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Abstract

This thesis presents a set of numerical techniques thabex@ded improve computational model-
ing approaches for biomolecule analysis and design. Theepted research focuses on surface
formulations of modeling problems related to the estinratid the energetic cost to transfer a
biomolecule from the gas phase to aqueous solution. Théstdesusses four contributions to
modeling biomolecular interactions. First, the thesissprés an approach to allow accurate dis-
cretization of the most prevalent mathematical definitiohshe biomolecule—solvent interface;
also presented are a number of accurate techniques for imatheintegrating possibly singular
functions over the discretized surfaces. Such technigeegssential for solving surface formu-
lations numerically. The second part of the thesis presaifiégst multiscale numerical algorithm,
FFTSVD, that efficiently solves large boundary-elementhuodtproblems in biomolecule electro-
statics. The algorithm synthesizes elements of other pogakt algorithms to achieve excellent
efficiency and flexibility. The third thesis component déses an integral-equation formulation
and boundary-element method implementation for biomdéeelectrostatic analysis. The formu-
lation and implementation allow the solution of complicht®molecular topologies and physical
models. Furthermore, by applying the methods developeldriitst half of the thesis, the imple-
mentation can deliver superior accuracy for competitivégomance. Finally, the thesis describes a
highly efficient numerical method for calculating a bionmltar charge distribution that minimizes
the free energy change of binding to another molecule. Tlpeoaph, which represents a novel
PDE-constrained methodology, builds on well-developegsgal theory. Computational results il-
lustrate not only the method’s improved performance but idsapplication to realistic biomolecule
problems.
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Chapter 1

Introduction

It has long been recognized that computer simulations efaations between biological
molecules hold tremendous value not only for designing moés, but also for analyz-
ing the mechanisms of interaction between molecules. Sunuhiaions can help guide a
course of experimental studies and, in addition, compléragperiment by enabling the
comparison of the energetics of different interactions aysnot accessible to experiment.
Accordingly, with the rapid increase in computer procegsiapabilities there has been a
correspondingly large growth in the study of numerical teghes for biomolecule simula-
tion. The wide range of available methods reflects the nuoseypes of problems studied.
Investigations of processes such as catalysis can requnenely accurate quantum me-
chanical modeling [1]. At the other end of the computatias@dctrum, many problems
in molecular design have intractably large search spacestherefore solution methods
include not only highly approximate methods for evaluatimgractions but also careful
search algorithms to strongly limit computational comgiej2].

In many problems in molecular analysis and design, the quirafea molecule’solva-
tion free energys a valuable tool for analyzing biomolecular structurexefion relation-
ships and interactions [3]. This free energy, denoted@Qo,V, is defined to be the differ-
ence between the free energy of the molecule in solutiontaricke energy in a gas-phase
reference state. Such a quantity is useful because it atltsvdecomposition of complex
processes such as binding, whose energetics may not béyresatiinated, into a set of

simpler thermodynamic steps whose energies are perhajgs gagstimate. Figure 1-1
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illustrates a thermodynamic cycle that can be used to eitha free energy of binding
between two molecules. The unbound state is assumed to hen®riding partners, la-
beled L for ligand and R for receptor, infinitely separatedafution. Each binding partner
is transferred from solvent to a low-dielectric gas phaseé, then the partners are bound
in vacuum. Transferring the complex into solvent then catgd the cycle that determines
the binding free energy in solution. The binding free enexglymate is therefore obtained
using three solvation free energies and a gas-phase bifrdmgnergy; the important point
is that all of these quantities are more easily evaluatedrmbdynamic cycles such as this
one are thus helpful not only as computational tools to dgus® difficult calculations,

but also as theoretical tools that allow more fine-grainestgetic analysis.

[ ok @
——

~act | [ -ack, | acks

] ‘Beo

Figure 1-1: A thermodynamic cycle illustrating the utilby solvation free energy calcu-
lations for estimating binding free energies. The shadgtbneon the lower set of panels
represent agueous solvent. The upper panels represerfoenutow dielectric with zero
ionic strength throughout. One can determine the bindiag &nergy by adding the free
energies associated with de-solvating the two unbounch@at complexing them in the
gas phase, and re-solvating the complex.

Unfortunately, the calculation of solvation free energigsresents one of the most dif-
ficult challenges in molecular modeling. The many solventetwes and possibly salt
ions that surround biomolecules present a basically itgbde many-body problem. Their
treatment is essential, however, because virtually albbioal reactions occur in aqueous
solution. The most accurate mathematical models of thegsiqai systems — high-level
guantum mechanics — are far too computationally demandirigetof practical use for
most problems. Even molecular dynamics (MD) simulationiictv integrate Newton’s
laws of motion, can require prohibitive computational t@ses to calculate quantities of
interest. Modeling the energetics of water—solvent irtigoas using MD requires the sam-

pling of the enormous phase space associated with the sohaacules and ions. Com-
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mon techniques for calculating these energetics, sucheasednergy perturbation meth-
ods [4], cannot always be converged given reasonable amoficbomputational work. It

should be noted that these methods for calculating freegesgwhich do not require the
intermediate solvation calculations shown in Figure 1-ayrbe applied to calculate bind-
ing free energies directly [5], although the more commorraggh is to compute binding
free energy changes resulting from chemical change. Haywewen the direct calculations

face the limitations imposed by the sampling problem.

