively. In the
solvent region, the linearized Poisson—-Boltzmann equation

V2p(r) = k*o(r) )

governs the potential, where the inverse Debye screening length
+ depends on the concentration of ions in the solution and a
higher permittivity ;7. We write Green’s theorem in the inte-
rior and exterior regions and then enforce continuity conditions
at the boundary to produce a pair of coupled integral equations

1 / /% o
30(ra) + (e 72 (i)

a / = i
—fdr’a—i(r')Gl(ra;r) = 2 EGl (ra;ms)  (10)
Loty — Lartomn 262
() — { ') 52 i
+ L T/%(T/)GQ(TG' )=0 (11)
€11 on ’

a

where r, is a point on the surface, 3‘: denotes the Cauchy
principal-value integral, (G is the Laplace Green’s function,
G is the real Helmholtz Green’s function, (0G;/0n) de-
notes the appropriate double-layer Green’s function, ¢(r) is
the potential on the surface, and (Op/0n)(r) is the normal
derivative of the potential on the surface. See [16] and [40]
for detailed derivations of the formulation. To solve (10) and
(11) numerically, we define a set of basis functions on the
discretized surface and represent the surface potential and its
normal derivative as weighted combinations of these basis
functions

o(r) ~ chifi(?") (12)

B
a—i(r) ~ ;yifi(r). (13)

We force the discretized integrals to exactly match the known
surface conditions at the panel centroids; this produces the
dense linear system

oG
I+ G G ] {x] _ |:Zk 5’501(7“;%)} (14)
i1 - %2 +2LGy | LY 0

where, denoting the ith panel centroid as r;, the block matrix
entries are

Gl,ij = ffj (’I“/)Gl (Ti; T/)drl (15)
Gy _ (o 0G, o /
(%)w‘fﬁ“bmm““”m (19
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Fig. 3. Multiscale approach to fast matrix multiplication.

and the block matrices G5 and (0G2/0n) are similarly defined.
Note that BEM solution of this problem requires a Green’s-
function-independent fast algorithm.

III. FFTSVD ALGORITHM

The FFTSVD is a multiscale algorithm, like most fast al-
gorithms for low-frequency applications: to compute the total
action of the integral operator on a vector, we separate its
actions at different length scales and compute them separately,
combining them only at the end. In describing the FFTSVD
algorithm, it is helpful to think of the basis functions as sources,
[ fi(r")G(r;7")dr" as the potential produced by source i, and
the collocation points r; as destinations. Multiplying « by G in
(4) is then computing potentials at all the destinations due to all
sources. Fig. 3 illustrates the multiscale approach to fast matrix
multiplication: the square .S denotes a source, and the squares
denoted I represent destinations.

A. Notation

Let d and s denote two sets of panels: then Gg4, is the
submatrix of G that maps sources in s to responses in d. The
number of panels in set ¢ is denoted by n;.

B. Octree Decomposition

We first define the problem domain to be the union of all
the sets of panels that comprise the discretized surfaces. We
then place a bounding cube around the domain and recursively
decompose the cube using octrees. Given a cube s at level 1,
the nearest neighbors Ny are those cubes at level ¢ that share a
face, edge, or vertex with s. The interaction list for s is denoted
as I, and defined to be the set of cubes at level 7 that are not
nearest neighbors to s and not descended from any cube in
an interaction list of an ancestor of s [43]. Fig. 4 illustrates
the exclusion process for a two-dimensional (2-D) domain. At
every level, each panel is assigned to the cube that contains
its centroid. Where ambiguity will not result, s denotes either
the cube itself or the set of panels assigned to it. This assign-
ment rule ensures that each panel-panel interaction is treated
exactly once.

The coarsest decomposition is termed level 0 and has 43
cubes; coarser decompositions have null interaction lists. We
continue decomposing the domain until we reach a level [ at
which no cube is assigned more than n, nax destinations. At
each level ¢, every cube s has a set of interacting cubes I
that are well separated from s with respect to the current cube

— | = ——

Fig. 4. Interacting squares at two levels of decomposition.

size. Note that the definition of an interaction list is symmetric:
del, —sely.

