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ABSTRACT | Designers of RF circuits such as power amplifiers,

mixers, and filters make extensive use of simulation tools

which perform periodic steady-state analysis and its exten-

sions, but until the mid 1990s, the computational costs of these

simulation tools restricted designers from simulating the

behavior of complete RF subsystems. The introduction of fast

matrix-implicit iterative algorithms completely changed this

situation, and extensions of these fast methods are providing

tools which can perform periodic, quasi-periodic, and periodic

noise analysis of circuits with thousands of devices. Even

though there are a number of research groups continuing to

develop extensions of matrix-implicit methods, there is still no

compact characterization which introduces the novice re-

searcher to the fundamental issues. In this paper, we examine

the basic periodic steady-state problem and provide both

examples and linear algebra abstractions to demonstrate

connections between seemingly dissimilar methods and to try

to provide a more general framework for fast methods than the

standard time-versus-frequency domain characterization of

finite-difference, basis-collocation, and shooting methods.

KEYWORDS | Circuit simulation; computer-aided analysis; design

automation; frequency-domain analysis; numerical analysis

I . INTRODUCTION

The intensifying demand for very high performance
portable communication systems has greatly expanded
the need for simulation algorithms that can be used to
efficiently and accurately analyze frequency response,
distortion, and noise of RF communication circuits such as
mixers, switched-capacitor filters, and amplifiers. Al-
though methods like multitone harmonic balance, linear
time-varying, and mixed frequency-time techniques [4],
[6]–[8], [26], [37] can perform these analyses, the
computation cost of the earliest implementations of these
techniques grew so rapidly with increasing circuit size that
they were too computationally expensive to use for more
complicated circuits. Over the past decade, algorithmic
developments based on preconditioned matrix-implicit
Krylov-subspace iterative methods have dramatically
changed the situation, and there are now tools which can
easily analyze circuits with thousands of devices. Precondi-
tioned iterative techniques have been used to accelerate
periodic steady-state analysis based on harmonic balance
methods [5], [11], [30], time-domain shooting methods
[13], and basis-collocation schemes [41]. Additional results
for more general analyses appear constantly.

Though there are numerous excellent surveys on
analysis technques for RF circuits [23], [35], [36], [42],
the literature analyzing the fundmentals of fast methods is
limited [40], making it difficult for novice researchers to
contribute to the field. In this paper, we try to provide a
comprehensive yet approachable presentation of fast
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methods for periodic steady-state analysis by combining
specific examples with clarifying linear algebra abstrac-
tions. Using these abstractions, we can demonstrate the
clear connections between finite-difference, shooting,
harmonic balance, and basis-collocation methods for
solving steady-state problems. For example, among users
of circuit simulation programs, it is common to categorize
numerical techniques for computing periodic steady-state
as either time-domain (finite-difference) or frequency-
domain (harmonic balance), but the use of Kronecker
product representations in this paper will make clear that
none of the fast methods for periodic steady-state
fundamentally rely on properties of a Fourier series.

We start, in the next section, by describing the
different approaches for fomulating steady-state problems
and then present the standard numerical techniques in a
more general framework that relies heavily on the
Kronecker product representation. Fast methods are
described in Section IV, along with some analysis and
computational results. And as is common practice, we end
with conclusions and acknowledgements.

II . PERIODIC STEADY STATE

As an example of periodic steady state analysis, consider
the RLC circuit shown in Fig. 1. If the current source in
Fig. 1 is a sinusoid, and the initial capacitor voltage and
inductor current are both zero, then the capacitor voltage
will behave as shown in Fig. 2. As the figure shows, the
response of the circuit is a sinusoid whose amplitude grows
until achieving a periodically repeating steady state. The
solution plotted in Fig. 2 is the result of a numerical
simulation, and each of the many small circles in the plot
corresponds to a simulation timestep. Notice that a very
large number of timesteps are needed to compute this
solution because of the many oscillation cycles before the
solution builds up to a steady state.

For this simple RLC circuit, it is possible to avoid the
many timestep simulation and directly compute the
sinusoidal steady state using what is sometimes referred
to as phasor analysis [2]. To use phasor analysis, first recall
that the time behavior of the capacitor voltage for such an
RLC circuit satisfies the differential equation

d2vcðtÞ
dt2

þ 1

rc

dvðtÞ
dt

þ 1

lc
vðtÞ þ diðtÞ

dt
¼ 0: (1)

Then, since a cosinusoidal input current is the real part of a
complex exponential, Ioej!t where j ¼

ffiffiffiffiffiffi

%1
p

, in sinusoidal
steady state the voltage must also be the real part of a
complex exponential given by

vðtÞ ¼ Real
j!

%!2 þ 1
rc!þ 1

lc

Ioe
j!t

" #

(2)

as can be seen by substituting vðtÞ ¼ Voej!t in (1) and
solving for Vo.

The simple phasor analysis used above for computing
sinusoidal steady is not easily generalized to nonlinear
circuits, such as those with diodes and transistors. The
behavior of such nonlinear circuits may repeat periodically
in time given a periodic input, but that periodic response
will almost certainly not be a sinusoid. However, there are
approaches for formulating systems of equations that can
be used to compute directly the periodic steady state of a
given nonlinear circuit, avoiding the many cycle time
integration shown in Fig. 2. In the next subsection, we
briefly describe one standard form for generating systems
of differential equations from circuits, and the subsections
that follow describe two periodic steady-state equation
formulations, one based on replacing the differential
equation initial condition with a boundary condition and
the second based on using the abstract idea of a state
transition function. In later sections, we will describe

Fig. 1. Parallel resistor, capacitor, and inductor (RLC) circuit with

current source input.

Fig. 2. Transient behavior of RLC circuit with R ¼ 30, C ¼ 1, L ¼ 1,

and isðtÞ ¼ cos t.
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several numerical techniques for solving these two
formulations of the periodic steady-state problem.

A. Circuit Differential Equations
In order to describe a circuit to a simulation program, one

must specify both the topology, how the circuit elements are
interconnected, and the element constitutive equations, how
the element terminal currents and terminal voltages are
related. The interconnection can be specified by labeling
nþ 1 connection points of element terminals, referred to as
the nodes, and then listing which of b element terminals are
connected to which node. A system of n equations in b
unknowns is then generated by insisting that the terminal
currents incident at each node, except for a reference or
Bground[ node, sum to zero. This conservation law equation
is usually referred to as the Kirchhoff current law (KCL). In
order to generate a complete system, the element constitu-
tive equations are used to relate the n node voltages with
respect to ground to b element terminal currents. The result
is a system of nþ b equations in nþ b variables, the
variables being ground-referenced node voltages and termi-
nal currents. For most circuit elements, the constitutive
equations are written in a voltage-controlled form, meaning
that the terminal currents are explicit functions of terminal
voltages. The voltage-controlled constitutive equations can
be used to eliminate most of the unknown branch currents in
the KCL equation, generating a system of equations with
mostly ground-referenced node voltages as unknowns. This
approach to generating a system of equations is referred to as
modified nodal analysis and is the equation formulationmost
commonly used in circuit simulation programs [1], [3].

For circuits with energy storage elements, such as
inductors and capacitors, the constitutive equations in-
clude time derivatives, so modified nodal analysis gen-
erates a system of N differential equations in N variables of
the form

d

dt
q vðtÞð Þ þ i vðtÞð Þ þ uðtÞ ¼ 0 (3)

where t denotes time, uðtÞ is a N-length vector of given
inputs, v is an N-length vector of ground-referenced node
voltages and possibly several terminal currents, ið&Þ is a
function that maps the vector of N mostly node voltages to
a vector of N entries most of which are sums of resistive
currents at a node, and qð&Þ is a function which maps the
vector of N mostly node voltages to a vector of N entries
that are mostly sums of capacitive charges or inductive
fluxes at a node.

If the element constitutive equations are linear, or are
linearized, then (3) can be rewritten in matrix form

C
d

dt
vðtÞ þ GvðtÞ þ uðtÞ ¼ 0 (4)

where C and G are each N ' N matrices whose elements
are given by

Cj;k ¼
@qj
@vk

Gj;k ¼
@ij
@vk

: (5)

The basic forms given in (3) and (4) will be used
extensively throughout the rest of this paper, so to make the
ideas clearer, consider the example of the current-source
driven RLC circuit given in Fig. 1. The differential equation
system generated by modified nodal analysis is given by

c 0
0 l

$ %

d

dt
vcðtÞ
ilðtÞ

$ %

þ
1
r 1
%1 0

$ %

vcðtÞ
ilðtÞ

$ %

þ isðtÞ
0

$ %

¼0 (6)

where vcðtÞ is the voltage across the capacitor, ilðtÞ is the
current through the inductor, and isðtÞ is the source
current.