In contrast to expensive explicit-solvent methods, therstenuch faster techniques to
estimate the solute—solvent interactions using an intpkgresentation of the solvent in
which zero or only a small number of solvent molecules aréakexplicitly. For a review
of implicit-solvent models, see [6]. These models, whighaften based on continuum the-
ory, offer an attractive tradeoff between computationfitieincy and accuracy. Continuum
models have been shown to offer good agreement with theihmmare computationally
intensive counterparts [7,8], and for many problems invg)\small-molecule design or the
modification or analysis of large molecules such as proténesoss of accuracy relative to
explicit-solvent simulations is acceptable. In continutnmdels of solvation, the solvation
free energy of a molecule is commonly considered to be theafumo components [3]:

AGY,, = AGYIP 4 AGYES (1.1)

solv solv

The first free energy is called the nonpolar contributiondlvation; this term accounts
for the van der Waals interactions between solute and sbagwell as for the entropic
cost associated with excluding solvent molecules from tiiets volume. This term is
commonly estimated to grow in proportion with the surfaceseasf the solute [8].

0,es

<oy accounts for the electrostatic enthalpy

The electrostatic solvation free energ®
as well as the solvent entropy associated with the solutegehdistribution. Continuum
electrostatic theory is commonly used to calculate a mddexcalectrostatic solvation free
energy [3,9]. These models generally treat the electiogtatential in the molecule and

in aqueous solvent with a symmetric, monovalent salt asiogdfe Poisson—Boltzmann
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equation

O- ((r)B9(r)) = —p(r) +K*(r) sinh((r)), (1.2)

whered(r) is the potential at a poimt £(r) is the permittivity,p(r) is a distribution of fixed
charge, and the modified inverse Debye screening lexglbscribes the screening effect
by mobile salt ions. Many biological systems with relatwéw charge density can be

modeled using the much simpler linearized equation

O- ((r)0(r)) = —p(r) + k(o (r), (1.3)

and this thesis focuses exclusively on this form. The sohiggior and solvent exterior re-
gions are generally treated as homogeneous dielectrime@aniith possible salt treatment,
with the boundary between interior and exterior defined lati@n to a set of sphere cen-
ters and their radii, where each sphere represents an atgroug of atoms. The dielectric
constant in the molecule is typically taken to be betweend24af®], although some recent
work has used dielectric constants up to 20 for surface gr¢l@|; a dielectric constant
of 2 represents electronic polarization only, and slightyher dielectric constants are of-
ten used to account for minor fluctuations in molecular stmec The dielectric constant
in the solvent is usually modeled with that of bulk water, @his approximately 80. The
solute charge distribution is taken to be a set of discretet pharges located at the atom
(or group) centers. The point charge values and sphereaigddommonly assigned using
either molecular mechanics force fields such as CHARMM?232, [ddrameter sets specif-
ically fit for electrostatic calculations [12], or quantuneamanical calculations for charges

(for a recent article reviewing such methods, see [13]) imjwaction with force-field radii.

It should be noted that continuum-model solvation free gieerare often computed
for a single, static molecular structure [3]. In reality,aafurse, the molecule is not static
in shape but fluctuates, and the free energy is an ensemhiggaveThe structure low-
est in energy will contribute the most to the average, antetbee most single-structure
calculations rely on either time-averaged structures igeeeé from a molecular dynamics
(MD) trajectory [9], energy-minimized structures, or aiorooordinates obtained from X-

ray crystallography or NMR experiments. Recently, there Ib@en a movement towards
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the use of multiple structures in calculating solvatiorefemergies and binding free ener-
gies [14].

Warwicker and Watson presented the first numerical simariatof a continuum model
for realistic biomolecule geometries [15], and since theast number of other numerical
approaches based on finite-difference, finite-elementbanddary-element methods have
been presented (for a small but representative selecgen[1$—33]). These approaches
have enabled a wide range of computational studies over#dwops two decades. How-
ever, as we demonstrate in this thesis, there exist imparéhculations for which standard
finite-difference methods are unable to achieve a desilaktd of accuracy. Non-rigid
binding free energy calculations, for instance, can entddulating the difference between
comparably large solvation free energies. Not infrequyerile approximate error in the
solvation energies is of comparable magnitude to theiedbfice, and therefore significant
skepticism is in order when interpreting the results of sca&leulations. The bulk of this
thesis therefore focuses on the development of numeridalods that can find highly accu-
rate solutions to the models used without inordinately mégjuirements for computational

resources such as memory or time.

The need for accurate solution may also be motivated phplusally. All numerical
methods necessarily return approximate answers to thetainable exact PDE solution,
and the models for the nonpolar and electrostatic solvdtem energies are themselves
somewhat approximate. The compounding of approximatiams the credibility of pre-
dictions so obtained: where should fault be assigned if tediptions are proven incorrect?
Which component of the predictive process warrants atiafitirimprovement? One of the
most important guiding principles for this thesis reseasdat rigor demands that uncer-
tain models should be solved as exactingly as possible wéehfor design or for studying
mechanisms. Resolving numerical uncertainty strengthehenly the trustworthiness of
the predictions, but also critically enables experimergalilts to feed directly back into
clarifying the models. It should be noted that this modefwhgosophy argues for the use
of continuum models, whose mathematical properties aagively well understood, over

explicit-solvent simulations for which convergence pndigs are not as clear.

The thesis is organized into six chapters. Chapter 2 descab approach for accu-
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rately discretizing three of the solute—solvent definisiomost commonly used in molecu-
lar modeling; these surfaces define a boundary between térgoinof a biomolecule and
an exterior region—either the gas phase or solvent. We defineclasses of compact
curved surfaces, or panels, into which these boundariebealiscretized essentially ex-
actly. Importantly, we present numerical integration teghes specialized for the curved
integration domains and for the integrands of interestctvimmay be singular. In Chapter 3
we present a specialized algorithm to rapidly solve bounésement-method problems in
biomolecule electrostatics. Our algorithm, which we c&TSVD, can also be applied to
modeling problems in other domains of potential theoryludimg fluidic simulation and
electromagnetics. Chapter 4 discusses a large-scalegaualement-method implemen-
tation for biomolecule electrostatics. The implementatises the FFTSVD fast algorithm
and curved boundary elements to achieve high accuracy witazrificing computational
efficiency. Furthermore, the boundary-integral-equatiwmulation is much more general
than those presented in the literature, and this genellilys a previously unavailable
unified treatment of complex molecular topologies such &gest-filled cavities as well
as ion-exclusion (Stern) layers. Chapter 5 describes alnbighly efficient numerical
approach for calculating a biomolecule charge distributltat optimizes the free energy
of binding to another molecule. This approach builds on ma&gheory developed by
Kangas, Lee, and Tidor [34, 35] and represents an unusuabagpto PDE-constrained
optimization. Application to a realistic test case valatathe approach and application to
simple test problems illustrate the method’s improvedgrenfince. Chapter 6 summarizes
the main contributions of the thesis and suggests ideasiford work in this area.

