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Abstract The rapidly expanding diversity of technology
available at the nanoscale is disrupting the existing transistor-
centric microelectronics design paradigm, resulting in nearly
decade-long delays between prototype demonstration and
technology deployment. The key to reducing these innovation-
inhibiting delays is to develop algorithmic approaches that can
start with first principles based descriptions of novel
nanotechnology and rapidly and reliably synthesize
manufacturable designs. Design tools are evolving this direction,
with new extremely efficient yet customizable physical
simulators, automatic paramterized low-order model extraction,
and ever improving algorithms for robust optimization-new
techniques that generate manufacturable designs by optimizing
both system performance and robustness to manufacturing
variations. In this paper we give a few examples of the coupling of
such approaches, but mostly offer pointers to literature for
researchers interested in contributed to this rapidly growing field
of coupled simulation and robust optimization.
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micromachining, or MEMS, industry. Failure to address
product development cycle delays as technology diversifies at
the nanoscale will effectively halt progress, because the delays
will cascade. Without a previous generation's technology in
useable form, it is unlikely that the next generation
technological investigation can thoroughly begin.

Figure 2. Carbon nanotube transistor electrostatics[2]
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Figure 1. Nanofluidic DNA filter [2].
The diversity of technological options being generated by

recent developments in micromachining, nanophotonics,
carbon nanotubes, quantum wells, and molecular electronics
(Figs. 1-4) is causing a major disruption to a decade's old
microelectronics design paradigm; one that is based on a few
technological alternatives focused solely on generating
semiconducting transistors. The major ramification of this
disruption is an enormous delay between prototype proof of
concept and deployable technology, as is evidenced by the near
decade-long product development cycle associated with the

It is easy to suggest that one simply apply the very rapidly
improving optimization software to the problem of optimizing
nanoscale devices, but there are three key problems that must
be addressed. The first problem is that classic optimization
approaches can often find a theoretical "optimum" that is
impractical, because this optimum is too rapidly degraded by
manufacturing imperfections. To address this problem, we can
exploit emerging "Robust optimization" approaches. Robust
optimization refers to a new class of optimization techniques
[1] that optimize not only the performance of a system, but also
its robustness in the face of inevitable deviations of the design
parameters. A second problem is to determine how best to
convexify the problem formulations and robustness constraints
so as to insure efficient and reliable optimization. The third
issue is that for devices in leading-edge technologies, the only
model may be a three-dimensional physics-based simulation.
The optimization approach will need to be somehow combined
with simulation without making the problem computationally
intractable. Although these are daunting challenges, we see
developing this kind of robust optimization based synthesis of
manufacturable devices as the most promising approach to
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Figure 2. 3d photonic crystal [4].
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Figure 4: Quantum-well Q-bit [5].

II. ROBUST OPTIMZATION
The idea of applying numerical optimization techniques to

engineering design problems has a long history, but recently
this idea has been augmented by new methods of "robust
optimization," whose importance and general ideas we
summarize below.

In principle, optimization can be applied as soon as a
tractable forward model, i.e., a simulator, has been developed.
In the simplest approach, an optimization routine adjusts the
design variables, then carries out an analysis (using the forward
model), and repeats this process. For a design problem with just
a modest number of design variables, and a forward model that
can be evaluated reasonably quickly, including gradients
(perhaps by an adjoint method), this approach can work well.
Two traditional pitfalls in applying optimization technology,
however, are parameter variations (that occur in manufacturing
or operation) and model errors (both intentional and
unintentional). In either case, the performance of the system (as
built or manufactured) deviates from that predicted by the
model. Sometimes, the design is not too sensitive to these
deviations, but in other cases the "optimized" design is
notoriously sensitive to the mismatch between the real system
and the model. This results in real performance that is far
inferior to that predicted by the model. There are many ways to

deal with this basic problem. One is to limit the number of
design variables to a small handful, carefully chosen so that
none of the possible designs is too sensitive. Another standard
technique is based on posterior sensitivity analysis, in which
the design is at least checked for sensitivity to parameter
variations or model uncertainty.

Another basic method is to add a simple regularization term
to the objective that penalizes sensitive designs. The extra term
penalizes designs that are sensitive to variation in the
parameter, and thus avoids fragile, nonrobust designs. This
basic regularization method is readily extended to far more
complex situations, with many parameters, and sophisticated
models for the expected variations, such as multivariable
stochastic models or ellipsoidal bounding models.
Unfortunately, this approach often leads to very difficult
optimization problems, with nondifferentiable objectives.
A relatively recent approach is robust optimization, whose

development was begun around 1995 by Nemirovski, Ben-Tal,
El Ghaoui, and others. In robust optimization, the parameter
variations and model mismatch are explicitly taken into
account, using models for the variation that are stochastic, or,
more often, unknown but bounded. Thus, for example, a set of
model parameters might be known to be in a given uncertainty
ellipsoid or a given uncertainty polyhedron. The constraints are
required to hold for all possible values of the parameters, and
the objective for the robust optimization problem is taken to be
the maximum value of the objective, over all possible values of
the parameters. This results in minimax optimization problems,
which can be very difficult to solve. The surprising new results
are that for certain specific classes of problems, including
classic least-squares, linear programming, and quadratic
programming, such problems can be solved exactly efficiently,
using new algorithms for more general convex optimization.
To give one specific example, the problem of solving a robust
linear program, with the constraint that the coefficients lie in
given ellipsoids, reduces to a so-called second order cone
program (SOCP), and can be solved exactly, and very
efficiently. (A sparse SOCP with 105 variables and 106
constraints can be solved in minutes on a desktop PC.) A
decade ago, no one would have considered such a problem
tractable, let alone routinely solvable.

