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Abstract

This thesis presents a set of numerical techniques that extend and improve computational model-
ing approaches for biomolecule analysis and design. The presented research focuses on surface
formulations of modeling problems related to the estimation of the energetic cost to transfer a
biomolecule from the gas phase to aqueous solution. The thesis discusses four contributions to
modeling biomolecular interactions. First, the thesis presents an approach to allow accurate dis-
cretization of the most prevalent mathematical definitionsof the biomolecule–solvent interface;
also presented are a number of accurate techniques for numerically integrating possibly singular
functions over the discretized surfaces. Such techniques are essential for solving surface formu-
lations numerically. The second part of the thesis presentsa fast multiscale numerical algorithm,
FFTSVD, that efficiently solves large boundary-element method problems in biomolecule electro-
statics. The algorithm synthesizes elements of other popular fast algorithms to achieve excellent
efficiency and flexibility. The third thesis component describes an integral-equation formulation
and boundary-element method implementation for biomolecule electrostatic analysis. The formu-
lation and implementation allow the solution of complicated molecular topologies and physical
models. Furthermore, by applying the methods developed in the first half of the thesis, the imple-
mentation can deliver superior accuracy for competitive performance. Finally, the thesis describes a
highly efficient numerical method for calculating a biomolecular charge distribution that minimizes
the free energy change of binding to another molecule. The approach, which represents a novel
PDE-constrained methodology, builds on well-developed physical theory. Computational results il-
lustrate not only the method’s improved performance but also its application to realistic biomolecule
problems.
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Chapter 1

Introduction

It has long been recognized that computer simulations of interactions between biological

molecules hold tremendous value not only for designing molecules, but also for analyz-

ing the mechanisms of interaction between molecules. Such simulations can help guide a

course of experimental studies and, in addition, complement experiment by enabling the

comparison of the energetics of different interactions in ways not accessible to experiment.

Accordingly, with the rapid increase in computer processing capabilities there has been a

correspondingly large growth in the study of numerical techniques for biomolecule simula-

tion. The wide range of available methods reflects the numerous types of problems studied.

Investigations of processes such as catalysis can require extremely accurate quantum me-

chanical modeling [1]. At the other end of the computationalspectrum, many problems

in molecular design have intractably large search spaces, and therefore solution methods

include not only highly approximate methods for evaluatinginteractions but also careful

search algorithms to strongly limit computational complexity [2].

In many problems in molecular analysis and design, the concept of a molecule’ssolva-

tion free energyis a valuable tool for analyzing biomolecular structure–function relation-

ships and interactions [3]. This free energy, denoted by∆G0
solv, is defined to be the differ-

ence between the free energy of the molecule in solution and its free energy in a gas-phase

reference state. Such a quantity is useful because it allowsthe decomposition of complex

processes such as binding, whose energetics may not be readily estimated, into a set of

simpler thermodynamic steps whose energies are perhaps easier to estimate. Figure 1-1
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illustrates a thermodynamic cycle that can be used to estimate the free energy of binding

between two molecules. The unbound state is assumed to have the binding partners, la-

beled L for ligand and R for receptor, infinitely separated insolution. Each binding partner

is transferred from solvent to a low-dielectric gas phase, and then the partners are bound

in vacuum. Transferring the complex into solvent then completes the cycle that determines

the binding free energy in solution. The binding free energyestimate is therefore obtained

using three solvation free energies and a gas-phase bindingfree energy; the important point

is that all of these quantities are more easily evaluated. Thermodynamic cycles such as this

one are thus helpful not only as computational tools to decompose difficult calculations,

but also as theoretical tools that allow more fine-grained energetic analysis.

R
solvΔG

solv−ΔGsolv−ΔG
L L-R

bindΔG

bindΔG
gas

Figure 1-1: A thermodynamic cycle illustrating the utilityof solvation free energy calcu-
lations for estimating binding free energies. The shaded region on the lower set of panels
represent aqueous solvent. The upper panels represent a uniform low dielectric with zero
ionic strength throughout. One can determine the binding free energy by adding the free
energies associated with de-solvating the two unbound partners, complexing them in the
gas phase, and re-solvating the complex.

Unfortunately, the calculation of solvation free energiesrepresents one of the most dif-

ficult challenges in molecular modeling. The many solvent molecules and possibly salt

ions that surround biomolecules present a basically intractable many-body problem. Their

treatment is essential, however, because virtually all biological reactions occur in aqueous

solution. The most accurate mathematical models of these physical systems — high-level

quantum mechanics — are far too computationally demanding to be of practical use for

most problems. Even molecular dynamics (MD) simulations, which integrate Newton’s

laws of motion, can require prohibitive computational resources to calculate quantities of

interest. Modeling the energetics of water–solvent interactions using MD requires the sam-

pling of the enormous phase space associated with the solvent molecules and ions. Com-
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mon techniques for calculating these energetics, such as free energy perturbation meth-

ods [4], cannot always be converged given reasonable amounts of computational work. It

should be noted that these methods for calculating free energies, which do not require the

intermediate solvation calculations shown in Figure 1-1, may be applied to calculate bind-

ing free energies directly [5], although the more common approach is to compute binding

free energy changes resulting from chemical change. However, even the direct calculations

face the limitations imposed by the sampling problem.

In contrast to expensive explicit-solvent methods, there exist much faster techniques to

estimate the solute–solvent interactions using an implicit representation of the solvent in

which zero or only a small number of solvent molecules are treated explicitly. For a review

of implicit-solvent models, see [6]. These models, which are often based on continuum the-

ory, offer an attractive tradeoff between computational efficiency and accuracy. Continuum

models have been shown to offer good agreement with their much more computationally

intensive counterparts [7,8], and for many problems involving small-molecule design or the

modification or analysis of large molecules such as proteins, the loss of accuracy relative to

explicit-solvent simulations is acceptable. In continuummodels of solvation, the solvation

free energy of a molecule is commonly considered to be the sumof two components [3]:

∆G0
solv = ∆G0,np

solv +∆G0,es
solv. (1.1)

The first free energy is called the nonpolar contribution to solvation; this term accounts

for the van der Waals interactions between solute and solvent as well as for the entropic

cost associated with excluding solvent molecules from the solute volume. This term is

commonly estimated to grow in proportion with the surface area of the solute [8].

The electrostatic solvation free energy∆G0,es
solv accounts for the electrostatic enthalpy

as well as the solvent entropy associated with the solute charge distribution. Continuum

electrostatic theory is commonly used to calculate a molecule’s electrostatic solvation free

energy [3, 9]. These models generally treat the electrostatic potential in the molecule and

in aqueous solvent with a symmetric, monovalent salt as obeying the Poisson–Boltzmann
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equation

∇ · (ε(r)∇ϕ(r)) =−ρ(r)+κ2(r)sinh(ϕ(r)), (1.2)

whereϕ(r) is the potential at a pointr, ε(r) is the permittivity,ρ(r) is a distribution of fixed

charge, and the modified inverse Debye screening lengthκ describes the screening effect

by mobile salt ions. Many biological systems with relatively low charge density can be

modeled using the much simpler linearized equation

∇ · (ε(r)∇ϕ(r)) =−ρ(r)+κ2(r)ϕ(r), (1.3)

and this thesis focuses exclusively on this form. The soluteinterior and solvent exterior re-

gions are generally treated as homogeneous dielectric continua with possible salt treatment,

with the boundary between interior and exterior defined in relation to a set of sphere cen-

ters and their radii, where each sphere represents an atom orgroup of atoms. The dielectric

constant in the molecule is typically taken to be between 2 and 4 [9], although some recent

work has used dielectric constants up to 20 for surface groups [10]; a dielectric constant

of 2 represents electronic polarization only, and slightlyhigher dielectric constants are of-

ten used to account for minor fluctuations in molecular structure. The dielectric constant

in the solvent is usually modeled with that of bulk water, which is approximately 80. The

solute charge distribution is taken to be a set of discrete point charges located at the atom

(or group) centers. The point charge values and sphere radiiare commonly assigned using

either molecular mechanics force fields such as CHARMM22 [11], parameter sets specif-

ically fit for electrostatic calculations [12], or quantum mechanical calculations for charges

(for a recent article reviewing such methods, see [13]) in conjunction with force-field radii.

It should be noted that continuum-model solvation free energies are often computed

for a single, static molecular structure [3]. In reality, ofcourse, the molecule is not static

in shape but fluctuates, and the free energy is an ensemble average. The structure low-

est in energy will contribute the most to the average, and therefore most single-structure

calculations rely on either time-averaged structures generated from a molecular dynamics

(MD) trajectory [9], energy-minimized structures, or atomic coordinates obtained from X-

ray crystallography or NMR experiments. Recently, there has been a movement towards
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the use of multiple structures in calculating solvation free energies and binding free ener-

gies [14].

Warwicker and Watson presented the first numerical simulations of a continuum model

for realistic biomolecule geometries [15], and since then avast number of other numerical

approaches based on finite-difference, finite-element, andboundary-element methods have

been presented (for a small but representative selection, see [16–33]). These approaches

have enabled a wide range of computational studies over the previous two decades. How-

ever, as we demonstrate in this thesis, there exist important calculations for which standard

finite-difference methods are unable to achieve a desirablelevel of accuracy. Non-rigid

binding free energy calculations, for instance, can entailcalculating the difference between

comparably large solvation free energies. Not infrequently, the approximate error in the

solvation energies is of comparable magnitude to their difference, and therefore significant

skepticism is in order when interpreting the results of suchcalculations. The bulk of this

thesis therefore focuses on the development of numerical methods that can find highly accu-

rate solutions to the models used without inordinately highrequirements for computational

resources such as memory or time.

The need for accurate solution may also be motivated philosophically. All numerical

methods necessarily return approximate answers to the unobtainable exact PDE solution,

and the models for the nonpolar and electrostatic solvationfree energies are themselves

somewhat approximate. The compounding of approximations strains the credibility of pre-

dictions so obtained: where should fault be assigned if the predictions are proven incorrect?

Which component of the predictive process warrants attention for improvement? One of the

most important guiding principles for this thesis researchis that rigor demands that uncer-

tain models should be solved as exactingly as possible when used for design or for studying

mechanisms. Resolving numerical uncertainty strengthensnot only the trustworthiness of

the predictions, but also critically enables experimentalresults to feed directly back into

clarifying the models. It should be noted that this modelingphilosophy argues for the use

of continuum models, whose mathematical properties are relatively well understood, over

explicit-solvent simulations for which convergence properties are not as clear.

The thesis is organized into six chapters. Chapter 2 describes an approach for accu-
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rately discretizing three of the solute–solvent definitions most commonly used in molecu-

lar modeling; these surfaces define a boundary between the interior of a biomolecule and

an exterior region—either the gas phase or solvent. We definetwo classes of compact

curved surfaces, or panels, into which these boundaries canbe discretized essentially ex-

actly. Importantly, we present numerical integration techniques specialized for the curved

integration domains and for the integrands of interest, which may be singular. In Chapter 3

we present a specialized algorithm to rapidly solve boundary-element-method problems in

biomolecule electrostatics. Our algorithm, which we call FFTSVD, can also be applied to

modeling problems in other domains of potential theory, including fluidic simulation and

electromagnetics. Chapter 4 discusses a large-scale, boundary-element-method implemen-

tation for biomolecule electrostatics. The implementation uses the FFTSVD fast algorithm

and curved boundary elements to achieve high accuracy without sacrificing computational

efficiency. Furthermore, the boundary-integral-equationformulation is much more general

than those presented in the literature, and this generalityallows a previously unavailable

unified treatment of complex molecular topologies such as solvent-filled cavities as well

as ion-exclusion (Stern) layers. Chapter 5 describes a novel, highly efficient numerical

approach for calculating a biomolecule charge distribution that optimizes the free energy

of binding to another molecule. This approach builds on physical theory developed by

Kangas, Lee, and Tidor [34, 35] and represents an unusual approach to PDE-constrained

optimization. Application to a realistic test case validates the approach and application to

simple test problems illustrate the method’s improved performance. Chapter 6 summarizes

the main contributions of the thesis and suggests ideas for future work in this area.

Several appendices have been included. The first three offerdetails regarding curved-

panel discretization and integration. Appendix D addresses a popular integral formulation

for electrostatics in non-ionic solution [36]. The formulation accuracy is highly sensitive

to the process by which the integral equations are discretized, and we show that a process

known as qualocation offers accuracy superior to the commonly used centroid-collocation

methods [37].
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Chapter 2

Numerical Integration Techniques for

Curved-Element Discretizations of

Molecule–Solvent Interfaces1

We explore the use of exact representations of solute–solvent interfaces in surface formu-

lations of biophysical modeling problems. Following and refining Zauhar’s work [39],

we define two classes of curved elements that can exactly discretize the van der Waals,

solvent-accessible, and solvent-excluded surfaces. Thiswork presents numerical integra-

tion techniques specialized for the curvature of these surfaces and for the singular integrals

required to solve boundary-integral formulations of continuum electrostatics problems us-

ing boundary-element methods (BEM). The integration methods are applied to surface-

Generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element

electrostatics problems. Results demonstrate that electrostatics BEM using curved ele-

ments with piecewise-constant basis functions and centroid collocation is nearly ten times

more accurate than planar-element BEM. Furthermore, the sGB and scvdW calculations

give exceptional accuracy even for coarsely discretized surfaces. The extra accuracy is

attributed to the correct representation of the solute–solvent interface.

1To be submitted [38] with Appendices A, B, and C.
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2.1 INTRODUCTION

Several important problems in molecular physics can be modeled using boundary inte-

gral equations or surface integrals over the molecular surfaces. Continuum electrostatics

models based on Tanford–Kirkwood theory [40] give rise to variable-coefficient Poisson or

Poisson–Boltzmann partial differential equations that can be converted to boundary inte-

gral equations. The generalized-Born model [41], commonlyused to estimate electrostatic

interactions, can also be transformed to a surface formulation [42]. Recently, Levyet al.

presented a continuum model for estimating the van der Waalsinteraction energy between a

molecular solute and surrounding aqueous solvent [8]; thismodel can also be solved using

surface methods [43].

Surface formulations offer several advantages for numerical computation. Boundary-

integral-equation problems require the solution of two-dimensional rather than three-dimen-

sional problems, requiring correspondingly fewer unknowns and therefore less computer

memory resources. In addition, exterior problems — those requiring discretization of an

infinite or semi-infinite volume domain — are reduced to problems over compact domains.

For most problems of interest, these domains are complicated surfaces for which there exist

no closed-form expressions for the associated integrals. To facilitate numerical solution, a

complicated surface is usually approximated as the union ofa set of simpler subdomains

for which integration techniques are known. Commonly, these subdomains, which are

called boundary elements, or panels, are planar triangles or quadrilaterals. There exists a

large body of literature devoted to the evaluation of integrals over these domains (see, for

examples, references [44–46]).

In many physical modeling problems at the molecular scale, the surfaces of interest are

curved, representing an atom or a collection of atoms. Even when surface discretizations

can be readily obtained, integrating singular or near-singular functions over curved surfaces

poses a challenge. Numerical quadrature techniques have been developed for quadratically

curved surfaces (defined by curves along the element edges) [47] and B-splines [48], but

relatively few numerical integration techniques specialized to molecular shapes have been

presented [29, 39]. For boundary-element methods, improved accuracy is often achieved

26



by using higher-order basis functions on planar, quadratic, or cubic boundary elements.

Unfortunately, basis functions of infinitely high order would fail to give correct answers

for these problems, because the surface discretizations only approximate the true geometry.

The failure of such methods even in ideal thought-experiments highlights a fundamental

limitation imposed by inexact surface representation: increasing the number of surface

elements improves both the basis set and the geometrical approximation, and it can be

difficult to assess the relative importance of these effectsin order to determine where effort

should be made to achieve an optimal trade-off between accuracy computational expense.

In this work we explore the impact of using curved-element rather than planar-element

discretizations of the solute–solvent interface for several types of molecular modeling prob-

lems. First, we define two classes of curved boundary elements that can exactly represent

three of the most common molecular boundary definitions. Second, we develop efficient

numerical techniques to evaluate singular and near-singular integrals over the curved ele-

ments. Using these methods, we calculate Generalized Born radii, solute–solvent van der

Waals interaction energies, and electrostatic componentsof solvation energies. Our work

on curved boundary elements most closely resembles the workof Zauhar [39] and that of

Liang and Subramaniam [29]. We present nearly exact discretizations of solvent-excluded

surfaces [49], in contrast to the approximate solvent-accessible surfaces of Liang and Sub-

ramaniam and the smoothed solvent-excluded surfaces presented by Zauhar. In addition,

we describe numerical integration techniques designed to treat the curved-element singular

and near-singular integrals required for numerical solution of the boundary-integral equa-

tions. One of our most significant findings is that if the accurate surface geometry is used,

then only a relatively small number of discretization degrees of freedom are needed to

achieve high accuracy. The very large number of degrees of freedom required for con-

vergence of other methods contribute mainly to improving the accuracy of the geometric

representation.

In Section 2.2 we introduce several physical problems that can be addressed by solving

boundary integral equations or by integrating functions over solute–solvent interfaces, and

also briefly describe popular interface definitions and discretization approaches. Curved

elements that can exactly represent the relevant boundaries are defined in Section 2.3, and
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in Section 2.4 we present accurate and efficient numerical integration methods for these

curved boundaries. Validation of the surface discretizations and the integration techniques,

as well as demonstration of the advantages of curved-element surface methods, are given

in Section 2.5. Conclusions are in Section 2.6.

2.2 BACKGROUND

2.2.1 Surface Formulations of Biophysical Problems

Molecular Electrostatics

Figure 2-1 illustrates the mixed discrete–continuum electrostatics model [3,9]. The molec-

ular interior is defined to be a homogeneous region with low permittivity, denotedεI , and

the molecule’s charge distribution is taken to be a set ofnc discrete point charges, which are

often located at the atomic nuclei. In this low-permittivity region the electrostatic potential

satisfies a Poisson equation. The solvent region exterior tothe boundaryΩ is assumed

to be a homogeneous medium with much higher permittivity than the interior, which is

denoted byεII , and a Debye screening parameterκ. In this exterior region, the potential

satisfies the linearized Poisson–Boltzmann equation. The Richards molecular surface [49]

is commonly used to define the boundaryΩ.

The Poisson problem in the interior and the linearized Poisson–Boltzmann problem

in the exterior are coupled by continuity conditions at the boundary [51]. These coupled

partial differential equations can be converted to integral equations in several ways. Prob-

lems in non-ionic solutions (those withκ = 0 in the solvent region) can be solved using

the induced surface-charge method [17, 19]. When the ionic strength is non-zero, Green’s

theorem can be applied to derive either a mixed first-second-kind integral formulation [21]

or a purely second-kind formulation [23]. Chipman [52] has described and compared these

and other formulations. We present the mixed formulation originally presented by Yoon

and Lenhoff [21].

Applying Green’s theorem in both regions and applying the continuity conditions gives
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Figure 2-1: A mixed discrete-continuum model for biomolecule electrostatics. The surface
Ω represents the dielectric boundary between regions with dielectric constantsεI andεII .
Partial atomic charges are located in regionI , with illustrative chargesq1 at r1 andq2 at r2.
The Debye screening parameterκ is zero within regionI and may be non-zero in regionII .
In work not described here, an ion-exclusion layer may also be treated [50].
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−
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r ′(r ′)GII (rΩ; r ′)dA′ = 0. (2.2)

Here, rΩ is a point on the surface;r ′ is the integration variable on the surface;n(r ′) is

the normal atr ′ pointing into solvent;−
R

denotes the principal value integral taken in the

limit as a field point approachesr ′ from the inside;ϕ(r) and ∂ϕ
∂n(r) denote the potential and

its normal derivative at the surface; andGI (r; r ′) andGII (r; r ′) are the free-space Green’s

functions for the governing equations in the two regions. Typically,GI (r; r ′) = 1
4π||r−r ′|| and

GII (r; r ′) = exp(−κ||r−r ′||)
4π||r−r ′|| .

To solve Equations 2.1 and 2.2 using a boundary-element method, the solute–solvent

boundary is discretized and the surface variables are approximated as weighted sums of

compactly supported basis functions, where the weights areselected so that the discretized
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integrals match a set of constraints (see, for example, [53,54]). In collocation methods, the

residual is forced to be exactly zero at a set of points on the surface; in Galerkin methods,

the residual is required to be orthogonal to the basis functions. Using collocation and piece-

wise constant basis functions such that theith basis function is unity on theith boundary

element and zero elsewhere, we form a dense block matrix whose entries take the form

Z

elementj
K(r i ; r

′)dA′, (2.3)

wherer i denotes the collocation point associated with theith boundary element andK(r; r ′)

is either a Green’s function or a Green’s function derivative with respect to the surface

normal atr ′.

Surface Generalized Born

The Generalized Born (GB) model of solute–solvent electrostatic interactions yields a more

easily computed approximation to energies derived by solving the Poisson–Boltzmann

equation [41]. The GB pairwise energyUi, j between chargesi and j is given by the equation

Ui, j =−1
2

(1/εII −1/εI)
qiq j

√

r2
i j +RiRj exp(−r2

i j /4RiRj)
, (2.4)

whereqi andq j are the charge values andRi andRj are the Born radii. The Born radiusRi

for an atom or group of the solute is defined such that a sphere with radiusRi and centrally-

located unit charge has solvation energy equal to that of theentire molecule ifqi = 1 and

q j = 0 ∀ j 6= i.

Still et al. proposed to calculate the Born radiusRi by relating the volume integral

Z

Vint

1

||r ′− r i ||4
dV′ (2.5)

to the analytical expression for the solvation energy of a centrally located charge in a spher-

ical dielectric cavity [41]. In this equation,Vint is the volume of the solute interior and

r ′ denotes the integration variable. Similar expressions to calculate Born radii have also
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been presented [42, 55, 56]. Ghoshet al. introduced the surface-Generalized Born (S-GB)

method [42], in which an application of the divergence theorem converts Equation 2.5 to

the surface integral
Z

S

(r ′− r i)
T n̂(r ′)

||r ′− r i ||4
dA′, (2.6)

whereSdenotes the dielectric boundary, which we again assume to bethe Richards molec-

ular surface.

Continuum van der Waals

Levy et al. described a continuum method to model the van der Waals interactions between

solute and solvent [8], based on assuming a spherical model for a water molecule. In this

model, the interaction energy is then expressed as an integral over the solvent volume,

U (i)
vdW =

n

∑
i=1

(

Z

solvent
ρwu(i)

vdW(r)dV′
)

, (2.7)

wheren denotes the number of atoms in the solute,ρw the bulk water number density,

andu(i)
vdW(r) the van der Waals potential between atomi and a water molecule located at a

distancer = ||r ′− r i || from the atom centerr i.

The van der Waals potential is defined by the distance from a water molecule center to

an atom center, so the solvent-accessible surface [57] is the natural solute–solvent boundary

definition for the integral in 2.7. If the van der Waals potential is modeled by the Lennard-

Jones 6/12 function,

u(i)
vdW(r) =

A(i)

r12 −
B(i)

r6 , (2.8)

then the divergence theorem applied to 2.7 yields

Z

V

(

A
r12−

B

r6

)

dV =

Z

S

∂
∂n

(

A
90r10−

B
12r4

)

dS . (2.9)

2.2.2 Defining Molecule–Solvent Interfaces

Figure 2-2 illustrates the three most prevalent definitionsfor the solute–solvent boundary.

A molecule’s van der Waals surface, as shown in Figure 2-2(a), is defined to be the bound-
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(a) (b) (c)

Figure 2-2: Three definitions of solute–solvent boundaries: (a) van der Waals surface. (b)
Solvent-accessible surface. (c) Solvent-excluded (molecular) surface. The dotted lines in
(b) and (c) denote the van der Waals surface.

ary of a union of spheres. Each sphere represents an atom centered at a particular location in

space and the sphere radius is set to the atom’s van der Waals radius; for reduced-atom mod-

els such as the polar-hydrogen CHARMM19 model [58], some spheres represent groups

of atoms. The Lee and Richards solvent-accessible surface [57], depicted in Figure 2-2(b),

is also a union of spheres; in this definition, each sphere’s radius is equal to the atom or

group’s van der Waals radius plus the radius of a spherical probe molecule that is rolled

over the union of atoms. The portion of each atom’s surface that is exposed to solvent can

be described as the intersection of the sphere’s surface with a set of half-spaces [59], and

each such piece of surface is called a patch.

Richards defined the molecular surface, or solvent-excluded surface [49], and Con-

nolly [59] presented an algorithm for its analytical determination. As illustrated in Fig-

ure 2-2(c), the molecular surface is defined by rolling a probe sphere over the union of

spheres with van der Waals radii; the surface consists of theset of points of the probe

sphere’s closest approach to the boundary of the union. In this definition, the regions of the

molecular surface that correspond to probe positions at which the probe contacts the sphere

union at only one position are said to belong to thecontact surface; such convex, spherical

surface patches are called caps [59]. In contrast, thereentrant surfacecomprises regions

that correspond to probe positions at which the probe touches the sphere union at multiple

points. Where the probe touches two spheres of the union, itsmovement is restricted by

one degree of freedom; a toroidal, or belt, piece of surface is then produced as the probe ro-

tates about the axis defined by the two sphere centers. Where the probe touches the union

at three or more points, a concave spherical surface patch isdefined; this type of face is
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termed a pit. All three types of surface patches, or faces, are bounded by circular arcs,

and molecular surfaces can be represented exactly as a finiteunion of different instances of

these surfaces [59].

Many researchers have presented algorithms to discretize solvent-excluded and solvent-

accessible surfaces [39, 60–68]. The algorithms take as input the atom centers and their

radii, as well as the probe sphere radius, and return a set of boundary elements that approx-

imate the molecular or accessible surface. Generally, to improve the surface approximation

one uses a larger number of smaller elements. Most work has focused on generating planar-

triangle-based surface discretizations, but several groups have developed more sophisti-

cated approaches. Zauhar and Morgan have reported cubically-curved elements [19, 69],

Jufferet al. used cubic interpolation [23], Bajajet al. used B-spline patches [60], Bordner

and Huber used quadratically-curved elements [70]. Zauharhas presented an approach to

exactly discretize a smooth approximation to the molecularsurface such that the surface has

a continuous normal [39]. Lianget al. find an exact solvent-accessible surface derived from

alpha shapes [29, 63, 64], but solve problems on an exactly-curved approximation to this

surface. Our approach exactly discretizes the Richards molecular surface using Connolly’s

method and we solve problems on this exact representation using numerical integration

techniques specialized for these surfaces.

2.3 SURFACE DISCRETIZATION

As discussed in Section 2.2.2, three common solute–solventboundary definitions can be

represented as the union of portions of toruses and spheres,where the surface construction

ensures that the boundaries between different surface patches are formed by arcs of cir-

cles. In this section we define two classes of curved surface elements that permit the exact

discretization of the solute–solvent boundaries.

2.3.1 Toroidal Element Definition

A torus is defined by revolving a circle about an axis that liesin the same plane as the circle.

The circle center, normal, and revolution axis together define a local coordinate system, and
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Figure 2-3: Specification of a torus and a torus element with 0≤ θ≤ π/3 andπ/2≤ ψ ≤
5π/6.

it is useful to describe the torus as having an outer radiusc, which is the shortest distance

between the circle center and the revolution axis, and innerradiusa, which is the radius

of the circle. We definez to be the axis of revolution,y to coincide with the normal to

the original circle, and the origin such that the circle origin lies in thex− y plane. Two

angular coordinatesθ andψ, both in the interval[0,2π], suffice to specify any point on the

torus. The angleθ describes the azimuthal angle of the point relative to thex axis in the

x−y plane. The angleψ determines the point’s position on the circle atθ, and is defined

such thatψ = 0 points radially outward from the origin andψ = π points radially inward.