Several appendices have been included. The first threedstails regarding curved-
panel discretization and integration. Appendix D addresspopular integral formulation
for electrostatics in non-ionic solution [36]. The formiiden accuracy is highly sensitive
to the process by which the integral equations are disectiand we show that a process
known as qualocation offers accuracy superior to the conyneed centroid-collocation

methods [37].
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Chapter 2

Numerical Integration Techniques for
Curved-Element Discretizations of

Molecule=Solvent Interfaces$

We explore the use of exact representations of solute—staivierfaces in surface formu-
lations of biophysical modeling problems. Following andimeg Zauhar’'s work [39],
we define two classes of curved elements that can exactlyetiise the van der Waals,
solvent-accessible, and solvent-excluded surfaces. Wtnik presents numerical integra-
tion techniques specialized for the curvature of thesesad and for the singular integrals
required to solve boundary-integral formulations of coatim electrostatics problems us-
ing boundary-element methods (BEM). The integration mgshare applied to surface-
Generalized-Born (sGB), surface-continuum van der Waalad\W), and boundary-element
electrostatics problems. Results demonstrate that ettatics BEM using curved ele-
ments with piecewise-constant basis functions and cehtaliocation is nearly ten times
more accurate than planar-element BEM. Furthermore, th® &t scvdW calculations
give exceptional accuracy even for coarsely discretizetheess. The extra accuracy is

attributed to the correct representation of the solutereslinterface.

To be submitted [38] with Appendices A, B, and C.
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2.1 INTRODUCTION

Several important problems in molecular physics can be teddégsing boundary inte-
gral equations or surface integrals over the moleculaiasad. Continuum electrostatics
models based on Tanford—Kirkwood theory [40] give rise talde-coefficient Poisson or
Poisson—Boltzmann partial differential equations that lba converted to boundary inte-
gral equations. The generalized-Born model [41], commasBkd to estimate electrostatic
interactions, can also be transformed to a surface formounl§2]. Recently, Levyet al.
presented a continuum model for estimating the van der Watalsction energy between a
molecular solute and surrounding aqueous solvent [8]ntiddel can also be solved using

surface methods [43].

Surface formulations offer several advantages for nuraecomputation. Boundary-
integral-equation problems require the solution of twmelnsional rather than three-dimen-
sional problems, requiring correspondingly fewer unknswand therefore less computer
memory resources. In addition, exterior problems — thogeirang discretization of an
infinite or semi-infinite volume domain — are reduced to peoh$ over compact domains.
For most problems of interest, these domains are complicatdaces for which there exist
no closed-form expressions for the associated integral$adilitate numerical solution, a
complicated surface is usually approximated as the unians#t of simpler subdomains
for which integration techniques are known. Commonly, ¢hesbdomains, which are
called boundary elements, or panels, are planar trianglgaadrilaterals. There exists a
large body of literature devoted to the evaluation of inkégpver these domains (see, for

examples, references [44-46)).

In many physical modeling problems at the molecular schiestirfaces of interest are
curved, representing an atom or a collection of atoms. Eveerveurface discretizations
can be readily obtained, integrating singular or neartdargunctions over curved surfaces
poses a challenge. Numerical quadrature techniques havedeseloped for quadratically
curved surfaces (defined by curves along the element eddjélsafid B-splines [48], but
relatively few numerical integration techniques spee&di to molecular shapes have been

presented [29, 39]. For boundary-element methods, imprageuracy is often achieved
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by using higher-order basis functions on planar, quadraticubic boundary elements.
Unfortunately, basis functions of infinitely high order Wwadail to give correct answers
for these problems, because the surface discretizatidpsipproximate the true geometry.
The failure of such methods even in ideal thought-experimbighlights a fundamental
limitation imposed by inexact surface representationrdaasing the number of surface
elements improves both the basis set and the geometricabxapation, and it can be
difficult to assess the relative importance of these effeatsder to determine where effort

should be made to achieve an optimal trade-off between acg@womputational expense.

In this work we explore the impact of using curved-elemetttgathan planar-element
discretizations of the solute—solvent interface for seMgpes of molecular modeling prob-
lems. First, we define two classes of curved boundary elesribat can exactly represent
three of the most common molecular boundary definitions.osgcwe develop efficient
numerical techniques to evaluate singular and near-sangntlegrals over the curved ele-
ments. Using these methods, we calculate Generalized Bdih) solute—solvent van der
Waals interaction energies, and electrostatic comporodrgsivation energies. Our work
on curved boundary elements most closely resembles the efa&uhar [39] and that of
Liang and Subramaniam [29]. We present nearly exact digat&tns of solvent-excluded
surfaces [49], in contrast to the approximate solventsaibée surfaces of Liang and Sub-
ramaniam and the smoothed solvent-excluded surfacesnpeelsky Zauhar. In addition,
we describe numerical integration techniques designeeé&b the curved-element singular
and near-singular integrals required for numerical sotutf the boundary-integral equa-
tions. One of our most significant findings is that if the aetarsurface geometry is used,
then only a relatively small number of discretization degref freedom are needed to
achieve high accuracy. The very large number of degreeseetim required for con-
vergence of other methods contribute mainly to improvirg dlscuracy of the geometric

representation.