C. Sampling Dominant Sources and Responses

One can compute the potential response ¢y, in I; due to a
source ¢s in s by the dense MV product

or, = Gr, 55 Gr, s € R"s e (17

However, the separation between s and I, motivates the ap-
proximation

~ T
Gr,s =ULV,

,SrC

U, € R ¥
VT Emkxns
S

,Src

k<ng. (18)

where V; . has orthogonal columns [30]. The matrix V ¢ is
small and represents the k source distributions in s that produce
dominant effects in I;. It is a reduced-row basis for G, .
The projection of ¢, onto V; s loosely parallels the FMM’s
calculation of multipoles from sources, in the sense that both
the multipole expansion and the product ‘Q?;rcqs capture the
important pieces of g5 when calculating far-field interactions.
We call V 4. the source compression matrix.

A similar low-rank approximation can be made to find the
response in a cube d given a source distribution in I

wq =Gq,1,q1,
~ Ud,destVISQId
Ud,dest € R xk
Vb e mbrn

k <ng,. (19)

Here, Uj dest 1s small and represents the k£ dominant potential
responses in d, the destination cube, due to source distribu-
tions in 1. We call Uy gest the destination compression matrix;
Udq,dest 1s a reduced-column basis for Gy g, .

Since it is impractical to compute G, ; and G ;. for each
cube s, we use a sampling procedure inspired by the Kapur and
Long hierarchical SVD method [30]. Figs. 5 and 6 illustrate the
process of finding a reduced-row basis V s.. To determine the
row basis, we begin by selecting one destination per interacting
cube, computing the corresponding rows of G, s, and perform-
ing rank-revealing QR factorization with reorthogonalization
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Fig. 5. Computing dominant-row basis for G’y using sampling.
AT RN A IO RO
L1 - 1. 1
. I L] I
A4 3 I
A S I
< . .

»  Collocation points
¢ Sampled collocation points

A\ Basis function support
Fig. 6. Sampling a small set of long-range interactions.

on the transpose of the submatrix. If the submatrix rank is
less than half the number of sampled destinations, the QR-
determined row basis is considered to be adequate. Otherwise,
an additional destination is sampled for each interacting cube;
the extra destination is chosen to be well separated from the
originally chosen destination. The transpose of the new subma-
trix is factorized and again required to have a rank less than
half the total number of samples. The process of resampling is
continued until the required rank threshold is met.

To compute the reduced-column basis Uy gest for the matrix
Ga,1,, we select a set of well-separated panels in /4, compute
the corresponding columns of Gg,, and QR-factorize the
submatrix.

D. Computing Long-Range Interactions

Consider two well-separated cubes s and d. Because the
cubes are well separated, we could find a low-rank approxima-
tion to G4, s by truncating its SVD

Pd = Gd,st (20)
= Ud,s Edﬁ VdTSQS (21)
~Ua,s3a,s Vil (22)

where the hat denotes trunctation to k£ columns, k < ns. Since
the source compression matrix Vj ¢ finds an approximation to
the dominant row space of G, s, we expect that it also approx-
imates the dominant row space of Gy s, which is a submatrix
of Gy, s. Similarly, we expect that Uy gest approximates the

Fig. 7. Schematic of the FFTSVD method for computing long-range
interactions.

dominant column space of Gg . A small matrix K4, maps
source distributions in the reduced basis V . to responses in
the reduced basis Ug dest

©q ~ Ud,deSth,S‘/;Tsrch (23)
and it is easy to see that
Kd,s = UgdestGd,sVs,src- (24)

Note that K, is not diagonal because Ug, gesy and Vi g only
approximate the singular vectors of Gy . If V; g € Rrva ¥k
and Uy gesy € R"4*F4, then K, € REaFs,

The action of the K matrices can be computed in a number of
different ways: they can be computed explicitly, via multipoles,
or via an FFT. Explicit storage is memory intensive, and multi-
pole representations are Green’s-function dependent. We have
therefore chosen to implement the memory-efficient Green’s-
function-independent FFT translation method presented by
Ying et al. [29].

E. Diagonalizing Long-Range Interactions With the FFT

Our method projects sources to a grid, uses an FFT convolu-
tion to accomplish translation between source and destination,
and interpolates results back from the grid. Fig. 7 illustrates
the approach. We introduce two matrices: P, ; projects sources
in cube j to the cube grid, and I} ; interpolates from the grid
in cube j to the evaluation points in j. We use an equivalent
density scheme similar to those used by Phillips and White [23]
and Biros et al. [28] to determine the projection and interpola-
tion matrices.

