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Abstract

In order for parasitic extraction of high-speed integrated circuit intercon-
nect to be sufficiently efficient, and fit with model-order reduction tech-
niques, a robust wideband surface integral formulation is essential. One
recently developed surface integral formulation has shown promise, but
was plagued with numerical difficulties of poorly understood origin. In
this paper we show that one of that formulation’s difficulties was related
to the inaccuracy in the approach to evaluate integrals over discretiza-
tion panels, and we present an accurate approach based on an adapted
piecewise quadrature scheme. We also show that the condition number
of the original system of integral equations can be reduced by differenti-
ating one of the integral equations. Computational results on a ring and
a spiral inductor are used to show that the new quadrature scheme and
the differentiated integral formulation improve accuracy and accelerate
the convergence of iterative solution methods.

1. Introduction

The layout parasitics in critical nets in high frequency analog and high
speed digital integrated circuits must be analyzed using methods that
take into account distributed resistive, capacitive and inductive effects,
and may even require a careful treatment of radiation. The only ap-
proaches that have proven to be capable of detailed electromagnetic anal-
ysis of complicated integrated circuit interconnect are the accelerated in-
tegral equation methods like those used in FastCap [1] and FastHenry [2].
In addition, it is widely agreed that the integral formulation used must be
a surface formulation, as such formulations avoid a frequency-dependent
discretization of the interior of conductors and the substrate [3, 4].

One recently developed surface integral formulation has shown promise [3],
but was plagued with numerical difficulties of poorly understood origin.
In this paper we show that one of that formulation’s difficulties was re-
lated to inaccuracy in the approach to evaluate integrals over discretiza-
tion panels, and we present an accurate approach based on an adapted
piecewise quadrature scheme. We also show that the condition number
of the original system of integral equations can be reduced by differenti-
ating one of the integral equations. Computational results on a ring and
a spiral inductor are used to show that the new quadrature scheme and
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the differentiated integral formulation improve accuracy and accelerate
the convergence of iterative solution methods.

2. Surface Formulation

The surface integral formualtion proposed in [3, 4] is as followsZ
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whereSk is the surface of thek-th conductor,S is the union of theSk’s,
~r and~r ′ are onS, ρs denotes the surface charge density,E is the electric
field, σ is the conductivity of the conductor,n̂ is the outward normal unit
vector on the conductor surface, and

G1(~r,~r ′) =
eik1|~r−~r ′|
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, k1 =
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√
εµ , (7)

whereω is the excitation frequency, andε andµ are the dielectric per-
mittivity and magnetic permeability, respectively. It should be noted that
the jump condition of the double-layer integral has already been applied
in (1) and (2). The formulation has eight scalar state variables,Ex, Ey,

Ez, ∂Ex
∂n , ∂Ey

∂n , ∂Ez
∂n , φ andρs. Since the equation (2) along the normal

direction is not enforced, the total number of scalar equations is also
eight.



Figure 1: Panel discretization

3. Panel Integration

In order to discretize the system of integral equations (1–5), a piecewise-
constant centroid collocation scheme is used. The conductor surface is
discretized intoN flat quadrilateral panels. Seven unknowns are asso-
ciated with each panel:Ex, Ey, Ez, ∂Ex

∂n , ∂Ey
∂n , ∂Ez

∂n andρs. The scalar
potentialφ is associated with the panel vertices. For more details about
the discretization, please refer to [3].

3.1 Definition
After discretization, the integrals over conductor surfaceSor Sk are re-
placed by the summation of integrals over panels. These integrals are
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wherePi is thei-th panel,n̂(Pi) is the unit normal vector on the flat panel
Pi , andG(~r,~r ′) is eitherG0(~r,~r ′) or G1(~r,~r ′) defined in (6) and (7). From
the symmetry property of the Green’s function, it follows thatZ
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Therefore, to compute the integrals in equation (8) (9) and (10), all we

need is to computeI1(~r) and ∂I1(~r)
∂D , whereD stands forx, y or z.

3.2 Decomposition
It is shown in [5] that any integration over a polygon is equal to the
signed summation of the integration over a chosen set of triangles. The
vertices of these triangles are those of the polygon and the projection
of the evaluation point onto the plane where the polygon lies, as shown
in figure 2. To be more precise, letf (~r) be a general integrand, its
integration over a polygon in figure 2 could be written asZ

S
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Figure 2: Decomposition of an integration over a polygon into sev-
eral integrations over traingels

whereN is the number of vertices,VN+1 = V1, andsi = −1 if ViVi+1 is
clockwise looking from the evaluation point E andsi = 1 if otherwise.