When the circuit of interest contains only capacitive and
resistive elements, and all the sources are current sources,
v is precisely a set of ground-referenced node voltages, q is
a vector of sums of charges at a node, i is a vector of sums
of currents at a node, C is a capacitance matrix, and G is a
conductance matrix. As an example of this common special
case, consider the N node RC line example in Fig. 3. The
differential equation system is given by

c 0 0 . . . 0

0 c 0 . . . 0

. .
.

. .
.

0 0 . . . 0 c
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þ

2g %g 0 . . . 0
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0 0 . . . %g g
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7
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5

þ

isðtÞ
0

..

.

0

2

6

6

6

6

4

3

7

7

7

7

5

(7)

where 1=g ¼ r from (6).

B. Boundary Condition Formulation
A given function of time, xðtÞ, is said to be periodic

with period T if

xðtÞ ¼ xðtþ TÞ (8)
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for all t. The circuit differential equation system has a
periodic solution if the input uðtÞ is periodic and there
exists a periodic vðtÞ that satisfies (3).

The above condition for a periodic solution suggests
that it is necessary to verify periodicity at every time
instance t, but under certain very mild conditions this is not
the case. If the qð&Þ and ið&Þ satisfy certain smoothness
conditions, then given a particular intial condition and
input, the solution to (3) will exist and be unique. This
uniqueness implies that if vð0Þ ¼ vðTÞ, and uðtÞ ¼ uðtþ TÞ
for all t, then vðtÞ ¼ vðtþ TÞ for all t. To see this, consider
that at time T, the input and state are such that it is identical
to restarting the differential equation at t ¼ 0. Therefore,
uniqueness requires that the solution on t 2 ½T; 2T)
replicates the solution on t 2 ½0; T).

The above analysis suggests that a system of equations
whose solution is periodic can be generated by appending
the differential equation system (3) with what is often
referred as a two-point boundary constraint, as in

d

dt
q vðtÞð Þ þ i vðtÞð Þ þ uðtÞ ¼ 0 vðTÞ % vð0Þ ¼ 0: (9)

The situation is shown diagrammatically in Fig. 4.

As an example, consider the RLC example in Fig. 1,
whose associated differential equation system is given in
(6) and whose response to a sinusoidal current source from
zero initial conditions is plotted in Fig. 2. As is easily
verified, if the initial condition on the inductor current is
zero, and the initial voltage on the capacitor vð0Þ ¼ 30:0,
then a single period simulation will produce one of the last
cycles in Fig. 2.

C. State Transistion Function Formulation
An alternative point of view of the differential equation

system in (3) is to treat the system as implicitly defining an
algebraic function which maps an initial condition, an
N-length vector vo, and a time, ! , to the solution of the
system at time ! , an N-length vector v! . The result of
applying this implicitly defined state transition function to
a given initial condition and time is,

v! ¼ !ðvo; !Þ (10)

and ! can be evaluated by solving (3) for vðtÞ with the
initial condition vð0Þ ¼ vo, and then setting v! ¼ vð!Þ.

Rephrasing the result from above, given a differential
equation system whose nonlinearities satisfy smoothness
conditions and whose input is periodic with period T, if the
solution to that system satisfies vð0Þ ¼ vðTÞ, then the vðtÞ
computed from the initial condition vT ¼ vðTÞ ¼ vð0Þ will
be the periodic steady state. The state transition function,
though implicitly defined, yields an elegant way of ex-
pressing a nonlinear algebraic equation for such a vT , as in

vT % !ðvT; TÞ ¼ 0: (11)

1) State Transition Function Examples: The state transi-
tion function is a straightforward but abstract construction
best made clear by examples. As a very simple example,
consider the RLC circuit in Fig. 1 with no inductor. TheFig. 4. Pictorial representation of periodic steady-state condition.

Fig. 3. Resistor-capacitor (RC) line circuit with current source input.

Nastov et al. : Fundamentals of Fast Simulation Algorithms for RF Circuits

Vol. 95, No. 3, March 2007 | Proceedings of the IEEE 603



example is then an RC circuit described by the scalar
differential equation

c
d

dt
vðtÞ þ 1

r
vðtÞ þ uðtÞ ¼ 0: (12)

The analytic solution of the scalar differential equation
given an initial condition vð0Þ ¼ vo and a nonzero c is

vðtÞ ¼ e%
t
rcvo %

Z

t

0

e%
t%!
rc
uð!Þ
c

d! ¼ !ðvo; tÞ: (13)

If uðtÞ is periodic with period T, then (11) can be combined
with (13) resulting in a formula for vT

vT ¼ % 1

1% e%
T
rc

Z

T

0

e%
T%!
rc
uð!Þ
c

d!: (14)

As a second more general example, consider the linear
differential equation system given in (4). If the C matrix is
invertible, then the system can be recast as

d

dt
vðtÞ ¼ %AvðtÞ % C%1uðtÞ (15)

where A is an N ' N matrix with A ¼ C%1G. The solution
to (15) can be written explicitly using the matrix
exponential [2]

vðtÞ ¼ e%Atvo %
Z

t

0

e%Aðt%!ÞC%1uð!Þd! (16)

where e%At is the N ' N matrix exponential. Combining
(11) with (16) results in a linear system of equations for the
vector vT

ðIN % e%ATÞvT ¼ %
Z

t

0

e%Aðt%!ÞC%1uð!Þd! (17)

where IN is the N ' N identity matrix.
For nonlinear systems, there is generally no explicit

form for the state transition function !ð&Þ; instead, !ð&Þ is

usually evaluated numerically. This issue will reappear
frequently in the material that follows.

III . STANDARD NUMERICAL METHODS

In this section we describe the finite-difference and basis
collocation techniques used to compute periodic steady
states from the differential equation plus boundary
condition formulation, and then we describe the shooting
methods used to compute periodic steady-state solutions
from the state transition function-based formulation. The
main goal will be to establish connections between
methods that will make the application of fast methods
in the next section more transparent. To that end, we will
introduce two general techniques. First, we review the
multidimensional Newton’s method which will be used to
solve the nonlinear algebraic system of equations
generated by each of the approaches to computing steady
states. Second, we will introduce the Kronecker product.
The Kronecker product abstraction is used in this section
to demonstrate the close connection between finite-
difference and basis collocation techniques, and is used in
the next section to describe several of the fast algorithms.

A. Newton’s Method
The steady-state methods described as follows all

generate systems of Q nonlinear algebraic equations in Q
unknowns in the form

FðxÞ *

f1ðx1; . . . ; xQÞ
f2ðx1; . . . ; xQÞ

..

.

fQðx1; . . . ; xQÞ

2

6

6

6

4

3

7

7

7

5

¼ 0 (18)

where each fið&Þ is a scalar nonlinear function of a q-length
vector variable.

The most commonly used class of methods for
numerically solving (18) are variants of the iterative
multidimensional Newton’s method [18]. The basic
Newton method can be derived by examining the first
terms in a Taylor series expansion about a guess at the
solution to (18)

0 ¼ Fðx+Þ , FðxÞ þ JðxÞðx+ % xÞ (19)

where x and x+ are the guess and the exact solution to (18),
respectively, and JðxÞ is the Q ' Q Jacobian matrix whose
elements are given by

Ji;jðxÞ ¼
@fiðxÞ
@xj

: (20)
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The expansion in (19) suggests that given xk, the
estimate generated by the kth step of an iterative algo-
rithm, it is possible to improve this estimate by solving the
linear system

JðxkÞðxkþ1 % xkÞ ¼ %FðxkÞ (21)

where xkþ1 is the improved estimate of x+.
The errors generated by the multidimensional Newton

method satisfy

kx+ % xkþ1k - "kx+ % xkk2 (22)

where # is proportional to bounds on kJðxÞ%1k and the
ratio kFðxÞ % FðyÞk=kx% yk. Roughly, (22) implies that if
FðxÞ and JðxÞ are well behaved, Newton’s method will
converge very rapidly given a good initial guess. Variants of
Newton’s method are often used to improve the conver-
gence properties when the initial guess is far from the
solution [18], but the basic Newton method is sufficent for
the purposes of this paper.