We define atorus elementas the portion of a torus with angular coordinatesθ1 ≤ θ ≤ θ2

andψ1 ≤ ψ≤ ψ2. An arbitrary toroidal element is shown in Figure 2-3. The circle center,

as it revolves around the axis of revolutionz, traces a circle, which is shown in black in

the Figure. We number and define the edges of the torus in a right-handed manner (i.e.,

the interior of the element is to the left as one traverses theedges). Because the toroidal

surface patches form part of the reentrant surface, the torus element normal points into the

finite volume enclosed by the torus.
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2.3.2 Spherical Element Definition

We define ageneralized spherical triangle(GST) to be a three-sided region of a sphere’s

surface whose edges are formed by three circular arcs [43]. The arcs are not permitted

to intersect except at their endpoints, which are the vertices of the generalized spherical

triangle. Furthermore, at the vertices formed by adjacent arcs, the local interior angles

must be less thanπ radians. This definition contrasts with a regular sphericaltriangle,

whose arcs are portions of great circles on the sphere. Figure 2-4 illustrates a GST in

which one arc is a portion of a small circle and the others belong to great circles. The

arcs are oriented and numbered in a right-handed fashion, following standard mathematical

convention. Convex spherical faces have a normal pointing away from the sphere center;

concave faces have a normal pointing towards the sphere center, because the concave faces

must point out into the solvent region. A surface-representation error results if only great-

circle arcs are allowed to form the element boundaries, because small-circle arcs are needed

to resolve the boundaries between surface patches [39]. Liang and Subramaniam generated

curved-element discretizations by projecting the edges ofa triangulated surface out to the

sphere [29]; the surface elements so generated have exact curvature but their edges are all

arcs of great circles.

2.4 CURVED-ELEMENT INTEGRATION METHODS

In this section, numerical techniques are presented to evaluate integrals of the form

Φ(r) =
Z

Ω
K(r; r ′)dA′, (2.10)

whereΩ is either a toroidal or generalized spherical triangle element, as defined in Sec-

tion 2.3. For the problems discussed in this work, the function K(r; r ′) is singular atr = r ′

and decays monotonically to zero as||r − r ′|| → ∞. For smooth integrands such as far-

field integrals in whichr is far fromΩ, the integration may be performed using numerical

quadrature. We present specialized methods for smooth integrands in Section 2.4.1. Inte-

grals for whichr ∈ Ω, or is sufficiently close that the integrand varies extremely rapidly,
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Figure 2-4: A generalized spherical triangle (GST) with onebounding edge belonging to
the circle centered at the blue dot. The remaining edges belong to great circles on the
sphere.
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are called near-field integrals, and require special techniques, which we present in Sec-

tion 2.4.2.

2.4.1 Far-Field Quadrature

When the evaluation pointr in Equation 2.10 is sufficiently far from the domain of in-

tegrationΩ, K(r; r ′) varies smoothly overΩ and therefore relatively low-order numerical

quadrature suffices to provide accurate results. Aqth-order quadrature rule estimates the

integral of a functionf over a domainβ as a weighted sum of function evaluations atq

specified points inβ:
Z

β
f (x)dx≈

q

∑
i=1

wi f (xi), (2.11)

The valueswi are called quadrature weights and the pointsxi are called quadrature points.

Many types of quadrature rules are designed such that they give exact or nearly exact results

if the domain is simple and the integrand is a sufficiently low-order polynomial. For simple

integration domains like planar triangles, well-established rules such as those presented by

Stroud [44] offer excellent accuracy.

To integrate a function over a more complex domainΩ, one typically determines a

smooth coordinate transformationM from a simple domainΓ, which has a known quadra-

ture rule, to the domain of integrationΩ. Applying the chain rule transforms the integral

of Equation 2.10 to the form

Φ(r) =

Z

Γ
K(r;M(r̂ ′))

∣

∣J(r̂ ′)
∣

∣ dÂ′, (2.12)

where ˆr ′ denotes the integration variable inΓ and |J(r̂ ′)| is the determinant of the Jaco-

bian ofM at r̂ ′. A qth-order quadrature rule for the domainΓ allows Equation 2.10 to be

approximated as:

Φ(r)≈
q

∑
i=1

wi K(r;M(r̂ ′i))
∣

∣J(r̂ ′i)
∣

∣ . (2.13)

Because the original integrand, overΩ, is multiplied in the new integral by the Jacobian

determinant|J|, it is essential that the product of the original integrand and the coordinate

transformation be smooth; that is,K |J| should vary smoothly overΓ.
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We now describe such coordinate transformations for the curved elements presented in

the preceding section.

Generalized Spherical Triangle Coordinate Transformation

Zauhar has presented one coordinate transformation between a planar triangle and what

we have defined as the generalized spherical triangle [39]. We present an independently-

derived alternative. Figure 2-5 illustrates the coordinate transformation from the standard

planar triangle of Figure 2-5(a) with vertices{(0,0)T ;(1,0)T;(0,1)T}, to a GST, shown in

top and side views in Figures 2-5(b) and 2-5(c). The GST has been oriented such that the

longest arc, labeleda1, lies in a plane perpendicular to thex axis and the arc midpoint lies

in thex−z plane. This mapping is guaranteed to exist if the vertexv3 is further from the

plane of arca1 than any other point on the arcsa2 anda3 and if in additionv3 lies above the

x−y plane; such restrictions are easily imposed during surfacediscretization. The standard

triangle parametric coordinates(ξ,η)T are first mapped to a spherical coordinate system

(θ,ψ)T as shown in Figures 2-5(b) and (c), and then trivially transformed to Cartesian

coordinates. The angleψ measures the angle from the positivex axis and the angleθ

measures rotation about thex axis such that a point withθ = 0 lies in thex−z plane.

The reference triangle edge from ˆv3 = (0,1)T to v̂1 = (0,0)T is mapped to the GST

edge fromv3 to v1. Letting (θi ,ψi)
T denote the spherical coordinates of GST vertexvi , it

is clear thatψ1 = ψ2, and that for all points in the GST,ψ≤ ψ3. As shown in Figure 2-5,

every line of constantη in the standard triangle is mapped to an arc of the circle defined

by ψ = ψ1 + η(ψ3−ψ1). The arc endpoints are defined by the intersection of the circle

at elevation angleψ with the arcsa2 anda3. A point (ξ,η)T in the reference triangle is

mapped to this arc by mapping the point’s parametric distances= ξ
1−η to a parameterized

form of the arc atψ betweena2 anda3. Appendix B contains the full derivation of the

coordinate transformation and its Jacobian.

Toroidal Element Coordinate Transformation

A torus element is isomorphic to a rectangle. A simple mapping suffices to transform the

unit rectangle, with vertices{(0,0)T;(0,1)T ;(1,1)T;(1,0)T}, to an arbitrary torus element.
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Figure 2-5: (a) The standard unit triangle in parametric coordinate space. (b) A GST
viewed from the negativey-axis. The angleψ is measured relative to the positivex-axis.
Eachψ is mapped to one plane with normal along thex-axis; the plane intersects the sphere
and defines a circle. (c) A GST viewed from the positivez-axis. Dashed lines indicate the
circle of intersection between the sphere surface and the plane specified byϕ. The image
of the standard-triangle vertices under the coordinate transformation are labeled.

For the torus in Figure 2-3, with outer radiusc, inner radiusa, centered at the origin and

with axis of revolution along theZ axis, the Cartesian coordinates of a point at(ξ,η)T in

parametric coordinates are

r =











c+acos(ψ)cos(θ)

c+acos(ψ)sin(θ)

asin(ψ)











, (2.14)

where

θ = θ1+ξ(θ2−θ1); (2.15)

ψ = ψ1+η(ψ2−ψ1). (2.16)

The determinant of the Jacobian is

|J|= a(c+acos(ψ)) |ψ2−ψ1| |θ2−θ1| . (2.17)
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The coordinates of a point on an arbitrarily positioned torus can be computed by applying

a simple affine transform.

2.4.2 Near-field Integration Techniques

The integrands of interest have singularities as the evaluation point approaches the domain

of integration. As a result, even high-order Gaussian quadrature rules fail to accurately

approximate the singular and near-singular integrals; more sophisticated techniques are

required. In this section we present techniques for integrating the Laplace kernelK(r; r ′) =

1/(4π||r− r ′||) and its normal derivative ∂K
∂n(r ′)(r; r

′). Appendix C describes how these

methods may be adapted for the linearized Poisson–Boltzmann, surface-Generalized Born,

and continuum-van der Waals kernels.

Single-Layer Potential

The integral

Φ(r) =
Z

Ω

1
4π||r− r ′||dA′ (2.18)

is referred to as the single-layer potential because it represents the potential induced by a

unit-density monopole charge layer on the integration domain.

Spherical Element Single-Layer. WhenΩ is a generalized spherical triangle, the method

of Wanget al. can be applied to evaluate the integral in Equation 2.18 [43,71]. Figure 2-6

illustrates the approach. For a given generalized spherical triangle, we define a flat refer-

ence elementΓ that lies in the plane tangent to the spherical element at theGST centroid.

After selecting a reference element, one finds a polynomial distribution of monopole charge

on the reference element such that the reference-element induced potential accurately re-

produces the potential induced by the original distribution on the curved element. For

uniform distributions, the relation

Z

Ω
G(r; r ′)dA′ =

Z

Γ
G(r; r̂ ′)

[

G(r;M(r̂ ′))
G(r; r̂ ′)

∣

∣J(r̂ ′)
∣

∣

]

dÂ′, (2.19)
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Figure 2-6: Schematic of the approach for evaluating the potential induced by a distribution
of monopole charge on a generalized spherical triangle.

defines the reference-element monopole charge distribution that exactly reproduces the

curved-element induced potential. In Equation 2.19, ˆr ′ is a point in the flat element,M(r̂ ′)

is its image under the coordinate transformation fromΓ to Ω, andJ(r̂ ′) is the Jacobian of

the mapping. Because the flat element is tangent at the centroid and the sphere has constant

curvature, the term in parentheses uniformly approaches|J| at the centroid; for centroid-

collocation with piecewise-constant basis functions, this is the only type of singular integral

that must be evaluated. The term is actually smooth over the entire domain, and therefore it

can be accurately approximated using a low-order polynomial [71]. Then the single-layer

potential is calculated as

Z

Γ
G(r; r̂ ′)

[

G(r;M(r̂ ′))
G(r; r̂ ′)

∣

∣J(r̂ ′)
∣

∣

]

dÂ′ ≈∑
i, j

αi, j

Z

Γ
ξiη jG(r; r̂ ′)dÂ′, (2.20)

where the set{αi, j} denote the polynomial coefficients andξ andη denote a local coordi-

nate system on the flat reference element such that one vertexis at (0,0)T. Newman has

presented techniques to analytically evaluate the monomial integrals
R

ξiη jG(r; r̂ ′)dÂ′ for

planar polygons, and Wang has described an alternative [46,72].

The coefficients{αi, j} are found by least-squares solution of the Vandermonde matrix

equation
















1 ξ1 η1 . . . ξk
1ηl

1

1 ξ2 η2 . . . ξk
2ηl

2
...

. . .
...

1 ξn ηn . . . ξk
nηl

n

































α0,0

α1,0
...

αk,l

















=

















G(r;M(r̂1))
G(r;r̂1)

|J(r̂1)|
G(r;M(r̂2))

G(r;r̂2)
|J(r̂2)|

...
G(r;M(r̂n))

G(r;r̂n)
|J(r̂n)|

















, (2.21)
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where ˆr i = (ξi ,ηi)
T denotes theith of n sample points, wheren must be greater than the

number of coefficients to be fit.

The flat reference element can be defined in one of two ways. In the first, the flat

element edges are defined by casting rays from the sphere center through the GST boundary

arcs to the tangent plane. Boundary arcs that are segments ofgreat circles map to straight

lines in this projective transformation, and any arc belonging to a small circle becomes a

portion of a conic curve (either a hyperbola or an ellipse). The monomial integrals can then

be evaluated by analytical integration over a triangular domain, followed by addition or

subtraction, as necessary, of the result of numerical quadrature over the conic region [43].

An alternative method is to project the GST vertices to the tangent plane, which defines a

triangle. The mapping between this reference triangle and the GST is then a composition

of two mappings: the first transforms the reference triangleto the standard triangle, and the

second transforms the standard triangle to the GST. The firstmapping is straightforward,

and methods for the second mapping have been presented in Section 2.4.1.

We emphasize that our selection of a flat reference element that lies tangent at the GST

centroid suffices for the kernels specified in this work and for BEM approaches based on

piecewise-constant basis functions and centroid-collocation; other problems may require

that a reference element be defined in relation to the evaluation point [71].

Toroidal Element Single-Layer. WhenΩ is a toroidal element, the previously-described

polynomial-fitting method is difficult to apply because the torus surface has unequal radii

of curvature at most points. As a result, the ratioG(r;M(r̂ ′))/G(r; r̂ ′) takes different limits

depending on the direction from whichr ′ approachesr, and this phenomenon necessitates

the development of more complicated coordinate transformations. Instead, recursive sub-

division is applied to evaluate near-field integrals.

The element integral is evaluated in one of two ways. We denote the element centroid by

rc and its area byA. If the evaluation pointr satisfies||r− rc||< 5
√

A, the element is split

into four sub-elements defined by equally dividing the angular ranges. The sub-element

integrations are then evaluated independently. Further subdivision may be required, de-

pending on the position of the evaluation point relative to the four new centroids and the
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new element areas. The second near-field integration methodis applied when the evalu-

ation point lies at the element centroid (i.e., r = rc). This case arises during the solution

of boundary-element-method problems solved using centroid-collocation schemes. Sym-

metry in theθ direction allows these integrals to be evaluated for half the computational

expense of a full subdivision. Both subdivision integration methods halt the subdivision

when the divided elements have no edges longer than 10−5 Å.

Double-Layer Potential

The double-layer integral

Φ(r) =
Z

Ω

∂
∂n(r ′)

(

1
4π||r− r ′||

)

dA′ (2.22)

represents the potential due to a unit-density dipole charge layer on the domain. The Wang

et al. approach for double-layer integrals cannot be used for singular integrals. The ra-

tio K(r;M(r̂ ′))
K(r;r̂ ′) is not defined on the reference element becauseK(r; r̂ ′) = ∂

∂n(r ′)

(

1
4π||r−r ′||

)

vanishes for allr ′ 6= r in the plane of the dipole layer.

We instead use the double-layer calculation presented by Willis et al. [73], which ex-

tends the work of Newman [46]. Recall that the potential induced by a normally-oriented

dipole charge layer of uniform density equals the solid angle subtended by the integration

domain at the evaluation pointr [51]. Exploiting this characteristic, Newman derived an

analytic expression for the double-layer potential induced by a uniform dipole distribution

on a boundary element bounded by straight line segments [46]. Willis et al. extended

Newman’s work to uniform distributions on curved elements,noting that the subtended

solid angle can be found easily using quadrature [73].

Figure 2-7 illustrates this approach for evaluating the double-layer potential in Equa-

tion 2.22. The evaluation pointr is translated to the origin and the coordinate system is

rotated so that the element centroid lies on thez axis. We define a sphere of unit radius

centered at the origin and cast rays from the origin through the element edges to the sphere

surface. The projected edges define the subtended angle, which we can compute by inte-
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Figure 2-7: The Newman approach to calculating the potential induced by a uniform dis-
tribution of a normally-oriented dipole charge layer [46].The circle at the center of the
sphere denotes the point at which the potential is to be determined; the thin arcs form the
edges of a GST; the thick lines are the projection of the GST bounding arcs to the sphere.
The double-layer potential is the solid angle bounded by thethick lines.
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grating the bounded area:

A =

Z 2π

0

Z φ(θ)

0
1 ·sin(φ)dφdθ =

Z 2π

0
(1−cos(φ(θ))dθ (2.23)

Separating the integration into a sum of integrals over eachof thene circular arcs that form

the element boundary, and changing variables fromθ to a parametrict along the arcs, we

have

A =
ne

∑
i=1

Z 1

0
(1−cos(φ(θi(t))))

dθi

dt
dt, (2.24)

wheret is the parametric coordinate along theith edge, andθi(t) is the azimuthal angle of

the point at positiont along theith arc.

The directional character of the double-layer potential deserves comment. The integral

of Equation 2.22 is discontinuous as the evaluation pointr approaches and passes through

the surface. The value of the integral is defined to be the limit asr approaches the surface;

when r ∈ Ω, therefore, the side from whichr approaches the surface will determine the

value of the integral. The two limits sum to 4π [51]. By convention, we assume that

the integral has been taken as the evaluation point approaches from the side opposite the

normal direction.

An alternate approach, applicable only to uniform distributions, can also be taken. Ac-

cording to the Gauss–Bonnet theorem [74], the area bounded by the projected arcs can be

determined following integration of the geodesic curvature of the projected edges. Finally,

we note that the Williset al. approach is applicable not only to spherical and toroidal

surface elements, but also to many other types of curved surface elements [73].

2.5 RESULTS

We have generated several curved-element discretizationsusing the process outlined in Ap-

pendix A, and implemented the numerical integration methods in both C and Matlab [75].

Flat-triangular surface discretizations have been produced using Connolly’s Molecular Sur-

face Package [76]. We first present results that validate thesurface discretizations and

the integration techniques; we then demonstrate the advantages of curved-element surface
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methods with several representative calculations on smallmolecules.

2.5.1 Validating the Surface Discretization

The surface area of both GST and toroidal elements can be calculated analytically. The

Gauss–Bonnet theorem [74], when applied to a compact manifold, relates the integral of

the curvature over the surface to the integral of the geodesic curvature of the boundary and

the corner angles. A generalized spherical triangle has constant curvature over its surface,

and its bounding arcs have constant geodesic curvature, andaccordingly its area may be

calculated analytically without difficulty. This approachto surface area calculation was

taken by Connolly [59] and we use it here to demonstrate the correctness of the surface

discretization. The area of a toroidal element defined in Section 2.3.1 is seen to be

A =
∣

∣(θ2−θ1)
(

ac(ψ2−ψ1)+a2(sin(ψ2)−sin(ψ1))
)
∣

∣ . (2.25)

We generated both flat-element and curved-element surface discretizations of several mo-

lecules at varying levels of refinement, using the Richards molecular surface definition [49]

and the solvent-accessible surface. PARSE radii [12] were used for molecular surface gen-

eration and CHARMM22 radii [11] were used for solvent-accessible surfaces. Analyti-

cal areas of the discretizations were then computed and compared to the analytical areas

calculated by MSP [76]. Tables 2.1 and 2.2 present the molecular-surface and solvent-

accessible-surface results; the calculations illustratethat even coarse curved-element dis-

cretizations accurately capture the molecular surface geometry. Similar results (not shown)

have been obtained for van der Waals surfaces, which have spherical but not toroidal el-

ements. It is especially noteworthy that planar-element discretizations with significantly

more elements than their curved-element counterparts havenot converged to the correct

surface area. The more correct geometric description inherent to curved-element meth-

ods could lead to significantly more accurate numerical calculations than those based on

planar-element discretizations.
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METHOD
GEOMETRY ANALYTICAL AREA ( Å2) AREA OF DISCRETIZED SURFACE

FLAT CURVED
# ELEMENTS AREA (Å2) # ELEMENTS AREA (Å2)

Atom 12.566
COARSEa 74 11.516 40 12.566
MEDIUMb 270 12.249 70 12.566
FINEc 448 12.390 124 12.566

Parallelβ dialanined 241.642
COARSEa 684 230.965 1326 241.642
MEDIUMb 1944 238.450 1781 241.642
FINEc 2904 239.617 2923 241.642

Barnase–barstar complexe 8269.077
COARSEa 29728 7979.774 63915 8269.077
MEDIUMb 79104 8188.538 88860 8269.077
FINEc 149160 8407.962 133676 8269.077

Table 2.1: Comparison of discretized surface areas with analytical molecular (solvent-excluded) surface area. Proberadius is taken to
be 1.4̊A. a: MSP angle = 1.0, NETGEN level = VERY COARSE;b: MSP angle = 0.5, NETGEN level = COARSE;c: MSP angle
= 0.4, NETGEN level = MEDIUM;d: structure preparation is described in Section 2.5.5;e: from [77], entry 1BRS in the Protein
Databank [78]. All quantities are in̊A2 and have been rounded to the nearest 0.001Å2.
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METHOD
PROBLEM ANALYTICAL AREA ( Å2) AREA OF DISCRETIZED SURFACE

FLAT CURVED
# ELEMENTS AREA (Å2) # ELEMENTS AREA (Å2)

Atom 72.382
COARSEa 74 66.334 40 72.382
MEDIUMb 270 70.554 68 72.382
FINEc 448 71.368 124 72.382

Parallelβ dialanined 467.815
COARSEa 396 437.304 564 467.815
MEDIUMb 1268 459.406 714 467.815
FINEc 1846 462.617 1064 467.815

Barnase–barstar complexe 9152.150
COARSEa 10643 8785.722 20053 9152.150
MEDIUMb 31800 9094.782 25835 9152.150
FINEc 87178 9571.220 38767 9152.150

Table 2.2: Comparison of discretized surface areas with analytical solvent-accessible surface area. Probe radius is taken to be 1.4̊A. a:
MSP angle = 1.0, NETGEN level = VERY COARSE;b: MSP angle = 0.5, NETGEN level = COARSE;c: MSP angle = 0.4, NETGEN
level = MEDIUM; d: structure preparation is described in Section 2.5.5e: from [77], entry 1BRS in the Protein Databank [78]. All
quantities are in̊A2 and have been rounded to the nearest 0.001Å2.
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2.5.2 Validating Curved Boundary-Element Integration

To illustrate the correctness of the coordinate transformations and the polynomial-fitting

method, we used our numerical quadrature techniques to compute the surface areas of

molecular surfaces. The areas are not expected to exactly match the analytical results

because the Jacobian determinants are not polynomial. Table 2.3 lists the pit, belt, and cap

areas calculated by analytical and direct quadrature methods, and also by the polynomial-

fitting method for the pit and cap surfaces.

2.5.3 Surface Generalized-Born Calculations

The surface discretization and integration techniques presented in this work have been used

to calculate Born radii using the surface-Generalized-Born method introduced by Ghoshet

al. [42] and surface formulations of the Grycuk [55] and Wojciechowski and Lesyng [56]

Generalized Born models. The surface integrals associatedwith these calculations are

never singular because every evaluation point is the centerof a sphere. Figure 2-8 is a plot

of the Born radii computed for theα-helical dialanine and parallel-β dialanine molecules

using a surface formulation of the Grycuk method; results are shown for several levels of

surface discretization. Also shown are the Born radii calculated by BEM solution of the

Yoon and Lenhoff formulation of the Poisson–Boltzmann equation [21]. These calculations

take εI = 4, εII = 80, andκ = 0. Note that the surface-Generalized Born radii do not

appreciably change as the discretization is refined. Similar results are obtained using the

method of Ghoshet al. , or that presented by Wojciechowski and Lesyng (data not shown).

2.5.4 Continuum van der Waals Calculations

The surface-continuum van der Waals formulation has been implemented [43] and tested

for four of the alanine dipeptide conformations presented by Scarsdaleet al. [79]. Curved-

element discretizations of the solvent-accessible surface were generated using OPLS all-

atom radii [80] and a probe radius of 0.85Å, in accordance with the Levyet al. param-

eterization [8] for the TIP4P water model [81]. The Lennard-Jones coefficients for each
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METHOD
COARSE MEDIUM FINE

PROBLEM ANALYTICAL DIRECT FIT DIRECT FIT DIRECT FIT
Atom
CAP 12.566 12.566 12.567 12.566 12.566 12.566 12.566

Parallelβ dialanine
PIT 18.719 18.719 18.720 18.719 18.719 18.719 18.719
BELT 77.565 77.565 – 77.565 – 77.565 –
CAP 145.358 145.358 145.340 145.358 145.354 145.358 145.358

Barnase–barstar complex
PIT 2453.293 2453.240 2453.390 2453.292 2453.300 2453.293 2453.291
BELT 3195.626 3195.626 – 3195.626 – 3195.626 –
CAP 2620.158 2620.130 2619.698 2620.154 2620.056 2620.157 2620.137

Table 2.3: Comparison of pit, belt, and cap areas computed byanalytical, direct quadrature, and polynomial-fitting methods, using the
molecular surface discretizations of Section 2.5.1. All quantities are inÅ2 and have been rounded to the nearest 0.001Å2.
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Figure 2-8: Generalized Born radii calculated by boundary-element method solution of the
linearized Poisson–Boltzmann equation (LPBE) and by evaluating surface integrals based
on the GB model proposed by Grycuk [55]. The LPBE radii are plotted in solid lines with
x and the GB radii are plotted with dashed lines and triangles,circles, dots, and stars. (a)
Alpha-helix dialanine. (b) Beta-sheet dialanine.

surface integral of the form in Equation 2.9 are determined by appropriately mixing the

well depthsε and the diametersσ for each OPLS atom type and the TIP4P water model.

Table 2.4 shows the calculated energies at each discretization.

2.5.5 Electrostatics Problems

The electrostatic component of the solvation energy for several small boundary-element

systems has been computed using the Yoon and Lenhoff integral formulation (Equations 2.1

and 2.2) and dense preconditioned GMRES [82]. Larger systems must be solved using fast,

kernel-independent BEM algorithms such as the fast multipole method or FFTSVD [28,32,

83]. As described in Section 2.2.1, we have used piecewise-constant basis functions and

centroid collocation. For all calculations, we assume thatthe solute region hasεI = 4 and

the solvent region hasεII = 80.

Spherical Geometry

The solvation energy of a centrally-located charge in a spherical low-dielectric cavity can

be computed analytically if the Laplace equation holds in the solvent region, or numer-

ically using spherical harmonics if the linearized Poisson–Boltzmann equation holds in
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c5 αR c7eq c7ax

Volume -10.1365 -9.8917 -10.0190 -9.9199

Surface

# Elements Energy # Elements Energy # Elements Energy # Elements Energy
429 -10.1369 486 -9.8918 357 -10.0193 421 -9.9201
558 -10.1366 611 -9.8918 479 -10.0192 541 -9.9200
901 -10.1365 1033 -9.8917 793 -10.0191 863 -9.9199
1912 -10.1365 2069 -9.8917 1746 -10.0190 1782 -9.9199
4877 -10.1365 5247 -9.8917 4245 -10.0190 4585 -9.9199
10035 -10.1365 10829 -9.8917 10418 -10.0190 10755 -9.9199

Table 2.4: Solute–solvent van der Waals interaction energies estimated using a surface formulation of the Levyet al. continuum van der
Waals model and curved surface elements. All energies are inkcal/mol and have been rounded to the nearest 10−4 kcal/mol.
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Figure 2-9: Convergence of solvation free energies for a centrally located charge in a
1 Å sphere, calculated by BEM numerical solution of the Yoon and Lenhoff integral equa-
tions. For both casesεI = 4 andεII = 80. (a)κ = 0 Å −1. (b)κ = 0.124Å −1.

the solvent region. Figure 2-9 illustrates the improved accuracy of curved-element BEM

relative to planar-element methods; Figure 2-9(a) plots convergence for non-ionic solu-

tions (i.e., κ = 0 Å −1) and Figure 2-9(b) plots convergence to the analytical result when

κ = 0.124Å −1.

Dialanine

CHARMM [58] with the CHARMM22 parameter set [11] was used to generate two

conformations of dialanine (two alanine residues with an acetylated N-terminus and N-

methylamide at the C-terminus). One conformation takes averageφ andψ angles for a

parallelβ-sheet (φ =−119◦, ψ = +113◦); the other conformation takes the average angles

for a right-handedα-helix (φ =−57◦, ψ =−47◦) [84].