In Section 2.2 we introduce several physical problems thatxe addressed by solving
boundary integral equations or by integrating functionsr@olute—solvent interfaces, and
also briefly describe popular interface definitions and reiszation approaches. Curved

elements that can exactly represent the relevant bouisdareedefined in Section 2.3, and
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in Section 2.4 we present accurate and efficient numeritegiation methods for these
curved boundaries. Validation of the surface discretiregtiand the integration techniques,
as well as demonstration of the advantages of curved-elesoeiace methods, are given

in Section 2.5. Conclusions are in Section 2.6.

2.2 BACKGROUND

2.2.1 Surface Formulations of Biophysical Problems
Molecular Electrostatics

Figure 2-1 illustrates the mixed discrete—continuum etetatics model [3,9]. The molec-
ular interior is defined to be a homogeneous region with lommitévity, denotede;, and
the molecule’s charge distribution is taken to be a setadiscrete point charges, which are
often located at the atomic nuclei. In this low-permittmiegion the electrostatic potential
satisfies a Poisson equation. The solvent region exterithegdoundang is assumed
to be a homogeneous medium with much higher permittivity ttiee interior, which is
denoted by, and a Debye screening parameterin this exterior region, the potential
satisfies the linearized Poisson—Boltzmann equation. TtleaRls molecular surface [49]

is commonly used to define the bound&ry

The Poisson problem in the interior and the linearized PoisBoltzmann problem
in the exterior are coupled by continuity conditions at tleaifdary [51]. These coupled
partial differential equations can be converted to integgaiations in several ways. Prob-
lems in non-ionic solutions (those with= 0 in the solvent region) can be solved using
the induced surface-charge method [17, 19]. When the idreagth is non-zero, Green’s
theorem can be applied to derive either a mixed first-seéomatlintegral formulation [21]
or a purely second-kind formulation [23]. Chipman [52] hasdribed and compared these
and other formulations. We present the mixed formulatiagioally presented by Yoon
and Lenhoff [21].

Applying Green’s theorem in both regions and applying th&tiomity conditions gives
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Figure 2-1: A mixed discrete-continuum model for biomolecelectrostatics. The surface
Q represents the dielectric boundary between regions wélectric constants; andeg, .
Partial atomic charges are located in redipwith illustrative charges|; atr1 andg, atro.
The Debye screening paramekeis zero within region and may be non-zero in regioh

In work not described here, an ion-exclusion layer may atstrdémated [50].

the coupled integral equations

9
2000)+ . 6(7) 20 rair J0K — L (061 (rir JOA = @)
i;Cg—:Gl(rQ;ri);
o(ra) ][q) ” r( clA’+EII Gy (ro;r')dA = 0, 2.2)

Here,rq is a point on the surface; is the integration variable on the surfac#y’) is
the normal at’ pointing into solvent;f denotes the principal value integral taken in the
limit as a field point approachesfrom the insidef(r) andg#f‘(r) denote the potential and
its normal derivative at the surface; aGg(r;r’) andGy (r;r’) are the free-space Green’s
functions for the governing equations in the two regionidally, G, (r;r’) = 4TrHr ol and
G (r;r') = exp(—K[|r—r']])

A |r—r'||
To solve Equations 2.1 and 2.2 using a boundary-elementatdgethe solute—solvent
boundary is discretized and the surface variables are gjppated as weighted sums of

compactly supported basis functions, where the weightseleeted so that the discretized
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integrals match a set of constraints (see, for example 583, In collocation methods, the
residual is forced to be exactly zero at a set of points onudhiace; in Galerkin methods,
the residual is required to be orthogonal to the basis fanstiUsing collocation and piece-
wise constant basis functions such that itAéasis function is unity on th&" boundary

element and zero elsewhere, we form a dense block matrixendrusies take the form

/ K(ri:r)dA, 2.3)
elementj

wherer; denotes the collocation point associated withithboundary element ard(r;r’)
is either a Green’s function or a Green’s function derivatith respect to the surface

normal atr’.

Surface Generalized Born

The Generalized Born (GB) model of solute—solvent eletatasinteractions yields a more
easily computed approximation to energies derived by sghthe Poisson—Boltzmann

equation [41]. The GB pairwise energlyj between chargesand] is given by the equation

Qi
\/ +RRj exp— r/4R.R,)

Uij= l/8|| —1/g) (2.4)

whereq; andqg; are the charge values aRdandR; are the Born radii. The Born radii

for an atom or group of the solute is defined such that a sphiéheadiusR; and centrally-
located unit charge has solvation energy equal to that oéitiee molecule igj = 1 and
q; =0 Vj#i.

Still et al. proposed to calculate the Born radiRsby relating the volume integral

1
/ 4V (2.5)
Vin| |17 — i

to the analytical expression for the solvation energy ofrdredly located charge in a spher-
ical dielectric cavity [41]. In this equationy; is the volume of the solute interior and

r’ denotes the integration variable. Similar expressionsatoutate Born radii have also
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been presented [42,55, 56]. Ghaathal. introduced the surface-Generalized Born (S-GB)
method [42], in which an application of the divergence tleeoiconverts Equation 2.5 to

the surface integral

/S(r/_ri>Tﬁ(r/>dN, (2.6)

v —ril|*
whereSdenotes the dielectric boundary, which we again assumettoeliRichards molec-

ular surface.

Continuum van der Waals

Levy et al. described a continuum method to model the van der Waalsuttens between
solute and solvent [8], based on assuming a spherical modalwater molecule. In this

model, the interaction energy is then expressed as an ati@ggr the solvent volume,

. n .
ul), = > < / pwug'gw(r)dv') , 2.7)
= solvent

wheren denotes the number of atoms in the solyig,the bulk water number density,
andu\(,igw(r) the van der Waals potential between atoamd a water molecule located at a
distance = ||r’ —ri|| from the atom center,.