B. Finite-Difference Methods
Perhaps the most straightforward approach to nume-

rically solving (9) is to introduce a time discretization,
meaning that vðtÞ is represented over the period T by a
sequence of M numerically computed discrete points

vðt1Þ
vðt2Þ
..
.

vðtMÞ

2

6

6

6

4

3

7

7

7

5

,

v̂ðt1Þ
v̂ðt2Þ
..
.

v̂ðtMÞ

2

6

6

6

4

3

7

7

7

5

* v̂ (23)

where tM ¼ T, the hat is used to denote numerical
approximation, and v̂ 2 <MN is introduced for notational
convenience. Note that v̂ does not include v̂ðt0Þ, as the
boundary condition in (9) implies v̂ðt0Þ ¼ v̂ðtMÞ.

1) Backward-Euler Example: A variety of methods can be
used to derive a system of nonlinear equations from
which to compute v̂. For example, if the backward-Euler
method is used to approximate the derivative in (3), then
v̂ must satisfy a sequence of M systems of nonlinear
equations

Fmðv̂Þ*
q v̂ðtmÞð Þ% q v̂ðtm%1Þð Þ

hm
þ i vðtmÞð Þþ uðtmÞ¼ 0 (24)

for m 2 f1; . . . ;Mg. Here, hm * tm % tm%1, Fmð&Þ is a
nonlinear function which maps an MN-length vector to
an N-length vector and represents the jth backward-Euler
timestep equation, and periodicity is invoked to replace
v̂ðt0Þ with v̂ðtMÞ in the j ¼ 1 equation.

The system of equations is diagrammed in Fig. 5.
It is perhaps informative to rewrite (24) in matrix

form, as in

1
h1
IN % 1

h1
IN

% 1
h2
IN 1

h2
IN

. .
. . .

.

% 1
hM
IN 1

hM
IN

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

q vðt1Þð Þ
q vðt2Þð Þ
. . .

q vðtMÞð Þ

2

6

6

6

4

3

7

7

7

5

þ

i vðt1Þð Þ
i vðt2Þð Þ
. . .

i vðtMÞð Þ

2

6

6

6

4

3

7

7

7

5

þ

uðt1Þ
uðt2Þ
. . .

uðtMÞ

2

6

6

6

4

3

7

7

7

5

¼ 0 (25)

where IN is used to denote the N ' N identity matrix.

2) Matrix Representation Using Kronecker Products: The
backward-Euler algorithm applied to an M-point discreti-
zation of a periodic problem can be more elegantly
summarized using the Kronecker product. The Kronecker
product of two matrices, an n' p matrix A and m' l
matrix B, is achieved by replacing each of the np elements
of matrix A with a scaled copy of matrix B. The result is the
ðnþ mÞ ' ðpþ lÞ matrix

A. B *

A1;1B A1;2B . . . A1;pB
A2;1B A2;2B . . . A2;pB

..

. ..
. . .

. ..
.

An;1B An;2B . . . An;pB

2

6

6

6

4

3

7

7

7

5

: (26)

Fig. 5. Graphical representation of (24). Note that there is no large

dot before the first Euler-step block, indicating that v̂ðt0Þ ¼ v̂ðtMÞ.
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The Kronecker product notation makes it possible to
summarize the backward-Euler M-step periodic discretiza-
tion with an M'M differentiation matrix

Dbe ¼

1
h1

% 1
h1

% 1
h2

1
h2

. .
. . .

.

% 1
hM

1
hM
;

2

6

6

6

6

4

3

7

7

7

7

5

(27)

and then apply the backward-Euler periodic discretization
to an N-dimensional differential equation system using the
Kronecker product. For example, (25) becomes

Fðv̂Þ ¼ Dbe . INqðv̂Þ þ iðv̂Þ þ u ¼ 0 (28)

where IN is the N ' N identity matrix and

qðv̂Þ*

q v̂ðt1Þð Þ
q v̂ðt2Þð Þ

..

.

q v̂ðtmÞð Þ

2

6

6

6

6

4

3

7

7

7

7

5

; iðv̂Þ*

i v̂ðt1Þð Þ
i v̂ðt2Þð Þ

..

.

i v̂ðtmÞð Þ

2

6

6

6

6

4

3

7

7

7

7

5

;

u*

uðt1Þ
uðt2Þ

..

.

uðtMÞÞ

2

6

6

6

6

4

3

7

7

7

7

5

: (29)

One elegant aspect of the matrix form in (28) is the
ease with which it is possible to substitute more accurate
backward or forward discretization methods to replace
backward-Euler. It is only necessary to replace Dbe in (28).
For example, the L-step backward difference methods [32]
estimate a time derivative using several backward time-
points, as in

d

dt
q vðtmÞð Þ ,

X

L

j¼0

$m
j q vðtm%jÞ
& '

: (30)

Note that for backward-Euler, L ¼ 1 and

$m
0 ¼ $m

1 ¼ 1

hm
(31)

and note also that $m
j will be independent of m if all the

timesteps are equal. To substitute a two-step backward-

difference formula in (28), Dbe is replaced by Dbd2

where

Dbd2 ¼

$1
0 0 . . . 0 $1

2 $1
1

$2
1 $2

0 0 . . . 0 $2
2

$3
2 $3

1 $3
0 0 . . . 0

. .
. . .

. . .
.

0 . . . 0 $M
2 $M

1 $M
0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

: (32)

3) Trapezoidal Rule RC Example: The Trapezoidal rule is
not a backward or forward difference formula but can still
be used to compute steady-state solutions using a minor
modification of the above finite-difference method. The
Trapezoidal method is also interesting to study in this
setting because of a curious property we will make clear by
example.

Again consider the differential equation for the RC
circuit from (12), repeated here reorganized and with g
replacing 1=r

c
d

dt
vðtÞ ¼ %gvðtÞ % uðtÞ: (33)

The mth timestep of the Trapezoidal rule applied to
computing the solution to (33) is

c

hm
v̂ðtmÞ % v̂ðtm%1Þð Þ

¼ % 1

2
gv̂ðtmÞ þ uðtmÞ þ gv̂ðtm%1Þ þ uðtm%1Þð Þ (34)

and when used to compute a periodic steady-state solution
yields the matrix equation

c
h1
þ 0:5g 0 . . . 0 % c

h1
þ 0:5g

% c
h2
þ 0:5g c

h2
þ 0:5g 0 . . . 0

. .
.

0 . . . 0 % c
hM
þ 0:5g c

hM
þ 0:5g

2

6

6

6

6

6

4

3

7

7

7

7

7

5

'

vðt1Þ
vðt2Þ

..

.

vðtMÞ

2

6

6

6

6

4

3

7

7

7

7

5

¼

0:5 uðt1Þ þ uðtMÞð Þ
0:5 uðt2Þ þ uðt1Þð Þ

..

.

0:5 þuðtMÞ þ uðtM%1Þð Þ

2

6

6

6

6

4

3

7

7

7

7

5

: (35)

Now suppose the capacitance approaches zero, then the
matrix in (35) takes on a curious property. If the number of
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timesteps M, is odd, then a reasonable solution is
computed. However, if the number of timesteps is even,
then the matrix in (35) is singular, and the eigenvector
associated with the zero eigenvalue is of the form

1:0

%1:0

1:0

%1:0
..
.

1:0

%1:0

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

: (36)

The seasoned circuit simulation user or developer may
recognize this as the periodic steady-state representation
of an artifact known as the trapezoidal rule ringing problem
[33]. Nevertheless, the fact that the ringing appears and
disappears simply by incrementing the number of time-
steps makes this issue the numerical equivalent of a pretty
good card trick, no doubt useful for impressing one’s guests
at parties.

4) Jacobian for Newton’s Method: Before deriving the
Jacobian needed to apply Newton’s method to (28), it is
useful (or perhaps just very appealing to the authors) to
note the simplicity with which the Kronecker product can
be used to express the linear algebriac system which must
be solved to compute the steady-state solution associated
with the finite-difference method applied to the linear
differential equation system in (4). For this case, (28)
simplifies to

ðDfd . C þ IM . GÞv̂ ¼ u (37)

where Dfd is the differentiation matrix associated with the
selected finite-difference scheme.

The Jacobian for Fð&Þ in (28) has structural similarities
to (37) but will require the M derivative matrices
Cm ¼ dqðv̂ðtmÞÞ=dv a n d Gm ¼ diðv̂ðtmÞÞ=dv f o r m 2
f1; . . . ;Mg. By first defining the MN 'MN block diagonal
matrices

C ¼

C1 0 0 . . . 0
0 C2 0 . . . 0

. .
.