1) Projection-Matrix Calculation: Given a cube s and the
basis function weights ¢ for panels in s, we wish to find a set
of grid charges ¢, s that reproduce the potential field far from s.
We accomplish this by defining a sphere I' bounding s and
picking a set of quadrature points [44] on the sphere. Denoting
quadrature point ¢ on I' by 7 ;, the mapping between g5 and
the responses at the quadrature points can be written as Gr s,
where

Grsij = / G(rp;r')dr'. (25)

panel j

The mapping between grid charges and responses at the quadra-
ture points can be written as

GFygyij = G(TF,iQ Tg,j) (26)

where 74 ; is the position of the jth grid point. If more quadra-
ture points than grid points are used for the matching, solving a
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least squares problem gives the desired projection P g

Pys = Gr,Gr. (27)

In practice, one uses the singular-value decomposition to solve
for Py ;.

2) Interpolation Matrix Calculation: Given grid potentials
qq in a cube d, we find the potentials (, at the panel centroids in
d by interpolation. For problems in which centroid collocation
is used to generate a linear system of equations, the interpola-
tion matrix is calculated as

T

Iy = (Grl,Gr.a) (28)

where G 4 denotes the Green’s-function matrix from the

quadrature points on I' to the panel centroids in d. If Galerkin

methods are used rather than centroid collocation, the interpo-
lation matrix is the transpose of the projection matrix.

3) Diagonal Translation: Once the grid charges in s are
known, a spatial convolution with the Green’s function pro-
duces the potentials at the grid points in the destination cube
d. This spatial convolution is diagonalized by the Fourier trans-
form; we write the transform matrix as F, its inverse by F -1
and the transform of the Green’s-function matrix by G d,s- After
calculating the grid potentials in d, interpolation produces the
potentials at the desired evaluation points. The matrix G s is
therefore written as

Gas=14,F Gy sFPys. (29)

The products Iq 4 F —1 and FP, s could be stored, but in our
experience, this precomputation only marginally improves the
MYV product time while increasing memory use since F and
F~! are padded and complex.

In addition to diagonalizing the translation operation be-
tween cubes, the FFT significantly decreases memory require-
ments. Using explicit K matrices requires storing a small dense
matrix for each pair of cubes; using FFT translation eliminates
the expensive per-pair matrix cost. Instead, each cube has its
own P, and I, matrices, which are used for all long-range
interactions. In addition, because the Green’s function is trans-
lationally invariant, we only need to store a small number of
G matrices for each octree level; each one represents a partic-
ular relative translation between source and destination cubes.
Because these matrices are diagonal, storage requirements are
minimal.

Since translation is the dominant cost in the FFTSVD MV
product, efficient implementation of the translation procedure is
essential to maximizing performance. The translation operation
is simply an elementwise multiplication of two complex vec-
tors, therefore, for g;, grid points per cube side, each translation
vector is (2¢, — 1)?[(2gp, — 1)/2 + 1] complex numbers long
when using the FFTW library [45]. This number takes into
account padding and symmetry. For example, with g, = 3,
75 complex numbers are required, resulting in 250 individual
multiplies during the translation operation. This number has
been reduced by taking advantage of vectorization. Many mod-
ern CPUs include instructions that can assist in multiplying
complex numbers within a register, effectively halving the

number of required multiplies. For comparison, standard FMM
translations require more multiplications since they are not
diagonal, and cannot be vectorized as easily since they involve
MYV products. In addition, we have yet to exploit additional
ways to accelerate the FFTSVD translation operation. These
include using symmetries between related translation vectors
(é), such as those that translate in opposite directions, and
exploiting the fact that for axial translations, many G elements
are purely real.

F. Local Interactions

At the finest level of the decomposition, interactions between
nearest neighbor cubes are computed directly by calculating the
corresponding dense submatrices of G. These submatrices are
denoted by D; ;, where j is the source cube and i the destina-
tion. We bound the complexity of the local-interaction compu-
tation by continuing the octree decomposition until each cube
has fewer than n,, max panels.