Alanine Dipeptide

Scarsdaleet al. has presented energy-minimized atomic coordinates for several conforma-

tions of the alanine dipeptide [79]. A set of curved-elementsurface discretizations at vary-

ing refinement were generated using these coordinates, PARSE radii and partial charges,

and a probe radius of 1.4̊A. Comparing the calculated planar-element and curved-element

energies to their values at the finest discretizations, and plotting the absolute deviation as a

function of the number of elements, one obtains Figure 2-10.
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Figure 2-10: Solvation free energies for four conformers ofthe alanine dipeptide; atom
centers are those presented in [79] and PARSE atomic radii and partial charges have been
used [12]. (a) c5 geometry. (b)αR geometry. (c) c7ax geometry. (d) c7eq geometry.
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2.6 DISCUSSION

We have defined two classes of compact, curved, two-dimensional surface elements that

can be used to exactly describe arbitrary solute–solvent boundaries according to the most

commonly used boundary definitions. These curved-element surface discretizations can be

used in a number of surface formulations of biophysical modeling problems. To numer-

ically evaluate the desired surface integrals over these domains, we have described a set

of accurate, efficient techniques specialized for these domains. Computational results il-

lustrate the advantages of curved-element surface discretizations relative to those based on

planar triangles.

One significant advantage of the curved-element representations is that the geometry

of the discretized surface does not change as the discretization is refined. In contrast, flat-

element discretizations describe different boundaries atdiffering refinements, as do curved-

element discretizations based on quadratic or cubic shapes. Curved-element methods based

on our discretizations, however, are limited only by the accuracy of the integration method

used, and, for boundary-element method problems, also by the order of the basis func-

tions. The curved-element method presented here thereforeoffers an attractive approach

for calculating Born radii via the SGB method and for computing solute–solvent van der

Waals interactions using a continuum model. Furthermore, curved-element quadrature in

the far-field is as efficient as far-field flat-element quadrature, because one can use the same

order quadrature rules for both. As a result, problems that require the evaluation of many

more far-field than near-field integrals can benefit significantly from curved-element meth-

ods without undue increase in computational expense. Finally, as a practical matter, the

integration techniques presented in this work are straightforward to implement, requiring

only a few hundred lines of MATLAB code, for example [75].

Although the near-field integration techniques for curved elements are significantly

slower than those required for flat elements [45, 46], the extra accuracy afforded may be

invaluable for problems that require highly accurate solutions. Because curved elements

allow a significant reduction in the number of unknowns, suchdiscretizations provide a

promising approach to reach a target level of accuracy givenconstraints on computer mem-
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ory. In the future we may extend these techniques to allow theevaluation of more compli-

cated integrals, such as the potential induced by a polynomially-varying charge distribution

on a curved element. Also, the curved-element discretization procedure may be modified

to allow the production of coarser meshes.
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Chapter 3

FFTSVD: A Fast Multiscale

Boundary-Element Method Solver

Suitable for Bio-MEMS and

Biomolecule Simulation1

We present a fast boundary element method (BEM) algorithm that is well-suited for solv-

ing electrostatics problems that arise in traditional and Bio-MEMS design. The algorithm,

FFTSVD, is Green’s function independent for low-frequencykernels and efficient for in-

homogeneous problems. FFTSVD is a multiscale algorithm that decomposes the problem

domain using an octree and uses sampling to calculate low-rank approximations to dom-

inant source distributions and responses. Long-range interactions at each length scale are

computed using the FFT. Computational results illustrate that the FFTSVD algorithm per-

forms better than precorrected-FFT style algorithms or themultipole style algorithms in

FastCap.

1This chapter was published previously in a special issue of IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems [83] with J. P. Bardhan and M. D. Altman as joint first authors.
c© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this ma-
terial for advertising or promotional purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component ofthis work in other works must be obtained from
the IEEE.
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3.1 INTRODUCTION

Microelectromechanical systems (MEMS) have recently become a popular platform for

biological experiments because they offer new avenues for investigating the structure and

function of biological systems. Their chief advantages over traditional in vitro methods

are reduced sample requirements, potentially improved detection sensitivity, and struc-

tures of approximately the same dimensions as the systems under investigation [85]. De-

vices have been presented for sorting cells [86], separating and sequencing DNA [87],

and biomolecule detection [88]. Furthermore, because arrays of sensors can be batch fab-

ricated on a single device, parallel experiments and high-throughput analysis are readily

performed. However, since microfabrication is relativelyslow and expensive, numerical

simulation of MEMS devices is an essential component of the design process [89, 90].

Design tools for integrated circuits cannot address multiphysics problems, and this has mo-

tivated the development of several computer-aided MEMS design software packages, most

of which are based on the finite-element method (FEM) and the boundary-element method

(BEM) [91].

BioMEMS, when applied to such problems as biomolecule detection, are often func-

tionalized with receptor molecules that bind targets of interest [92]. Molecular labels can

also be used to aid in the detection process [93]. However, the interactions between these

molecules, the MEMS device, and the solvent environment areoften neglected during com-

putational prototyping. In other fields, such as computational chemistry and chemical en-

gineering, continuum models of solvation are often used to study the electrostatic compo-

nent of these interactions [94]. These mean-field models permit the efficient calculation of

many useful properties, including solvation energies and electrostatic fields [18, 20], and

have been shown to correlate well with more expensive calculations that include explicit

solvent [7]. However, continuum models are unable to resolve specific molecular interac-

tions between solvent molecules and the solute. A variety ofnumerical techniques can be

used to simulate the continuum models, including the finite-difference method (FDM), the

finite-element method (FEM), and the boundary-element method (BEM) [21,30,95].

The boundary-element method has a number of advantages relative to FDM and FEM,
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such as requiring only surface discretizations and exactlytreating boundary conditions at

infinity. However, the discretization of boundary integralequations produces dense lin-

ear systems whose memory costs scale asO(n2) and solution costs scale withO(n3),

wheren is the number of discretization unknowns. This rapid rise incost with increas-

ing problem complexity has motivated the development of accelerated BEM solvers. Pre-

conditioned Krylov subspace techniques, combined with fast algorithms for computing

matrix–vector (MV) products, can require as little asO(n) memory and time to solve

BEM problems [96]. Many such algorithms have been presented, including the fast mul-

tipole method (FMM) [97,98],H -matrices [99–101], the precorrected-FFT method [102],

wavelet techniques [103,104], FFT on multipoles [105,106], kernel-independent multipole

methods [107,108], the hierarchical SVD method [109,110],plane-wave expansion based

approaches [111], and the PILOT algorithm [112]. Some algorithms, such as the origi-

nal FMM, exploit the decay of the integral equation kernel; the precorrected-FFT method

makes use of kernel shift-invariance. This work introducesan algorithm that combines the

benefits of both of these approaches, leading to a method thathas excellent memory and

time efficiency even on highly inhomogeneous problems.

Fast BEM algorithms whose structures depend on kernel decaysuffer from a common,

well-known problem: computing medium- and long-range interactions is still expensive,

even when their numerical low rank is exploited. For instance, in the fast multipole method,

computing the M2L (multipole to local) products dominates the matrix–vector product

time, since each cube can have as many as 124 or 189 interacting cubes, depending on the

interaction list definition, and the work per M2L multiplication scales asO(p4), wherep

is the expansion order and is related to accuracy [97, 98, 113]. Much work has focused

on reducing this cost; for the FMM, plane-wave expansions [111] diagonalize the M2L

translation, but are typically only efficient for largep. The precorrected-FFT (pFFT) algo-

rithm [102] relies on not the kernel’s decay but rather its translation invariance to achieve

high efficiency. The pFFT method is Green’s function independent, even for highly os-

cillatory kernels. Consequently, the method has been applied in a number of different

fields, including wide-band impedance extraction [114], microfluidics [72, 115, 116] and

biomolecule electrostatics [117]. One weakness of the precorrected-FFT method is that its
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efficiency decreases as the problem domain becomes increasingly inhomogeneous [102].

In this work, we introduce a fast BEM algorithm called FFTSVD. The method is well-

suited to MEMS device simulation because it is Green’s function independent and main-

tains high efficiency when solving inhomogeneous problems.The FFTSVD algorithm is

similar to the PILOT algorithm introduced by Gope and Jandhyala [112], in that our algo-

rithm is multiscale and based on an octree decomposition of the problem domain. Similar

to PILOT and IES3, our algorithm uses sampling and QR decomposition to calculate re-

duced representations for long-range interactions. The FFT is used to efficiently compute

the interactions, as in the kernel-independent multipole method [108]. Numerical results

from capacitance extraction problems demonstrate that FFTSVD is more memory efficient

than FastCap or pFFT and that the algorithm does not have the homogeneity problem. In

addition, we illustrate electrostatic force analysis by simulating a MEMS comb drive [72].

Finally, we demonstrate the method’s kernel-independenceby calculating the electrostatic

free energy of transferring a small fluorescent molecule from the gas phase to aqueous so-

lution, using an integral formulation of a popular continuum electrostatics model [21,117].

The following section briefly describes a representative MEMS electrostatics prob-

lem, a boundary element method used to solve the problem, anda more complicated

surface formulation for calculating the electrostatic component of the solvation energy of

a biomolecule. Section 3.3 presents the FFTSVD algorithm. Computational results and

performance comparisons appear in Section 3.4. Section 3.5describes several algorithm

variants and summarizes the chapter.

3.2 BACKGROUND EXAMPLES

In this section we describe two electrostatics problems that arise in BioMEMS design and

describe how they can be addressed using BEM.

3.2.1 MEMS Electrostatic Force Calculation

Consider the electrostatically actuated MEMS comb drive illustrated in Figure 3-1. Two

interdigitated polysilicon combs form the drive; one comb is fixed to the substrate and
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Figure 3-1: An electrostatically actuated MEMS comb drive.

the other is attached to a flexible tether. Applying a voltagedifference to the two combs

results in an electrostatic force between the two structures, and the tethered comb moves

in response [72]. The electrostatic response of the system to an applied voltage difference

can be calculated by solving the first-kind integral equation

Z

S
σ(r ′)G(r; r ′)dA′ = V(r), (3.1)

whereS is the union of the comb surfaces,V(r) is the applied potential on the comb sur-

faces,G(r; r ′) = 1/||r− r ′|| is the free-space Green’s function, andσ(r) is the charge den-

sity on the comb surfaces. Note that this is a standard capacitance extraction problem.

We can compute the axial electrostatic force between the combs by the relation

F(s) = − d
ds

E =− d
ds

1
2
VTC(s)V, (3.2)

whereF(s) is the force in the axial direction,s is the separation between the combs,E is

the electrostatic energy of the system,V is the vector of conductor potentials, andC(s) is

the capacitance matrix, written as a function of the comb separation.

To solve Equation 3.1 numerically,we discretize the surfaces intonp panels and rep-

resentσ(r), the charge density on the surface as a weighted combinationof compactly
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supported basis functions defined on the panels:

σ(r) =
np

∑
i=1

xi fi(r). (3.3)

Here, fi(r) is the ith basis function andxi the corresponding weight. Forcing the integral

over the discretized surface to match the known potential ata set of collocation points, we

form the dense linear system

Gx= b. (3.4)

The Green’s function matrixG is defined by

Gi j =

Z

f j(r
′)G(r i, r

′)da′, (3.5)

wherer i is the ith collocation point andbi = V(r i). Alternatively, one can use a Galerkin

method, in which case

Gi j =

Z Z

fi(r) f j(r
′)G(r; r ′)drdr′ (3.6)

and

bi =

Z

fi(r)ψ(r)dr. (3.7)

The linear system of Equation 3.4 is solved using preconditioned GMRES [82].

3.2.2 BEM Simulation of Biomolecule Electrostatics

Electrostatic solvation energy, the cost of transferring amolecule from a nonpolar low

dielectric medium to an aqueous solution with mobile ions, plays an important role in

understanding molecular interactions and properties. To calculate solvation energy, contin-

uum electrostatic models are commonly employed. Figure 3-2illustrates one such model.

The Richards molecular surface [49] is taken to define the boundarya that separates the

biomolecule interior and the solvent exterior. The interior is modeled as a homogeneous

region of low permittivityεI , where the potentialϕ(r) is governed by the Poisson equation,

and partial atomic charges on the biomolecule atoms are modeled as discrete point charges
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at the atom centers:

∇2ϕ(r) =−
nc

∑
i=1

qi

εI
δ(r− r i), (3.8)

wherenc is the number of discrete point charges andqi andr i are theith charge’s magni-

tude and location, respectively. In the solvent region, thelinearized Poisson–Boltzmann

equation

∇2ϕ(r) = κ2ϕ(r) (3.9)

governs the potential, whereκ, the inverse Debye screening length, depends on the con-

centration of ions in the solution and a higher permittivityεII . We write Green’s theorem

in the interior and exterior regions and then enforce continuity conditions at the boundary

to produce a pair of coupled integral equations,

1
2

ϕ(ra)+−
Z

a
ϕ(r ′)

∂G1

∂n
(ra; r ′)dA′−−

Z

a

∂ϕ
∂n

(r ′)G1(ra; r ′)dA′

=
nc

∑
i=1

qi

εI
G1(ra; r i) (3.10)

1
2

ϕ(ra)−−
Z

a
ϕ(r ′)

∂G2

∂n
(ra; r ′)dA′+

εI

εII
−
Z

a

∂ϕ
∂n

(r ′)G2(ra; r ′)dA′

= 0, (3.11)

wherera is a point on the surface,−
R

denotes the Cauchy principal value integral,G1 is

the Laplace Green’s function,G2 is the real Helmholtz Green’s function,∂Gi
∂n denotes the

appropriate double layer Green’s function,ϕ(r) is the potential on the surface, and∂ϕ
∂n(r) is

the normal derivative of the potential on the surface. Readers are referred to [21, 117] for

detailed derivations of the formulation. To solve Equations 3.10 and 3.11 numerically we

define a set of basis functions on the discretized surface andrepresent the surface potential

and its normal derivative as weighted combinations of thesebasis functions:

ϕ(r) ≈ ∑
i

xi fi(r) (3.12)

∂ϕ
∂n

(r) ≈ ∑
i

yi fi(r). (3.13)
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Figure 3-2: Continuum model for calculating biomolecule solvation.

We force the discretized integrals to exactly match the known surface conditions at the

panel centroids; this produces the dense linear system





1
2I + ∂G1

∂n −G1

1
2I − ∂G2

∂n + εI
εII

G2









x

y



=





∑k
qk
εI

G1(r; rk)

0



 , (3.14)

where, denoting theith panel centroid asr i, the block matrix entries are

G1,i j = −
Z

f j(r
′)G1(r i; r

′)dA′ (3.15)
(

∂G1

∂n

)

i j
= −

Z

f j(r
′)

∂G1

∂n(r ′)
(r i; r

′)dA′ (3.16)

and the block matricesG2 and ∂G2
∂n are similarly defined. Note that boundary element

method solution of this problem requires a Green’s functionindependent fast algorithm.

3.3 FFTSVD ALGORITHM DETAILS

The FFTSVD is a multiscale algorithm like most fast algorithms for low frequency appli-

cations: to compute the total action of the integral operator on a vector, we separate its

actions at different length scales and compute them separately, combining them only at the

end. In describing the FFTSVD algorithm, it is helpful to think of the basis functions as

sources,
R

fi(r ′)G(r; r ′)dr′ as the potential produced by sourcei, and the collocation points

r i as destinations. Multiplyingx by G in Equation 3.4 is then computing potentials at all
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Σ
q A q

Figure 3-3: The multiscale approach to fast matrix multiplication.

the destinations due to all sources. Figure 3-3 illustratesthe multiscale approach to fast

matrix multiplication: the squareS denotes a source, and the squares denotedI represent

destinations.

3.3.1 Notation

Let d ands denote two sets of panels: thenGd,s is the submatrix ofG that maps sources in

s to responses ind. The number of panels in seti is denoted byni .

3.3.2 Octree Decomposition

We first define the problem domain to be the union of all the setsof panels that comprise

the discretized surfaces. We then place a bounding cube around the domain and recursively

decompose the cube using octrees. Given a cubes at leveli, thenearest neighbors Ns are

those cubes at leveli that share a face, edge, or vertex withs. The interaction listfor s is

denoted asIs and defined to be the set of cubes at leveli that are not nearest neighbors tos

and not descended from any cube in an interaction list of an ancestor ofs [118]. Figure 3-4

illustrates the exclusion process for a 2-D domain. At everylevel, each panel is assigned

to the cube that contains its centroid. Where ambiguity willnot result,s denotes either

the cube itself or the set of panels assigned to it. This assignment rule ensures that each

panel–panel interaction is treated exactly once.

The coarsest decomposition is termed level 0 and has 43 cubes; coarser decompositions

have null interaction lists. We continue decomposing the domain until we reach a levell at

which no cube is assigned more thannp,max destinations. At each leveli, every cubes has

65



S

I

I

I

I

I

I

IIII

S
I

III

I

I

II

I

Figure 3-4: Interacting squares at two levels of decomposition.

a set of interacting cubesIs that are well-separated froms with respect to the current cube

size. Note that the definition of an interaction list is symmetric: d ∈ Is→ s∈ Id.

3.3.3 Sampling Dominant Sources and Responses

One can compute the potential responseϕIs in Is due to a sourceqs in sby the dense matrix-

vector product

ϕIs = GIs,sqs (3.17)

GIs,s ∈ ℜnIs×ns.

However, the separation betweens andIs motivates the approximation

GIs,s ≈ UIsV
T
s,src (3.18)

UIs ∈ ℜnIs×k

VT
s,src ∈ ℜk×ns

k � nIs

whereVs,src has orthogonal columns [109]. The matrixVs,src is small and represents thek

source distributions ins that produce dominant effects inIs. It is a reduced row basis for

GIs,s. The projection ofqs ontoVs,src loosely parallels the fast multipole method’s calcu-

lation of multipoles from sources, in the sense that both themultipole expansion and the

productVT
s,srcqs capture the important pieces ofqs when calculating far-field interactions.

We callVs,src the source compression matrix.
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A similar low-rank approximation can be made to find the response in a cubed given a

source distribution inId:

ϕd = Gd,IdqId (3.19)

≈ Ud,destV
T
Id qId

Ud,dest ∈ ℜnd×k

VT
Id ∈ ℜk×nId

k � nId .

Here,Ud,destis small and represents thek dominant potential responses ind, the destination

cube, due to source distributions inId. We callUd,dest the destination compression matrix;

Ud,dest is a reduced column basis forGd,Id.

Since it is impractical to computeGIs,s andGs,Is for each cubes, we use a sampling pro-

cedure inspired by the Kapur and Long hierarchical SVD method [109]. Figures 3-5 and 3-

6 illustrate the process of finding a reduced row basisVs,src. To determine the row basis,

we begin by selecting one destination per interacting cube,computing the corresponding

rows ofGIs,s, and performing rank-revealing QR factorization with reorthogonalization on

the transpose of the submatrix. If the submatrix rank is lessthan half the number of sam-

pled destinations, the QR-determined row basis is considered to be adequate. Otherwise,

an additional destination is sampled for each interacting cube; the extra destination is cho-

sen to be well-separated from the originally chosen destination. The transpose of the new

submatrix is factorized and again required to have rank lessthan half the total number of

samples. The process of resampling is continued until the required rank threshold is met.

To compute the reduced column basisUd,destfor the matrixGd,Id, we select a set of well

separated panels inId, compute the corresponding columns ofGd,Id, and QR factorize the

submatrix.
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3.3.4 Computing Long-range Interactions

Consider two well separated cubessandd. Because the cubes are well separated, we could

find a low-rank approximation toGd,s by truncating its SVD:

ϕd = Gd,sqs (3.20)

= Ud,sΣd,sV
T
d,sqs (3.21)

≈ Ûd,sΣ̂d,sV̂
T
d,sqs (3.22)

where the hat denotes trunctation tok columns,k < ns. Since the source compression

matrix Vs,src finds an approximation to the dominant row space ofGIs,s, we expect that it

also approximates the dominant row space ofGd,s, which is a submatrix ofGIs,s. Similarly,

we expect thatUd,dest approximates the dominant column space ofGd,s. A small matrix

Kd,s maps source distributions in the reduced basisVs,src to responses in the reduced basis

Ud,dest:

ϕd = Ud,destKd,sV
T
s,srcqs, (3.23)

and it is easy to see that

Kd,s = UT
d,destGd,sVs,src. (3.24)

Note thatKd,s is not diagonal becauseUd,destandVs,src only approximate the singular vec-

tors ofGd,s. If Vs,src∈ℜns×ks andUd,dest∈ℜnd×kd , thenKd,s∈ℜkd×ks.

The action of theK matrices can be computed in a number of different ways: they can

be computed explicitly, via multipoles, or via an FFT. Explicit storage is memory intensive,

and multipole representations are Green’s function dependent. We have therefore chosen

to implement the memory-efficient, Green’s function independent FFT translation method

presented by Yinget al. [108].

69



Figure 3-7: Schematic of the FFTSVD method for computing long-range interactions.

3.3.5 Diagonalizing Long-range Interactions with the FFT

Our method projects sources to a grid, uses an FFT convolution to accomplish translation

between source and destination, and interpolates results back from the grid. Figure 3-7

illustrates the approach. We introduce two matrices:Pg, j projects sources in cubej to the

cube grid, andI j ,g interpolates from the grid in cubej to the evaluation points inj. We use

an equivalent density scheme similar to those used by Phillips and White [102] and Biroset

al. [107] to determine the projection and interpolation matrices.

Projection Matrix Calculation

Given a cubesand the basis function weightsqs for panels ins, we wish to find a set of grid

chargesqg,s that reproduce the potential field far froms. We accomplish this by defining a

sphereΓ boundings and picking a set of quadrature points [119] on the sphere. Denoting

quadrature pointi onΓ by rΓ,i , the mapping betweenqs and the responses at the quadrature

points can be written asGΓ,s, where

GΓ,s,i j =

Z

panel j
G(rΓ,i; r

′)dr′. (3.25)

The mapping between grid charges and responses at the quadrature points can be written

as

GΓ,g,i j = G(rΓ,i, rg, j) (3.26)

whererg, j is the position of thejth grid point. If more quadrature points than grid points

are used for the matching, solving a least squares problem gives the desired projectionPg,s:

Pg,s = G−1
Γ,gGΓ,s. (3.27)
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In practice, one uses the singular value decomposition to solve for Pg,s.

Interpolation Matrix Calculation

Given grid potentialsqd in a cubed, we find the potentialsϕd at the panel centroids ind

by interpolation. For problems in which centroid collocation is used to generate a linear

system of equations, the interpolation matrix is calculated as

Id,g = (G−1
Γ,gGΓ,d)

T (3.28)

whereGΓ,d denotes the Green’s function matrix from the quadrature points onΓ to the

panel centroids ind. If Galerkin methods are used rather than centroid collocation, the

interpolation matrix is the transpose of the projection matrix.

Diagonal Translation

Once the grid charges ins are known, a spatial convolution with the Green’s function

produces the potentials at the grid points in the destination cubed. This spatial convolution

is diagonalized by the Fourier transform; we write the transform matrix asF , its inverse by

F −1, and the transform of the Green’s function matrix byG̃d,s. After calculating the grid

potentials ind, interpolation produces the potentials at the desired evaluation points. The

matrixGd,s is therefore written as

Gd,s = Id,gF −1G̃d,sF Pg,s. (3.29)

The productsId,gF −1 andF Pg,s could be stored, but in our experience this precomputation

only marginally improves the matrix–vector product time while increasing memory use

sinceF andF −1 are padded and complex.

In addition to diagonalizing the translation operation between cubes, the FFT signifi-

cantly decreases memory requirements. Using explicitK matrices requires storing a small

dense matrix for each pair of cubes; using FFT translation eliminates the expensive per-

pair matrix cost. Instead, each cube has its ownPg andIg matrices, which are used for all
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long-range interactions. In addition, because the Green’sfunction is translationally invari-

ant, we only need to store a small number ofG̃ matrices for each octree level; each one

represents a particular relative translation between source and destination cubes. Because

these matrices are diagonal, storage requirements are minimal.

Since translation is the dominant cost in the FFTSVD matrix–vector product, efficient

implementation of the translation procedure is essential to maximizing performance. The

translation operation is simply an element-wise multiplication of two complex vectors,

therefore, forgp grid points per cube side, each translation vector is(2gp− 1)2[(2gp−
1)/2+1] complex numbers long when using the FFTW library [120]. Thisnumber takes

into account padding and symmetry. For example, withgp = 3, 75 complex numbers are

required, resulting in 250 individual multiplies during the translation operation. This num-

ber has been reduced by taking advantage of vectorization. Many modern CPUs include

instructions that can assist in multiplying complex numbers within a register, effectively

halving the number of required multiplies. For comparison,standard fast multipole method

translations require more multiplications since they are not diagonal, and cannot be vec-

torized as easily since they involve matrix–vector products. In addition, we have yet to

exploit additional ways to accelerate the FFTSVD translation operation. These include

using symmetries between related translation vectors (G̃), such as those that translate in

opposite directions, and exploiting the fact that for axialtranslations, manỹG elements are

purely real.

3.3.6 Local Interactions

At the finest level of the decomposition, interactions between nearest neighbor cubes are

computed directly by calculating the corresponding dense submatrices ofG. These subma-

trices are denoted byDi, j where j is the source cube andi the destination. We bound the

complexity of the local interaction computation by continuing the octree decomposition

until each cube has fewer thannp,max panels.
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3.3.7 Algorithm Detail

The mapping from source cubes to destination cubed can thus be written as

ϕd = Ud
(

UT
d Id,g

)

F −1G̃F (Pg,sVs)VT
s qs (3.30)

The computations are grouped to eliminate redundant multiplications; the matrix products

UT
d Id,g andPg,sVs are stored for each cube rather than recomputed at every iteration. Below,

we introduce the restriction operatorM(i)
j that restricts a global vector to a local vector

associated with cubej at leveli; let the inverse operator map a local vector to the global by

inserting appropriate zeros. LetLi denote the set of cubes at leveli. Given a charge vector

q, the matrix–vector product is computed by the following procedure:

1. DOWNWARD PASS FOR LONG-RANGE INTERACTIONS: For levelsi = 0,1, . . . , l :

(a) PROJECT INTO DOMINANT SOURCE SPACE: For each cubej ∈ Li , com-

pute

ζ j = F (Pg, jVj ,src)V
T
j ,srcM

(i)
j q. (3.31)

(b) COMPUTE LONG-RANGE INTERACTIONS: For each cubej ∈ Li , compute

ν j = ∑
s∈I j

G̃ζs. (3.32)

(c) DETERMINE TOTAL DOMINANT RESPONSE: For each cubej ∈ Li , com-

pute

ϕ = ϕ+M(i),−1
j U j ,dest(U

T
j ,destI j ,g)F

−1ν j . (3.33)

2. SUM DIRECT INTERACTIONS: For each cubed at level l , add the contributions

from neighboring cubesNd:

ϕ = ϕ+M(l),−1
d ∑

s∈Nd

Dd,sM
(l)
s q. (3.34)
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3.4 COMPUTATIONAL RESULTS

To demonstrate the accuracy, speed, and memory efficiency ofthe FFTSVD algorithm, we

have used FFTSVD to solve for self and mutual capacitances invarious geometries. A

MEMS comb drive example [72] illustrates electrostatic force calculation using FFTSVD.

In addition, to show Green’s function independence and use of double layer kernels, we

have used FFTSVD to solve for the electrostatics of solvation for the highly charged dye

molecule fluorescein. Fluorescein is often used as a fluorescent label in BioMEMS applica-

tions [121,122], and its electrostatic properties in aqueous solution modulate its interaction

with other molecules and surfaces.

The FFTSVD algorithm has several adjustable parameters:εQR is the reduced basis

tolerance;gp is the number of FFT grid points on each side of a finest-level cube;np,max

is the maximum number of panels in a finest-level cube;nquad is the number of quadra-

ture points used on the equivalent density sphere,tolGMRES is the tolerance on the relative

residual that the resulting linear equations are solved to.At the two finest levels,gp FFT

grid points per cube edge are used, and the number of grid points per edge increases by one

for each successively coarser level; experience has shown that using different numbers of

grid points per edge provides significant accuracy improvements for marginal memory and

time costs. The parameters used for the following results are 10−4 for εQR, 3 for gp, 32 for

np,max, 25 fornquad, and 10−4 for tolGMRESunless otherwise specified.