. .
.

0 0 . . . 0 CM

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(38)

and

G ¼

G1 0 0 . . . 0
0 G2 0 . . . 0

. .
.

. .
.

0 0 . . . 0 GM

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(39)

it is possible to give a fairly compact form to represent the
MN 'MN Jacobian of Fð&Þ in (28)

JFðvÞ ¼ ðDfd . INÞC þ G: (40)

C. Basis Collocation Methods
An alternative to the finite-difference method for

solving (9) is to represent the solution approximately as a
weighted sum of basis functions that satisfy the periodicity
constraint and then generate a system of equations for
computing the weights. In circuit simulation, the most
commonly used techniques for generating equations for
the basis function weights are the so-called spectral
collocation methods [44]. The name betrays a history of
using sines and cosines as basis functions, though other
bases, such as polynomials and wavelets, have found recent
use [41], [45]. In spectral collocation methods, the solution
is represented by the weighted sum of basis functions that
exactly satisfy the differential equation, but only at a set of
collocation timepoints.

The equations for spectral collocation are most easily
derived if the set of basis functions have certain
properties. To demonstrate those properties, consider a
basis set being used to approximate a periodic function
xðtÞ, as in

xðtÞ ,
X

K

k¼1

X½k)%kðtÞ (41)

where %kðtÞ and X½k), k 2 1; . . . ;K are the periodic basis
functions and the basis function weights, respectively. We
will assume that each of the %kðtÞ’s in (41) are
differentiable, and in addition we will assume the basis
set must have an interpolation property. That is, it must be
possible to determine uniquely the K basis function
weights given a set of K sample values of xðtÞ, though
the sample timepoints may depend on the basis. This
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interpolation condition implies that there exists a set of K
timepoints, t1; . . . tK , such that the K ' K matrix

"%1 *
%1ðt1Þ . . . %Kðt1Þ

..

. ..
.

%1ðtKÞ . . . %KðtKÞ

2

6

4

3

7

5
(42)

is nonsingular and therefore the basis function coefficients
can be uniquely determined from the sample points using

X1

..

.

XK

2

6

4

3

7

5
¼ "

xðt1Þ
..
.

xðtKÞ

2

6

4

3

7

5
: (43)

To use basis functions to solve (9), consider expanding
qðvðtÞÞ in (9) as

q vðtÞð Þ ,
X

K

k¼1

Q½k)%kðtÞ (44)

where Q½k) is the N-length vector of weights for the kth
basis function.

Substituting (44) in (3) yields

d

dt

X

K

k¼1

Q½k)%kðtÞ

 !

þ i vðtÞð Þ þ uðtÞ , 0: (45)

Moving the time derivative inside the finite sum simplifies
(45) and we have

X

K

k¼1

Q½k) _%kðtÞ þ i vðtÞð Þ þ uðtÞ , 0 (46)

where note that the dot above the basis function is used to
denote the basis function time derivative.

In order to generate a system of equations for the
weights, (46) is precisely enforced at M collocation points
ft1; . . . ; tMg,

X

K

k¼1

Q½k) _%kðtmÞ þ i vðtmÞð Þ þ uðtmÞ ¼ 0 (47)

for m 2 f1; . . . ;Mg. It is also possible to generate
equations for the basis function weights by enforcing

(46) to be orthogonal to each of the basis functions. Such
methods are referred to as Galerkin methods [7], [44], [46]
and have played an important role in the development of
periodic steady-state methods for circuits though they are
not the focus in this paper.

If the number of collocation points and the number of
basis functions are equal, M ¼ K, and the basis set satisfies
the interpolation condition mentioned above with an
M'M interpolation matrix ", then (47) can be recast
using the Kronecker notation and paralleling (28) as

Fðv̂Þ ¼ _"%1". INqðv̂Þ þ iðv̂Þ þ u ¼ 0 (48)

where IN is the N ' N identity matrix and

_"%1 *
_%1ðt1Þ . . . _%Kðt1Þ
..
. ..

.

_%1ðtKÞ . . . _%KðtKÞ

2

6

4

3

7

5
: (49)

By analogy to (28), the product _"%1" in (48) can be
denoted as a basis function associated differentiation
matrix Dbda

Dbda ¼ _"%1" (50)

and (48) becomes identical in form to (28)

Fðv̂Þ ¼ Dbda . INqðv̂Þ þ iðv̂Þ þ u ¼ 0: (51)

Therefore, regardless of the choice of the set of basis
functions, using the collocation technique to compute the
basis function weights implies the resulting method is
precisely analgous to a finite-difference method with a
particular choice of discretization matrix. For the backward-
difference methods described above, the M'M matrix Dfd

had only orderM nonzeros, but as we will see in the Fourier
example that follows that for spectral collocation methods
the Dbda matrix is typically dense.

Since basis collocation methods generate nonlinear
systems of equations that are structurally identical to those
generated by the finite-difference methods, when New-
ton’s is used to solve (51), the formula for the required
MN 'MN Jacobian of Fð&Þ in (51) follows from (40) and is
given by

JF ðvÞð Þ ¼ ðDbda . INÞC þ G (52)

where C and G are as defined in (38) and (39).
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1) Fourier Basis Example: If a sinusoid is the input to a
system of differential equations generated by a linear time-
invariant circuit, then the associated periodic steady-state
solution will be a scaled and phase-shifted sinusoid of the
same frequency. For a mildly nonlinear circuit with a
sinusoidal input, the solution is often accurately repre-
sented by a sinusoid and a few of its harmonics. This
observation suggests that a truncated Fourier series will be
an efficient basis set for solving periodic steady-state
problems of mildly nonlinear circuits.

To begin, any square integrable T-periodic waveform
xðtÞ can be represented as a Fourier series

xðtÞ ¼
X

k¼1

k¼%1
X½k)ej2&fkt (53)

where fk ¼ kt=T and

X½k) ¼ 1

T

Z

T=2

%T=2

xðtÞe%j2&fktdt: (54)

If xðtÞ is both periodic and is sufficiently smooth, (e.g.,
infinitely continuously differentiable), then X½k) ! 0
exponentially fast with increasing k. This implies xðtÞ
can be accurately represented with a truncated Fourier
series, that is x̂ðtÞ , xðtÞ where x̂ðtÞ is given by the
truncated Fourier series

x̂ðtÞ ¼
X

k¼K

k¼%K

X̂½k)ej2&fkt (55)

where the number of harmonics K is typically fewer than
one hundred. Note that the time derivative of x̂ðtÞ is
given by

d

dt
x̂ðtÞ ¼

X

k¼K

k¼%K

X̂½k)j2&fkej2&fkt: (56)

If a truncated Fourier series is used as the basis set when
approximately solving (9), the method is referred to as
harmonic balance [6] or a Fourier spectral method [17].

If theM ¼ 2K þ 1 collocation timepoints are uniformly
distributed throughout a period from %ðT=2Þ to T=2, as in
tm ¼ ððm% ðK þ 1=2ÞÞ=MÞð1=TÞ, then the associated in-
terpolation matrix "F is just the discrete Fourier transform
and "%1

F is the inverse discrete Fourier transform, each of
which can be applied in orderM logM operations using the

fast Fourier transform and its inverse. In addition, _"%1
F ,

representing the time derivative of the series representa-
tion, is given by

_"%1
F ¼ "%1

F # (57)

where # is the diagonal matrix given by

# *

j2&fK
j2&fK%1

. .
. . .

.

j2&f%K

2

6

6

6

4

3

7

7

7

5

: (58)

The Fourier basis collocation method generates a
system of equations of the form (51), where

DF ¼ "%1#" (59)

is the differentiation matrix. The weights for this spectral
differentiation matrix for the case of T ¼ 17, M ¼ 17, and
at timepoint t9 ¼ 9 are plotted in Fig. 6. Note that the
weights at t8 and t10 are approximately %1 and 1, respec-
tively, so spectral differentiation is somewhat similar to a
central-difference scheme in which

d

dt
xðt9Þ ,

xðt10Þ % xðt8Þ
t10 % t8

: (60)

Fig. 6. Harmonic balance discretization weights for t9 where T ¼ 17

andM ¼ 17.
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The connection between spectral differentiation and
standard differencing schemes can be exploited when
developing fast methods for computing solutions to (28)
and (51), a point we will return to subsequently.