Robust optimization is described in Ben-Tal and
Nemirovski [1], as well as in Boyd and Vandenberghe [6]. The
results so far are for convex problems, and mostly basic ones.
But there is enough known that the methods can be useful in
other problems. For example, a standard sequential quadratic
programming (SQP) method, for general nonlinear problems,
can be adapted to handle robustness by replacing the QP with a
robust QP.

III. COUPLING OPTIMIZATION TO SIMULATION
As mentioned above, robust optimization will be most

useful for nanotechnology exploration if the optimization can
be combined with a detailed simulation model of the device.
There are three approaches for combining optimization
algorithms with simulation: combining Hessian-free
optimization algorithms with efficient adjoint-based gradient
computation; simultaneously optimizing and simulating the
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model by onfly implicitly constructing the Hessian; and
generating parameterized reduced-order models of the device
from simulation and then using the parameterized reduced-
order model in the optimization. Below we describe the latter
two strategies as there have been recent promising results.

A. Simultaneous Optimization and simulation using an
Implicit Hession
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Figure 5. Optimization time vs.
explicit Hessians [7].
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When combining an interior point based optimization
technique with a fast solver or finite-element based device
simulator, it is possible to avoid the expensive process of
extracting the Hessian from the simulator for use in the
optimizer. For example, it was recently shown for a problem in
biomolecule electrostatic optimization that combining a fast 3-
D electrostatic solver with a primal-dual optimization
algorithm, effectively implicitly computing the Hessian,
reduced the optimization time by orders of magnitude over the
use of an explicit Hessian [7].

There are a number of advantages to combining the
simulation and the optimization when using robust
optimization methods. There are the obvious computational
efficiencies, as demonstrated above in the biomolecule
optimization problem. In addition, the detailed simulator
discretization equations are available in the optimization
algorithm, and these discretization equations typically contain
the smoothest relation between design parameters and
equations. This smooth relation can then be fit with first order
variations, yielding the kind of explicit relation between
constraints and design parameter variations needed to take
advantage of recent developments in robust optimization.

B. Parameterized Reduced Order Models (PROM)
Recent developments in techniques for generating

geometrically parameterized reduced order models (PROMs)
from detailed physical simulation [8] are another alternative to
coupling robust optimization to simulation. For example, we
have used this technique to develop improved optical
inspection methods for the semiconductor industry [9].
Currently, optical scattering measurements are made from a
device under inspection and the geometry is determined by
expensive three-dimensional electromagnetic simulation of
geometrically parameterized candidate structures. In order to
accelerate the approach, we developed a projection-based
method for automatically extracting a PROM from the
electromagnetic simulation, and then used the PROM with an
optimization algorithm to determine the parameter values. As
can be seen from Figure 7, a simple rectangular parallelepiped
example, we were able to accurately predict structure.

Figure 6. E. Coli Inhibitor Chorismate mutase [7].
When using the now-pervasive Primal-Dual interior point

methods for convex optimization, the computation of each
optimization step involves solving a large linear system that
includes a Hessian associated with cost function and the
constraints. For large problems, this linear system can be
solved iteratively, typically using a preconditioned Krylov
subspace method. Fast integral equation methods for
electromagnetic analysis (useful for photonic device analysis)
or finite-element based multiphysics simulators (used for a
variety of nanotechnology device analyses) also form large
linear systems of equations that are typically solved iteratively.
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Although the above preliminary results demonstrate a proof
of concept, there are a number of challenges to extending the
PROM strategy to more realistic robust optimization problems.
The first issue to consider is that the model is to be used for
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optimization, and therefore the parameterized reduction
strategy should not just focus on the traditional issues of
fidelity and reduced model computational complexity, but must
also consider the issue of maintaining convexity so that the
model is easily optimized. A second critical difficulty is the
rapid increase in reduced model cost with number of design
parameters. To address this problem, one can pursue a strategy
in which a kind of singular value decomposition is used to
reparameterize the design to a much smaller set of more
mutually independent, and more critical, design parameters.
Then, the reparameterized design can be optimized, and the
physical problem then inferred. Such reparameterization is
likely to improve the conditioning of the subsequent
optimization, but the exact approach to reparameterization can
also ease the robustness constraints just by selecting
reparameterizations that are less sensitive to process variations.

IV. CONCLUSIONS
In this brief paper, the authors attempted to expose the reader
to some to the issues associated with developing products with
emerging nanotechnology, and provide some insight in to the
authors view ofhow design tools much evolve to meet the
challenge of reducing "time-to-market" for products based on
this emerging technology. We hope to encourage more
researchers to join to exciting field.

The authors would like to acknowledge Homer Reid,
Junghoon Lee, Almir Mutapcic, Jay Rockway, Jay Bardhan,
Michael Altman and Jongyoon Han for many valuable
suggestions and for someofthe applications refered to in this
paper.
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