G. Algorithm Detail

The mapping from source cube s to destination cube d can
thus be written as
va="Ua (Ui lsy) FLGF(Py Vi)V, gs. (30)
The computations are grouped to eliminate redundant multipli-
cations; the matrix products U } 14,4 and P, ,V are stored for
each cube, rather than recomputed at every iteration. Below, we
introduce the restriction operator M ;Z) that restricts a global
vector to a local vector associated with cube j at level ; let the
inverse operator map a local vector to the global by inserting
appropriate zeros. Let L' denote the set of cubes at level i.
Given a charge vector ¢, the MV product is computed by the
following procedure.
1) Downward Pass For Long-Range Interactions: For levels
1=0,1,...,:
a) Project Into Dominant Source Space: For each cube
j € L?, compute

Cj = f(Pg,j‘/j}src)ijT (31)

,STC

M]@q.

b) Compute Long-Range Interactions: For each cube j €
L?, compute

v; = Z éCS

sel;

(32)

¢) Determine Total Dominant Response: For each cube
j € L', compute

o =0+ MU aest(Ulgen i) F v (33)

2) Sum Direct Interactions: For each cube d at level [, add
the contributions from neighboring cubes N

o=p+MD! > DaM"q.

SENy

(34)
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IV. COMPUTATIONAL RESULTS

To demonstrate the accuracy, speed, and memory efficiency
of the FFTSVD algorithm, we have used FFTSVD to solve
for self and mutual capacitances in various geometries. A
MEMS comb drive example [39] illustrates electrostatic-force
calculation using FFTSVD. In addition, to show Green’s-
function independence and use of double-layer kernels, we
have used FFTSVD to solve for the electrostatics of solvation
for the highly charged dye-molecule fluorescein. Fluorescein
is often used as a fluorescent label in Bio-MEMS applica-
tions [46], [47], and its electrostatic properties in aqueous
solution modulate its interaction with other molecules and
surfaces.

The FFTSVD algorithm has several adjustable parameters:
eqr is the reduced-basis tolerance; g, is the number of FFT
grid points on each side of a finest level cube; ny, max is the
maximum number of panels in a finest level cube; nquaq is
the number of quadrature points used on the equivalent density
sphere, tolgyrEis is the tolerance on the relative residual that
the resulting linear equations are solved to. At the two finest
levels, g, FFT grid points per cube edge are used, and the
number of grid points per edge increases by one for each
successively coarser level; experience has shown that using
different numbers of grid points per edge provides significant
accuracy improvements for marginal memory and time costs.
The parameters used for the following results are 10~ for e,
3 for gp, 32 for Ny max, 25 fOr Nquad, and 10~ for tolgmrEs,
unless otherwise specified.

For capacitance calculations, we compare the performance
to FastCap, based on the FMM [34], and fftcap++, based on
the pFFT++ implementation of the pFFT method [48]. All
programs were compiled with full optimizations using the
Intel C++ compiler version 8.1 and benchmarked on an Intel
Pentium 4 3.0-GHz desktop computer with 2 GB of RAM.
All parameter settings in FastCap and fftcap++ were left at
their defaults, except for the tolerance on solving the resulting
linear equations, which was set to 10~%, unless otherwise
specified.

A. Self-Capacitance of a Sphere

In order to test the accuracy of the FFTSVD method, we
have applied it to solving for the self-capacitance of a unit
1-meter (m)-radius sphere, a quantity known analytically. Fig. 8
shows the improvement in accuracy with increasing sphere dis-
cretization for FFTSVD with values of 3 and 5 for g, second-
and fourth-order multipoles in FastCap, and default settings
for fftcap++. A tolerance of 1076 for the relative residual
when solving the BEM equations was used in all programs.
The analytical value for the self-capacitance of a 1-m-radius
sphere is 0.111265 nF as computed by Gauss’ law. The results
show that FFTSVD with a value of 3 for g, tends to be more
accurate than second-order multipoles in FastCap. In addition,
FFTSVD with low values of g, tends to overshoot the analytical
solution while FastCap tends to undershoot with a truncation
of multipole order. These findings are consistent across many
geometries when examining convergence behavior.
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Fig. 8. Accuracy versus number of panels for FFTSVD, FastCap, and fft-

cap++ solving the unit-sphere self-capacitance problem.
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Fig. 9. Homogeneous woven-bus capacitance problem (woven10n01).