The error analysis of spectral-collocation methods can
be found in [17] and [19]. Also, many implementations of
harmonic balance in circuit simulators use spectral
Galerkin methods rather than collocation schemes [7],
and if a small number of harmonics are used, Galerkin
spectral methods can have superior accuracy and often
lead to nonlinear systems of equations that are more easily
solved with Newton’s method [47].

D. Shooting Methods
The numerical procedure for solving the state transi-

tion function based periodic steady-state formulation in
(11) is most easily derived for a specific discretization
scheme and then generalized. Once again, consider
applying the simple backward-Euler algorithm to (3).
Given any v̂ðt0Þ, the nonlinear equation

q v̂ðt1Þð Þ % q v̂ðt0Þð Þ
h1

þ i v̂ðt1Þð Þ þ uðt1Þ ¼ 0 (61)

can be solved, presumably using a multidimensional
Newton method, for v̂ðt1Þ. Then, v̂ðt1Þ can be used to solve

q v̂ðt2Þð Þ % q v̂ðt1Þð Þ
h2

þ i v̂ðt2Þð Þ þ uðt2Þ ¼ 0 (62)

for v̂ðt2Þ. This procedure can be continued, effectively
integrating the differential equation one timestep at a time
until v̂ðtmÞ has been computed. And since the nonlinear
equations are solved at each timestep, v̂ðtmÞ is an implicitly
defined algebraic function of v̂ðt0Þ. This implicitly defined
function is a numerical approximation to the state-
transition function !ð&Þ described in the previous section.
That is,

v̂ðtmÞ ¼ !̂ v̂ðt0Þ; tmð Þ , ! v̂ðt0Þ; tmð Þ: (63)

The discretized version of the state-transition function-
based periodic steady-state formulation is then

F v̂ðtmÞð Þ * v̂ðtMÞ % !̂ v̂ðtMÞ; tMð Þ ¼ 0: (64)

Using (64) to compute a steady-state solution is often
referred to as a shooting method, in which one guesses a
periodic steady state and then shoots forward one period
with the hope of arriving close to the guessed initial state.

Then, the difference between the initial and final states is
used to correct the initial state, and the method shoots
forward another period. As is commonly noted in the
numerical analysis literature, this shooting procedure will
be disasteriously ineffective if the first guess at a periodic
steady state excites rapidly growing unstable behavior in
the nonlinear system [18], but this is rarely an issue for
circuit simulation. Circuits with such unstable Bmodes[
are unlikely to be useful in practice, and most circuit
designers using periodic steady-state analysis have already
verified that their designs are quite stable.

The state correction needed for the shooting method
can be performed with Newton’s method applied to (64),
in which case the correction equation becomes

IN % J!̂ v̂kðtMÞ; T
& '( )

v̂kþ1ðtMÞ % v̂kðtMÞ
( )

¼ %Fsh v̂kðtMÞ
& '

(65)

where k is the Newton iteration index, IN is N ' N identity
matrix, and

J!̂ðv; TÞ *
d

dv
!̂ðv; TÞ (66)

is referred to as discretized sensitivity matrix.
To complete the description of the shooting-Newton

method, it is necessary to present the procedure for com-
puting !̂ðv; TÞ and J!̂ðv; TÞ. As mentioned above, computing
the approximate state transition function is equivalent to
solving the backward-Euler equations as in (24) one time-
step at a time. Solving the backward-Euler equations is
usually accomplished using an inner Newton iteration, as in

Cmkl
hm

þ Gmkl

$ %

v̂k;ðlþ1ÞðtmÞ % v̂k;lðtmÞ
* +

¼ % 1

hm

' q v̂k;lðtmÞ
& '

% q v̂k;lðtmÞ
& '& '

% i v̂k;lðtmÞ
& '

% uðtmÞ (67)

where m is the timestep index, k is the shooting-Newton
iteration index, l is the inner Newton iteration index,
Cmkl ¼ ðdqðv̂k;lðtmÞÞ=dv and Gmkl ¼ ðdiðv̂k;lðtmÞÞ=dv. Some-
times, there are just too many indices.

To see how to compute J!̂ðv; TÞ as a by-product of the
Newton method in (67), let l ¼ + denote the inner Newton
iteration index which achieves sufficent convergence and
let v̂k;+ðtmÞ denote the associated inner Newton converged
solution. Using this notation

q v̂k;+ðtmÞð Þ% q v̂k;+ðtm%1Þð Þ
hm

þ i v̂k;+ðtmÞ
& '

þ uðtmÞ¼ 'm (68)
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where the left-hand side of (68) is almost zero, so that 'm is
bounded by the inner Newton convergence tolerance.

Implicitly differentiating (68) with respect to v, and
assuming that 'm is independent of v, results in

Cmk+
hm

þ Gmk+

$ %

dv̂k;+ðtmÞ
dv

¼
Cðm%1Þk+

hm

dv̂k;+ðtm%1Þ
dv

(69)

where it is usually the case that the matrices Cmk+=hm and
Gmk+ are available as a by-product of the inner Newton
iteration.

Recursively applying (69), with the initial value
v̂k;+ðt0Þ ¼ v, yields a product form for the Jacobian

J!̂ðv; tMÞ ¼
Y

M

m¼1

Cmk+
hm

þ Gmk+

$ %%1Cðm%1Þk+

hm
(70)

where the notation
QM

m¼1 indicates the M-term product
rather than a sum [15].

1) Linear Example: If a fixed timestep backward-Euler
discretization scheme is applied to (4), then

C

h
v̂ðtmÞ % v̂ðtm%1Þð Þ þ GvðtmÞ þ uðtmÞ ¼ 0 (71)

for m 2 f1; . . . ;Mg, where periodicity implies that
v̂ðtMÞ ¼ v̂ðt0Þ. Solving for v̂ðtMÞ yields a linear system
of equations

½IN % J!)v̂ðtMÞ ¼ b (72)

where J! is the derivative of the state transition function,
or the sensitivity matrix, and is given by

J! ¼ C

h
þ G

" #%1C

h

" #M

(73)

and the right-hand side N-length vector b is given by

b ¼
X

M

m¼1

C

h
þ G

" #%1C

h

" #m
C

h
þ G

" #%1

uðtM%mÞ: (74)

It is interesting to compare (72) and (74) to (16), note how
the fixed-timestep backward-Euler algorithm is approxi-

mating the matrix exponential in (73) and the convolution
integral in (74).

2) Comparing to Finite-Difference Methods: If Newton’s
method is used for both the shooting method, as in (65),
and for the finite difference method, in which case the
Jacobian is (40), there appears to be an advantage for the
shooting-Newton method. The shooting-Newton method
is being used to solve a system of N nonlinear equations,
whereas the finite-difference-Newton method is being
used to solve an NM system of nonlinear equations. This
advantage is not as significant as it seems, primarily
because computing the sensitivity matrix according to (70)
is more expensive than computing the finite-difference
Jacobian. In this section, we examine the backward-Euler
discretized equations to show that solving a system the
shooting method Jacobian, as in (65), is nearly equivalent
to solving a preconditioned system involving the finite-
difference method Jacobian, in (40).

To start, let L be the NM' NM the block lower
bidiagonal matrix given by

L *

C1
h1
þ G1

% C1
h2

C2
h2
þ G2

. .
. . .

.

% CM%1

hM
CM
hM

þ GM

2

6

6

6

6

4

3

7

7

7

7

5

(75)

and define B as the NM' NM matrix with a single
nonzero block

B *

0 . . . 0 CM
h1

0
. .
. . .

.

0 0

2

6

6

4

3

7

7

5

(76)

where Cm and Gm are the N ' N matrices which denote
dqðv̂ðtjÞÞ=dv and diðv̂ðtjÞÞ=dv, respectively.

The matrix L defined in (75) is block lower bidiagonal,
where the diagonal blocks have the same structure as the
single timestep Jacobian in (67). It then follows that the
cost of applying L%1 is no more than computing one
Newton iteration at each of M timesteps. One simply
factors the diagonal blocks of L and backsolves. Formally,
the result can be written as

ðINM % L%1BÞð~vkþ1 % ~vkÞ ¼ %L%1Fð~vkÞ (77)

though L%1 would never be explicitly computed. Here, INM
is the NM' NM identity matrix.
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Examining (77) reveals an important feature, that L%1B
is an NM' NM matrix whose only nonzero entries are in
the last N columns. Specifically,

ðINM % L%1BÞ ¼

IN 0 0 . . . 0 %P1
0 IN 0 . . . 0 %P2
..
. . .