For capacitance calculations, we compare performance to FastCap, based on the fast

multipole method [113], and fftcap++, based on the pFFT++ implementation of the pre-

corrected-FFT method [123]. All programs were compiled with full optimizations using the

Intel C++ compiler version 8.1 and benchmarked on an Intel Pentium 4 3.0-GHz desktop

computer with 2 GB of RAM. All parameter settings in FastCap and fftcap++ were left at

their defaults, except for the tolerance on solving the resulting linear equations, which was

set to 10−4 unless otherwise specified.
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3.4.1 Self-Capacitance of a Sphere

In order to test the accuracy of the FFTSVD method, we have applied it to solving for

the self-capacitance of a unit 1-m radius sphere, a quantityknown analytically. Figure 3-8

shows the improvement in accuracy with increasing sphere discretization for FFTSVD with

values of 3 and 5 forgp, 2nd and 4th order multipoles in FastCap, and default settings for

fftcap++. A tolerance of 10−6 for the relative residual when solving the BEM equations was

used in all programs. The analytical value for the self-capacitance of a 1-m radius sphere

is 0.111265 nF as computed by Gauss’ law. The results show that FFTSVD with a value

of 3 for gp tends to be more accurate than 2nd order multipoles in FastCap. In addition,

FFTSVD with low values ofgp tends to overshoot the analytical solution while FastCap

tends to undershoot with truncation of multipole order. These findings are consistent across

many geometries when examining convergence behavior.
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Figure 3-8: Accuracy versus number of panels for FFTSVD, FastCap and fftcap++ solving
the unit sphere self-capacitance problem.

3.4.2 Woven Bus Example (Homogeneous Problem)

As stated previously, one of the advantages of the FFTSVD method is its use of diagonal

translation operators. This advantage becomes apparent incases of homogeneous geome-

try, since a large number of translation operations are required. To examine performance in

a problem with homogeneous geometry, we have applied FFTSVDto solving for the mu-
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Figure 3-9: Homogeneous woven bus capacitance problem (woven10n01).

tual capacitances between woven bus conductors as in Figure3-9. Table 3.1 summarizes

the results for several woven bus capacitance problems. FFTSVD can achieve slightly bet-

ter speed and memory performance than precorrected-FFT, which is expected to excel at

problems with uniform distribution, and significantly better performance as compared to

FastCap.

3.4.3 Inhomogeneous Capacitance Problem

One of the disadvantages of the precorrected-FFT method is that it lays down a uniform

grid over the entire problem domain, and the simulation timegrows roughly in proportion

to the number of grid points. For simulations in which most ofthe domain is empty, there-

fore, the precorrected-FFT algorithm is inefficient. We have demonstrated this inefficiency,

and FFTSVD’s relative advantage, by configuring a set of conductors as shown in Figure 3-

10. Almost all of the panels in this system are at the edges of acube bounding the domain.

Figure 3-11 plots the matrix–vector product times for the FFTSVD, FastCap and fftcap++

codes, and Figure 3-12 plots the memory requirements. As expected, the precorrected-

FFT based fftcap++ code has poor performance, especially for fine discretizations of the

inhomogeneous problem. FFTSVD performs consistently better than fftcap++ and gener-

ally better than FastCap. The sharp jumps in FFTSVD and fftcap++ matrix–vector product

time with increasing panel count are due to a change in selection of the optimal octree
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Table 3.1: Comparison of FastCap (FC), fftcap++ (FFT++) andFFTSVD (FS) performance in terms of matrix–vector product time (MV)
and memory usage (MEM) on homogeneous woven bus capacitanceproblems with 2, 5 and 10 crossings (woven02n03, woven05n03,
woven10n03) and 10 crossings with lower discretization (woven10n01).

Problem Panels FC MV (s) FC MEM (MB) FFT++ MV (s) FFT++ MEM (MB) FS MV (s) FS MEM (MB)

woven02n03 3168 0.03 30 0.02 23 0.01 11
woven05n03 18720 0.17 205 0.22 411 0.09 110
woven10n01 8160 0.08 89 0.04 69 0.04 41
woven10n03 73440 0.73 901 0.51 818 0.41 466

7
7



Figure 3-10: Inhomogeneous capacitance problem.

decomposition depth or FFT grid size, respectively.

3.4.4 MEMS Comb Drive

We have simulated the MEMS comb drive illustrated in Figure 3-1 [72]. We applied a

voltage difference of 1 V to the two structures and used a fourth-order finite difference

scheme to approximate the derivative in Equation 3.2. Because the finite-difference scheme

for force calculation requires high accuracy in the capacitance calculations, more stringent

parameters are required for these simulations. We have usedtolGMRES= 10−6, εQR= 10−6,

gp = 5, nQUAD = 64, and for each discretization we have fixednp,max such that the octree

decomposition depth is equal for each of the four geometries.

The contribution of each panel to the axial force is plotted in Figure 3-13 and the total

axial electrostatic force is plotted in Figure 3-14 as a function of the number of panels used

to discretize the comb drive. We have used general trianglesand note that the discretiza-

tion scheme is poorly tuned for the calculation of electrostatic forces; nonuniform meshes

achieve superior accuracy at reduced panel counts [124]. The force can also be calculated

by integrating the squared charge density over the conductor surface, but this approach re-

quires specialized treatment because the charge density becomes infinite at the edges and
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corners of the conductors [125,126].

3.4.5 Solvation of Fluorescein

We have used the integral formulation in Equations 3.10 and 3.11 to calculate the solvation

energy of fluorescein. To prepare a model for solvation calculations, its structure and par-

tial atomic charges were determined from quantum mechanical calculations. Radii were

assigned to each atom and used to generate a triangulation ofthe molecular surface. The

interior of the fluorescein molecule was assigned a dielectric constant of 4, and the exte-

rior was assigned a dielectric constant of 80 (for water) with an ionic strength of 0.145 M

(κ = 0.124 Å−1). FFTSVD was used to solve for both the electrostatic solvation energy

(Figure 3-15), as well as the total electrostatic potentialon the surface of the fluorescein

molecule (Figure 3-16). We note that the long-range single-and double-layer integrals can

be computed using only one set of of translation operations.Different projection operators

are used to find the corresponding grid charges due to monopole and dipole distributions,

and the grid charges can then be summed for translation.
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3.5 DISCUSSION

3.5.1 Algorithm Variants

For problems with a small number of integral operators, memory constraints may not be a

significant consideration. In these cases, the matricesKd,s can be stored explicitly. These

Kd,s matrices are computed using Equation 3.24, but instead of computingGd,s explicitly,

we project, translate and interpolate an identity matrix using the methodology outlined in

Section 3.3.5. Although setup time and memory use increase when explicit K-matrices are

used, the matrix–vector product time is significantly reduced. We have also implemented a

parameter that allows a tradeoff between speed and memory use through K-matrices. Pairs

of interacting octree cubes that contain fewer panels than the parameter are handled with

explicit K-matrices, while all other cubes use the FFT-based translation. In this manner,

the balance between speed and memory can be fine-tuned for thegiven application.

It is also straightforward to create an FFTSVD variant that runs in linear time; the same

method used to generate the projection and interpolation matrices can be used to create

“upward pass” and “downward pass” operators such as those found in multipole algorithms.

This variant algorithm is essentially equivalent to the kernel-independent method by Yinget

al. [108], except that we allow all the grid charges to be nonzero. The Ying method, in
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contrast, uses only grid charges on the surface of the cube.

The linear-time FFTSVD method requires a greater number of grid points per cube,

due to the loss of degrees of freedom during each upward pass from child to parent cube.

In addition, the SVD based compression of dominant sources and responses is no longer

computed, since these bases are now taken directly from child cubes. This method is ex-

tremely memory efficient since dominant source and responsebases are no longer stored,

but it trades off performance to achieve it due to the larger required grid sizes.

Finally, the multilevel structure of FFTSVD allows easy parallelization. Each proces-

sor can be assigned responsibility for a set of cubes on coarse levels, and the computation

can proceed independently until the final potential responses are summed. We have imple-

mented parallel FFTSVD using both OpenMP and MPI libraries with good results.

3.5.2 Summary

We have developed a fast algorithm for computing the dense matrix–vector products re-

quired to solve boundary-element problems using Krylov subspace iterative methods. The

FFTSVD method is a multiscale algorithm; an octree decomposes the matrix action into

different length scales. For each length scale, we use sampling to calculate reduced bases

for the interactions between well-separated groups of panels. The FFT is used to diag-

onalize the translation operation that computes the long-range interactions. The method

described here relies on both kernel decay and translation invariance.

Numerical results illustrate that FFTSVD is much more memory-efficient than Fast-

Cap or precorrected-FFT, and that it is generally faster than either technique on a variety

of problems. In addition, FFTSVD is Green’s-function independent, unlike FastCap, and

the method performs well even when the problem domain is sparsely populated, unlike

precorrected-FFT. Our implementation is well-suited to solve problems with multiple di-

electric regions. Finally, we note that the structure of thealgorithm permits treatment of

kernels that are not translation-invariant; for such problems,theK-matrix algorithm variant

should be used rather than the FFT. Together, the algorithm’s performance and flexibility

make FFTSVD an excellent candidate for fast BEM solvers for microfluidic and micro-
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electromechanical problems that appear in BioMEMS design.
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Chapter 4

Accurate Solution of Multi-region

Continuum Electrostatic Problems

Using the Linearized

Poisson–Boltzmann Equation and

Curved Boundary Elements1

We present a boundary-element method (BEM) implementationfor solving problems in

biomolecular electrostatics using the linearized Poisson–Boltzmann equation. The moti-

vating factor behind this implementation was the desire to create an efficient and accurate

solver capable of precisely describing the molecular topologies prevalent in continuum

models. Underlying this implementation are three key features that address many of the

well-known practical challenges associated with the boundary-element method. First, we

present a general boundary-integral approach capable of modeling an arbitrary number of

embedded homogeneous dielectric regions with differing dielectric constants, possible salt

treatment, and point charges. Second, molecular and accessible surfaces used to describe

dielectric and ion-exclusion boundaries are discretized with curved boundary elements that

1To be submitted [50].
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faithfully reproduce even complicated geometries. Robustnumerical integration methods

are employed to accurately evaluate singular and near-singular integrals over the curved

boundary elements. Third, we avoid explicitly forming the dense BEM matrix, and in-

stead solve the linear system with preconditioned GMRES, using the FFTSVD algorithm

to accelerate matrix–vector multiplication. A comparisonof the presented BEM imple-

mentation and standard finite-difference techniques demonstrates that for certain classes of

electrostatic calculations, the improved convergence properties of the BEM approach can

have a significant impact on computed energetics. These results suggest that solvers with

improved accuracy may be important to ensure that predictions based on continuum mod-

els are limited by the models themselves rather than by errors in the models’ numerical

evaluation.

4.1 INTRODUCTION

Continuum theories of solvation have become common tools for molecular modeling,

and have led to an improved understanding of electrostatic interactions in biomolecu-

lar systems [9, 94]. One of the most popular models of continuum solvation treats a

molecule and its solvent environment as homogeneous regions of low and high dielec-

tric constants respectively, with embedded point charges representing the molecular charge

distribution and Debye–Hückel theory modeling the effectof salt. The linearized Poisson–

Boltzmann equation governs this continuum model, and this equation has received much

attention in recent years [6,10,127]. The linearized Poisson–Boltzmann equation (LPBE),

an elliptic partial differential equation (PDE) [128], is well understood theoretically and

can be solved numerically using a variety of techniques including finite-difference meth-

ods (FDM) [20, 22, 26, 31, 95, 129–131] finite-element methods (FEM) [25, 30, 132], and

boundary-element methods (BEM) [17,19,23,27,28,32,52,69,70,133–135].

Boundary-element methods offer several inherent advantages over volume-based meth-

ods for solving the LPBE with regions of homogeneous dielectric [54]. For example, the

BEM only requires discretization of problem boundaries rather than the entire infinite do-

main, and inherently captures the correct zero-potential boundary condition at infinity. In
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comparison to finite-difference methods, BEM has the ability to model point charges ex-

actly rather than requiring grid projection.

Unfortunately, boundary-element methods require sophisticated numerical techniques

in order to be competitive with the flexibility and performance of volume-based methods.

Several challenges complicate the implementation of BEM techniques for biomolecule

electrostatics. The first challenge arises from the surface-based analysis of the problem.

Some Poisson–Boltzmann modeling problems require treatment of multiple embedded or

disconnected regions with differing dielectric constantsand screening parameters [136,

137]. These features allow the simulation of solvent-filledcavities within macromolecules,

salt-filled regions in large cavities, and an ion-exclusionlayer surrounding the molecule

with solvent permittivity but no salt. Multiple regions areeasily modeled in volume meth-

ods like FDM and FEM because the dielectric constant and the presence of salt can be

assigned to each grid point or volume element independently. Implementing these features

using BEM requires the discretization of every interface between dielectric regions and

between those governed by differing PDEs. In contrast, volume-based methods need no

additional degrees of freedom. Previous BEM approaches have addressed these limitations

by developing specific formulations to treat multiple embedded dielectric regions without

salt [136], multiple disconnected dielectric bodies with salt [137], and hybrid boundary-

element/finite-difference methods to treat ion-exclusionlayers [33].

A second important challenge for biomolecule BEM is the strong dependence of solu-

tion accuracy on the quality of the surface representation.In this work and in most others,

the dielectric and ion-exclusion surfaces are described according to one of two definitions.

Accessible surfaces [57] are defined as a union of spheres, where the atomic radii are ex-

panded by a probe’s radius. Molecular surfaces [49,59,138]represent the surface of closest

approach of a probe sphere rolled over a union of spheres representing a molecule. These

curved surfaces, which consist of portions of spheres and torii, are analytically defined

but often difficult to discretize because the surfaces have cusps and singularities. Most

boundary-element methods for solving the LPBE represent these surfaces approximately

using large numbers of planar triangular elements, or panels, that can never truly cap-

ture the curved geometries. The importance of using curved panels has already been dis-
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cussed [29, 38], but previous implementations have introduced other approximations. For

example, other work has modified the molecular surface definition to avoid singularities

and thin regions, used elements with low-order curvature that cannot accurately represent

spheres or torii, or discretized surfaces using standard spherical triangles that cannot ex-

actly represent the intersections between atoms.

A third challenge for BEM is that discretization of surface integral equations gives rise

to dense linear systems of equations. As a result, memory costs scale quadratically in

the number of unknowns. In contrast, the FDM and FEM generatesparse matrices that

reflect the local nature of the differential operators. Solving the BEM linear system by

matrix factorization requiresO(n3) time, wheren is the number of unknowns. Computa-

tional costs rapidly become prohibitive for systems with more than 104 unknowns, which

is currently insufficient to accurately model large macromolecules such as proteins. The

quadratic memory and cubic time costs can be reduced to linear or near-linear complexity

by combining two approximation schemes. First, the linear systems are solved approxi-

mately, rather than exactly, using Krylov subspace iterative methods such as the conjugate

gradient method (CG) or the generalized minimum residual algorithm (GMRES) [82]. Ev-

ery iteration of a dense Krylov subspace method requires themultiplication of a vector by

the BEM matrix, costing a prohibitiveO(n2) memory and time. A second approximation

reduces the matrix–vector product cost by interpreting theformation of the product as an

n-body potential calculation [113]. This interpretation enables the use of techniques such

as multipole methods [28, 32, 70, 97, 113, 134], or multiscale methods [135], to reduce the

solution costs toO(n) or O(nlogn). Multipole methods require specialized expansions

for every governing equation, and expansions for the LPBE have been developed in recent

years [139]. One disadvantage of the fast multipole method (FMM) in particular is that the

computational costs grow rapidly when improving accuracy [140] due to dense translation

operations between multipole and local expansions, motivating the development of more

efficient techniques [83,108,140].

Another challenge for the BEM is that the computation of elements in the dense systems

of linear equations requires the integration of possibly singular functions over the panels

used to discretize the boundary surfaces. These integrations can be interpreted as the cal-
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culation of the potential, at an evaluation point due to a charge distribution defined on a

boundary element. In contrast, the matrix elements for FDM and FEM problems are rela-

tively easily computed. Although analytical expressions exist for the integral of the Laplace

(Poisson) kernel over flat triangular panels [45, 46], integration of the the LPBE kernel, or

integration over general curved domains, require numerical approximation. When the eval-

uation point is sufficiently far from the panel, quadrature rules can be used to perform

numerical integration, even over curved panels [69, 133]. However, when the evaluation

point is near or on the panel, even high-order quadrature rules do not suffice to capture

the singularity. The evaluation of near-singular and singular integrals has been noted to

be a limiting factor in the accuracy of BEM implementations for molecular electrostat-

ics [27], and a variety of techniques have been developed to either avoid computing these

integrals [27] or to approximate them with specialized quadrature rules [141].

In this work we present a boundary-element method implementation for solving the lin-

earized Poisson–Boltzmann equation (LPBE) that addressesall of these challenges, with

the ultimate goal of achieving high accuracy given reasonable computational resources.

Three key features underlie the implementation. First, we have developed a general boundary-

integral approach that can easily treat an arbitrary numberof embedded regions of homo-

geneous dielectric with different dielectric constants and possibly salt. Second, the accessi-

ble and molecular surfaces are discretized using curved boundary elements that accurately

capture the problem geometry, employing robust methods to compute self- and near-field

integrals. Third, the dense linear systems are solved usingpreconditioned Krylov subspace

methods and the FFTSVD algorithm [83].

Our Green’s-theorem-based integral-equation formalism allows for ion-exclusion lay-

ers, solvent-filled cavities in the solute, and multiple homogeneous dielectric regions. Finite-

difference and finite-element simulations have long been capable of modeling problems

with these features, but this work presents the first detailed derivation for BEM treatment.

The accessible and molecular surfaces are represented essentially exactly using curved

boundary-element discretizations that accurately reproduce singularities, cusps, and thin

regions. Accurate numerical integration techniques for the singular Laplace (Poisson)

and LPBE Green’s functions [38] allow the BEM to achieve exceptional accuracy. The
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FFTSVD algorithm [83] efficiently sparsifies the dense BEM matrix, and memory and time

requirements scale effectively linearly in the number of boundary elements. This fast BEM

technique can be applied without modification to compress all of the integral operators in

biomolecule electrostatics. Furthermore, the dense translation operations that dominate the

FMM computational cost are replaced in the FFTSVD method with more efficient diagonal

translations, allowing for a better trade-off between computational expense and accuracy.

After describing the boundary-element implementation, wepresent a set of computa-

tional experiments in order to assess the relative accuracyand computational cost of finite-

difference and boundary-element method simulations for several categories of calculations.

We calculate the electrostatic contributions to free energies of solvation for an analytically

solvable sphere geometry, a short peptide derived from an HIV-1 substrate site [142], and

the barnase–barstar protein complex [77]. We also compute rigid and non-rigid electrostatic

binding free energies for the wild-type barnase–barstar complex as well as three single mu-

tants. Solvation calculations demonstrate that the BEM presented here provides better con-

vergence as a function of compute time. Rigid-binding results also suggest that the BEM

converges more rapidly than FDM. However, when comparing differential rigid binding

energies between wild-type and mutant protein complexes, where the structure remains the

same except at the site of mutation, even low-resolution finite-difference simulations seem

to accurately capture this difference. The curved BEM regains an accuracy advantage for

differential non-rigid binding calculations, suggestingthat the accuracy of finite-difference

rigid binding may result from fortuitous cancellation of error. Finally, we demonstrate that

the BEM implementation offers a clear advantage in accuracyand comparable simulation

time for calculations that require repeated solution of thesame problem geometry with

different sets of atomic charges. Electrostatic componentanalysis [143–145] and charge

optimization [34,35] are types of calculations that fall into this category.
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I

a

II

Figure 4-1: A one-surface problem in molecular electrostatics. The molecular interior
(RegionI ) is surrounded by a salt solution with high dielectric constant and inverse Debye
lengthκ (RegionII ).

4.2 THEORY

4.2.1 Green’s theorem integral formulation

We begin our presentation of the multi-region integral formulation by deriving the one-

surface Green’s-theorem-based integral formulation described by Yoon and Lenhoff [21].

This method is also known as the non-derivative Green’s theorem formulation [29, 52].

Figure 4-1 illustrates the problem and notation.

A single boundarya divides space into two regions. The molecular interior, labeled

regionI , has a uniform dielectric constantεI and containsnc discrete point charges. The

ith point charge, located atr i , is of valueqi . In regionI , the electrostatic potentialφI (r) is

governed by a Poisson equation

∇2φI (r) =−
nc

∑
i=1

qi

εI
δ(r− r i), (4.1)

whereδ(r− r i) is the Dirac delta function translated byr i .

The solvent regionII exterior toa represents solvent with mobile ions; we model the

region as having a uniform dielectric constantεII and an inverse Debye lengthκ. In this re-

gion, the electrostatic potentialφII (r) is assumed to obey the linearized Poisson–Boltzmann

equation:

∇2φII (r) = κ2φII (r). (4.2)

The free-space Green’s functions for the Poisson and linearized Poisson–Boltzmann
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equations are

GI (r; r
′) =

1
4π||r− r ′|| Region I (4.3)

GII (r; r
′) =

e−κ||r−r ′||

4π||r− r ′|| Region II (4.4)

respectively. Across the boundary surfacea, the electrostatic potential and the normal

displacement are continuous [51]. Using the relationD = εE, where the electric fieldE

satisfiesE =−∇φ, we can write the continuity conditions for a pointra on the surfacea as

φI (ra) = φII (ra) (4.5)

εI
∂φI

∂n
(ra) = εII

∂φII

∂n
(ra). (4.6)

In Equation 4.6, the normal direction is defined to point intothe solvent region.

After specifying the problem domains and boundary conditions, one applies Green’s

theorem in both regions. Green’s Theorem,

Z

V

[

Ψ∇2Φ−Φ∇2Ψ
]

dV =

Z

Ω

[

Ψ
∂Φ
∂n
−Φ

∂Ψ
∂n

]

dΩ, (4.7)

whereΨ(r) andΦ(r) are two scalar fields, allows the determination of the potential at a

point in a volumeV given the free-space Green’s function for the governing equation inV

as well as the potential and its normal derivative at the bounding surfaceΩ.

We first apply Green’s theorem to find the potential at a pointrI in regionI , which has

the bounding surfaceΩ = a. Using the Green’s function (Equation 4.3) and substituting

Ψ(r ′) = GI (rI ; r ′), Φ(r ′) = φI(r ′), and Equation 4.1, we have

Z

V

[

GI (rI ; r
′)

(

−
nc

∑
i=1

qi

εI
δ(r− r i)

)

−φI (r
′)∇2GI(rI ; r

′)

]

dV′ =

Z

a

[

GI (rI ; r
′)

∂φI

∂n
(r ′)−φI (r

′)
∂GI

∂n
(rI ; r

′)
]

dA′. (4.8)

In Equation 4.8 and throughout this section, the normal derivative of GI is taken with

respect to the integration variabler ′: that is, ∂GI
∂n (rI ; r ′) denotes the potential atrI induced
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by a normally-oriented dipole atr ′. Simplifying the left-hand side using the definition of

the Green’s function,

∇2GI (rI ; r
′) =−δ(rI − r ′), (4.9)

eliminates the volume integral in Equation 4.8, and by rearranging terms one obtains an

expression for the potential atrI as a function of the solute charge distribution and the

boundary conditions:

φI (rI) =
nc

∑
i=1

qi

εI
GI (rI ; r i)+

Z

a

[

GI (rI ; r
′)

∂φI

∂n
(r ′)−φI(r

′)
∂GI

∂n
(rI ; r

′)
]

dA′. (4.10)

To apply Green’s theorem in regionII , one must first bound the region by introducing

a hypothetical surfaceΓ at infinity, and using the substitutionsΨ(r ′) = GII (rII ; r ′), Φ(r ′) =

φII (r ′), Equation 4.4, and the LPBE Green’s function definition. Assuming the potential

obeys regularity conditions at infinity [23], the surface integrals overΓ vanish, and we can

write the potential at a pointrII in regionII as

φII (rII ) =

Z

a

[

GII (rII ; r
′)

∂φII

∂n
(r ′)−φII (r

′)
∂GII

∂n
(rII ; r

′)

]

dA′, (4.11)

and here, as in Equation 4.10, the normal direction is definedto point into regionII .

We derive a pair of coupled integral equations by letting thepointsrI andrII approach

a pointra on the surface. Using Equation 4.10,

φI(ra) = lim
rI→ra

φI (rI) (4.12)

=

Z

a
GI (ra, r

′)
∂φI

∂n
(r ′)dA′− lim

rI→ra

[

Z

a
φ(r ′)

∂GI

∂n
(rI ; r

′)dA′
]

+
nc

∑
i=1

qi

εI
GI(ra; r i). (4.13)

The second term in Equation 4.13 can be interpreted as the potential induced by a dipole

layer of charge on the surface. Such a potential is discontinuous as the evaluation point
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crosses the surface and must be handled with care. We write

φI (ra) =−
Z

a

[

GI (ra; r ′)]
∂φI

∂n
(r ′)−φI(r

′)
∂GI

∂n
(ra; r ′)

]

dA′+
1
2

φI (ra)+
nc

∑
i=1

qi

εI
GI (ra; r i),

(4.14)

where−
R

represents a Cauchy principal value integral, and we assumethat the limit as

rI → ra has been taken from the direction opposite the normal. A similar limiting process

applied to Equation 4.11, in which we letrII → ra, yields

φII (ra) =−
Z

a

[

−GII (ra; r ′)]
∂φII

∂n
(r ′)+φII (r

′)
∂GII

∂n
(ra; r ′)

]

dA′+
1
2

φII (ra). (4.15)

Finally, we eliminate the unknownsφII (ra) and∂φII
∂n (ra) using the continuity conditions

(Equations 4.5 and 4.6). Two coupled integral equations result:

1
2

φI (ra)+−
Z

a
φI (r

′)
∂GI

∂n
(ra; r ′)dA′−−

Z

a

∂φI

∂n
(r ′)GI (ra; r ′)dA′ = (4.16)

nc

∑
i=1

qi

εI
GI (ra; r i)

1
2

φI(ra)−−
Z

a
φI (r

′)
∂GII

∂n
(ra; r ′)dA′+

εI

εII
−
Z

a

∂φI

∂n
(r ′)GII (ra; r ′)dA′ = 0. (4.17)

Introducing an abbreviated notation allows the equations to be written as





1
2I +Da

I ,a −Sa
I ,a

1
2I −Da

II ,a εI ,II Sa
II ,a









φa

∂φa
∂n



=





∑i
qi
εI

Ga
I ,i

0



 , (4.18)

whereφa and ∂φa
∂n denote the surface potential and normal displacement ona, I denotes the

identity operator,εI ,II abbreviatesεI
εII

, andSu
I ,v andDu

I ,v denote the single- and double-layer

operators that compute potential at the surfaceu due to a monopole or dipole charge density

on surfacev, given the Green’s functionGI (r; r ′). The operatorSu
I ,v is defined such that:

Su
I ,v

∂φv

∂n
=−

Z

v
GI (ru; r ′)

∂φv

∂n(r ′)
(r ′)dA′; (4.19)
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similarly,

Du
I ,vφv =−

Z

v

∂GI

∂n(r ′)
(ru; r ′)φv(r

′)dA′. (4.20)

In Equation 4.18, we have also definedGa
I ,i = GI (ra; r i).

4.2.2 Numerical solution using the boundary-element method

To simultaneously solve Equations 4.16 and 4.17 using the boundary-element method

(BEM), we first approximate the surface variablesφI (ra) and ∂φI
∂n (ra) as weighted com-

binations of a set ofn basis functionsχ1(r),χ2(r), . . . ,χn(r) on the surface:

φI(ra) ≈
n

∑
k=1

ukχk(ra) (4.21)

∂φI

∂n
(ra) ≈

n

∑
k=1

vkχk(ra). (4.22)

The unknown weightsuk andvk are then found by forcing the integral equation to be satis-

fied as closely as possible in some choice of metric.