The van der Waals potential is defined by the distance fromtarvmaolecule center to
an atom center, so the solvent-accessible surface [58 isdtural solute—solvent boundary
definition for the integral in 2.7. If the van der Waals potehis modeled by the Lennard-
Jones 6/12 function,

- Al gl)
U\(/Ic)iw N=12"76" (2.8)

then the divergence theorem applied to 2.7 yields

A B 3/ A B
/V<r_12_r_6)d\/:/5%<m_@)ds. (2.9)

2.2.2 Defining Molecule—Solvent Interfaces

Figure 2-2 illustrates the three most prevalent definitimnghe solute—solvent boundary.

A molecule’s van der Waals surface, as shown in Figure 2-Hagfined to be the bound-
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Figure 2-2: Three definitions of solute—solvent boundariasvan der Waals surface. (b)
Solvent-accessible surface. (c) Solvent-excluded (nutdersurface. The dotted lines in
(b) and (c) denote the van der Waals surface.

ary of a union of spheres. Each sphere represents an atoenexat a particular location in
space and the sphere radius is set to the atom’s van der \@dals;for reduced-atom mod-
els such as the polar-hydrogen CHARMM19 model [58], somegshrepresent groups
of atoms. The Lee and Richards solvent-accessible suda@¢edepicted in Figure 2-2(b),

is also a union of spheres; in this definition, each spheseslaus is equal to the atom or
group’s van der Waals radius plus the radius of a sphericdgmolecule that is rolled

over the union of atoms. The portion of each atom’s surfaaeithexposed to solvent can
be described as the intersection of the sphere’s surfateanget of half-spaces [59], and

each such piece of surface is called a patch.

Richards defined the molecular surface, or solvent-exdwieface [49], and Con-
nolly [59] presented an algorithm for its analytical deteration. As illustrated in Fig-
ure 2-2(c), the molecular surface is defined by rolling a prephere over the union of
spheres with van der Waals radii; the surface consists ob¢tef points of the probe
sphere’s closest approach to the boundary of the unionidm#finition, the regions of the
molecular surface that correspond to probe positions atiwthie probe contacts the sphere
union at only one position are said to belong to¢batact surfacesuch convex, spherical
surface patches are called caps [59]. In contrastreletrant surface&eomprises regions
that correspond to probe positions at which the probe taittieesphere union at multiple
points. Where the probe touches two spheres of the uniomatement is restricted by
one degree of freedom; a toroidal, or belt, piece of surfatiean produced as the probe ro-
tates about the axis defined by the two sphere centers. Wiepmrdbe touches the union

at three or more points, a concave spherical surface patbéfiised; this type of face is
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termed a pit. All three types of surface patches, or facespaunded by circular arcs,
and molecular surfaces can be represented exactly as auimite of different instances of
these surfaces [59].

Many researchers have presented algorithms to discretfizend-excluded and solvent-
accessible surfaces [39, 60—-68]. The algorithms take ag the atom centers and their
radii, as well as the probe sphere radius, and return a seuwidary elements that approx-
imate the molecular or accessible surface. Generally, pookre the surface approximation
one uses a larger number of smaller elements. Most work lcaséa on generating planar-
triangle-based surface discretizations, but severalpgdave developed more sophisti-
cated approaches. Zauhar and Morgan have reported cybicailled elements [19, 69],
Jufferet al. used cubic interpolation [23], Bajaf al. used B-spline patches [60], Bordner
and Huber used quadratically-curved elements [70]. Zabaampresented an approach to
exactly discretize a smooth approximation to the moleaudiace such that the surface has
a continuous normal [39]. Liangf al. find an exact solvent-accessible surface derived from
alpha shapes [29, 63, 64], but solve problems on an exagtiyed approximation to this
surface. Our approach exactly discretizes the Richardscutar surface using Connolly’s
method and we solve problems on this exact representatiog nsimerical integration

techniques specialized for these surfaces.

2.3 SURFACE DISCRETIZATION

As discussed in Section 2.2.2, three common solute—sobamidary definitions can be
represented as the union of portions of toruses and sphdnesg the surface construction
ensures that the boundaries between different surfacégmtre formed by arcs of cir-
cles. In this section we define two classes of curved surfiereents that permit the exact

discretization of the solute—solvent boundaries.

2.3.1 Toroidal Element Definition

Atorus is defined by revolving a circle about an axis thatilefie same plane as the circle.

The circle center, normal, and revolution axis togethemngedilocal coordinate system, and
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Figure 2-3: Specification of a torus and a torus element with@< 11/3 andr/2 < Y <
511/6.

it is useful to describe the torus as having an outer radiwgich is the shortest distance
between the circle center and the revolution axis, and irmg&iusa, which is the radius
of the circle. We define to be the axis of revolutiorny to coincide with the normal to
the original circle, and the origin such that the circle origes in thex —y plane. Two
angular coordinate8 andy, both in the interval0, 21, suffice to specify any point on the
torus. The angl® describes the azimuthal angle of the point relative toxtlagis in the
x—Yy plane. The anglg determines the point’s position on the circleBatand is defined
such thatp = 0 points radially outward from the origin anjgl= 1t points radially inward.
We define aorus elemenas the portion of a torus with angular coordinaies< 6 < 6,
andy; < @ < Y. An arbitrary toroidal element is shown in Figure 2-3. Thelei center,
as it revolves around the axis of revolutiantraces a circle, which is shown in black in
the Figure. We number and define the edges of the torus in &haided mannei.é.,
the interior of the element is to the left as one traverseetlyes). Because the toroidal
surface patches form part of the reentrant surface, the tdlament normal points into the

finite volume enclosed by the torus.
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2.3.2 Spherical Element Definition