. . .
. . .

. ..
. ..

.

..

. . .
. . .

. . .
.

0 %PM%2

..

. . .
. . .

. . .
.

IN %PM%1

0 . . . . . . . . . 0 IN % PM

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

(78)

where the N ' N matrix PM is the NðM% 1Þ þ 1 through
NM rows of the lastN columns of L%1B. This bordered-block
diagonal form implies that ~vkþ1 % ~vk in (77) can be com-
puted in three steps. The first step is to compute PM, the
second step is to use the computed PM to determine the last
N entries in ~vkþ1 % ~vk. The last step in solving (77) is to
compute the rest of ~vkþ1 % ~vk by backsolving with L.

The close relation between solving (77) and (65) can
now be easily established. If L and B are formed using Cmk+
and Gmk+ as defined in (69), then by explicitly computing
L%1B it can be shown that the shooting method Jacobian
J!ðv̂kðt0Þ; tMÞ is equal to PM. The importance of this
observation is that solving the shooting-Newton update
equation is nearly computationally equivalent to solving a
preconditioned finite-difference-Newton update (77). The
comparison can be made precise if qðvÞ and iðvÞ are linear,
so that the C and Gmatrices are independent of v, then the
v̂kþ1ðtMÞ % v̂kðtMÞ produced by the kth iteration of New-
ton’s method applied to the finite-difference formulation
will be identical to the v̂kþ1ðtMÞ % v̂kðtMÞ produced by
solving (65).

An alternative interpretation of the connection be-
tween shooting-Newton and finite-difference-Newton
methods is to view the shooting-Newton method as a
two-level Newton method [10] for solving (24). In the
shooting-Newton method, if v̂ðtmÞ is computed by using an
inner Newton method to solve the nonlinear equation Fm
at each timestep, starting with v̂ðtoÞ ¼ v̂ðtMÞ, or equiva-
lently if v̂ðtmÞ is computed by evaluating !̂ðv̂ðtMÞ; tmÞ, then
Fiðv̂Þ in (24) will be nearly zero for i 2 f1; . . . ;M% 1g,
regardless of the choice of v̂ðtMÞ. Of course, !̂ðv̂ðtMÞ; tMÞ
will not necessarily be equal to v̂ðtMÞ; therefore, FMðv̂Þ will
not be zero, unless v̂ðtMÞ ¼ v̂ðt0Þ is the right initial
condition to produce the periodic steady state. In the
shooting-Newton method, an outer Newton method is used
to correct v̂ðtMÞ. The difference between the two methods
can then be characterized by differences in inputs to the
linearized systems, as diagrammed in Fig. 7.

3) More General Shooting Methods: Many finite-
difference methods can be converted to shooting methods,
but only if the underlying time discretization scheme
treats the periodicity constraint by Bwrappping around[ a
single final timepoint. For discretization schemes which
satisfy this constraint, the M'M periodic differentiation
matrix, D, is lower triangular except for a single entry in
the upper right-hand corner. As an example, the differ-
entiation matrix Dbe in (27) is lower bidiagonal except
for a single entry in the upper right-hand corner. To be
more precise, if

Di;j ¼ 0; j 9 i; i 6¼ 1; j 6¼ M (79)

consider separating D into its lower triangular part, DL,
and a single entry D1;M. The shooting method can then

Fig. 7. Diagram of solving backward-Euler discretized finite-difference-Newton iteration equation (top picture) and solving shooting-Newton

iteration equation (bottom picture). Note that for shooting method the RHS contribution at intermediate timesteps is zero, due to the inner

newton iteration.
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be compactly described as solving the nonlinear al-
gebriac system

FðvTÞ ¼ vT % ~e TM . IN
& '

v̂ ¼ 0 (80)

for the N-length vector vT , where~eM an M-length vector of
zeros except for unity in the Mth entry as in

~eM ¼

0
..
.

0
1

2

6

6

4

3

7

7

5

(81)

and v̂ is anMN-length vector which is an implicitly defined
function of vT . Specifically, v̂ is defined as the solution to
the system of MN nonlinear equations

DL . INqðv̂Þ þ iðv̂Þ þ uþ ðD1;M~e1Þ . qðvTÞ ¼ 0 (82)

where ~e1 is the M-length vector of zeros except for unity
in the first entry. Perhaps the last Kronecker term
generating an NM-length vector in (82) suggests that the
authors have become carried away and overused the
Kronecker product, as

ðD1;M~e1Þ . qðvTÞ ¼

D1;MqðvTÞ
0
..
.

0

2

6

6

4

3

7

7

5

(83)

is more easily understood without the use of the Kronecker
product, but the form will lend some insight, as will be
clear when examining the equation for the Jacobian.

If Newton’s method is used to solve (80), then note an
inner Newton’s method will be required to solve (82). The
Jacobian associated with (80) can be determined using
implicit differentiation and is given by

JshootðvTÞ ¼ IN þ ~e TM . IN
& '

ðDL . INÞC þ G
& '%1

' D1;M~e1 .
@qðvTÞ
@v

" #

(84)

where C and G are as defined in (38) and (39), and
ððDL . INÞC þ G is a block lower triangular matrix whose
inverse is inexpensive to apply.

IV. FAST METHODS

As described in the previous section, the finite-difference
basis-collocation and shooting methods all generate
systems of nonlinear equations that are typically solved
with the multidimensional Newton’s method. The stan-
dard approach for solving the linear systems that generate
the Newton method updates, as in (21), is to use sparse
matrix techniques to form and factor an explicit represen-
tation of the Newton method Jacobian [6], [12]. When this
standard approach is applied to computing the updates for
Newton’s method applied to any of the periodic steady-
state methods, the cost of forming and factoring the
explicit Jacobian grows too fast with problem size and the
method becomes infeasible for large circuits.

It is important to take note that we explicitly mention
the cost of forming the explicit Jacobian. The reason is that
for all the steady-state methods described in the previous
section, the Jacobians were given in an implicit form, as a
combination of sums, products, and possibly Kronecker
products. For the backward-Euler based shooting method,
the N ' N Jacobian Jshoot, is

Jshoot ¼ IN %
Y

M

m¼1

Cm
hm

þ Gm

$ %%1Cm
hm

" #

(85)

and is the difference between the identity matrix and a
product of M N ' N matrices, each of which must be
computed as the product of a scaled capacitance matrix
and the inverse of a weighted sum of a capacitance and a
conductance matrix. The NM' NM finite-difference or
basis-collocation Jacobians, denoted generally as Jfdbc, are
also implicitly defined. In particular

Jfdbc ¼ ðD. INÞC þ G (86)

is constructed from an M'M differentiation matrix D, a
set of M N ' N capacitance and conductance matrices
which make up the diagonal blocks of C and G, and an
N ' N identity matrix.

Computing the explicit representation of the Jacobian
from either (85) or (86) is expensive, and therefore any
fast method for these problems must avoid explicit
Jacobian construction. Some specialized methods with
this property have been developed for shooting methods
based on sampling results of multiperiod transient
integration [25], and specialized methods have been
developed for Fourier basis collocation methods which
use Jacobian approximations [36]. Most of these methods
have been abandoned in favor of solving the Newton
iteration equation using a Krylov subspace method, such as
the generalized minimum residual method (GMRES) and
the quasi-minimum residual method (QMR) [9], [27].
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When combined with good preconditioners, to be discussed
subsequently, Krylov subspace methods reliably solve
linear systems of equations but do not require an explicit
system matrix. Instead, Krylov subspace methods only
require matrix-vector products, and such products can be
computed efficiently using the implicit forms of the
Jacobians given above.

Claiming that Krylov subspace methods do not require
explicit system matrices is somewhat misleading, as these
methods converge quite slowly without a good precondi-
tioner, and preconditioners often require that at least some
of the system matrix be explicitly represented. In the
following section, we describe one of the Krylov subspace
methods, GMRES, and the idea of preconditioning. In the
subsections that follow we address the issue of precondi-
tioning, first demonstrating why Krylov subspace methods
converge rapidly for shooting methods even without
preconditioning, then describing lower triangular and
averaging based preconditioning for basis-collocation and
finite-difference methods, drawing connections to shoot-
ing methods when informative.

A. Krylov Subspace Methods
Krylov subspace methods are the most commonly used

iterative technique for solving Newton iteration equations
for periodic steady-state solvers. The two main reasons for
the popularity of this class of iterative methods are that
only matrix-vector products are required, avoiding explic-
itly forming the system matrix, and that convergence is
rapid when preconditioned effectively.