In this work, we discretize the surfaces into a discrete set of np non-overlapping curved

boundary elements and use piecewise-constant basis functions that have a value of one on

a single panel and are zero everywhere else:

χk(ra) =







1 if ra is on panelk

0 otherwise.
(4.23)

Defining the integral equation residual to be the differencebetween the known condi-

tion on the surface and the integral operator applied to the approximate solution, one can

form a square linear system by forcing the residual to equal zero at the boundary-element

centroids, a technique known as centroid collocation [53].Using the piecewise-constant

basis functions and denoting the centroid of paneli asrci , the discretized (matrix) form of

the operatorSa
I ,a from Equation 4.19 has entries

Si, j =
Z

panel j
GI (rci ; r

′)dA′j , (4.24)
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and the double-layer discretized operatorDa
I ,a similarly has entries

Di, j =−
Z

panel j

∂GI

∂n(r ′)
(rci ; r

′)dA′j . (4.25)

The total matrix equation representing the discretized form of Equation 4.18 therefore has

dimension 2np. Once this equation is solved, the potential anywhere in space may be

calculated using the discretized forms of Equations 4.10 and 4.11.

4.2.3 Extension to multiple dielectrics, solvent cavities, and ion-exclusion

layers

Continuum electrostatics models of biomolecular systems can be defined by multiple em-

bedded regions of differing homogeneous dielectric constant and salt treatment. Integral-

equation formulations that can solve these problems often possess a complicated block

structure because there exist numerous operators that couple variables on one surface to

conditions on other surfaces. To illustrate this block structure, we next present Green’s the-

orem formulations for two-surface and three-surface example problems. We then describe

how a tree-based representation of the enclosed regions facilitates the determination of the

appropriate Green’s-theorem-based integral operator forarbitrary multi-region problems.

Two-surface formulation

Figure 4-2 is a schematic of a two-surface problem in molecular electrostatics; salt ions

are not permitted to directly reach the molecular surfacea, but instead are bounded by

an accessible surfaceb a specified distance outside the molecule. The enclosed volume

between the surfaces is termed the ion-exclusion layer. Region I , again representing the

molecular interior, has dielectric constantεI andnc point charges. The ion-exclusion layer,

region II , has dielectric constantεII , and in this region the Laplace equation governs the

electrostatic potential. RegionIII represents solvent with mobile ions and has dielectric

constantεIII (usually the same asεII ) but contains a Debye–Hückel salt treatment; the

potential in this region is governed by the linearized Poisson–Boltzmann equation. This
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problem has continuity conditions at botha andb:

φI (ra) = φII (ra) (4.26)

εI
∂φI

∂n
(ra) = εII

∂φII

∂n
(ra) (4.27)

φII (rb) = φIII (rb) (4.28)

εII
∂φII

∂n
(rb) = εIII

∂φIII

∂n
(rb). (4.29)

The associated integral equations have four surface variables, which are the potential

and normal derivative on both surfaces:φa, ∂φa
∂n , φb, ∂φb

∂n . The free-space Green’s functions

in each region are again denoted byG with the region label as subscript:GII (r; r ′), for

instance, denotes the free-space Laplace Green’s function. As in the one-surface deriva-

tion, we apply Green’s theorem in each region using the appropriate substitutions, let the

field points approach the bounding surfaces, and eliminate redundant variables using the

continuity conditions. The resulting operator takes the form

















1
2I +Da

I ,a −Sa
I ,a

1
2I −Da

II ,a +εI ,II Sa
II ,a +Da

II ,b −Sa
II ,b

−Db
II ,a +εI ,II Sb

II ,a
1
2I +Db

II ,b −Sb
II ,b

1
2I −Db

III ,b +εII ,III Sb
II ,b

































φa

∂φa
∂n

φb

∂φb
∂n

















=

















∑i
qi
εI

Ga
I ,i

0

0

0

















, (4.30)

which can be solved with the boundary-element method described above.

Note that the integral operator contains several zero blocks. These blocks arise from

the application of Green’s theorem in regions for which one or more surfaces do not form

part of that region’s bounding surface. For instance, surface b forms no portion of the

bounding surface for regionI , and consequently variables on surfaceb contribute nothing

to the integral equation derived by applying Green’s theorem in regionI . Note also that

two of the integral equations derive from the application ofGreen’s theorem in regionII .
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a III
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Figure 4-2: A two-surface problem in molecular electrostatics. The molecular interior (Re-
gion I ) is surrounded by an ion-exclusion layer with solvent dielectric and no salt (Region
II ), which in turn is surrounded by solvent with a salt treatment (RegionIII ).

Three surface formulation

To identify more general trends in the construction of multi-boundary integral operators,

we extend the two surface formulation by adding a solvent-filled cavity inside the protein

interior (Figure 4-3). In this problem and for the remainderof this section, we will follow

the convention that regionI is the outermost solvent region. The additional regionIV has

dielectric constantεIV (generally equal toεI andεII ), and is not large enough to contain

an ion-exclusion surface. Again, we apply Green’s theorem in every region, take limits

on the surface integrals as the field points approach the boundaries, and enforce continuity

conditions. The resulting operator takes the form:





























1
2I +Dc

IV,c −Sc
IV,c

1
2I −Dc

III ,c+εIV,III Sc
III ,c +Dc

III ,b−Sc
III ,b

−Db
III ,c+εIV,III Sb

III ,c
1
2I +Db

III ,b −Sb
III ,b

1
2I −Db

II ,b +εIII ,II Sb
II ,b +Db

II ,a−Sb
II ,a

−Da
II ,b+εIII ,II Sa

II ,b
1
2I +Da

II ,a −Sa
II ,a

1
2I −Da

I ,a +εII ,I Sa
I ,a

























































φc

∂φc
∂n

φb

∂φb
∂n

φa

∂φa
∂n





























=





























0

∑i
qi

εIII
Gc

III ,i

∑i
qi

εIII
Gb

III ,i

0

0

0





























. (4.31)
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Figure 4-3: A three-surface problem in molecular electrostatics. This geometry is analo-
gous to the two-surface problem (Figure 4-2) except that a solvent-filled cavity has been
added within the molecular interior (RegionIV ). Note that in contrast to previous exam-
ples, the regions and surfaces have been labeled in reverse order.

In this expression, the charges in regionIII contribute to two of the integral equations,

both of which derive from the application of Green’s theoremin the region. The point-

charge contributions are found by taking limits as the field point in the region approaches

the exterior and interior bounding surfaces. Note that someof the off-diagonal 2×2 blocks

contain nonzero 1× 2 blocks. These operators represent the contribution of a region’s

interior (or exterior) bounding surface to the integral equation derived by letting the field

point in the region approach an exterior (or interior) bounding surface.

Tree-based general formulation

To derive an integral operator for an arbitrary configuration of embedded boundaries with

regions of differing homogeneous dielectric, point charges, and salt treatment, we represent

the topology using a tree. Traversing the nodes of the tree, irrespective of the order in which

they are visited, allows multiplication by the entire integral operator taking into account all

necessary interactions. Each node of the tree represents one region, and is associated with

a dielectric constant and possibly salt treatment or point charges. The tree is constructed

such that the node for a given regionX is assigned to be the child of the node corresponding

to the region surroundingX. RegionI , which is bounded only by a hypothetical surface

at infinity, is defined to be the root node. Furthermore, we associate with each node the
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Figure 4-4: Tree representation of a general surface problem. The example molecular
geometry shown in (a) might correspond to an encounter complex between two associating
proteins (RegionsIII a and III b), surrounded by a single ion-exclusion layer (RegionII ),
which in turn is surrounded by solvent with salt (RegionI ). The binding partners contain
several solvent filled cavities (RegionsIVa−c), and one cavity is large enough to contain
a small ion-exclusion layer (RegionV). The tree representation for this example multi-
surface geometry is shown in (b).

exterior bounding surface of the corresponding region. Figure 4-4(b) is a tree diagram

constructed to describe the system shown in Figure 4-4(a).

The example geometry used here may be representative of an encounter complex in

protein–protein binding, where two nearly associated binding partners (RegionsIII a and

III b) are surrounded by a single ion-exclusion layer (RegionII ). There are also several

solvent-filled cavities present in both binding partners (RegionsIVa−c), and one cavity is

large enough to contain a small ion-exclusion layer (RegionV).

Applying the multi-surface integral operator

A multi-region electrostatics problem withn surfaces generates a system of 2n coupled

integral equations. For each surface, one writes Green’s theorem for the regions exterior

and interior to the surface and takes the appropriate limitsas the evaluation points approach

the surface. Accordingly, one may refer to the resulting integral equations as the exterior

and interior equations corresponding to the surface.
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An integral equation derived from an application of Green’stheorem contains contribu-

tions from the surfaces bounding the region. As an example, consider the interior equation

for surfaceΩIIIb . Applying Green’s theorem in regionIII b defines the potential at a point

in this region as a function of the surface potential and its normal derivative onΩIIIb , ΩIVb,

andΩIVc. Taking the limit of the Green’s theorem expression as the field point approaches

ΩIIIb , we obtain the interior equation. Clearly, a surface’s interior equation contains con-

tributions from the surface as well as its children. Similarly, a surface’s exterior equation

contains contributions from the surface, its parent, and its siblings. This can be seen by

letting the field point approach any of the cavity surfaces.

Multi-surface problems demand that careful attention be paid to the definition of the

surface normal. In this work we follow the mathematical convention that a normal always

points outward from the finite volume enclosed by the surface. To apply the entire multi-

surface operator for an arbitrary problem, we first define a tree such as shown in Figure 4-

4(b). The tree is traversed depth first, and at each node we apply several integral operators,

which in the discretized problem correspond to dense block matrix–vector multiplications.

Because each block multiplication may be interpreted as thecomputation of the potential

at a surface due to a distribution of monopole or dipole charge on another surface, we

refer to the two surfaces as thesource surfaceand thedestination surface. The set of block

multiplications is determined by the topology of the surfaces, and is defined such that every

non-zero block in the integral operator is applied exactly once.

We define four types of block integral operators: the self-surface interior operator, the

self-surface exterior operator, the non-self interior operators, and the non-self exterior op-

erators. As previously discussed, each operator represents an interaction between two sur-

faces. The labelsinterior andexteriorspecify whether the integral operator arises from an

application of Green’s theorem to the region interior or exterior to the source surface. The

self and non-self operators are distinguished because the discontinuity in the self operator

double-layer calculation requires specific treatment.

For every node, the following block matrix-vector multiplications are performed. Let

the current node correspond to the regionX. Denote its parent region byW, sibling regions

by Si , and child regions byYi . Lowercase letters correspond to the outer bounding surfaces
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for these regions. Every dense block is applied to the vector
(

φx,
∂φx
∂n

)T
.

1. Apply the self-surface interior operator

[

1
2I +Dx

X,x −Sx
X,x

]

(4.32)

and add the result to the node’s interior equation.

2. Apply the self-surface exterior operator

[

1
2I −Dx

W,x +εX,WSx
W,x

]

(4.33)

and add the result to the node’s exterior equation.

3. Apply the appropriate non-self exterior operator

[

−Dw
W,x +εX,WSw

W,x

]

(4.34)

and add the result to the interior equation of theparentnode.

4. For eachsiblingnodeSi , apply the appropriate non-self exterior operator

[

−Dsi
W,x +εX,WSsi

W,x

]

(4.35)

and add the result to the exterior equation of the sibling node.

5. For eachchild nodeYi , apply the appropriate non-self interior operator

[

+Dyi
X,x −Syi

X,x

]

(4.36)

and add the result to the exterior equation of the child node.
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4.2.4 Matrix compression with the FFTSVD algorithm

As discussed in the Introduction, boundary-element methods give rise to dense matrix equa-

tions whose solution by LU factorization or Gaussian elimination requiresO(n3) time and

O(n2) memory for a system withn unknowns. Combining Krylov-subspace iterative meth-

ods with fast-solver algorithms reduces these costs to nearly O(n). The Krylov method

requires only a way to apply the matrixA to a vector; in contrast, LU factorization and

Gauss elimination require explicit access to every entry ofA. In this work, we use the

FFTSVD algorithm [83] to rapidly apply the dense integral operators.

FFTSVD, like multipole methods, exploits the smooth decay of the Green’s functions

as the distance between source and evaluation point increases. Both types of methods use

a spatial decomposition of the set of boundary elements to separate near-field interactions,

which are computed exactly, from far-field or long-range interactions, which can be ac-

curately approximated. The long-range interactions are approximated by projecting the

dominant panel source distributions, computed using an approximate singular value de-

composition (SVD), onto a grid. Grid–grid interactions arecomputed via the fast Fourier

transform (FFT), and the dominant responses are interpolated back to the destination in-

tegral equation collocation points. An overview of the FFTSVD method is presented in

Figure 4-5, and a fully detailed description of the algorithm can be found in reference [83].

For the general multi-boundary Green’s theorem formulation, each node in the tree

contains a FFTSVD-compressed operator that simultaneously stores both the single- and

double-layer interactions between all panels that bound the region.

4.2.5 Preconditioning

It has been previously noted in the literature that the non-derivative Green’s theorem for-

mulation can lead to ill-conditioned systems of linear equations, especially with decreasing

boundary-element size [32]. To address this issue, we have implemented preconditioning

in order to efficiently solve these systems with iterative methods. By definition, a precon-

ditioner is any matrixP such that the equationPAx= Pbhas better convergence properties

thanAx= b when the systems are solved iteratively. In general, Kryloviterative methods
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Near-Field Interactions

Far-Field Interactions

Projection Interpolation

FFT Translation

Figure 4-5: An overview of the FFTSVD matrix compression algorithm. FFTSVD uses
a multi-level octree spatial decomposition to separate panel–evaluation point interactions
into near- and far-field components at multiple length scales. When two cubes at the finest
length scale are nearby, interactions are computed throughdirect integration. However,
when two interacting cubes are well separated, dominant sources are projected onto a cubic
grid and translated to a grid surrounding the recipient cube. The FFT is used to accelerate
this translation operation. Finally, the grid potentials can be interpolated back onto the
dominant responses of the panel centroids. This Figure has been adapted from [83].

are most efficient at solving linear systems with clustered eigenvalues [146]. Because the

identity matrixI (or multiples) has an optimal clustering,P is generally selected such that

P≈ A−1 but is inexpensive to form and apply.

For the discretized integral operator matrices that arise from the Green’s theorem for-

mulation, the dominant entries tend to be the self-influenceterms, for which the evaluation

point is on the element over which the integral is performed.Consequently, a reasonable

choice forP is the inverse of a sparse matrix that contains only these self-term entries. As

an examination of Equations 4.18, 4.30, and 4.31 should makeclear, the sparse matrix

that includes just the self-influence terms is not diagonal,but no row has more than two

non-zero off-diagonals.

4.2.6 Curved panel discretization

In order to generate the basis functions used in the boundary-element method, we discretize

the molecular and accessible surfaces that define the problem into curved elements that
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can exactly represent the underlying geometry [38]. Accessible surfaces [57], also called

expanded van der Waals surfaces, are generally used to modelthe ion-exclusion layer and

can be completely described by convex spherical patches bounded by circular arcs. These

circular arcs are not necessarily geodesic arcs, and thus weuse the concept of a generalized

spherical triangle (GST) (Figure 4-6(a)) [38, 39]. A GST is athree-sided curved element

that lies on the surface of a sphere, where each edge is associated with a circular arc. If the

arc center for all three edges happens to be the center of the sphere, a traditional spherical

triangle is recovered. A spherical patch can be discretizedinto a set of GSTs by starting

with a flat element triangulation, and then assigning the appropriate circular arc to each

panel edge. Edges that lie along the interface between atomsare assigned non-geodesic

arcs that follow the curve of intersection, while all other edges are assigned geodesic arcs.

Molecular surfaces [49, 59, 138], used here to model dielectric interfaces, are the sur-

faces of closest approach for the surface of a probe sphere that is rolled over a molecule.

They can be described by three types of surface patches [59].Convex spherical patches are

defined where the probe sphere is in contact with only one atom, and can be described by

portions of a sphere bounded by circular arcs and discretized with GSTs. Concave spherical

re-entrant patches are formed when the probe touches three or more atoms simultaneously,

and are also described by GSTs. When the probe simultaneously touches two atoms, a

portion of a torus is generated. Toroidal regions are discretized into four-sided curved torus

panels (Figure 4-6(b)) that are isomorphic to a rectangle. Afully meshed curved panel

discretization for the barnase–barstar complex molecularsurface is shown in Figure 4-7.

Techniques for integrating singular Green’s functions over these curved GST and torus

panels have been developed, and are discussed in detail in [38]. Briefly, when the eval-

uation point in the integrand is far away from the panel, low-order quadrature rules are

used to perform numerical integration. These quadrature rules are generated by creating a

smooth mapping between a reference flat triangle or rectangle (for GSTs and torus panels

respectively) that relates a known quadrature rule on thesesimple domains [44] to those

applicable on the curved panels. When the evaluation point is near or on the curved panel,

even high-order quadrature rules do not suffice to capture the singularity. As a result, we

adopt specialized methods for each panel type and Green’s function. For the single-layer
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(a) (b)

Figure 4-6: The two types of curved panels used to discretizeaccessible and molecular
surfaces. A generalized spherical triangle (GST) (a), is a three-sided region on the surface
of a sphere bounded by three circular arcs. These arcs are notnecessarily geodesic arcs.
Torus patches on molecular surfaces are discretized using toroidal panels (b), which are
isomorphic to a rectangle.

Laplace (Poisson) kernel, we integrate over GSTs using a technique that reproduces the

effect of panel curvature using a higher-order distribution on a reference flat triangle [71].

Single-layer Laplace integrals over torus panels are evaluated using a panel-splitting ap-

proach, which avoids integration near the singularity using recursive subdivision. When

integrating the double-layer Laplace kernel in the near-field over both GST and torus pan-

els, we exploit the fact that the double-layer potential is equal to the solid angle subtended

by the curved panel when observed from the evaluation point [51,73]. In order to integrate

the linearized Poisson–Boltzmann kernel or its normal derivative in the near field, we adopt

a previously presented desingularization technique [32].This method divides the integral

into a singular Laplace component that can be integrated as described above, and a smooth

component that can be integrated using quadrature.
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Figure 4-7: A rendering of a curved panel discretization forthe molecular surface of the
barnase–barstar protein complex. Red regions indicate convex spherical patches, green re-
gions are re-entrant spherical patches, and blue regions are toroidal patches. Black lines
indicate the boundaries between panels. The graphic depicts an approximation to the dis-
cretized geometry used for calculation. Every GST and toruspanel has been approximated
by a very large number of flat triangles for the purpose of visualization only, and the true
surface normal in conjunction with Phong shading have been used to render the image.
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4.3 COMPUTATIONAL DETAILS

4.3.1 Peptide and protein structure preparation

The structure of a peptide derived from an HIV-1 protease cleavage site was obtained from

the Protein Data Bank (PDB) with accession code 1F7A [142]. This structure contains nine

visible residues of a decameric peptide bound to an inactivated mutant of HIV-1 protease;

only the peptide was considered in further calculations. AnN-terminal acetyl blocking

group and a C-terminal methylamide blocking group were added to the peptide. The wild-

type structure for the barnase–barstar protein complex wasalso obtained from the PDB

using accession code 1BRS [77]. To prepare this structure for calculation, we followed a

previous protocol [147] where all but a set of 12 interfacialwater molecules were removed.

For both the peptide and barnase–barstar structures, hydrogen atoms were added using

the HBUILD module [148] in theCHARMM computer program [58] using thePARAM22

parameter set [11] and a distance-dependent dielectric constant of 4. In addition, side-

chain atoms that were missing from the crystal structures were rebuilt usingCHARMM and

the defaultPARAM22 geometry. All ionizable residues were left in their standard states at

pH 7.

4.3.2 Modeling of barnase–barstar mutations

Three point mutations (E73Q in barnase, D39A in barstar, andT42A in barstar) were built

into the barnase–barstar complex for subsequent analysis.The alanine mutations were

created by cutting back the wild-type residue to theβ-carbon. The E73Q mutation was built

by sampling glutamine side-chain dihedral angles in 30-degree increments usingCHARMM

[58] and thePARAM22 parameter set [11]. For each sampled conformation, the side chain

was energy minimized until convergence keeping all other atoms in the structure fixed. The

lowest energy minimized geometry was taken to represent theE73Q mutation.
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4.3.3 BEM and FFTSVD parameters

Parameters used in the FFTSVD algorithm included a drop tolerance of 10−5 for SVD

compression, spatial decomposition until each cube contained no more than 32 panels,

and a grid size of 4× 4× 4 in each finest-level cube to represent dominant sources and

responses during FFT translation. The boundary-element matrix equations were solved

using the Krylov subspace method GMRES [82] to a relative residual of 10−6. All curved

BEM calculations were performed on a 2-way dual-core 2.0 GHzOpteron machine running

a parallel version of the FFTSVD library. All presented timings are the sum of CPU usage

across all four processors.

4.3.4 Finite-difference solver and parameters

In order to compare our curved-panel boundary-element solver to finite-difference meth-

ods (FDM), we have implemented a FDM solver using previouslydescribed techniques

[22] and an analytical surface representation. This implementation uses successive over-

relaxation (SOR) with an optimized acceleration factor to solve the finite-difference equa-

tions to a relative residual of 10−6. In order to handle truncation of the boundary condi-

tion at infinity, a focusing scheme [95] was employed in all FDM calculations where the

molecule of interest occupied first 23% and then 92% of the finite-difference grid. For the

low-percent fill run, a Debye–Hückel screened potential insolvent dielectric was used to

assign potentials to the boundary of the cubic grid. For the high-percent fill run, boundary

potentials were taken by interpolation from the low-percent fill solution. Although it is

common to average results from multiple translations of themolecule relative to the grid

in order to reduce error due to the grid representation [95],only one placement was used

here to make a fair comparison to the curved BEM, which is insensitive to translations or

rotations of the geometry. Cubic grids used to discretize molecular geometries in the FDM

spanned 129 to 481 grid points per Angstrom in increments of 32, which are all solvable

within 4 GB of computer memory. These sizes correspond to grid resolutions of approx-

imately 2.3 to 8.6 grid points per Angstrom for the barnase–barstar complex. All FDM

calculations were performed in serial on a 2-way dual-core 2.0 GHz Opteron machine.
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4.3.5 Electrostatic solvation and binding calculations

All continuum electrostatics calculations were performedusing a molecular dielectric con-

stant of 4, a solvent dielectric constant of 80, a molecular surface with probe radius 1.4̊A

for dielectric interfaces, an accessible surface with probe radius 2.0Å for ion-exclusion

layers, and an ionic strength of 145 mM. In order to compute the solvation free energy of

a molecule, we take the difference between the energy of the solvated state and a reference

state where the solvent dielectric constant is equal to the molecular dielectric constant and

no salt is present. The BEM calculates this energy difference directly, and an explicit ref-

erence state is not needed. In the FDM implementation, the energy of the reference state is

explicitly computed to cancel grid energy.

For rigid-binding calculations, the electrostatic component of the free energy of bind-

ing was computed as the sum of Coulombic interactions in the bound state and the dif-

ferential solvation energy between the bound complex and infinitely separated individual

binding partners. For the FDM, proper grid placement was used to accelerate the calcu-

lation by cancelling the grid energy in the complex with gridenergies for the individual

binding partners. Because the BEM only computes the reaction potential rather than the

total electrostatic potential, the Coulombic interactions between the binding parters must

be explicitly added.

Non-rigid electrostatic binding energies were computed byfirst energy minimizing the

geometry of the complex and each of the isolated binding partners separately. The min-

imization was performed usingCHARMM and thePARAM22 parameter set, relaxing all

atoms with 1,000 steps of adapted basis Newton–Raphson (ABNR) minimization using a

distance-dependent dielectric constant of 4. The binding energy was then computed using

a thermodynamic cycle where the two isolated binding partners were first desolvated to

a vacuum with the molecular dielectric constant. In vacuum,the partners were deformed

to their bound-state structures and then rigidly bound, computing all electrostatic changes

with Coulomb’s law in molecular dielectric. Finally, the complex was re-solvated. The

sum of the energetic changes in these three steps was taken asthe non-rigid electrostatic

binding free energy. Due to the change in geometry between the bound and unbound states
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in non-rigid binding, the FDM grid energy cancellation technique could not be used, and

explicit reference states were employed for all FDM solvation calculations.

4.3.6 Generating curved panel discretizations

Molecular and accessible surfaces were discretized into curved panels starting with high-

quality flat triangular meshes for spherical regions from the program NETGEN [149].

These panels were then converted, along with torus patches,to curved panels using pre-

viously described methods [38]. Curved-panel discretizations for molecular geometries

were generated such that memory requirements did not exceed4 GB. For the sphere test

case, discretizations were obtained between roughly 80 and58,000 curved panels includ-

ing ion-exclusion and dielectric interface surfaces. For the peptide example, panel counts

spanned approximately 5,200 to 128,000, and for the variousbarnase–barstar complexes,

the span was roughly 92,000 to 310,000 total curved panels.

4.4 RESULTS AND DISCUSSION

For all calculations, we compared our boundary element results to those generated using

finite-difference methods. Although geometric measures can be defined for such compar-

isons [28, 135], we chose to use compute time as our metric, todetermine which method

can achieve superior convergence properties given a certain amount of time. We could not

guarantee that the geometry of the problem being solved is exactly the same in both meth-

ods because different algorithms were used to generate molecular boundaries. Therefore,

for systems without closed-form solutions, the level of convergence for a particular method

was assessed solely on how little the solution changed as thecompute time increased.

4.4.1 Electrostatic solvation free energies

One of the simplest linearized Poisson-Boltzmann calculations is the computation of the

electrostatic component of the free energy associated withthe transfer of a molecule from

low- to high-dielectric medium, where the high-dielectricregion contains an ion-exclusion
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Figure 4-8: Convergence plot for the solvation free energy for a sphere with an eccentric
charge and ion-exclusion layer. The relative error from theanalytical solution is plotted
as a function of compute time. Results are compared between the curved BEM and FDM
implementations. The curved BEM accuracy is limited to 5–6 digits given the settings used
in the FFTSVD matrix compression.

layer with salt outside. This quantity, known as the electrostatic solvation free energy, is

useful in many calculations and forms the basis for computing more complex quantities

such as electrostatic binding energies. We first validated the multi-surface formulation by

computing the solvation free energy for a simple spherical test case, which has a closed-

form solution. Then, we gauged the accuracy of the solver by examining more complicated

geometries including a peptide derived from an HIV-1 substrate site and the barnase–barstar

protein–protein complex.

Sphere with ion-exclusion layer

In order to test the correctness of the multiple surface formulation, the electrostatic solva-

tion free energy for a sphere of radius 1Å with a charge of+1e placed 0.5Å away from

the center was computed. An ion-exclusion layer was added 2.0 Å outside the sphere sur-

face, creating a two boundary problem. BEM and FDM solutionswere compared to the

analytical solvation energy for this geometry [35] to generate the convergence plot shown

in Figure 4-8.

From the sphere convergence results, it is clear that the curved BEM method is able to

achieve superior accuracy given the same amount of compute time as the finite difference

method. For this problem, the FDM is limited to 2–3 digits of accuracy, even when using
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Figure 4-9: Computed solvation free energies, using curvedBEM and FDM, for an HIV-1
substrate peptide (a) and the barnase–barstar complex (b).The absolute electrostatic sol-
vation free energy is plotted as a function of compute time, and the selected discretizations
used up to 4 GB of computer memory.

resolutions greater than 50 grid points per Angstrom. The limited ability of finite-difference

methods to achieve high accuracy has been noted previously in the literature [150], al-

though we obtain better than 1% accuracy on this sphere example. The accuracy of the

curved BEM is limited to 5–6 digits given the settings selected in the FFTSVD matrix

compression procedure. Additional accuracy can be achieved by increasing the size of the

grids used to represent long-range interactions, at the expense of additional computational

cost.