B. Woven-Bus Example (Homogeneous Problem)

As stated previously, one of the advantages of the FFTSVD
method is its use of diagonal translation operators. This ad-
vantage becomes apparent in cases of homogeneous geometry,
since a large number of translation operations are required.
To examine performance in a problem with homogeneous
geometry, we have applied FFTSVD to solving for the mutual
capacitances between woven bus conductors as in Fig. 9. Table I
summarizes the results for several woven-bus-capacitance prob-
lems. FFTSVD can achieve slightly better speed and memory
performance than pFFT, which is expected to excel at problems
with uniform distribution, and significantly better performance
as compared to FastCap.

C. Inhomogeneous Capacitance Problem

One of the disadvantages of the pFFT method is that it
lays down a uniform grid over the entire problem domain,
and the simulation time grows roughly in proportion to the
number of grid points. For simulations in which most of the
domain is empty, therefore, the pFFT algorithm is inefficient.
We have demonstrated this inefficiency, and FFTSVD’s relative
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TABLE 1
COMPARISON OF FASTCAP (FC), FFTCAP++ (FFT++), AND FFTSVD (FS) PERFORMANCE IN TERMS OF MV PRODUCT TIME (MV) AND
MEMORY USAGE (MEM) ON HOMOGENEOUS WOVEN-BUS-CAPACITANCE PROBLEMS WITH TWO, FIVE, AND TEN CROSSINGS
(WOVENO02N03, WOVENO5N03, WOVEN10ONO3) AND TEN CROSSINGS WITH LOWER DISCRETIZATION (WOVENIONO1)
[ Problem [ Panels | FC MV (s) [ FC MEM (MB) [ FFT++ MV (s) | FFT++ MEM (MB) | FS MV (s) [ FS MEM (MB) |
woven02n03 3168 0.03 30 0.02 23 0.01 11
woven05n03 | 18720 0.17 205 0.22 411 0.09 110
wovenl0n01 8160 0.08 89 0.04 69 0.04 41
wovenlOn03 | 73440 0.73 901 0.51 818 0.41 466
+_FFTSVDG =3 [
—&- FastCap 2nd Order /
- fficap++
10° P ]
po)

Fig. 10.

Inhomogeneous capacitance problem.

advantage, by configuring a set of conductors as shown in
Fig. 10. Almost all of the panels in this system are at the
edges of a cube bounding the domain. Fig. 11 plots the MV
product times for the FFTSVD, FastCap, and fftcap++ codes,
and Fig. 12 plots the memory requirements. As expected, the
pFFT-based fftcap++ code has poor performance, especially for
fine discretizations of the inhomogeneous problem. FFTSVD
performs consistently better than fftcap++ and generally better
than FastCap. The sharp jumps in FFTSVD and fftcap++ MV
product time with increasing panel count are due to a change
in selection of the optimal octree decomposition depth or FFT
grid size, respectively.

D. MEMS Comb Drive

We have simulated the MEMS comb drive illustrated in
Fig. 1 [39]. We applied a voltage difference of 1 V to the two
structures and used a fourth-order finite-difference scheme to
approximate the derivative in (2). Because the finite-difference
scheme for force calculation requires high accuracy in the
capacitance calculations, more stringent parameters are re-
quired for these simulations. We have used tolgyres = 1076,
EQR = 1076, Jgp = 5, nQuaDp = 64, and for each discretization,
we have fixed 1, max such that the octree decomposition depth
is equal for each of the four geometries.

The contribution of each panel to the axial force is plotted
in Fig. 13 and the total axial electrostatic force is plotted in
Fig. 14 as a function of the number of panels used to discretize
the comb drive. We have used general triangles and note that the

Matrix—Vector Product Time (s)

10
Number of Panels

Fig. 11. MYV product times for FFTSVD, FastCap, and fftcap++ codes solving
the inhomogeneous capacitance problem.
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Fig. 12. Memory requirements for FFTSVD, FastCap, and fftcap++ codes
solving the inhomogeneous capacitance problem.

discretization scheme is poorly tuned for the calculation of elec-
trostatic forces; nonuniform meshes achieve superior accuracy
at reduced panel counts [49]. The force can also be calculated
by integrating the squared charge density over the conductor
surface, but this approach requires specialized treatment be-
cause the charge density becomes infinite at the edges and cor-
ners of the conductors [50], [51].
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E. Solvation of Fluorescein