As an example of a Krylov subspace method, consider
the generalized minimum residual algorithm, GMRES [9].
A simplified version of GMRES applied to solving a generic
problem is given as follows.

GMRES Algorithm for Solving Ax ¼ b
Guess at a solution, x0.
Initialize the search direction p0 ¼ b% Ax0.
Set k ¼ 1.
do {
Compute the new search direction, pk ¼ Apk%1.
Orthogonalize, pk ¼ pk %

Pk%1
j¼0 (k;jpj.

Choose $k in xk ¼ xk%1 þ $kpk

to minimize krkk ¼ kb% Axkk.
If krkk G tolerancegmres, return vk as the solution.
else Set k ¼ kþ 1.

}

Krylov subspace methods converge rapidly when applied
to matrices which are not too nonnormal and whose
eigenvalues are contained in a small number of tight clusters
[44]. Therefore, Krylov subspace methods converge rapidly
when applied to matrices which are small perturbations from
the identity matrix, but can, as an example, converge
remarkably slowly when applied to a diagonal matrix whose
diagonal entries are widely dispersed. In many cases,

convergence can be accelerated by replacing the original
problem with a preconditioned problem

PAX ¼ Pb (87)

where A and b are the original system’s matrix and right-
hand side, and P is the preconditioner. Obviously, the
preconditioner that best accelerates the Krylov subspace
method is P ¼ A%1, but were such a preconditioner avail-
able, no iterative method would be needed.

B. Fast Shooting Methods
Applying GMRES to solving the backward-Euler

discretized shooting Newton iteration equation is straight-
forward, as multiplying by the shooting method Jacobian in
(85) can be accomplished using the simple M-step
algorithm as follows.

Computing pk ¼ Jshootpk%1

Initialize ptemp ¼ pk%1

For k ¼ 1 to M {
Solve ððCm=hmÞ þ GmÞpk ¼ ðCm=hmÞptemp

Set ptemp ¼ pk

}
Finalize pk ¼ pk%1 % pk

The N ' N Cm and Gm matrices are typically quite
sparse, so each of the M matrix solutions required in the
above algorithm require roughly order N operations, where
orderð&Þ is used informally here to imply proportional
growth. Given the order N cost of the matrix solution in
this case, computing the entire matrix-vector product
requires order MN operations.

Note that the above algorithm can also be used N times
to compute an explicit representation of Jshoot, generating
the explicit matrix one column at a time. To compute the
ith column, set pk%1 ¼~ei, where~ei can be thought of as the
ith unit vector or the ith column of the N ' N identity
matrix. Using this method, the cost of computing an
explicit representation of the shooting method Jacobian
requires order MN2 operations, which roughly equals the
cost of performing N GMRES iterations.

When applied to solving the shooting-Newton iteration
equation, GMRES and other Krylov subspace methods
converge surprisingly rapidly without preconditioning and
typically require many fewer than N iterations to achieve
sufficient accuracy. This observation, combined with the
above analysis, implies that using a matrix-implicit
GMRES algorithm to compute the shooting-Newton up-
date will be far faster than computing the explicit shooting-
Newton Jacobian.

In order to develop some insight as to why GMRES
converges so rapidly when applied to matrices like the
shooting method Jacobian in (85), we consider the
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linear problem (4) and assume the C matrix is invertible
so that A ¼ C%1G is defined as in (15). For this linear
case and a steady-state period T, the shooting method
Jacobian is approximately

Jshoot , I% e%AT: (88)

Since eigenvalues are continuous functions of matrix
elements, any eigenproperties of I% e%AT will roughly
hold for Jshoot, provided the discretization is accurate. In
particular, using the properties of the matrix exponential
implies

eigðJshootÞ,eigðI% e%ATÞ¼1%e%)iT i21; . . . n (89)

where )i is the ith eigenvalue of A, or in circuit terms, the
inverse of the ith time constant. Therefore, if all but a few
of the circuit time constants are smaller than the steady-
state period T, then e%)iT / 1 and the eigenvalues of Jshoot
will be tightly clustered near one. That there might be a
few Boutliers[ has a limited impact on Krylov subspace
method convergence.

As a demonstration example, consider applying
GMRES to solving the shooting method matrix associated
a 500 node RC line circuit as in Fig. 3, with one farad
capacitors and 1-# resistors. The time constants for the
circuit vary from tenths of a second to nearly 30 000 s and
are plotted in Fig. 8. The error versus iteration for the

GMRES algorithm is plotted in Fig. 9 for solving the
periodic steady-state equation for the RC line with three
different periods. The fastest converging case is when the
period is 10 000 s, as only a few time constants are larger
than the period. The convergence of GMRES is slower
when the period is 1000, as more of the time constants are
larger than the period. And as one might have predicted,
the GMRES algorithm requires dozens of iterations when
the period is 100, as now there are then dozens of time
constants much longer than the period.

1) Results: In this section, we present experimental
results for the performance of three methods for solving
the shooting-Newton update equations: direct factoriza-
tion or Gaussian elimination, explicit GMRES, and matrix-
implicit GMRES.

Table 1 contains a comparison of the performance of
the three equation solvers in an implementation of a
shooting-Newton method in a prototype circuit simulator.
The test examples includes: xtal, a crystal filter; mixer is a
small GaAs mixer; dbmixer is a double balanced mixer;
lmixer is a large bipolar mixer; cheby is an active filter; and
scf is a relatively large switched capacitor filter. The second
column in Table 1 lists the number of equations in each
circuit. The third column represents the number of one-
period transient analyses that were necessary to achieve
steady state using the shooting-Newton method. The
fourth, fifth, and sixth columns represent, respectively, the
time in seconds to achieve steady state using Gaussian
elimination, explicit GMRES, and the matrix-implicit
form. All the results were obtained on a HP712/80

Fig. 8. Time constants for 500 node RC line.
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workstation. The seventh column demonstrates the
effectiveness of the matrix-implicit approach, listing the
speedup obtained with respect to the Gaussian-elimination
method. Note that the speed-up over the explicit GMRES
algorithm would be similar for the size examples
examined.

2) Lower Triangular Preconditioners: The fast shooting
methods can be extended to any finite-difference dis-
cretization method that admits a shooting method, but the
simpliest approach to describing the extension is to first
consider a lower triangular preconditioner for a finite-
difference or basis-collocation method. Given a differen-
tiation matrix D, consider separating D into a lower
triangular matrix DL and strictly upper triangular matrix
DU where

DL
i;j ¼ 0; j 9 i (90)

DL
i;j ¼Di;j; j - i (91)

and

DU
i;j ¼ 0; j - i (92)

DU
i;j ¼Di;j; j 9 i: (93)

Rewriting the finite-difference or basis-collocation
Jacobian as

Jfdbc ¼ ðDL þ DUÞ . IN
& '

C þ G (94)

suggests a preconditioner after noting that

ðDL . INÞC þ G (95)

is a block lower triangular matrix whose inverse is easily
applied. Using the inverse of (95) as a preconditioner
yields

Jprecond¼ INMþ ðDL.INÞCþG
& '%1 ðDU.INÞCþG

& '

: (96)

As noted for backward-Euler in (78), if DU has its only
nonzero at D1;M (only one point wraps around), then the

Fig. 9. Error versus iteration for GMRES, ' for 100-s period, o for 1000-s period, and + for a 10 000-s period.

Table 1 Comparison of Different Shooting Method Schemes
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preconditioned system will have a bordered block
diagonal form

Jprecond ¼

IN 0 0 . . . 0 %P1
0 IN 0 . . . 0 %P2
..
. . .

. . .
. . .

. ..
. ..

.

..

. . .
. . .

. . .
.

0 %PM%2

..

. . .
. . .

. . .
.

IN %PM%1

0 . . . . . . . . . 0 IN % PM

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

(97)

where the N ' N matrix %PM is the NðM% 1Þ þ 1 through
NM rows of the last N columns of

ðDL . INÞC þ G
& '%1 ðDU . INÞC þ G

& '

: (98)

In particular, IN % PM will be precisely the general
shooting method matrix given in (84).

In the case when the differencing scheme admits a
shooting method, the preconditioned system will usually
have its eigenvalues tightly clustered about one. To see
this, consider the structure of (97). Its upper block
diagonal form implies that all of its eigenvalues are either
one, due to the diagonal identity matrix blocks, or the
eigenvalues of the shooting method matrix, which have
already been shown to cluster near one.