HIV-1 protease substrate peptide

To evaluate the method on a more complex example, the electrostatic solvation energy for a

peptide derived from an HIV-1 substrate site was computed using BEM and FDM including

salt and an ion-exclusion layer. The computed solvation energy was plotted as a function

of compute time (Figure 4-9(a)). It is clear from examining Figure 4-9(a) that the solutions

provided by the curved BEM implementation seem more converged than those obtained

from the FDM. Although it is unclear whether the two methods will converge to the same

answer for this complex geometry, the solution at the highest discretization levels for the

curved BEM are changing by as little as 10−3 kcal/mol, while those from FDM are still

changing on the order of tenths of kcal/mol.
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Barnase–barstar complex

In order to be competitive with finite-difference methods, the curved boundary-element

method presented here must be able to achieve high accuracy per unit compute time on large

macromolecules, where the number of curved panels requiredto discretize the geometry

can be large. To test the solver on a moderately sized proteinsystem, we computed the

solvation free energy of the barnase–barstar protein complex [77,151,152], a model binding

system for which electrostatic interactions have been shown to be important [147,152–155].

In addition to an ion-exclusion layer, the problem geometryincluded four solvent-filled

cavities inside the main dielectric boundary. A comparisonbetween the BEM and FDM

for computing the absolute solvation energy of this complexis shown in Figure 4-9(b).

Even the finest BEM and FDM discretizations that can be solvedon a computer with 4 GB

of memory give answers that differ by 8–9 kcal/mol. Furthermore, it is difficult to establish

whether the two methods will converge to the same answer. However, the curved BEM

profile does appear to be relatively flat, even though the solution changed by approximately

0.2 kcal/mol between the two highest-resolution calculations.

As can be seen in Figure 4-9(b), even the lowest BEM discretization obtained for the

barnase–barstar complex requires more compute time than the highest discretization used

for the FDM. The timings for the FDM remain relatively constant across the presented

problems because they depend primarily on the grid size. In contrast, the BEM requires

more curved panels to discretize a larger molecular surface, resulting in significantly in-

creased simulation cost.

The accuracy of the BEM scales with the panel density; accordingly, the larger barnase–

barstar complex cannot be discretized at the same level as was feasible for the peptide

example. The BEM-calculation solvation energies in Figures 4-9(a) and 4-9(b) exhibit

similar curvature, and the “knees” of the two curves are separated by approximately a factor

of ten in compute time. This difference is as expected considering the ratio of the surface

areas for the peptide and barnase–barstar complex (952Å2 and 8019Å2 respectively). The

level of FDM convergence might also be expected to suffer forlarger problems due to

decreasing grid resolution given the same number of grid points. Surprisingly, the FDM
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Figure 4-10: Comparison of preconditioning strategies when solving for the electrostatic
solvation free energy of an HIV-1 protease substrate peptide discretized with 18,657 and
7,089 panels on the dielectric and ion-exclusion surfaces,respectively. The block-diagonal
preconditioner significantly reduces the number of GMRES iterations required to solve the
linear system of BEM equations to a relative residual of 10−6.

appeared to lose less relative accuracy with increasing problem size as compared to the

BEM. For the peptide and barnase–barstar solvation energies, the highest resolution FDM

calculations were still changing by approximately 0.05 and0.5 kcal/mol respectively. In

the curved BEM results, they were changing by 0.001 and 0.2 kcal/mol, indicating a larger

fold loss in convergence.

4.4.2 Importance of preconditioning

To demonstrate how effectively the block-diagonal preconditioner accelerates convergence

of the iterative solution of the BEM equations, we repeated the solvation energy calculation

for one discretization of the peptide example using severalpreconditioners. Specifically,

we performed the calculation without preconditioning, with a purely diagonal precondi-

tioner, and with the presented block-diagonal preconditioner. As shown in Figure 4-10,

the number of GMRES iterations required to achieve a relative residual of 10−6 without

preconditioning was 422. The purely diagonal preconditioner required 198 iterations, and

the full block-diagonal preconditioner reduced this even further to 40 iterations. The block-

diagonal preconditioner generally allows even complex geometries such as proteins to be

solved to a relative residual of 10−6 in approximately 100 GMRES iterations or less.
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4.4.3 Rigid electrostatic binding free energies

Another useful quantity often calculated using the LPBE model is the rigid electrostatic

binding free energy between a pair of interacting molecules. One component of this quan-

tity is the difference in solvation energy between the boundstate and two unbound states

where the binding partners are rigidly separated to infinity. This differential electrostatic

solvation is added to the direct Coulombic interactions made between the partners in the

bound state. To measure the role that LPBE solver accuracy plays in this class of calcu-

lations, as well as compare the curved BEM to FDM, we computedthe rigid electrostatic

binding free energies for the wild-type barnase–barstar complex and three experimentally

characterized single mutants (E73Q in barnase, T42A and D39A in barstar) [152,156,157]

that have been previously shown to have a significant effect on electrostatic binding cal-

culations [153, 158–160]. These mutations were built into the wild-type barnase–barstar

complex with minimal perturbation, where all atoms remained in the same position except

at the site of mutation.

The results of these rigid electrostatic binding calculations are shown in Figure 4-11.

For the wild-type barnase–barstar structure as well as the mutant complexes, the BEM

calculations showed smaller changes in the computed energies with increasing problem

discretization.

4.4.4 Differential rigid electrostatic binding free energies between mu-

tants and wild type

Often, when comparing a set of protein mutations to identifythose with improved elec-

trostatic properties, one is more interested in the relative electrostatic rigid binding free

energies as compared to wild type than the absolute binding energies themselves. To gauge

the effect of solver accuracy on relative binding free energies, we calculated the difference

in rigid electrostatic binding free energy between each mutant and the wild type at every

level of problem discretization (Figure 4-12).

For all mutants studied, both methods appear to be convergedto tenths of kcal/mol

or better, and give very similar relative binding energies.Low discretizations of the FDM
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Figure 4-11: Comparison between curved BEM and FDM for computing the electrostatic
component of the rigid binding free energy between the wild-type barnase–barstar complex
(a), and three mutant complexes, E73Q in barstar (b), D39A inbarnase (c), and T42A in
barnase (d). The binding energy obtained is plotted as a function of the compute time
required. In (a), several FDM and BEM results are labeled with their discretization level
(grid points per Angstrom or panels per Angstrom2, respectively).
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Figure 4-12: Comparison between curved BEM and FDM for computing relative rigid
electrostatic binding energies between mutant and wild-type barnase–barstar complexes.
Results are shown for the mutations E73Q in barstar (a), D39Ain barnase (b), and T42A
in barnase (c). The relative binding energy is plotted as a function of the compute time for
the mutant complex rigid binding energy.

provide solutions very close to the final answer in a very short amount of time. This may be

due to error cancellation because the mutant structures differ little from the wild type. For

problems in which electrostatic energies are being compared between structures for which

most atoms are located at identical positions, finite-difference methods may be a better

choice than the boundary-element method presented here. Minimal-perturbation relative-

binding calculations are often used when making predictions to improve protein binding or

stability, especially in the field of protein design [2,161,162].

118



4.4.5 Non-rigid electrostatic binding free energies

The rigid binding model, although a useful approximation, is deficient in that it does not al-

low structural relaxation in the bound and unbound states. Consequently, a variety of meth-

ods have been presented in the literature for treating non-rigid effects in protein–protein

binding using continuum electrostatics [14,163]. One feature most techniques share is that

there is no longer a direct correspondence between the majority of atomic coordinates in the

bound and unbound states. As a result, we hypothesized that the FDM would no longer be

able to take advantage of cancellation of error when computing non-rigid binding effects,

and that the accuracy of the overall calculation would depend strongly on the ability to in-

dependently converge the solvation energy for each state. To test this idea, we implemented

a crude non-rigid binding scheme involving independent minimization of the complex and

unbound binding partners and a thermodynamic cycle to compute electrostatic energies.

The non-rigid electrostatic binding energies for mutants were subtracted from those for the

wild-type barnase–barstar complex to generate non-rigid relative binding energies.

As shown in Figure 4-13, the curved BEM method regains an accuracy advantage in

non-rigid binding calculations. The curves in this plot resemble those from absolute bind-

ing energy calculations (Figure 4-11). The finite-difference solution does not appear to be

well converged at low resolution, and seems to gradually approach the boundary-element

solution.

Because grid cancellation could not be exploited in non-rigid binding to avoid refer-

ence state calculations in the FDM, we computed the solvation of each state independently

allowing the protein complex or binding partners to fill the entire finite-difference grid.

Therefore, when subtracting the solvation energies of binding partners from the bound

complex, we were subtracting calculations solved at very different grid resolutions. To

determine if this was responsible for the inability of FDM toconverge relative non-rigid

electrostatic binding energies, we repeated the calculation using fixed grid placement to

ensure that the solvation energy of each state was computed at roughly the same number of

grid points per Angstrom. However, this modification did notimprove the ability of FDM

to converge relative non-rigid binding energies (data not shown).
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Figure 4-13: Comparison between curved BEM and FDM for computing relative non-rigid
electrostatic binding energies between mutant and wild-type barnase–barstar complexes.
Results are shown for the mutations E73Q on barstar (a), D39Aon barnase (b), and T42A
on barnase (c) The relative binding energy is plotted as a function of the compute time for
the mutant complex non-rigid binding energy.
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4.4.6 Multiple electrostatic solves for the same problem geometry

As shown in the previous Results sections, the curved BEM, although offering better con-

vergence properties, is quite time consuming on large geometries such as proteins. The

dominant computational cost in our implementation is compressing the integral operators

using the FFTSVD algorithm, which primarily involves computing costly integrals over

nearby curved panels. In contrast, the FDM requires very little time to initialize the sys-

tem of linear equations and spends almost all compute time solving them. However, there

exist several types of useful electrostatic calculations that involve multiple simulations of

the same problem geometry; for these problems, the expensive BEM “setup” time can be

amortized over all calculations.

One such example is charge optimization [34, 35, 147], whichdetermines the optimal

partial atomic charges for a ligand that minimize the electrostatic component of its binding

free energy with a receptor molecule. In charge optimization, two geometries for the ligand

are considered: the bound state, where it is complexed with the receptor molecule, and the

unbound state, where it is isolated in solution. Each ligandcharge is set to+1e indepen-

dently, leaving all others at zero, and one determines the difference in solvation potential

at the ligand charge locations between the bound and unboundstates by solving the LPBE

twice. This produces the ligand desolvation matrix, an important component of the charge

optimization equation [34, 35]. Overall, 2n solves of the LPBE are required, wheren is

the number of atoms in the ligand. When using the BEM, each state’s integral operator

only needs to be compressed once, and the compressed operator can be used to solve then

right-hand sides that only depend on the atomic charges.

To compare the performance of the curved BEM and FDM on a charge optimization

problem, we computed the ligand desolvation matrix for barstar in the wild-type barnase–

barstar complex. In total, 1403 simulations were performedin each of the bound and

unbound states. In Table 4.1 we report the time required to compute the ligand desolvation

matrix for three discretization levels of the finite-difference and curved boundary-element

methods. The panel densities and grid spacings mentioned inTable 4.1 may be compared

to the labeled points on the absolute binding free energy plot shown in Figure 4.4.3.
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Method

FDM

Grid Points Per Angstrom Time (s)
2.3 41,868
4.6 637,930
6.3 1,774,146

Curved BEM

Panels Per Angstrom2 Time (s)
9.4 755,343
12.6 1,347,300
19.0 2,024,024

Table 4.1: Compute time required to calculate the entries ofthe ligand desolvation matrix
for barnase in the wild-type barnase–barstar complex. For both the curved BEM and FDM,
the calculation was repeated at three discretization levels. For the curved BEM, the panel
density reported is for all surfaces in the bound state geometry.

For the finer discretization BEM calculations, the compute time is comparable to that

required for the finer FDM discretizations. Relating these discretization levels to the con-

vergence plot suggests that for these multiple-solve problems, the BEM may offer superior

accuracy for similar computational cost.

4.5 CONCLUSIONS

In conclusion, we have presented an implementation of the boundary-element method for

linearized Poisson–Boltzmann continuum electrostatics that is capable of achieving high

accuracy and solving the same topologies of dielectric boundaries, point charges, and salt

regions that volume-based methods are capable of solving. Several techniques were em-

ployed to overcome several of the well-known practical limitations of the BEM. These

included a general Green’s-theorem integral formulation for multiple embedded regions,

curved panel discretization with robust integration methods, and preconditioned Krylov

subspace methods combined with matrix compression using the FFTSVD algorithm.

Comparing the performance of the curved BEM against a reference finite-difference

solver identified types of calculations for which improved accuracy may be important. For

example, when computing absolute electrostatic solvationfree energies or the electrostatic

component of rigid binding energies, the curved BEM method offers superior convergence

properties. Even at the highest discretizations possible within 4 GB of computer mem-

122



ory, finite-difference methods did not appear to be converged, as the solutions continued to

change significantly with increased expenditure of computing resources. However, when

comparing differential rigid binding energies between mutant and wild-type protein com-

plexes, even coarse finite-difference simulations sufficedto capture relative effects. This is

not surprising considering that the local structural perturbations allow for cancellation of

error. Relative rigid binding calculations with local geometry perturbations are prevalent

in ranking the results of molecular design efforts [145], and finite-difference methods are

an attractive tool for this class of computation. However, when non-rigid effects were in-

troduced into the binding model, and the bound and unbound states were allowed to relax

independently, finite-difference methods lost their convergence advantage. Therefore, as

more sophisticated non-rigid models of binding are employed in ranking results of molec-

ular design calculations, higher accuracy LPBE solvers such as the presented curved BEM

may become necessary to make reliable predictions.

In the current implementation, the computational resources required to obtain solu-

tions converged to tenths of kcal/mol on protein geometriesare somewhat higher than what

would be commonly available on a desktop workstation at thistime. In order to compute a

well converged protein solvation or binding energy in a few hours, a workstation with four

processors and 4 GB of memory are currently required. Because the problem geometry is

already represented essentially exactly, it is likely thatthe primary source of error in the

method arises from the use of piecewise-constant representations of the surface variables.

Higher-order basis functions may allow a significant reduction in the number of unknowns,

and thus the required memory. However, two complications that may limit higher-order

methods are that the numerical integrations are more time consuming, and that the com-

pressibility of the discretized operator may decrease. It is not yet clear where the optimal

trade-off lies between basis function complexity and thesecomplications, and improve-

ments in this area should be capable of reducing the time and memory usage of the curved

BEM implementation to more accessible levels.
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Chapter 5

A Co-optimization Approach for

Optimizing Electrostatic Interactions

between Biomolecules1

In this work we present a computationally efficient approachfor calculating a molecular

charge distribution that optimizes the electrostatic component of the free energy of binding

to another molecule. The electrostatic optimization theory, developed over several years,

can require substantial amounts of computer simulation prior to optimization, and our ap-

proach can in some circumstances greatly reduce the required computational expense. The

approach uses an implicit matrix form for the objective function Hessian that directly cou-

ples the optimization to a numerical method used to simulatemolecular electrostatics. The

implicit-Hessian method can be applied to unconstrained aswell as constrained optimiza-

tion problems, and results illustrate not only that the method scales advantageously but also

that realistic problems can be solved.

5.1 INTRODUCTION

A natural question in molecular design problems is whether acandidate design, or lig-

and, is optimal for binding the target, and if not, what modifications might be made to

1To be submitted [164]; some portions of this chapter have been published previously [165,166].
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improve binding affinity or specificity. If one accepts shapecomplementarity as a given re-

quirement, close packing interactions are relatively fixedamong candidates; however, the

long-range electrostatic interactions possess highly variable energetics [34]. Furthermore,

because the binding reaction sacrifices electrostatic interactions between solvent and ligand

and between solvent and target for ones between target and ligand, the electrostatic con-

tribution to binding free energies is not particularly intuitive. Therefore, the important but

challenging goal is to design optimal electrostatic interactions to balance these competing

terms. Questions in molecular biology regarding the evolution of biomolecules to serve

specific functions or bind targets with high affinity and specificity, may also be interpreted

as questions regarding optimization of a particular objective function [167].

The Tidor laboratory has developed over several years a theoretical framework for ana-

lyzing the optimality of the electrostatic interactions between molecules [34, 35, 147, 167–

169]. The framework rests on a linear-response model of solute–solvent electrostatic in-

teractions, and has generally been implemented using continuum electrostatic models (see,

for example, references [3, 9]). The electrostatic bindingfree energy between spherical

binding partners was studied, and it was shown that the multipole coefficients representing

one partner’s charge distribution could be optimized [34].The convexity of the electro-

static component of a rigid binding free energy was demonstrated, and the approach was

extended to allow not only multipole coefficients as a basis set for optimization, but also

discrete point charges and an “inverse-image” basis [35]. Later work showed that under

the continuum model and a small set of assumptions, the electrostatic binding free energy

would be favorable for many realistic systems [168]. In addition, a measure of electro-

static specificity was defined and studied in the context of the affinity optimization frame-

work [170].

The electrostatic optimization theory has been applied to study a number of molecular

systems. Chonget al. [154] applied the original model [34] to barnase and found that

small sets of biochemically reasonable charge distributions could closely reproduce the

computed optimal charge distribution. Lee and Tidor studied the extremely tight-binding

partners barnase and barstar [147, 167] and suggested that barstar is electrostatically opti-

mized to bind to barnase. Other researchers have since reported contradictory results, but
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the simulation methodologies have differed in significant details [155, 160]. In particular,

the electrostatic simulations have been conducted using van der Waals surfaces rather than

solvent-excluded surfaces to represent the solute–solvent dielectric interface; this choice

appears to have been made so that the computed electrostaticbinding free energies best

match the total experimental binding free energies. In another application of the optimiza-

tion theory, Kangas and Tidor studied the enzymeB. subtilischorismate mutase [169],

and their analysis indicated a particularly promising modification to improve the binding

affinity of a transition-state analog inhibitor—the replacement of a carboxylate group by a

nitro group. Mandal and Hilvert synthesized the proposed inhibitor and the resulting ligand

bound the enzyme more tightly, in agreement with the computational analysis, to become

the tightest-binding chorismate mutase inhibitor in the literature [171]. Sulea and Purisima

have studied charge optimization to study problems rangingfrom cation–protein binding to

the optimization of protein–protein interfaces [172]; in addition, they have explored the use

of the charge optimization framework as a means to identify “hot spots” for binding [173].

Sims et al. studied two protein kinases, protein kinase A (PKA) and cyclin-dependent

kinase 2 (CDK2), and several inhibitors [174]. Green and Tidor have applied charge opti-

mization theory to two systems [145,175]. In one, they demonstrated that glutaminyl-tRNA

synthetase is optimized for its substrates [175]. More recently, they proposed optimization-

theory-based mutations to 5-Helix, which inhibits HIV-1 membrane fusion by gp41 [145].

Armstrong et al. have studied several inhibitors of neuraminidase and simulated a lead-

optimization approach [176]. Very recently, Gilson explored a statistical-mechanical ap-

proach to extend the theory to allow the optimization of flexible ligands [177].

The application of electrostatic optimization theory is frustrated, however, by a com-

putational difficulty that arises while optimizing large numbers of charges, or while ex-

ploring the optimality of multiple sets of binding partners. Implementations of the charge

optimization process have required multiple solutions of the Poisson or linearized Poisson–

Boltzmann equation to obtain complete information about the quadratic objective function

prior to optimization [154]. A constant number of simulations is typically executed for each

charge to be optimized [35,154]; although this precomputation cost scales linearly, the pro-

portionality constant can be quite large. In this chapter, we present a novel PDE-constrained
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optimization approach that avoids the initial computation, and by doing so reduces the com-

putational expense to be effectively independent of the number of charges [165, 166]. The

approach achieves this high efficiency by breaking the black-box abstraction of the electro-

statics solver and coupling the electrostatics simulationmethod directly to the optimization

equations. Our work specifically focuses on boundary-element method (BEM) simulation

coupled to optimization, but an analogous approach can be implemented using popular

finite-difference methods [18,20,22,26,31].

The remainder of this chapter is outlined as follows. The following section briefly in-

troduces the theory of electrostatic optimization as presented by Lee, Kangas, and Tidor,

numerical methods for calculating electrostatics in a continuum model, and the coupled

optimization-simulation, or co-optimization, approach that is the focus of this work. Sec-

tion 5.3 describes several important facets of the implementation for the co-optimization

method. Section 5.4 illustrates the method’s application to several model problems and

to a realistic problem in biomolecule electrostatic optimization. Section 5.5 concludes the

chapter with a summary and brief discussion of promising future applications for the co-

optimization technique.

5.2 THEORY

5.2.1 The Continuum Electrostatic Model and Numerical Simulation

with Boundary-Element Methods

The electrostatic contribution to a binding free energy is commonly estimated using a ther-

modynamic cycle such as that shown in Figure 1. Three of the steps involve the transfer of

a molecule or complex from a low-dielectric environment to the solvent. The difference in

free energy between the two states is the solvation free energy, and the electrostatic compo-

nent of this free energy is commonly estimated using a continuum electrostatic model [3,9].

In this section, we present a continuum model and a numericalmethod to compute the elec-

trostatic solvation free energy of a solute. The presentation is directed towards expressing

this change in free energy as a simple operator expression applied to the distribution of
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charge in the solute. Figure 5-1 illustrates one continuum model. The molecule–solvent

ε

Ω
εI

q
q

1
2

II

Figure 5-1: A continuum model for estimating the electrostatic component of a solute’s
solvation free energy. In this Figure,εI andεII represent the low-dielectric protein region
and the high-dielectric solvent region.Ω is the boundary between the dielectric regions.q1

andq2 are two representative point charges in the protein.

boundaryΩ, commonly taken to be the Richards molecular surface [49], separates the

molecular interior, regionI , from the solvent exterior, regionII . The interior is modeled as

a homogeneous dielectric with low dielectric constantεI and a charge distribution; in this

work, we assume that the distribution consists ofnc discrete point charges, theith of which

is located atr i and has valueqi . The electrostatic potential in regionI satisfies a Poisson

equation:

∇2ϕI (r) =−
nc

∑
i=1

qi

εI
δ(r− r i). (5.1)

The solvent region is modeled as a homogeneous dielectric with high dielectric constant

εII in which the electrostatic potential satisfies the Laplace equation

∇2ϕII (r) = 0, (5.2)

for non-ionic solutions, or the linearized Poisson–Boltzmann equation

∇2ϕII (r) = κ2ϕII (r), (5.3)

whereκ is the inverse Debye length, for dilute ionic solutions. Thecontinuity of the poten-

tial and normal displacement furnish boundary conditions for both regions.
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This set of coupled partial differential equations (PDE) can be transformed into boundary-

integral equations [17, 21, 23, 28, 83, 178] and solved numerically using the boundary-

element method (e.g., reference [54]). Here, simply to obtain the general operator ex-

pression for the electrostatic solvation free energy, we present one widely used integral

formulation, the apparent surface charge (ASC) method, that models electrostatics in non-

ionic solutions [16, 17, 19, 36, 178] and a simple boundary-element method to solve it.

More complex integral formulations allow the treatment of dilute ionic solutions [21, 23]

and geometries with multiple dielectric regions [83]. We describe the ASC formulation

to introduce the operators inherent to boundary-element simulations in electrostatics; the

remainder of the theory section will apply these operators.

In the apparent surface charge method, one solves an equivalent problem with uniform

dielectric constantεI throughout space and finds a fictitious distribution of charge on the

surface that reproduces the continuity conditions of the original problem. This fictitious

surface charge, which we denote byσp(r), for a pointr on the surface, satisfies the integral

equation

εI + εII

2εI(εI − εII )
σp(r)+−

Z

Ω

∂
∂n(r)

σp(r ′)dA′

4πεI ||r− r ′|| =−
∂

∂n(r)

nc

∑
i=1

qi

4πεI ||r− r i||
. (5.4)

Once the apparent surface charge is found, the reaction potential induced at a pointrI in

the solute by polarization of the solute in response to the solute charges may be computed

according to

ϕR(rI ) =

Z

Ω

σp(r ′)
4πεI ||rI − r ′||dΩ. (5.5)

The vector of reaction potentials at the charge locations can therefore be seen as the image

of the charge distribution under three linear mappings:

ϕR = M3M−1
2 M1q. (5.6)

The first,M1, maps the charge distribution to the induced field at the dielectric boundary;

that is, applied toq it gives the RHS in Equation 5.4. The operatorM−1
2 maps the induced

field to the induced surface charge, calculatingσp(r) given the RHS in Equation 5.4. Fi-
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nally, the integral operatorM3 maps the induced surface charge to the reaction potentials at

the charge locations.

To solve Equation 5.4 for general geometries and charge distributions, one introduces

a set of basis functions defined on the surface, represents the unknown functionσ(r) ap-

proximately as a weighted combination of the basis functions, and chooses the weights to

make the approximate solution satisfy the discretized integral equation as closely as possi-

ble in some metric. Usually, it is convenient to discretize the surface into a set of surface,

or boundary, elements, before defining the basis functions.Commonly, these elements are

planar triangles [21, 178], although curved-element discretizations have been described by

several groups [19, 23, 38]. Using a set ofnp piecewise-constant basis functions defined

such that

χi(r) =







1 if r is on paneli

0 otherwise,
(5.7)

and using a Galerkin method [54] in which the inner integral is evaluated via one-point

quadrature, one obtains the dense linear systemM2x = M1q, in which xi represents the

unknown weight on theith basis function, and the system entries are

M2,ii =
ε̂

2εI
αi +−

Z

paneli

∂
∂n(r)

αi dA
4πεI ||r− rci ||

(5.8)

M2,i j =
Z

paneli

∂
∂n(r)

α j dA

4πεI ||r− rc j ||
(i 6= j) (5.9)

M1,i j = −
Z

paneli

∂
∂n(r)

q j dA

4πεI ||r− r j ||
, (5.10)

whereαi denotes the area of paneli, ε̂ = εI +εII
εI−εII

, n(r) denotes the outward normal atr,

rci denotes the centroid of paneli, and−
R

denotes a Cauchy principal value integral. The

approach presented here differs slightly from, and offers improved accuracy relative to, the

centroid-collocation BEM for the ASC, which essentially approximates the outer Galerkin

integral using one-point quadrature [36,37].

Because the charge distribution is assumed to be a set of discrete point charges, the dif-

ference in electrostatic free energy between the uniformεI domain and the mixed dielectric

131



problem is simply

∆G =
1
2

ϕT
Rq, (5.11)

whereϕR denotes the vector of reaction potentials computed at thenc charge locations. The

operatorsM1, M2, andM3 are all dense matrices when discretized, and the electrostatic

component of the solvation free energy can be written as

∆G0,es
solv= qTSq (5.12)

where we have defined the solvation matrixS= 1
2M3M−1

2 M1.

Because solving dense matrix equations withn unknowns using LU factorization re-

quiresO(n2) memory andO(n3) time, more efficient methods have been developed to

reduce these demands to linear or near-linear scaling [28,83,96,178]. These methods com-

bine Krylov-subspace iterative methods [146] such as GMRES[82] with fast, approximate

algorithms to apply the discretized integral operator matrix to a vector. The fast multi-

pole method [96, 97] is one such algorithm. This work reportsresults computed using the

precorrected-FFT algorithm [102] and the FFTSVD algorithm[83].

5.2.2 Electrostatic Optimization

Writing down the electrostatic contribution to each of the steps in Figure 5-2, we have

∆G0,es
bind =−∆G0,es

solv,L−∆G0,es
solv,R+∆G0,es

bind,low ε +∆G0,es
solv,L−R, (5.13)

where the solvation free energies for the ligand, receptor,and complex are denoted by the

subscriptsL, R, andL−R, and the Coulomb interaction energy inεI between the partners

is written∆G0,es
bind,low ε. Using Equation 5.12 for the three solvation terms, one obtains

∆G0,es
bind =−qT

L LunboundqL−qT
RRunboundqR+(GqR)TqL +qT

CCboundqC, (5.14)

whereqL and qR denote the ligand and receptor charge distributions,qC = (qL,qR)T is

the union of these distributions,L, R, andC denote the appropriate desolvation penalty
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solvΔG

solv−ΔGsolv−ΔG
L L-R

bindΔG

bindΔG
gas

Figure 5-2: A thermodynamic cycle for estimating binding free energies. The shaded re-
gion on the lower set of panels represent aqueous solvent. The upper panels represent a
uniform low dielectric with zero ionic strength throughout.

matrices, and the electrostatic component of the low-dielectric binding free energy, which is

simply the Coulomb energy between the ligand and receptor charge distributions, has been

written (GqR)TqL, where the matrixG maps receptor charge values to Coulomb potentials

at the ligand-charge locations given the bound-state geometry.