We define ageneralized spherical triangl@5ST) to be a three-sided region of a sphere’s
surface whose edges are formed by three circular arcs [48¢ afcs are not permitted
to intersect except at their endpoints, which are the \estwf the generalized spherical
triangle. Furthermore, at the vertices formed by adjacect, ahe local interior angles
must be less tham radians. This definition contrasts with a regular spherigahgle,
whose arcs are portions of great circles on the sphere. digu illustrates a GST in
which one arc is a portion of a small circle and the othersrmpho great circles. The
arcs are oriented and numbered in a right-handed fashilbowfog standard mathematical
convention. Convex spherical faces have a normal pointiveydrom the sphere center;
concave faces have a normal pointing towards the spherercbatause the concave faces
must point out into the solvent region. A surface-represt@mt error results if only great-
circle arcs are allowed to form the element boundaries,usscamall-circle arcs are needed
to resolve the boundaries between surface patches [3%]glaad Subramaniam generated
curved-element discretizations by projecting the edgestafingulated surface out to the
sphere [29]; the surface elements so generated have exaatune but their edges are all

arcs of great circles.

2.4 CURVED-ELEMENT INTEGRATION METHODS

In this section, numerical techniques are presented taataintegrals of the form

o(r) = /QK(r;r’)dA’, (2.10)

whereQ is either a toroidal or generalized spherical triangle e€etnas defined in Sec-
tion 2.3. For the problems discussed in this work, the fumdti(r;r’) is singular ar =r’
and decays monotonically to zero s— r’|| — . For smooth integrands such as far-
field integrals in whiclr is far fromQ, the integration may be performed using numerical
guadrature. We present specialized methods for smoothrands in Section 2.4.1. Inte-

grals for whichr € Q, or is sufficiently close that the integrand varies extrgnmapidly,
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Figure 2-4: A generalized spherical triangle (GST) with tmoeinding edge belonging to
the circle centered at the blue dot. The remaining edgesbeim great circles on the
sphere.
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are called near-field integrals, and require special teghes, which we present in Sec-
tion 2.4.2.

2.4.1 Far-Field Quadrature

When the evaluation point in Equation 2.10 is sufficiently far from the domain of in-
tegrationQ, K(r;r’) varies smoothly ovef and therefore relatively low-order numerical
quadrature suffices to provide accurate resultsy’forder quadrature rule estimates the
integral of a functionf over a domairf3 as a weighted sum of function evaluationgjat
specified points irf:

/Bf(x)dm éwi £(x), (2.11)

The valuesw; are called quadrature weights and the pox&re called quadrature points.
Many types of quadrature rules are designed such that theegact or nearly exact results
if the domain is simple and the integrand is a sufficientlyJonsler polynomial. For simple
integration domains like planar triangles, well-estai#d rules such as those presented by
Stroud [44] offer excellent accuracy.

To integrate a function over a more complex dom@inone typically determines a
smooth coordinate transformatitvhfrom a simple domaim, which has a known quadra-
ture rule, to the domain of integratidd. Applying the chain rule transforms the integral

of Equation 2.10 to the form
o(r) _—/ K(r;M(f')) |3(F)| dA, (2.12)
r

wherer” denotes the integration variable inand |J(f')| is the determinant of the Jaco-
bian of M atr. A g"-order quadrature rule for the domdinallows Equation 2.10 to be

approximated as: ;
d(r) %Z\ w; K(r; M(f)) \J(r]’)\. (2.13)

Because the original integrand, o\@r is multiplied in the new integral by the Jacobian
determinantJ|, it is essential that the product of the original integrand the coordinate

transformation be smooth; that I§|J

should vary smoothly ovdr.
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We now describe such coordinate transformations for theeclelements presented in

the preceding section.

Generalized Spherical Triangle Coordinate Transformatin

Zauhar has presented one coordinate transformation beta@éanar triangle and what
we have defined as the generalized spherical triangle [3@]pk&sent an independently-
derived alternative. Figure 2-5 illustrates the coordirteansformation from the standard
planar triangle of Figure 2-5(a) with verticé€0,0)™;(1,0)T;(0,1)T}, to a GST, shown in
top and side views in Figures 2-5(b) and 2-5(c). The GST has beented such that the
longest arc, labeled, lies in a plane perpendicular to tRexis and the arc midpoint lies
in thex— z plane. This mapping is guaranteed to exist if the vewteis further from the
plane of ar@; than any other point on the arasandaz and if in additionvs lies above the
X—Yy plane; such restrictions are easily imposed during sudametization. The standard
triangle parametric coordinat¢g,n)’ are first mapped to a spherical coordinate system
(8,y)T as shown in Figures 2-5(b) and (c), and then trivially transied to Cartesian
coordinates. The angl$ measures the angle from the positiwexis and the angl®
measures rotation about tke@xis such that a point with = 0 lies in thex— z plane.

The reference triangle edge from = (0,1)7 to V; = (0,0)T is mapped to the GST
edge fromvz to v5. Letting (6;,W;)"' denote the spherical coordinates of GST vexigxt
is clear thatp1 = Y, and that for all points in the GST < 3. As shown in Figure 2-5,
every line of constan in the standard triangle is mapped to an arc of the circle défin
by ¢ = Y1 +n(Ws—W1). The arc endpoints are defined by the intersection of théecirc
at elevation anglep with the arcsa; andaz. A point (&,n)7 in the reference triangle is
mapped to this arc by mapping the point’s parametric diaaﬁc% to a parameterized
form of the arc atp betweenay, andaz. Appendix B contains the full derivation of the

coordinate transformation and its Jacobian.