This idea was used in [4] to compute the integralsI1(~r) and ∂I1(~r)
∂D .

3.3 Desingularization and Reduction to 1-D inte-
gration

In a polar coordinate system, a triangle after the decomposition is shown
in figure 3. Using the relationR=

√
r2 +h2 andRdR= rdr, the integrals

I1 and ∂I1
∂D over this triangle could be rewritten in polar coordinates as
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Now the singularity of the original kernels inI1 and ∂I1
∂D has been elim-

inated and the 2-D integrations have been reduced to 1-D integrations.
The quadrature rule is used to compute the two 1-D integrations in equa-
tion (13) and (15). The shared rapid changing kernel in these two inte-
grals is f (θ) = eikR1(θ), whereR1(θ) =

√
d2sec2(θ)+h2. Whend <<

AB, θA ≈ −π
2 andθB ≈ π

2 , and f (θ) changes rapidly over the interval.
Many quadrature points must be used to achieve reasonable accuracy.

3.4 Piece-wise Quadrature Scheme
A simple variable transformation and a piece-wise quadrature scheme
can be used to solve the above-mentioned problem. Letx = dtan(θ), it
easily follows thatdθ

dx = d
r2 , wherer2 = d2 + x2. The rapidly changing

part ofI1 and ∂I1
∂D could be rewritten asZ θB
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dθeikR =
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d

r2 eik
√
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The distribution of the integrandg(x) is shown in the top figure of the
figure 4. Many quadrature points must still be used to get accurate eval-
uation because of the rapid variation aboutx = 0. However if we divide
the integration domain into two sub-domains, as shown in the middle
and the bottom figure of the figure 4, and use a piece-wise integration
scheme, the number of quadrature points needed will be dramatically



Figure 3: Triangle in polar coordinate system, d is the distance be-
tween point P and edge AB

reduced. The convergence behavior of the integration over the whole
domain and over the two sub-domains is shown in figure 5. It is clear
that the piece-wise scheme uses fewer quadrature points, or has higher
accuracy if only a small number of quadrature points are used. Unfortu-
nately, this is not appreciated in [4] and a small number (24) of quadra-
ture points are used for the integration over the whole domain. Since
the lower the frequency, the smaller the damping factor in complex wave
numberk, hence the higher the peak of the integrandg(x), the formula-
tion in [4] has a low frequency problem.

4. Using Normal Derivative to Reduce the Condi-
tion Number

At very low frequency,G1(~r,~r ′) in equation (6) is almost the same as
G0(~r,~r ′) in equation (7). Therefore, equation (1) is very similar to equa-
tion (2), particularly for a single-conductor example, whereS and Sk
are the same. Therefore, the resulting system matrix will become ill-
conditioned at low frequencies. If an iterative method is used to solve
such an ill-conditioned linear system, the convergence will be slow.

We have developed a new formulation based on replacing equation (1)
with the normal derivative of Green’s second identity, and this reduces
the condition number of the linear system. In the following, we give a
brief derivation.

If we take the normal derivative of the equation (1), we have
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Now the integral operators in equation (17) are different from those in
equation (2). Hence the system matrix is not ill-conditioned at low fre-
quencies any more. It should be noted that the unknowns in equation(17)
are still Ex, Ey, Ez, ∂Ex

∂n , ∂Ey
∂n and ∂Ez

∂n . No extra unknowns are in-
volved. So we could simply replace equation (1) with equation (17)
and keep equation (2-5), generating an improved surface integral formu-
lation. However, a hyper-singular term appears in equation (17). In this
paper, this hyper-singular integral
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Figure 4: Distribution of the integrand, the top figure is the distri-
bution of the original integrand, the middle and the bottom figure
are the left and right part of the top figure
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Figure 5: convergence behavior of different schemes

is calculated by using finite-differences to approximate the normal deriva-
tive outside the integral.