We consider the variational electrostatic binding free energy ∆G0,var
bind [35], which is the

portion of ∆G0,es
bind that is dependent on the ligand charges. We therefore drop the second

term in Equation 5.14 and remove the contribution of the finalterm that depends only on

the receptor charges. Then Equation 5.14 can be rewritten as

∆G0,var
bind =−qT

L LunboundqL +qT
L LboundqL +qT

RGTqL +qT
RCL,R

boundqL. (5.15)

The final two energy terms are both linear in the ligand chargevalues, and the expression

c = GqR+CL,R
boundqR, (5.16)

which represents the total receptor-charge-induced field at the ligand charges in the bound

state, may be used to further simplify Equation 5.15:

∆G0,var
bind = qT

L LboundqL−qT
L LunboundqL +cTqL (5.17)

= qT
L (Lbound−Lunbound)qL +cTqL. (5.18)

Kangas and Tidor showed that the difference of the two symmetric positive definite op-

eratorsLunbound and Lbound is nonnegative definite if one assumes that the ligand binds
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rigidly [35]. The variational electrostatic binding free energy is therefore a convex function

with respect to the ligand charge distribution, and there exists a unique minimal free energy.

5.2.3 Co-Optimization: Coupling Simulation and Optimization

In this section we introduce the essential idea behind the co-optimization approach to

biomolecule electrostatic optimization. Suppose that we wished to find the minimum of

the function

minimize xTLx+cTx, (5.19)

whereL ∈ℜnc×nc is symmetric, non-negative definite, and can be written as

L = M3M−1
2 M1, (5.20)

whereM3 ∈ ℜnc×m, M2 ∈ ℜm×m, andM1 ∈ ℜm×nc are dense matrices, andm� nc. The

minimizerx∗ is found where the gradient is zero:

2Lx∗ =−c. (5.21)

If the constituent matricesMi are too large to be stored in memory, but have some properties

enabling their actions on vectors to be computed approximately, then one could calculateL

one column at a time by repeatedly solving

M2yi = M1ei , (5.22)

using Krylov-subspace iterative methods [146]; hereei represents the canonicalith unit

vector with 1 at positioni and zero everywhere else. Krylov methods for solving linear

systems generate a sequence of increasingly accurate approximate solutions{ŷ1
i , ŷ

2
i , . . .},

and at thekth iteration the iterate lies in the span firstk Krylov vectors

(M1ei ,M2M1ei , . . . ,M
k−1
2 M1ei).
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Once an acceptable approximation is found, one multiplies ˆyi by M3 to obtain theith col-

umn of L. Such an approach obviously requiresnc solutions of Equation 5.22 before the

minimum can be found. A simple alternative to findingx∗ without column-by-column cal-

culation ofL would be to use Krylov-subspace methods to solveLx= b. While forming the

power series{b,Lb,L2b, . . .}, however, every application ofL requires a solution of Equa-

tion 5.22. IfL is difficult to precondition, or if multiple optimizations are to be performed,

the total number of solves of Equation 5.22 can quickly approach or exceednc. The diffi-

culty is that applyingL requires an application ofM−1
2 , which in turn requires an iterative

solve.

Directly applyingM2 does not require an iterative solve, however, and the co-optimi-

zation has been designed to solve 2Lx = −c without ever actually applyingM−1
2 . The

co-optimization idea is to solve anequivalent systemof equations that recovers the same

optimizerx∗ by introducing an auxiliary variabley∗. Forx∗ to solve Equation 5.21, the two

variables must satisfy

M1x∗ = M2y∗ (5.23)

2M3y∗ = −c, (5.24)

which can be written in matrix form as





0 2M3

M1 −M2









x∗

y∗



=





−c

0



 . (5.25)

The formM3M−1
2 M1 resembles the Schur complement of a 2-by-2 block matrix reduced

during block factorization; that is, to solve





A B

C D









x∗

y∗



=





e

f



 , (5.26)

one can first solve the Schur system

(A−BD−1C)x = e−BD−1C f (5.27)
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for x and then back-substitute to calculatey. Letting A = 0 and f = 0 makes the parallel

clear. For this reason, we refer to the co-optimization approach as a reverse-Schur comple-

ment method.

5.2.4 Biomolecule Electrostatic Co-Optimization

In this section we present methods for solving biomolecule electrostatic optimization prob-

lems using the co-optimization approach. We formulate three of the most common types of

electrostatic optimization problems: unconstrained, linear-equality constrained, and box-

inequality constrained. Section 3.2 will describe preconditioning techniques for the result-

ing co-optimization systems.

Unconstrained Optimization

To solve the unconstrained program

minimize qT (Lbound−Lunbound)q+cTq (5.28)

it suffices to set the objective gradient to zero [35]:

2(Lbound−Lunbound)q =−c. (5.29)

This system may be solved analogously to Equation 5.21, because both of the solvation

matrices have the Schur complement operator form. Here, tworeverse Schur complements

are needed. The two sets of introduced auxiliary variables are the basis-function weights

for the bound and unbound boundary-element problems; hence, using the apparent surface

charge integral formulation to solve the electrostatic problems, the resulting system is of

the form










0 2Mb
3 −2Mu

3

Mb
1 −Mb

2 0

Mu
1 0 −Mu

2





















q∗

xb,∗

xu,∗











=











−c

0

0











. (5.30)
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Note that this system of equations solves three problems simultaneously: the optimization

problem, the bound-state electrostatic problem, and the unbound-state electrostatic prob-

lem.

Optimizing Problems with Linear Equality Constraints

It is often desirable to impose linear equality constraintsin the optimization. One may wish

to force the total ligand charge, or a subset of charges, to have a particular sum (for instance,

on an amino-acid side chain) [167, 169, 173, 174]. A solutionto the resulting optimization

problem

minimize qT (Lbound−Lunbound)q+cTq

subject to Acq = b
(5.31)

may be found using a single linear solve, because the optimality conditions are linear.

Typically, the constraint matrixAc has entries that are either zero or one, and the right-

hand-side vectorb has integer entries. The co-optimization system to be solved is

















0 AT
c 2Mb

3 −2Mu
3

Ac

Mb
1 −Mb

2

Mu
1 −Mu

2

































q∗

λ∗

xb,∗

xu,∗

















=

















−c

b

0

0

















. (5.32)

Optimizing Problems with Linear Inequality and Equality Co nstraints

Bound constraints are often imposed on each charge to ensurethat the calculated charges

are physically reasonable [167, 169, 173, 174]. The optimality conditions for inequality-

constrained problems are nonlinear, and solution methods for such problems are corre-

spondingly more complex. The linearly constrained quadratic program to be solved is

minimize qT (Lbound−Lunbound)q+cTq

subject to Acq = b

and mi ≤ qi ≤Mi ,∀i ∈ {1, . . . ,nc},

(5.33)
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wheremi and Mi represent the lower and upper bounds on the value for theith charge.

Defining L = Lbound−Lunbound, we transform Equation 5.33 into the standard form for a

quadratic program,

minimize yTQy+dTy

subject to Ay= h

and y≥ 0

(5.34)

with the substitutions

m+ t = q, t ≥ 0 (5.35)

q+ r = M, r ≥ 0 (5.36)

y =





t

r



 (5.37)

d = c+Lm (5.38)

h =





b−Acm

M−m



 (5.39)

Q =





L 0

0 0



 (5.40)

A =





Ac

I I



 (5.41)

(5.42)

Because the objective is convex and the constraints are linear, the program of Equation 5.34

satisfies a constraint qualification [179], and consequently to find a global minimizer it

suffices to find a primal vectory∗, a Lagrange multiplier vectorλ∗, and a dual slack vector

138



s∗ that satisfy the Karush–Kuhn–Tucker (KKT) conditions:

s∗ = 2Qy∗+d−ATλ∗ (5.43)

Ay∗ = h (5.44)

0 = y∗i s∗i ∀i ∈ {1, . . . ,2nc} (5.45)

(y∗,s∗) ≥ 0. (5.46)

To find such a set of vectors, we use a primal-dual interior-point method described in refer-

ence [180]. Such methods calculate(y∗,λ∗,s∗) using a modified Newton–Raphson method,

finding the roots of the vector-valued function

F(y,λ,s) =











2Qy+d−ATλ−s

Ay−b

Ys











, (5.47)

whereY is a diagonal matrix withYi,i = yi . The steps are scaled to ensure that Equa-

tion 5.46 holds for every iterate and biased to keep the pairwise productsyisi approximately

equal [180].

The Newton–Raphson step at iterationk is computed by linearizingF about the current

iterate and solvingJ∆x = −F + ξ, whereJ is the Jacobian at the current iterate,F is the

current function value,ξ biases the step, and∆x is the computed step. ForF of the form of

Equation 5.47, we solve the modified Newton–Raphson equation











2Q −AT −I

A 0 0

Sk 0 Yk





















∆yk+1

∆λk+1

∆sk+1











=











−d+sk−2Qyk +ATλk

b−Ayk

−YkSke











+











0

0

σ̂ (yk)Tsk

2nc











, (5.48)

where the second term on the right-hand side is the bias that keeps the productsyisi ap-

proximately equal. An iterate(yk,λk,sk) that satisfies the equality constraints and satisfies

yisi = τ ∀i for some positiveτ is said to be on the central path [180], and optimization

is most rapid close to this path. Two reverse-Schur complements unfold Equation 5.48,
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resulting in the system



































0 0 −AT
c −I −I 2Mb

3 −2Mu
3

0 0 0 −I 0 0

Ac 0 0 0 0 0 0

I I 0 0 0 0 0

Sk 0 0 Yk 0 0

Mb
1 0 0 0 0 −Mb

2 0

Mu
1 0 0 0 0 0 −Mu

2





































































∆tk+1

∆rk+1

∆λk+1
c

∆λk+1
t

∆sk+1

∆xk+1,b

∆xk+1,u



































= (5.49)



































−d−2L(m+ tk)+sk
t +AT

c λk
c +λk

t

sk
r +λk

t

b−Acm−Actk

M−m− tk− rk

−YkSke+ σ̂ (yk)Tsk

2nc
e

−Mb
1(t

k +m)−Mb
2xk,b

−Mu
1(t

k +m)−Mu
2xk,u



































,

where we have denoted the Lagrange multipliers of the two block rows ofA asλc andλt ,

respectively.

5.2.5 Co-Optimization Method Analysis

Numerical calculation of the explicit Hessian via repeatedsolution of the linearized Poisson–

Boltzmann problem produces a matrixL that contains minor, unphysical asymmetry, and

can be highly ill-conditioned. Symmetrizing the Hessian with the simple ruleL← (L +

LT)/2 frequently produces a matrix with very small negative eigenvalues. The eigenspace

corresponding to unphysical eigenvalues is commonly either removed from the optimiza-

tion search space, or heavily penalized [167, 170]. Such regularization methods are not

feasible for implicit-Hessian approaches because the matrix entries are not explicitly avail-

able, and every multiplication byL is expensive. Although the implicit-Hessian method

has not been analyzed completely yet, one may argue that co-optimization linear systems
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have spectral properties that tend to favor regularized approximate solutions when they are

solved via Krylov subspace methods. The argument is based onnearly-ideal precondition-

ing of the unconstrained co-optimization system, and the analysis resembles the approach

of De Sturler and Liesen [181], which drew in turn from work byMurphy et al. [182].

Consider solving the unconstrained optimization problem introduced in Section 5.2.3,

and assume that we know the exact inverseM−1
2 of the dense matrixM2. This matrix,

which could be used to ideally precondition the BEM system, can be used to design a

preconditioner for Equation 5.25 . The preconditioner

P =





I

M−1
2



 (5.50)

produces the preconditioned system matrix

PA=





0 2M3

M−1
2 M1 −I



 . (5.51)

We now show that ifL is nonsingular, the preconditioned matrixPA has 2n or 2n+ 1

eigenvalues. The eigenvalue equation forPA is





2M3

M−1
2 M1 −I









u

v



= λ





u

v



 . (5.52)

The second equation gives the relation

M−1
2 M1u = (1+λ) , (5.53)

which can be substituted into the first equation to give an eigenvalue equation forL =

M3M−1
2 M1:

M3M−1
2 M1u =

1
2

λ(1+λ)u. (5.54)

Therefore every eigenvalueµ of L is associated with two eigenvaluesλ+ andλ− of the

preconditioned matrixPA, and these eigenvalues can be obtained by solving the quadratic
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equation:

λ =
−1±√1+8µ

2
. (5.55)

If L is nonsingular, this relation gives 2n distinct eigenvalues forPA. To deduce the re-

mainder of the spectrum, note thatM3 can have rank no greater thann; assuming it has full

rank (which it must, forL to be nonsingular), its nullspace is of rankm−n. Picking an

arbitrary normalized vectorv from this subspace, it is clear that(0,vT)T is an eigenvector

of the preconditioned matrix, with unity as the corresponding eigenvalue. Note that the

largest magnitude eigenvalues ofL are mapped to the largest magnitude eigenvalues of the

preconditioned system, subject to a square-root scale and shift. As a result, the dominant

search directions will be explored during the early Krylov iterations.

In general,M−1
2 is not available; if instead the BEM preconditioner is writtenM−1

2 +

E, whereE is the perturbation from the ideal preconditioner, the perturbation from the

preconditioned reverse-Schur system is





0 0

EM1 −EM2



 . (5.56)

If ||E|| is small, the eigenvalues of the inexactly preconditioned system might be expected

to lie close to those from the exactly preconditioned system, depending on the condition

number of the eigenvector matrix [183]. However, such an analysis has not yet been per-

formed.

5.3 IMPLEMENTATION

5.3.1 Preconditioning

The co-optimization approach requires the solution of one or more large linear systems

with block structure in which several of the largest blocks are dense and cannot be stored

explicitly. As discussed in Section 5.2.1, BEM problems arecommonly solved using a

combination of Krylov-subspace iterative methods and fastalgorithms for approximately

calculating the required dense matrix–vector (MV) products. For the co-optimization ap-
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proach to offer competitive performance, we must be able to solve the co-optimization

systems using relatively few MV products. Otherwise, it maybe faster to calculate the full

Hessian explicitly using effective BEM preconditioners [83].

We begin by defining an approximate HessianL̂ = L̂b− L̂u, where we have defined two

approximate desolvation penalty matrices. These matricestake the form

L̂b/u = M3,b/uP−1
2,b/uM1,b/u, (5.57)

whereM1 andM3 correspond to the operators of the same name that were discussed in

Section 5.2.1, andP2 denotes the preconditioner for the corresponding BEM system; i.e.,

when solving the bound-state boundary-element electrostatics problem one solves

P2,bM2,bx = P2,bM1,bqL, (5.58)

whereqL is the vector of ligand charges.

Using the approximate Hessian, we can write preconditioners for the co-optimization

problems. The unconstrained problem (5.30) may be solved efficiently using the matrix

Punc =











L̂

Pb

Pu











(5.59)

as a preconditioner. For the equality constrained co-optimization system (5.32), we use

Peq =

















L̂ AT
c

Ac

Pb

Pu

















(5.60)

as a preconditioner. For box-constrained optimization problems solved using the Hessian-

implicit primal-dual method, each modified Newton–Raphsonstep found using Equation 5.50

requires its own preconditioner because the system matrices depend on the current iterate.
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Using the same notation as in Section 5.2.4, the system’s preconditioner takes the form

Pbox =























L̂ −AT −I

A

Sk Yk

Pb

Pu























. (5.61)

5.3.2 Accelerating Primal-Dual Method Convergence

The centering parameterσ̂ in Equation 5.48 dictates how strongly the algorithm attempts

to keep the pairwise productsyk
i s

k
i equal. If σ̂ is set close to unity, iterates stay close to

the central path and the algorithm is robust, but the algorithm makes slow progress towards

an optimal solution. If instead̂σ is set very small, progress can be rapid but the optimiza-

tion may stagnate. If an iterate approaches the boundary of the feasible region(y,s) > 0,

the algorithm can make unacceptably slow progress. Wright suggested settinĝσ = 0.4 for

every iteration [180]. This balances robustness against convergence. For biomolecule op-

timization problems, we have studied a set of simple model problems of varying size and

designed a new rule that picksσ̂k, the centering parameter at thekth iteration, based on a

rule dependent largely on the previous step multiplierαk−1.

Algorithm 1 Choosing centering parameterσ̂k:

σ̂k = 0.4

if αk−1 > 0.7

σ̂k = 0.1

if αk−1 > 0.95and k> 8

σ̂k = 0.01

This schedule was determined by practical experience with different model problems. The

heuristic assumes that significant progress on the previousiteration has left the current

iterate in a position to make good progress again. This assumption is generally safe after a

few iterations, and the two cases in whichσ̂k < 0.4 address its shortcomings.
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5.4 COMPUTATIONAL RESULTS

5.4.1 Co-Optimization Method Scales Advantageously

We have examined the performance of the implicit-Hessian approach relative to explicit-

Hessian optimization methods. Test optimization problemsfor these studies were generated

using a fixed geometry of concentric spheres of radius 2Å and 4Å. Thenc ligand charges

were randomly placed in the ligand and receptor spheres as appropriate, andne random

equality constraints were imposed. Random box constraint vectorsm andM were gener-

ated. The Yoon and Lenhoff Green’s theorem formulation was used to calculate reaction

potentials at the ligand charge locations assumingε = 4 in the solute andε = 80 in the

solvent, withκ = 0.124Å −1.

The unconstrained and linear-equality constrained optimization problems can be solved

completely using a single Krylov subspace solve, as discussed in Section 5.2.4. Accord-

ingly, the computational advantage of using the Hessian-implicit method is evident even for

very small optimization problems. Figure 5-3 is a plot of thecost, measured by the number

of applied matrix–vector products, needed to solve equality-constrained problems using

the implicit-Hessian method or by explicitly calculating the Hessian. These simulations

were performed using a large-scale implementation based onthe pFFT++ (precorrected-

FFT++) fast BEM library [114] and the PETSc scientific library [184]; the linear system of

Equation 5.32 was solved to 10−4 relative tolerance using GMRES.
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Figure 5-3: Performance of new algorithm on equality constrained problems.
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We have also studied the computational scaling of the Hessian-implicit primal-dual

method [165]. The Hessian-implicit solver was implementedin MATLAB [75], and the un-

bound and bound surfaces were discretized using 124 and 166 panels. The biased Newton–

Raphson steps were calculated using GMRES [82] solved to a tolerance of 10−8. The

optimization was said to be converged when the slackness violationyTswas less than10−6

nc
.

Figure 5-4 is a plot of the number of matrix–vector products required to solve sample prob-

lems using the implicit- and explicit-Hessian methods.
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Figure 5-4: Computational scaling of the Hessian-implicitprimal-dual method.

5.4.2 Comparison to Alternative Methods

We compared the Hessian-implicit primal-dual method to thesimple implicit-Hessian al-

ternative scheme mentioned in Section 2.3, and solved several inequality-constrained prob-

lems using both HIPD and the primal-dual interior-point optimization code KNITRO [185].

KNITRO implements a barrier method and solves each subproblem using sequential qua-

dratic programming, each iteration of which is solved usingconjugate gradients (CG). Each

CG iteration requires one multiplication by the HessianL, and therefore an iterative solve

of the bound and unbound BEM problems. We solved each optimization problem in KNI-

TRO problem by explicitly computing the Hessian and lettingKNITRO use the Hessian.

The cost was then estimated by multiplying the total number of KNITRO CG iterations by

the average number of BEM matrix–vector multiplications required to find each column of
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L. Figure 5-5 is a plot of the computational cost of each methodfor several problems of

varying dimension. It is clear that HIPD offers superior performance; however, it should be

noted that the KNITRO linear solves have not been preconditioned using the approximate

Hessian̂L.
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Figure 5-5: Performance of proposed Hessian-implicit method and an alternative approach
for problems with linear equality and inequality constraints.

The original implementation of the HIPD method [165], whichrelied on the relatively

conservative choice of centering parameterσ̂ = 0.4 as discussed in Section 5.3.2. We have

compared the performance of the more aggressive schedule tothe conservative algorithm;

Figure 5-6 illustrates that the presented algorithm is approximately twice as fast.
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Figure 5-6: Performance of original and current implementations.
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5.4.3 Realistic Biomolecule Optimization Problem: ECM/TSA

We first demonstrated in reference [166] that the co-optimization approach was viable for

problems of biological significance. For this demonstration we studiedE. coli chorismate

mutase (ECM) and a transition state analog (TSA) inhibitor [169]. The TSA molecule

has 26 charges to be optimized, and the Hessian-implicit system solved at every iteration

has over 130,000 unknowns. In Figure 5-7 are plotted the optimal TSA charges computed

using an explicit-Hessian optimizer and the PETSc-based, precorrected-FFT-accelerated

co-optimization solver. The total charge has been constrained to sum to−2e, and each

charge has been constrained to have magnitude less than 0.85e. The primal-dual method

was terminated whenyTs< 10−4/
√

2nc.
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Figure 5-7: Optimal charges computed using the implicit- and explicit-Hessian optimiza-
tion methods.

5.5 DISCUSSION

In this chapter, we have presented an alternative approach for solving problems in biomolecule

electrostatic optimization. Our implicit-Hessian optimization technique combines Krylov-

subspace iterative methods, fast boundary-element methodsolvers, and the optimization

problems directly. By breaking the abstraction between simulation methods and the opti-

mization, the method achieves exceptional performance, effectively reducing the computa-

tional expense for some problems from linear-time to constant-time. The implicit-Hessian
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approach can be applied to constrained as well as unconstrained problems, and we have

successfully applied the method to a realistic example in biomolecule design. Although a

convergence analysis for these methods has so far not been possible, an analysis restricted

to unconstrained problems suggests that these methods should be robust.

We note that there exist applications in which repeated optimizations will be executed

for the same geometry but with varying constraints [174]. Such investigations are better

suited to be studied the explicit-Hessian approach, because the cost to precompute the

explicit Hessian is effectively amortized over all optimizations. That is, compared to the

Hessian calculation cost, optimization is effectively free. In contrast, the implicit-Hessian

cost remains a non-negligible constant for each solve. We are currently exploring possible

ways to reuse computation between optimizations.

Future applications will focus on problems in which the implicit method may be used

reliably. Buried, near-buried, and small ligands tend to have well-conditioned eigenspaces.

These problems, which do not require explicit modification of the Hessian [169], are well-

suited to the new method. Because these problems will likelynot fully exploit the method’s

advantageous scaling, the new method is best used to investigate problems in which only a

small number of optimizations are to be performed for each geometry, where each ligand

is of small to moderate size, and multiple binding geometries are to be studied for each

ligand.

For instance, one interesting application might be to extend the work of Sulea and

Purisima [173]. This work generated a large number of possible ligand geometries, each

of which was designed with high shape complementarity to a particular region of the pro-

tein surface. They optimized a single central charge for each ligand and used this charge

value, and its effect on binding free energy, as tools to characterize surface reactivity and

identify likely binding sites. The implicit-Hessian approach would allow many chemically

reasonable geometries such as carboxylates or amino-acid side chains, to be substituted in

these ligand geometries, rather than just single charges, at comparable cost to the original

analysis presented in reference [173].

Another profitable use may be to explore optimization of flexible ligands. Although

Kangas and Tidor proved convexity of the electrostatic optimization problem for rigid
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binding, clearly many binding reactions involve ligand conformational change, and an opti-

mization theory for these cases could significantly impact the computational ligand design

community. Gilson [177] has shown that in general, conformational changes on bind-

ing give rise to non-convex objective functions, but there may exist restricted classes of

problems in which flexible-ligand optimization may be performed. The implicit-Hessian

method may permit an extensive exploration of non-rigid optimization problems in order

to identify these classes.
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Chapter 6

Conclusion

Computational modeling of interactions between biomolecules has become an essential

tool for biological science and engineering. Despite theirpractical value, these computer

simulations can implement only crude approximate models for the interactions — even

the simplest of diatoms cannot be solved exactly with quantum mechanics! That these

computational models are approximate should not be cause tobrush them aside. Instead,

the numerical methods and simulation protocols be developed carefully and in accordance

with the models’ inherent uncertainties.

The philosophy underlying much of this thesis work is that design problems and inves-

tigations of mechanism, when studied using an uncertain model, deserve the model’s strin-

gent solution. Excessively approximate numerical methodscan render useless even well-

conceived scientific studies, because computationally-based hypotheses — for instance,

that a particular functional group is likely to be enriched in a set of tight-binding ligands

— should be based on the mathematical model itself, or in other words on an explicitly

stated set of assumptions. Careless or inappropriately applied numerical techniques can

generate hypotheses that reflect computational artifacts rather than the model. As a result,

the best-case scenario for a model simulated poorly is that it remains untested and therefore

untrusted. In a worst-case scenario, experimental evidence supports a hypothesis that owes

more to numerical error than to the model, and careless analysis leads one to conclude

validity of the model.

In this thesis, we have presented a highly accurate boundary-element method solver for
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biomolecule electrostatics problems. The implementationis based on three core techniques

developed during the thesis research: a general Green’s-theorem-based integral formulation

for treating multiple embedded homogeneous regions, the fast BEM algorithm FFTSVD,

and a set of techniques to discretize solute–solvent interfaces using curved boundary el-

ements and to integrate singular functions over the elements. The challenge involved in

developing an accurate solver that could remain competitive with existing finite-difference

solvers was a rather surprising result, particularly for researchers from other domains; in

electrical engineering, for instance, surface formulations offer a much clearer practical

advantage as well as the numerous theoretical advantages discussed in Chapter 4. The

remarkable performance of modern FDM for molecular electrostatics may be attributed

in large part to the extensive and thorough numerical experiments performed over many

years by several groups, most notably those led by Professors Barry Honig and J. Andrew

McCammon.

The philosophy discussed in the preceding paragraph suggests, however, that new nu-

merical approaches may be warranted to optimally exploit the continuing explosion in com-

putational processing power. The thesis has presented a setof numerical techniques to im-

prove the accuracy and efficiency with which one may calculate important components of a

molecule’s solvation free energy. The described techniques solve continuum-theory-based

surface formulations of these molecular modeling problems. The thesis contributions may

be grouped into four areas.

First, we have advanced two of the popular boundary-integral-equation formulations of

continuum electrostatics models for biomolecule analysis. One formulation we have stud-

ied is the non-derivative Green’s theorem formulation [21]. We have extended this mixed

first-second kind equation to treat multiple boundaries separating regions of differing ho-

mogeneous dielectric constant with possible salt treatment [83]. In particular, we can model

the ion-exclusion layer surrounding the molecular solute,as well as ion-exclusion layers

that may exist inside water-filled cavities within the solute. In addition, we have examined

discretization of the induced-surface charge or equivalent-charge formulation, which is a

purely second-kind integral equation that can be used to study electrostatic interactions in

non-ionic solution. We have demonstrated that the solutionaccuracy depends strongly on
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the process of discretizing the integral equations [36]. Many other integral formulations of

biomolecule electrostatics exist, however, and it seems likely that there remain theoretical

and numerical improvements that may be made to these as well.For instance, the purely

second-kind formulation described by Jufferet al. contains an integral operator that re-

sembles that of the equivalent-charge formulation [23]. The qualocation method of Tausch,

Wang, and White [37] may therefore find advantageous application there just as it did for

the equivalent-charge formulation.

Second, we have designed, implemented, and optimized a fast, kernel-independent al-

gorithm, called FFTSVD, to numerically solve boundary-integral equations on complex

molecular geometries. The FFTSVD algorithm rapidly computes the matrix-vector prod-

ucts required to solve the BEM equations using preconditioned Krylov-subspace iterative

methods [50]. The algorithm combines an octree decomposition of the problem domain

with a sampling-based reduced-basis representation of thelong-range interactions. The in-

teractions between reduced-bases are calculated efficiently via the FFT. The structure of

our algorithm is well-suited for solving problems in which the boundary-elements occupy

a small fraction of a bounding cube surrounding the problem domain. In addition, the

multi-level approach to multiplication suggests a naturaland efficient parallelization. De-

veloping a production-quality BEM solver based on this algorithm is an important goal for

future work, because it will enable the solution of larger biomolecule problems as well as

the modeling of problems in other domains such as micro- and nano-fluidics.