Toroidal Element Coordinate Transformation

A torus element is isomorphic to a rectangle. A simple magginffices to transform the

unit rectangle, with vertice§(0,0)™; (0,1)7;(1,1)T; (1,0)T}, to an arbitrary torus element.
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(b)

Figure 2-5: (a) The standard unit triangle in parametricrdo@ate space. (b) A GST
viewed from the negativg-axis. The anglep is measured relative to the positixeaxis.
Eachy is mapped to one plane with normal along ¥h&xis; the plane intersects the sphere
and defines a circle. (c) A GST viewed from the posithaxis. Dashed lines indicate the
circle of intersection between the sphere surface and tree@pecified by. The image

of the standard-triangle vertices under the coordinatestoamation are labeled.

For the torus in Figure 2-3, with outer radiosinner radiusa, centered at the origin and
with axis of revolution along th& axis, the Cartesian coordinates of a point&at)" in

parametric coordinates are

c+acogq)cog0)
r=| ct+acogy)sin®) | . (2.14)
asin(y)
where
B0=01+&(02—61); (2.15)
P =P1+n(P2—P1). (2.16)

The determinant of the Jacobian is

9] = a(c+acogy)) [wz — W62 — 64 (2.17)
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The coordinates of a point on an arbitrarily positioned $azan be computed by applying

a simple affine transform.

2.4.2 Near-field Integration Techniques

The integrands of interest have singularities as the etralupoint approaches the domain
of integration. As a result, even high-order Gaussian catade rules fail to accurately
approximate the singular and near-singular integrals;ensophisticated techniques are
required. In this section we present techniques for integgaéhe Laplace kerné{(r;r’) =

1/ (4m]|r —r’||) and its normal derivativ%%(r;r’). Appendix C describes how these
methods may be adapted for the linearized Poisson—Boltapsanface-Generalized Born,

and continuum-van der Waals kernels.

Single-Layer Potential

The integral
o(r) = / B YN (2.18)
Q

4rg|r —r'||
is referred to as the single-layer potential because iesspts the potential induced by a

unit-density monopole charge layer on the integration doma

Spherical Element Single-Layer. WhenQ is a generalized spherical triangle, the method
of Wanget al. can be applied to evaluate the integral in Equation 2.18 743 Figure 2-6
illustrates the approach. For a given generalized spHédriaagle, we define a flat refer-
ence element that lies in the plane tangent to the spherical element aG®E centroid.
After selecting a reference element, one finds a polynonsgilution of monopole charge
on the reference element such that the reference-elensunted potential accurately re-
produces the potential induced by the original distributam the curved element. For
uniform distributions, the relation

/G rir)dA = /G { M) |30y 0, (2.19)

I’
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Figure 2-6: Schematic of the approach for evaluating themg@l induced by a distribution
of monopole charge on a generalized spherical triangle.

defines the reference-element monopole charge distribdiiat exactly reproduces the
curved-element induced potential. In Equation 2r1% a point in the flat elemenk ()
is its image under the coordinate transformation fioe Q, andJ(f’) is the Jacobian of
the mapping. Because the flat element is tangent at the @atrd the sphere has constant
curvature, the term in parentheses uniformly approa¢hest the centroid; for centroid-
collocation with piecewise-constant basis functions thithe only type of singular integral
that must be evaluated. The term is actually smooth oventtieelomain, and therefore it
can be accurately approximated using a low-order polynimid. Then the single-layer
potential is calculated as

/G { M ,A/ 37 }dA’ Za.,/EnJG P)dA', (2.20)

G(r; )

where the sefa; j} denote the polynomial coefficients af@ndrn denote a local coordi-
nate system on the flat reference element such that one \erax0,0)". Newman has

presented techniques to analytically evaluate the mordomeégrals [ &'nlG(r; f’)dA’ for

planar polygons, and Wang has described an alternativé 246,

The coefficient§a; j} are found by least-squares solution of the Vandermondebmatr

equation i o i i i
1 & ni ... &nl || oo ()]
G(r:M(f2)) 1(7
:.L &2 N2 ... E.zrlz 010 _ G(r;f‘z)' [J(F2)] , (2.21)
1 & nn - annn_ | aw || SR |
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wherer; = (Ei,r]i)T denotes thé!" of n sample points, where must be greater than the
number of coefficients to be fit.

The flat reference element can be defined in one of two wayshdrfitst, the flat
element edges are defined by casting rays from the spheey terttugh the GST boundary
arcs to the tangent plane. Boundary arcs that are segmegitsaifcircles map to straight
lines in this projective transformation, and any arc belngdo a small circle becomes a
portion of a conic curve (either a hyperbola or an ellipsélje Thonomial integrals can then
be evaluated by analytical integration over a triangulandm, followed by addition or
subtraction, as necessary, of the result of numerical g over the conic region [43].
An alternative method is to project the GST vertices to tingéat plane, which defines a
triangle. The mapping between this reference triangle bad3ST is then a composition
of two mappings: the first transforms the reference triatgtae standard triangle, and the
second transforms the standard triangle to the GST. Thariagiping is straightforward,
and methods for the second mapping have been presentediorSzd. 1.

We emphasize that our selection of a flat reference elemanli¢is tangent at the GST
centroid suffices for the kernels specified in this work andB&M approaches based on
piecewise-constant basis functions and centroid-cdilmcaother problems may require

that a reference element be defined in relation to the evaiupbint [71].

Toroidal Element Single-Layer. WhenQ is a toroidal element, the previously-described
polynomial-fitting method is difficult to apply because tloeus surface has unequal radii
of curvature at most points. As a result, the ra&i@; M(f'))/G(r; ') takes different limits
depending on the direction from whichapproaches, and this phenomenon necessitates
the development of more complicated coordinate transfboms:. Instead, recursive sub-
division is applied to evaluate near-field integrals.