3) Averaging Preconditioners: Before describing pre-
conditioners for the general finite-difference or basis-
collocation Jacobians in (40) or (52), we consider
finite-difference or basis-collocation applied to the linear
problem in (4). The periodic steady-state solution can be
computed by solving the MN 'MN linear system

ðD. C þ IM . GÞv̂ ¼ u (99)

where D is the differentiation matrix for the selected
method. Explicitly forming and factoring ðD. C þ IM . GÞ
can be quite computationally expensive, even though C and
G are typically extremely sparse. The problem is that the
differentation matrix D can be dense and the matrix will fill
in substantially during sparse factorization.

A much faster algorithm for solving (99) which
avoids explicitly forming ðD. C þ IM . GÞ can be de-
rived by making the modest assumption that D is diagon-
alizable as in

D ¼ S)S%1 (100)

where ) is theM'M diagonal matrix of eigenvalues and S
is the M'M matrix of eigenvectors [41]. Using the
eigendecompostion of D in (99) leads to

ðS)S%1Þ . C þ ðSIMS%1Þ . G
& '

v̂ ¼ u: (101)

Using the Kronecker product property [29]

ðABÞ . ðCDÞ ¼ ðA. CÞðB. DÞ (102)

and then factoring common expressions in (101) yields

ðS. INÞð). C þ IM . GÞðS%1 . INÞ
& '

v̂ ¼ u: (103)

Solving (103) for v̂

v̂ ¼ ðS%1 . INÞ%1ð). C þ IM . GÞ%1ðS. INÞ%1& '

u:

(104)

The Kronecker product property that if A and B are
invertible square matrices

ðA. BÞ%1 ¼ ðA%1 . B%1Þ (105)

can be used to simplify (104)

v̂ ¼ ðS. INÞð). C þ IM . GÞ%1ðS%1 . INÞ
& '

u (106)

where ð). C þ IM . GÞ%1 is a block diagonal matrix
given by

ð)1C þ GÞ%1 0 0 . . . 0
0 ð)2C þ GÞ%1 0 . . . 0

. .
.

. .
.

0 0 . . . 0 ð)MC þ GÞ%1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:

(107)

To compute v̂ using (106) requires a sequence of three
matrix-vector multiplications. Multiplying by ðS%1 . INÞ
and ðS. INÞ each require NM2 operations. As (107) makes
clear, multiplying by ð). C þ IM . GÞ%1 is M times the
cost of applying ð)1C þ GÞ%1, or roughly order MN
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operations as C and G are typically very sparse. The
resulting solution algorithm therefore requires

orderðM3Þ þ 2NM2 þ orderðMNÞ (108)

operations. The first term in (108) is the cost of
eigendecomposing D, the second term is the cost of
multiplying by ðS%1 . INÞ and ðS. INÞ, and third term is
associated with the cost of factoring and solving with the
sparse matrices ð)mC þ GÞ. The constant factors associated
with the third term are large enough that it dominates
unless the number of timepoints, M, is quite large.

It should be noted that if D is associated with a
periodized fixed timestep multistep method, or with a
basis-collocation method using Fourier series, then D will
be circulant. For circulant matrices, S and S%1 will be
equivalent to the discrete Fourier transform matrix and its
inverse [28]. In these special cases, multiplication by S and
S%1 can be performed in order MlogM operations using the
forward and inverse fast Fourier transform, reducing the
computational cost of (106) to

orderðMlogMÞ þ orderðNMlogMÞ þ orderðMNÞ (109)

which is a substantial improvement only when the
number of discretization timepoints or basis functions is
quite large.

4) Extension to the Nonlinear Case: For finite-difference
and basis collocation methods applied to nonlinear
problems, the Jacobian has the form

JfdbcðvÞ ¼ ðD. INÞC þ G (110)

where C and G are as defined in (38) and (39). In order to
precondition Jfdbc, consider computing averages of the
individual Cm and Gm matrices in the M diagonal blocks in
C and G. Using these Cavg and Gavg matrices in (110) results
in a decomposition

JfdbcðvÞ ¼ ðD. Cavg þ IM . GavgÞ
þ ðD. INÞ$C þ$Gð Þ (111)

where $C ¼ C % ðIM . CavgÞ and $G ¼ G% ðIM . GavgÞ.
To see how the terms involving Cavg and C in (111) were
derived from (110), consider a few intermediate steps.
First, note that by the definition of $C

ðD. INÞC ¼ ðD. INÞ ðIM . CavgÞ þ$C
& '

(112)

which can be reorganized as

ðD. INÞC ¼ ðD. INÞðIM . CavgÞ þ ðD. INÞ$C: (113)

The first term on the right-hand side of (113) can be
simplified using the reverse of the Kronecker property in
(102). That is

ðD. INÞðIM . CavgÞ ¼ ðDIM . INCavgÞ ¼ ðD. CavgÞ (114)

where the last equality follows trivially from the fact that
IM and IN are identity matrices. The result needed to derive
(111) from (110) is then

ðD. INÞC ¼ ðD. CavgÞ þ ðD. INÞ$C: (115)

Though (111) is somewhat cumbersome to derive, its
form suggests preconditioning using ðD. Cavg þ IM.
GavgÞ%1, which, as shown above, is reasonbly inexpensive
to apply. The preconditioned Jacobian is then

ðD. C þ IM . GÞ%1JfdbcðvÞ ¼ Iþ$DCG (116)

where

$DCG ¼ ðD. C þ IM . GÞ%1 ðD. INÞ$C þ$Gð Þ: (117)

If the circuit is only mildly nonlinear, then $DCG will be
small, and the preconditioned Jacobian in (117) will close
to the identity matrix and have tightly clustered eigenva-
lues. As mentioned above, for such a case a Krylov-
subspace method will converge rapidly.

5) Example Results: In this section, we present some
limited experimental results to both demonstrate the
reduction in computation time that can be achieved using
matrix-implicit iterative methods and to show the effec-
tiveness of the averaging preconditioner.

In Table 2, we compare the megaflops required for
different methods to solve the linear system associated
with a Fourier basis-collocation scheme. We compare
Gaussian elimination (GE), preconditioned explicit
GMRES (GMRES), and matrix implicit GMRES (MI).
Megaflops rather than CPU time are computed because
our implementations are not uniformly optimized. The
example used to generate the table is a distortion analysis
of a 31-node CMOS operational transconductance ampli-
fier. Note that for a 32 harmonic simulation, with 2232
unknowns, the matrix-implicit GMRES is more than ten
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times faster than Gaussian elimination and five times faster
than explicit GMRES.

In Table 3, we examine the effectiveness of the averaging
preconditioner, again for the example of distortion analysis
of an CMOS amplifier. As the table shows, the number of
GMRES iterations required to solve the linear system is
reduced by a factor of four when preconditioning is used.

C. Remarks
The derivations and analyses lead to three observations

about preconditioning.
1) Shooting-Newton methods do not need precondi-

tioners.
2) Averaging preconditioners are effective for nearly

linear problems.
3) Lower-triangular preconditioners are effective

when D is almost lower triangular.
Unfortunately, the above three observations do not cover
an important case. If Fourier basis collocation methods are
used on highly nonlinear problems, then D is dense and
not nearly lower triangular, and the averaging precondi-
tioners are not always effective. Fourier basis collocation
methods are very commonly used, so a number of
strategies have been employed which make use of
frequency domain interpretations to enhance the averag-
ing preconditioners [5], [6], [11], [20], [21]. Another
alternative that has met with limited recent success is to
use the lower triangular preconditioner for a nearly lower
triangular differentiation matrix as a preconditioner for
the Jacobian associated with a dense differention matrix.
The idea is that if both matrices accurately represent
differentiation, one can precondition the other, an idea

that first appeared in the partial differential equation
literature [19], [22], [47].

V. CONCLUSION

Although this paper is focused on periodic steady-state
analysis, most RF communication circuit problems
require multitone, noise, and autonomous oscillator
analysis. For example, mixers used for down conversion
generate sum and difference frequencies that can be
separated by several orders of magnitude. For this reason,
the newest work in this area is applying matrix-implicit
iterative techniques to accelerating multitone and noise
problems using multitone harmonic balance [11], linear
time-varying noise analysis [38], [39], frequency-time
techniques [6], multitime PDE methods [24], and even
wavelets [45]. It is hoped that novice researchers will
find our attempt at a comprehensive treatment of the
basics of periodic steady-state methods a helpful intro-
duction to this rapidly evolving field. h
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