Curved-panel methods for surface formulations in biomolecular modeling comprise the

third major contribution of this thesis [38]. First, we havedefined two classes of curved

panels that are general enough to allow the essentially exact discretization of van der Waals,

solvent-accessible, and solvent-excluded surfaces. Second, we have described one method

for obtaining such discretizations given a set of sphere centers, their radii, and the radius

of the probe sphere to be rolled around the sphere union. Third, we have demonstrated

a number of numerical integration techniques for evaluating far-field, near-singular, and

singular integrals over these curved panels. The boundary-element electrostatics research

discussed in this thesis has focused entirely on using piecewise-constant basis functions and

centroid collocation. Higher-order basis functions may significantly reduce the amount of
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computer memory resources required to reach a given level ofaccuracy, and for this reason

we expect future work in this area to study ways by which such basis functions may be

integrated efficiently.

The thesis has also developed a coupled simulation/optimization approach to efficiently

solve for the charge distribution in a biomolecule that optimizes the free energy of bind-

ing to another molecule, given that the potential response is linear, that the molecules bind

rigidly, and that no charge transfer occurs on binding [165]. This co-optimization tech-

nique, which in spirit resembles PDE-constrained optimization methods, relies on an im-

plicit representation of the Hessian and solves the optimization problem simultaneously

with two electrostatic simulations, using preconditionedKrylov subspace iterative meth-

ods. Thisimplicit-Hessianmethod can be applied to unconstrained problems as well as

those with linear equality and inequality constraints. We have applied the co-optimization

method to realistic biomolecule optimization problems. The method was applied to a small

validating test case, that ofE. coli chorismate mutase and a transition-state analog in-

hibitor [166]. The results demonstrated that the accelerated solution method solves the

optimization problem and that the computed optimal chargesclosely match the optimal

charges calculated by the traditional charge-optimization approach in which the full ex-

plicit Hessian is calculated one column at a time. In a second, ongoing investigation, we

are studying multiple ligands of the serine protease thrombin [186] and their relative elec-

trostatic optimalities. The co-optimization technique may find profitable future applications

in rational drug design processes as well as in studies of protein–ligand and protein–protein

interactions.

It seems likely that some of the most exciting numerical workin the future will lie

in the areas of accelerating the simulation of closely-related physical problems, and in

coupling physical simulation with optimization. The simulation of multiple geometries is

recognized to be a useful approach for several types of important calculations such as pKa

shifts [187] and binding free energies [188]. The development of accelerated methods for

biophysical simulation could possibly feed back to many other domains of engineering,

including aerospace, electrical, and mechanical. Such a cross-over would not only have

significant impact for design processes, but more importantly it would represent a step
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forward for bridging the computational life sciences with more traditional computational

research communities.

The coupling of simulation and optimization is a new and rapidly growing field of cur-

rent interest. Molecular design represents one of the most challenging problems for which

such approaches may be conceived. As already discussed, theextant mathematical models

are relatively simplistic and highly approximate; furthermore, the high-dimensional search

spaces are discrete. The development of efficient methods toprune the search space will

certainly continue to be an important and active area of research. Many traditional math-

ematical programming approaches begin from a complete specification of the objective

function and constraints. However, for some types of molecular design problems such as

the electrostatic optimization problem, even obtaining such complete information can be

prohibitive or infeasible. A exciting, inherently multi-disciplinary paradigm is emerging

to address these and similar challenges in many domains: tremendous acceleration can be

achieved by breaking the abstraction between the optimization method and the means used

to obtain information about the objective. Branch-and-bound methods, for instance, offer in

a sense a means to coarse-grain the search process by using approximate methods to bound

the objective function at each branch. As a second example, the implicit-Hessian method

for electrostatic optimization breaks the black-box abstraction of the linearized Poisson–

Boltzmann solver. Rather than introducing approximationsto the LPBE calculations, the

discretized model is itself coupled directly to the optimization process and a self-consistent

solution is obtained directly. This intimate coupling almost entirely eliminates the need to

precompute information about the objective function.

155



156



Appendix A

Extracting Curved Panel

Discretizations1

Accessible and van der Waals Surfaces

Accessible and van der Waals surfaces can be described by a set of spherical patches,

where each patch represents a solvent-exposed portion of anatom. When an atom (or a

probe-radius-expanded atom) intersects another, the two sphere surfaces form a circle of

intersection, and all the atom’s surface beyond the plane ofthis circle is buried inside the

other atom. Consequently, each spherical patch can be described by an intersection of the

sphere and a set of half-spaces, which are derived by analytically solving for the planes of

intersection between the given sphere and all the intersecting spheres. To mesh a spher-

ical patch, we first obtain a high-quality flat triangular discretization using the program

NETGEN [149]. NETGEN meshes surfaces based on a constructive solid geometry (CSG)

scheme in which geometries are defined using boolean operations on primitives such as

spheres and half-spaces.

Once the discretization is obtained, each planar triangle is converted to a GST by as-

signing an arc center to each edge. If an edge lies on one of thehalf-space planes, its arc

center is assigned to be the center of the circle of intersection that defines the half-space.

Occasionally, coarse triangular discretizations containtriangles whose edges lie on more

1To be submitted as an appendix with Chapter 2 [38].
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than one plane. These situations do not reflect the moleculargeometry but instead are a

consequence of the NETGEN discretization procedure; such geometries are therefore dis-

cretized more finely. If a planar-triangle edge does not lie in a half-space plane, the arc

center is assigned to be the center of the sphere; as a result,the corresponding GST arc is

part of a great circle. After forming the GST, it is checked toensure that it conforms to the

definition presented in Section 3.2. Specifically, it is ensured that the arcs only intersect at

their end points and that the internal jump angles are less thanπ radians. If any GST fails

these checks, the entire spherical patch is rediscretized at a finer level.

Molecular Surfaces

Molecular surfaces are discretized in two stages. In the first stage, we increase the atomic

radii by the probe radius and use NETGEN to generate a solvent-accessible surface by

meshing the union of the expanded spheres. During the discretization process, NETGEN

determines every point on the accessible surface where three or more expanded atoms si-

multaneously intersect, as well as every circular arc generated by the intersection of two

expanded sphere surfaces. The intersection of three or morearcs becomes a fixed probe

position for the molecular surface. The probe position generates one or more concave-

spherical patches of reentrant surface because this point is simultaneously a probe-radius

distance away from three or more atoms. Each circular arc connects two fixed probe posi-

tions along the intersection of two expanded atoms. Becausethe arc is composed of points

equidistant from exactly two atoms, this arc indicates the presence of a toroidal surface

patch. The accurate determination of these features is valuable during the second stage of

discretization, in which the specified spherical and toroidal patches are meshed directly.

Spherical Contact Patches

Spherical contact patches on molecular surfaces are generated for every solvent-exposed

atom. The patches are meshed similarly to the spherical patches on van der Waals and

accessible surfaces; however, contact patches on molecular surfaces are bounded by the

half-space planes located at sphere–torus intersections rather than at sphere–sphere inter-
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sections. The positions of these shifted planes are computed analytically by determining

the point of tangency between the given sphere and the probe sphere when it simultaneously

touches each neighboring atom.

Spherical Reentrant Patches

Spherical reentrant patches are meshed by placing a sphere of radius equal to the probe

radius at each triple or higher intersection point determined during the discretization of the

solvent-accessible surface. Recall that these intersection points are formed where multiple

circular arcs meet, and that these arcs represent toroidal patches. The spherical reentrant

patch is therefore intersected with three or more half-space planes, each of which represents

a boundary between the probe sphere and the toroidal patch extracted from the correspond-

ing circular arc.

Each plane is analytically defined by three points: the center of the probe sphere and

the centers of the two atoms associated with the torus. When necessary, additional half-

space planes are generated from probe-probe intersectionsin a manner similar to accessible

surface meshing. Once the probe sphere and half-spaces havebeen identified, discretization

proceeds identically to accessible spherical patch meshing.

Toroidal Patches

Each circular arc of the accessible surface is associated with one toroidal patch on the

molecular surface. The arc traces out the path taken by the center of the sphere as it rolls

tangent to its two associated atoms. Therefore, the toroidal patch is a portion of a torus

centered at the analytical center of the circle of intersection between the two expanded

atoms of the accessible surface. The torus’s principalx andy axes lie in the circle plane

and thezaxis is parallel to the vector pointing between the atom centers. The torus’s inner

radiusa is the probe radius, and the outer radiusc is the radius of the intersection circle.

If two probe positions terminate the accessible-surface arc, the toroidal patch will be

bounded inθ. The range inθ is determined by fixing one torus principal axis to point from

the torus center to the first probe position and then by takingthe dot product of this axis with

the vector pointing from the torus center to the second probeposition. If the accessible-
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surface arc is not terminated by probe positions, the torus is complete, and spans[0,2π] in

theθ direction.

The bounds onψ are found by the following procedure: specify an arbitrary probe

position on the accessible-surface circle of intersection. Then compute the vector pointing

from the probe center to the center of the torus. Take the dot product of this vector with

one pointing from the probe position to the center of each of the torus’s associated atoms.

Each dot product is the cosine of one of the bounding anglesψ.

If the torus has an outer radius less than its inner radius (i.e., c < a), and if in addition

the range inψ overlaps the range[π− arccos( c
a),π + arccos( c

a)], then the toroidal patch

consists of two disconnected pieces of surface. The two regions of such a self-intersecting

torus are meshed separately.

Once the bounds on the toroidal patch are determined, the region is discretized into

toroidal panels by dividing the ranges ofθ andψ into an integral number of pieces such

that the arc lengths of the panel edges are similar to those generated for GST panels.
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Appendix B

Coordinate Transformation from the

Standard Triangle to the Generalized

Spherical Triangle1

In this appendix we describe how the parametric coordinates(ξ,η) map to a point(x,y,z) on

a GST, and how we compute|J|, the determinant of the transformation Jacobian. Figure 2-

5 illustrates the spherical coordinate system; the coordinateψ ∈ [0,π] describes the angle

from the positivex axis, and the coordinateθ∈ [0,2π] describes the angle from the positive

z axis. The anglesψstart andψend are defined as shown in the Figure. For any point(ξ,η)

we define a circleC(η) as shown; this circle is the set of points on the sphere at

ψ(η) = ψstart +η(ψend−ψstart). (B.1)

Obviously∂ψ
∂η (η) = ψend−ψstart. The intersection ofC(η) with the two arcsa2 anda3 pro-

duce two pointsr2 andr3, which are defined to be at(θstart(η),ψ(η)) and(θend(η),ψ(η)).

Theθ coordinate of the mapped point is set to

θ(ξ,η) = θstart(η)+
ξ

1−η
(θend(η)−θstart(η)) . (B.2)

1To be submitted as an appendix with Chapter 2 [38].
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We have also the first derivatives

∂θ
∂ξ

(ξ,η) =
1

1−η
(θend(η)−θstart(η)); (B.3)

∂θ
∂η

(ξ,η) =
∂θstart

∂η
(η)+

ξ
1−η

(

∂θend

∂η
(η)− ∂θstart

∂η
(η)

)

+
ξ

(1−η)2 (θend(η)−θstart(η)) . (B.4)

Denoting the mapped point by~r, the Jacobian determinant is

|J|=
∣

∣

∣

∣

d~r
dξ
× d~r

dη

∣

∣

∣

∣

, (B.5)

where

d~r
dξ

=
∂~r
∂θ

∂θ
∂ξ

+
∂~r
∂ψ

∂ψ
∂ξ

. (B.6)

d~r
dη

=
∂~r
∂θ

∂θ
∂η

+
∂~r
∂ψ

∂ψ
∂η

. (B.7)

Trivially, we have

∂θ
∂ξ

=
θend(η)−θstart(η)

1−η
(B.8)

∂ψ
∂η

= ψend−ψstart (B.9)

∂ψ
∂ξ

= 0. (B.10)

The derivative∂θ
∂η is more challenging to calculate. The rotation angleθstart, defined by the

relation

θstart(η) = tan−1(
y(η)

z(η)
), (B.11)

has the first derivative
dθstart

dη
=

1

1+(y(η)
z(η)

)2

zdy
dη −y dz

dη

z(η)2 , (B.12)

where we have omitted adding the subscriptstart to the variablesy andz, and the angle

θend is defined analogously.
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The derivativesdy
dη(η) and dz

dη(η) are defined by finding the angleα such thatr3 satisfies

~r3 =~rcenter+~xcos(α)+~ysin(α), (B.13)

wherercenteris the center of the circle defining the GST arc andx andy form an orthonormal

basis for the plane in which the arc lies. We then find the needed derivatives by

d~r3

dα
= −~xsin(α)+~ycos(α) (B.14)

dα
dη

=

(

dx
dα

(

dx
dη

)−1
)−1

(B.15)

d~r3

dη
=

d~r3

dα
dα
dη

(B.16)

and taking they andz components ofd~r3
dη .
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Appendix C

Curved Panel Integration Techniques for

Other Integrands1

Linearized Poisson–Boltzmann Kernel

The single-layer linearized Poisson–Boltzmann integrals

Φ(r) =
Z

Ω

e−κ||r−r ′|

4π||r− r ′||dA′ (C.1)

can be evaluated by decomposing the integral into a sum of twomore easily computed

integrals [32]:

Φ(r) =
Z

Ω

1
4π||r− r ′||dA′−

Z

Ω

1−e−κ||r−r ′||

4π||r− r ′|| . (C.2)

The first term is merely the single-layer Laplace integral, whose calculation we have al-

ready discussed. The second term is very smooth in the near-field, and can therefore be

integrated using the quadrature schemes described in Section 5.2. In the far-field, the entire

integral in Equation C.1 can be computed easily using directquadrature.

Double-layer linearized Poisson–Boltzmann integrals canbe computed in an exactly

analoguous fashion.

1To be submitted as an appendix with Chapter 2 [38].
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Surface-Generalized-Born Kernels

The surface-Generalized-Born integrals all take the form of Equation 2.6 but with different

exponents depending on whether one begins from the volume formulations of Still et al. ,

Grycuk, or Wojciechowski and Lesyng [41,55,56]. The required curved-element integrals

are all nonsingular because the evaluation points are always sphere centers. The integrands’

rapid decay allows far-field quadrature to be used to computeall needed interactions.

Continuum van der Waals Kernels

The surface continuum van der Waals method requires evaluation of surface integrals of the

form shown in Equation 2.9, where again the evaluation points are always sphere centers.

The cvdW integrals over the solvent-accessible surface aretherefore never singular, and

again far-field quadrature techniques may be used.
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Appendix D

Accurate Discretization of the

Apparent-Surface Charge Formulation

for Biomolecule Electrostatics in

Non-ionic Solutions1

ABSTRACT

The electrostatic interactions between biomolecules and solvent are generally difficult to

model because there exist an enormous number of solvent degrees of freedom. Continuum

electrostatic models provide an approximate method to analyze these interactions; these

models are typically solved numerically in either differential or integral form. In this paper

we demonstrate the importance of using an appropriate numerical technique, called qualo-

cation, for a popular integral formulation of the electrostatics problem. Numerical results

illustrate that qualocation exhibits superior accuracy relative to naive implementations. We

also show that the integral formulation is extremely well-conditioned and converges rapidly

1This appendix appeared in the proceedings of the 2005 IEEE Conference on Engineering in Medicine
and Biology [36].
c© 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this ma-
terial for advertising or promotional purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component ofthis work in other works must be obtained from
the IEEE.
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when iterative methods are used to solve the discretized integral equation.

D.1 INTRODUCTION

Electrostatic interactions within and between biomolecules are known to play important

structural and functional roles [9, 189]. Analyzing these interactions computationally is

challenging because solvent molecules surround the biomolecules of interest, so the phys-

ical problem has an enormous number of degrees of freedom. Monte Carlo and molecular

dynamics methods [7, 9, 190–193] treat all or most of the solvent molecules explicitly, but

for many problems the computational expense is prohibitive.

Continuum models offer an alternative approach to studyingbiomolecule electrostat-

ics [9, 15, 26, 40, 94]. In these models, macroscopic laws of electrostatics are assumed

to hold in the molecule interior and in the solvent, and the resulting systems of partial

differential equations are solved numerically on a computer. Finite difference methods,

finite element methods, and boundary element methods (BEM) have all been applied to the

biomolecule electrostatics problem [18,21,23,31,130,194]. The boundary element method

offers numerical advantages such as an improved representation of the biomolecule–solvent

interface and exact treatment of discrete point charges. Here we study an integral formu-

lation and boundary element technique for solving biomolecule electrostatics problems in

which the solvent ionic strength is zero.

The integral formulation, called the equivalent charge formulation (ECF), has been pre-

viously discussed in the literature [16, 195]. In this work we demonstrate that a numerical

technique called qualocation [37] substantially improvesaccuracy when compared to naive

implementations of the integral formulation. The qualocation method can be applied to

many types of BEM problems in addition to the biomolecule problem discussed here.

The following section introduces the electrostatics modeland the boundary element

method used to solve the model numerically. Section D.3 presents the ECF–qualocation

method and Section D.4 illustrates the method’s performance with computational results.

Section D.5 summarizes the paper.
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D.2 BACKGROUND

D.2.1 Mixed Discrete-Continuum Electrostatics Model

Figure D-1 illustrates the mixed discrete–continuum electrostatics model. The boundary

Ω separates the molecular interior from the solvent exterior; Ω is taken to be the Richards

molecular surface [49], which is formed by rolling a probe sphere around the union of van

der Waals–radius spheres located at the atom centers. We treat the molecular interior as a

homogeneous medium with permittivityεI , in which the electrostatic potential obeys the

Poisson equation

∇2ϕI (r) =−
nc

∑
i=1

qi

εI
δ(r− r i), (D.1)

wherenc is the number of discrete point charges andr i andqi denote the location and value

of the ith charge. The solvent region is treated as a homogeneous medium with a much

higher permittivityεII , and in this region the Laplace equation holds:

∇2ϕII (r) = 0. (D.2)

At the dielectric boundary, the potential and normal component of the displacement field

are continuous:

ϕI (rΩ) = ϕII (rΩ) (D.3)

εI
∂ϕI

∂n
(rΩ) = εII

∂ϕII

∂n
(rΩ). (D.4)

D.2.2 The Boundary-Element Method

Consider the problem of computing the capacitance of a conducting sphere, whose surface

is S, suspended in free space. By setting the potential on the sphere to unity and solving
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Figure D-1: Mixed discrete-continuum electrostatics model.

the first kind integral equation

Z

S

σ(r ′)dA′

4πε0||r− r ′|| = Ψ(r), (D.5)

we can integrateσ(r) overS to find the capacitance. To solve the problem numerically, we

discretize the boundary surface into a set ofnp panels and represent the solutionσ(r) on

the discretized surface as a weighted combination of compactly supported basis functions:

σ(r) =
np

∑
i=1

yiχi(r). (D.6)

Here,χi(r) denotes theith basis function andyi the associated weight. In this paper, we

use piecewise-constant basis functions such that each function takes value unity on a single

panel and is zero everywhere else:

χi(r) =







1 if r is on paneli

0 otherwise.
(D.7)

In general, the span of the basis functions will not permit exact solution of the original

integral equation. Instead, consider computing the basis function weights so as to reduce

the residualR(r), which is the difference between the known potentialΨ(r) and the result
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of applying the integral operator to the approximate solution:

R(r) = Ψ(r)−
Z

S
G(r; r ′)

(

np

∑
i=1

yiχi(r
′)

)

dA′. (D.8)

In the commonly used centroid collocation scheme,R(r) is forced to be zero at the basis

function centroids [196]. The resulting linear system is ofthe formAy= b with

Ai j =

Z

S
G(rci ; r

′)χ j(r
′)dA′ (D.9)

bi = Ψ(rci), (D.10)

whererci is the centroid of paneli. Alternatively, Galerkin methods force the residual to

be orthogonal to the basis functions{χ1,χ2, . . . ,χnp}. Galerkin methods produce linear

systems of equations of the sameAy= b form, though now the entries are

Ai j =
Z

S

Z

S
χi(r

′)G(r ′; r ′′)χ j(r
′′)dA′dA′′ (D.11)

bi =

Z

S
χi(r

′)Ψ(r ′)dA′. (D.12)

For both the collocation and Galerkin methods, the linear systems can be solved using

sparsification-accelerated iterative methods [82,96,197].

D.3 THE ECF–QUALOCATION METHOD

D.3.1 Integral Formulation

The essential idea of the equivalent charge formulation is to replace the original problem,

which has two dielectric regions, with a simpler problem, shown in Figure D-2, which is a

Poisson problem with the same dielectric constant everywhere in space. In Figure D-2, we

have replaced the solvent dielectricεII with εI from the interior and introduced a fictitious

layer of chargeσp(r) on the surface. The variablesϕ̂I andϕ̂II denote the potential in the

modified problem. Finding a surface charge layerσp(r) such that the original boundary

conditions (Equations D.3 and D.4) hold ensures that the solution of the homogeneous
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Figure D-2: Physical model of the equivalent charge formulation.

dielectric problem is equivalent to that of the original multiple dielectric region problem.

Because the dielectric constant is homogeneous throughoutspace in the equivalent

problem, we can write the potential as

ϕ̂(r) =
nc

∑
i=1

qi

4πεI ||r− r i||
+

Z

Ω

σp(r ′)dA′

4πεI ||r− r ′|| . (D.13)

The normal component of the electric field at a pointr on the surface is therefore

∂ϕ̂
∂n

(r) =
∂

∂n(r)

nc

∑
i=1

qi

4πεI ||r− r i||
+

∂
∂n(r)

Z

Ω

σp(r ′)dA′

4πεI ||r− r ′|| , (D.14)

and the discontinuity in the integral term implies that a side of the surface must be specified.

In the homogeneous dielectric problem, the charge density determines the discontinuity of

the normal component of the electric field by the relation [51]:

∂ϕ̂II

∂n
(r)− ∂ϕ̂I

∂n
(r) = σp(r)/εI . (D.15)
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Combining (D.15), (D.4), and (D.14) gives

εI + εII

2εI(εI − εII )
σp(r)+−

Z

Ω

∂
∂n(r)

σp(r ′)dA′

4πεI ||r− r ′||

=− ∂
∂n(r)

nc

∑
i=1

qi

4πεI ||r− r i||
, (D.16)

which is known as the equivalent charge formulation [195,196]; the integral overΩ is taken

to be the principal value integral.

D.3.2 Qualocation Method

We now motivate the qualocation approach as it was describedby Tauschet al. [37], and

present both collocation and qualocation as simplifications of the Galerkin method. To

solve Equation D.16 numerically via the Galerkin method, wediscretize the molecular sur-

face intonp flat triangles and represent the surface chargeσp(r) as a weighted combination

of piecewise constant basis functions. We then define a residual R(r) similar to Equa-

tion D.8 and enforce
R

R(r)χi(r)dA= 0 for each basis functionχi(r). This produces a set

of equations of the form:

Z

paneli

(εI + εII )yidA
2εI (εI − εII )

+

Z

paneli
−
Z

panel j

∂
∂n(r)

y jdA′dA

4πεI ||r− r ′||

=−
Z

paneli

∂
∂n(r) ∑

k

qkdA
4πεI ||r− rk||

, (D.17)

where againyi is the weight associated with theith basis function.

The centroid collocation method simplifies the Galerkin method by replacing each in-

tegral over paneli with a midpoint quadrature rule; the inner integral of the double integral

is then evaluated analytically [45, 46]. However, the integrand of the outer integral is non-

smooth for nearby panels because the normaln(r) on paneli has a component in the plane

of panel j. As a result, midpoint quadrature and the resulting collocation scheme are inac-

curate.

In contrast, the qualocation method replaces the inner integral, which is smooth, with a
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midpoint quadrature rule. The resulting system has entries

Aii =
εI + εII

2εI(εI − εII )
αi (D.18)

Ai j =

Z

paneli

∂
∂n(r)

α j dA

4πεI ||r− rc j ||
(D.19)

bi = −
Z

paneli
∑
k

∂
∂n(r)

qk dA
4πεI ||r− rk||

, (D.20)

whereαi is the area of paneli. Using qualocation, the outer, non-smooth integral can be

evaluated analytically and the smooth inner integral is approximated accurately.

D.4 RESULTS

We have implemented the ECF–qualocation formulation usingthe FFTSVD fast BEM al-

gorithm [83] to rapidly apply the dense discretized integral operator. The method relies

on the observation that the qualocation operator is the scaled transpose of the double layer

potential operator [37]. We compare the ECF–qualocation method to ECF–collocation as

well as to a more complex formulation derived from Green’s theorem [21,117]. In contrast

to the ECF formulation, which has one variable per panel and one integral operator, the

Green’s theorem formulation has two surface variables per panel and requires two integral

operators.

D.4.1 Sphere

To test the accuracy of the ECF–qualocation method, we computed the electrostatic com-

ponent of the solvation free energy for a sphere with a 1Å radius and a central +1echarge.

We compare the numerical results with the analytical answeras the surface discretization

is refined. Figure D-3 is a plot of the results computed using collocation and qualocation

methods as well as those from a Green’s theorem formulation [21, 117]. The qualocation

method is clearly superior in accuracy to the collocation method; surprisingly, qualocation

returns a slightly more accurate answer than the Green’s theorem method, which has twice

as many degrees of freedom.
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Figure D-3: Improvement in accuracy with increasing panel discretization when computing
the solvation energy of a 1̊A radius sphere with a central +1e charge. Results for the
Green’s theorem, ECF–collocation, and ECF–qualocation formulations are shown.

D.4.2 Barnase–Barstar Protein Complex

We also computed the electrostatic component of the solvation free energy for the barnase–

barstar protein complex (1BRS in the Protein Data Bank) [77]. Figure D-4 is a convergence

plot that compares the ECF–qualocation result, the ECF–collocation result, and the Green’s

theorem result as the surface discretization is refined.

D.4.3 Iterative Method Convergence

It is well known [37] that second-kind integral operators such as the ECF formulation in

Equation D.16 are well-conditioned. The discretized linear systems have tightly clustered

spectra, which leads to rapid convergence when Krylov iterative methods are used instead

of Gaussian elimination. The Green’s theorem formulation [21, 117] is instead a mixed

first-second kind equation; its poorer conditioning necessitates the development of effec-

tive preconditioners [96,117]. To illustrate the advantageous conditioning, we have solved

the barnase–barstar problem using the ECF–qualocation method using both no precondi-

tioner and a diagonal preconditioner, and the Green’s theorem formulation with no precon-

ditioner as well as with the block diagonal preconditioner presented by Kuoet al. [117]. In

Figure D-5 we plot the relative GMRES residuals as a functionof iteration count.

175



1 2 3 4 5 6 7 8 9 10 11

x 10
4

−800

−780

−760

−740

−720

−700

−680

−660

−640

−620

Number of Panels

S
ol

va
tio

n 
E

ne
rg

y 
(k

ca
l/m

ol
)

Green’s Theorem
ECF−Collocation
ECF−Qualocation

Figure D-4: Computed electrostatic components of the solvation free energy of the
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D.5 SUMMARY

We have presented a numerical technique for calculating theelectrostatic component of the

solvation free energy of biomolecules for solutions with zero ionic strength. The technique

is based on the equivalent charge formulation [16, 196] of the electrostatics problem. Our

technique differs from earlier presentations because we form a linear system of equations

using qualocation [37] rather than centroid collocation orGalerkin methods. We have

demonstrated that the qualocation approach exhibits superior accuracy, and that Krylov

iterative methods converge rapidly for ECF–qualocation problems because the second-kind

integral formulation is extremely well-conditioned. It isnon-trivial to extend the ECF

formulation to treat problems in which the solvent ionic strength is non-zero.
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