We have used the integral formulation in (10) and (11) to
calculate the solvation energy of fluorescein. To prepare a
model for solvation calculations, its structure and partial atomic
charges were determined from quantum mechanical calcula-
tions. Radii were assigned to each atom and used to generate a
triangulation of the molecular surface. The interior of the fluo-
rescein molecule was assigned a dielectric constant of 4, and the
exterior was assigned a dielectric constant of 80 (for water) with

an ionic strength of 0.145 molar (x = 0.124 Ail). FFTSVD
was used to solve for both the electrostatic solvation energy
(Fig. 15), as well as the total electrostatic potential on the
surface of the fluorescein molecule (Fig. 16). We note that the
long-range single- and double-layer integrals can be computed
using only one set of translation operations. Different projection
operators are used to find the corresponding grid charges due
to monopole and dipole distributions, and the grid charges can
then be summed for translation.
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Fig. 15. Computed electrostatic solvation energy of fluorescein with increas-

ing problem discretization.

Fig. 16.  Electrostatic solvation potentials on the molecular surface of fluores-
cein. Units are in kilocalories per mole per electron charge.

V. DISCUSSION
A. Algorithm Variants

For problems with a small number of integral operators,
memory constraints may not be a significant consideration. In
these cases, the matrices K4 s can be stored explicitly. These
K4, matrices are computed using (24), but instead of com-
puting G4 s explicitly, we project, translate, and interpolate an
identity matrix using the methodology outlined in Section III-E.
Although setup time and memory use increase when explicit
K-matrices are used, the MV product time is significantly
reduced. We have also implemented a parameter that allows a
tradeoff between speed and memory use through K -matrices.
Pairs of interacting octree cubes that contain fewer panels than
the parameter are handled with explicit K -matrices, while all
other cubes use the FFT-based translation. In this manner, the
balance between speed and memory can be fine-tuned for the
given application.
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It is also straightforward to create an FFTSVD variant that
runs in linear time; the same method used to generate the
projection and interpolation matrices can be used to create “up-
ward pass” and “downward pass” operators such as those found
in multipole algorithms. This variant algorithm is essentially
equivalent to the kernel-independent method by Ying et al. [29],
except that we allow all the grid charges to be nonzero. The
Ying method, in contrast, uses only grid charges on the surface
of the cube.

The linear-time FFTSVD method requires a greater number
of grid points per cube, due to the loss of degrees of freedom
during each upward pass from child to parent cube. In addition,
the SVD-based compression of dominant sources and responses
is no longer computed, since these bases are now taken directly
from child cubes. This method is extremely memory efficient
since dominant source and response bases are no longer stored,
but it trades off performance to achieve it due to the larger re-
quired grid sizes.

Finally, the multilevel structure of FFTSVD allows easy
parallelization. Each processor can be assigned responsibility
for a set of cubes on coarse levels, and the computation can
proceed independently until the final potential responses are
summed. We have implemented parallel FFTSVD using both
OpenMP (Open specifications for MultiProcessing) and MPI
(Message Passing Interface) libraries with good results.

B. Summary

We have developed a fast algorithm for computing the dense
MYV products required to solve boundary-element problems
using Krylov subspace iterative methods. The FFTSVD method
is a multiscale algorithm; an octree decomposes the matrix
action into different length scales. For each length scale, we
use sampling to calculate reduced bases for the interactions be-
tween well-separated groups of panels. The FFT is used to diag-
onalize the translation operation that computes the long-range
interactions. The method described here relies on both kernel
decay and translation invariance.

Numerical results illustrate that FFTSVD is much more
memory efficient than FastCap or pFFT, and that it is gen-
erally faster than either technique on a variety of problems.
In addition, FFTSVD is Green’s-function independent, unlike
FastCap, and the method performs well even when the problem
domain is sparsely populated, unlike pFFT. Our implementation
is well suited to solve problems with multiple dielectric regions.
Finally, we note that the structure of the algorithm permits
the treatment of kernels that are not translation invariant; for
such problems, the K -matrix algorithm variant should be used
rather than the FFT. Together, the algorithm’s performance and
flexibility make FFTSVD an excellent candidate for fast BEM
solvers for microfluidic and microelectromechanical problems
that appear in Bio-MEMS design.
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