5. Numerical Results

In this section, we present some computation results using the improved
surface integral formualtion and the piece-wise quadrature scheme. In
order to compare with the magnetoquasistatic analysis program Fas-
tHenry, all the examples were analyzed magnetoquasistaticly. The for-
mulation used still follows equations (1)-(5), though equation (3) is elim-
inated and the charge in equation (5) is set to be zero. We first use a
simple ring structure to validate our panel integration scheme as analyt-
ical formulas exist for the inductance of a ring [6]. We then use our
improved formulation to perform the analysis of a spiral inductor with
or without a semiconductor substrate ground plane and a multipin con-
nector, and compare the results to the public domain program FastHenry
[2]. The sparse pre-conditioner matrix used in this paper is constructed
by ignoring the interaction between panels in equation (1-3) and using
equation (4) and (5) directly.

5.1 Ring
The ring is10mmin radius, with a square cross section of the size0.5mm
by 0.5mm. The conductivity is that of the copper, which is 5.8e7. The
low frequency inductance calculated using the formula in [6] is 48.89
nH. The results obtained by using FastHenry and the formulation pro-
posed in [3, 4] enhanced with the piece-wise quadrature scheme pro-
posed in section 3 are shown in figure 6 and 7. The two results agree
well. The number of filaments used by FastHenry is 960, 3840 and
15360, respectively. The surface formualtion only uses 992 panels across
the entire frequency range. It should be noted that the inductance ob-
tained with the surface formulation is very close to 48.89nH in the low
frequency range. This suggests that the low frequency problem reported
in [4] has been eliminated without using the linearization technique pro-
posed therein. Also, at high frequency, the resistance scales to the square
root of frequency and the inductance drops a little. This suggests that the
skin-effect has been well captured. So this ring example does validate
our panel integration scheme.

5.2 Spiral inductor
The improved surface formulation generates a dense matrix. So it can
not be used for analyzing complicated structures directly. It could be
combined with an accelerated iterative method that allows for general
Green’s function, such as the Precorrected-FFT algorithm [7] or the hier-
archal SVD [8]. Since we have not yet implemented an accelerated ver-
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Figure 6: Resistance of a ring
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Figure 7: Inductance of a ring
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Figure 8: Resistance of a spiral
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Figure 9: Inductance of a spiral

sion of our formulation, in this section we try to use a relatively coarse
discretization to analyze a spiral inductor with or without a semicon-
ductor ground plane to validate our improved surface integral formula-
tion. And since an inductor with ground plane is a relatively complicated
structure, we also use this example to show that the improved formual-
tion indeed converges faster than the formulation in [3].

The inner radius of the spiral is 10mm. Its cross section is a square
of the size 0.5mm by 0.5mm, and the spacing between two succesive
revolutions is 0.5mm. The spiral has two revolutions. The computed
resistance and inductance agree well with those obtained with FastHenry,
as shown in figure 8 and 9. Again, it is worth mentioning that FastHenry
does not capture the skin-effect at high frequency due to the fixed number
of filaments. On the other hand, with a fixed number of panels, the
improved surface formualtion has well captured the skin-effect. This
validates our improved surface formulation.

To test the convergence of the iterative method used to solve the linear
system, we use the same spiral and add a semiconductor ground plane.
The size of the ground plane is 42 by 42 mm. Its thickness is 1mm. Its
conductivity is0.005 that of the copper. We use the improved formu-
lation and the formulation in [3] to analyze this structure at frequency
point 1Hz. The number of unknowns is 2534. The residual of the GM-
RES versus the iterations for both formulations is shown in figure 10. It
is clear that the improved formulation converges much faster.
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Figure 10: GMRES residual in old and improved formulation, a spi-
ral inductor over ground plane
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Figure 11: GMRES residual in old and improved formulation, a
multipin connector

5.3 Multipin connector
To further test the convergence behavior of the improved formualtion,
we also use it to analyze a three-pin connector. The number of panels
is 544, and the number of unknowns is 3808. We again choose the fre-
quency point to be 1Hz to see how the improved formulation speeds up
the convergence at low frequency. The residual of the GMRES versus
the iterations for both formulations is shown in figure 11. We can see
that the number of iterations has been reduced significantly.

6. Conclusions

By taking the normal derivative of one of the equations in an existing
surface integral formulation, we have reduced the condition number of
this formulation. Numerical analysis of a spiral inductor over ground
plane example shows that the number of GMRES iterations could be
reduced by as much as one half. We have also proposed a piece-wise
integration scheme to improve the accuracy of the panel integration in
the surface formulation. Using this scheme, we have shown that the low
frequency problem reported before actually does not exist. Therefore,
the linearization technique used to eliminate this problem is unnecessary.
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