The element integral is evaluated in one of two ways. We aethetelement centroid by
rc and its area byA. If the evaluation point satisfieg|r —r¢|| < 5v/A, the element is split
into four sub-elements defined by equally dividing the aagudnges. The sub-element
integrations are then evaluated independently. Furthiedigision may be required, de-

pending on the position of the evaluation point relativehte tour new centroids and the
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new element areas. The second near-field integration mesheyblied when the evalu-
ation point lies at the element centroice( r = r¢). This case arises during the solution
of boundary-element-method problems solved using cefroilocation schemes. Sym-
metry in theB direction allows these integrals to be evaluated for hafdbmputational
expense of a full subdivision. Both subdivision integratinethods halt the subdivision

when the divided elements have no edges longer thah A0

Double-Layer Potential

The double-layer integral

9 1 ,
o0 = ey (a7 4 (222

represents the potential due to a unit-density dipole ehlager on the domain. The Wang

et al. approach for double-layer integrals cannot be used forutamgntegrals. The ra-

K(r:M(i"))
K(r7")

vanishes for alt’ # r in the plane of the dipole layer.

tio

is not defined on the reference element becatsef’) = % <m>

We instead use the double-layer calculation presented lhisWfh al. [73], which ex-
tends the work of Newman [46]. Recall that the potential setlby a normally-oriented
dipole charge layer of uniform density equals the solid arsgibtended by the integration
domain at the evaluation point[51]. Exploiting this characteristic, Newman derived an
analytic expression for the double-layer potential indllog a uniform dipole distribution
on a boundary element bounded by straight line segments M#l]is et al. extended
Newman’s work to uniform distributions on curved elememisting that the subtended

solid angle can be found easily using quadrature [73].

Figure 2-7 illustrates this approach for evaluating theldediayer potential in Equa-
tion 2.22. The evaluation poimtis translated to the origin and the coordinate system is
rotated so that the element centroid lies on 2texis. We define a sphere of unit radius
centered at the origin and cast rays from the origin throhghetement edges to the sphere

surface. The projected edges define the subtended angleh wkican compute by inte-
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grating the bounded area:

2 ,@(0) 2n
A:/o /O(p 1-sin((p)d(pd9:/0 (1— cos@(6))de (2.23)

Separating the integration into a sum of integrals over eate ne circular arcs that form
the element boundary, and changing variables féotm a parametri¢ along the arcs, we
have
A= i/olu— cos(@(6i(1)))) %dt, (2.24)
i=
wheret is the parametric coordinate along Heedge, and(t) is the azimuthal angle of
the point at position along theit" arc.

The directional character of the double-layer potentigktees comment. The integral
of Equation 2.22 is discontinuous as the evaluation poaypproaches and passes through
the surface. The value of the integral is defined to be the Asri approaches the surface;
whenr € Q, therefore, the side from whiahapproaches the surface will determine the
value of the integral. The two limits sum tat4[51]. By convention, we assume that
the integral has been taken as the evaluation point appeedobm the side opposite the
normal direction.

An alternate approach, applicable only to uniform distidns, can also be taken. Ac-
cording to the Gauss—Bonnet theorem [74], the area boung#telprojected arcs can be
determined following integration of the geodesic curvatofthe projected edges. Finally,
we note that the Williset al. approach is applicable not only to spherical and toroidal

surface elements, but also to many other types of curvedidlements [73].

2.5 RESULTS

We have generated several curved-element discretizat®ng the process outlined in Ap-
pendix A, and implemented the numerical integration meshindoth C and Matlab [75].

Flat-triangular surface discretizations have been predusing Connolly’s Molecular Sur-
face Package [76]. We first present results that validatestintace discretizations and

the integration techniques; we then demonstrate the aglyasiof curved-element surface
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methods with several representative calculations on smakcules.

2.5.1 Validating the Surface Discretization

The surface area of both GST and toroidal elements can belaad analytically. The

Gauss—Bonnet theorem [74], when applied to a compact mdniklates the integral of

the curvature over the surface to the integral of the geodesivature of the boundary and
the corner angles. A generalized spherical triangle hastaahcurvature over its surface,
and its bounding arcs have constant geodesic curvatureacmtdingly its area may be
calculated analytically without difficulty. This approati surface area calculation was
taken by Connolly [59] and we use it here to demonstrate theectmess of the surface

discretization. The area of a toroidal element defined iriG@e2.3.1 is seen to be

A= (8, —01) (ac(Wp — Y1) +aZ (sin(W2) —sin(ys)))] - (2.25)

We generated both flat-element and curved-element surfaceetizations of several mo-
lecules at varying levels of refinement, using the Richardienular surface definition [49]
and the solvent-accessible surface. PARSE radii [12] wsed tor molecular surface gen-
eration and CHARMMZ22 radii [11] were used for solvent-astiele surfaces. Analyti-
cal areas of the discretizations were then computed and @@uo the analytical areas
calculated by MSP [76]. Tables 2.1 and 2.2 present the mlalesurface and solvent-
accessible-surface results; the calculations illustitze even coarse curved-element dis-
cretizations accurately capture the molecular surfacengéy. Similar results (not shown)
have been obtained for van der Waals surfaces, which hawerisphbut not toroidal el-
ements. It is especially noteworthy that planar-elemestrétizations with significantly
more elements than their curved-element counterparts matveonverged to the correct
surface area. The more correct geometric description émte¢o curved-element meth-
ods could lead to significantly more accurate numericalutatons than those based on

planar-element discretizations.
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METHOD
GEOMETRY ANALYTICAL AREA ( A?) AREA OF DISCRETIZED SURFACE
FLAT CURVED
# ELEMENTS| AREA (A?) || # ELEMENTS| AREA (A?)
Atom 12.566
COARSHE 74 11.516 40 12.566
MEDIUMP 270 12.249 70 12.566
FINEC 448 12.390 124 12.566
Parallelp dialaniné 241.642
COARSHE 684 230.965 1326 241.642
MEDIUMP 1944 238.450 1781 241.642
FINEC 2904 239.617 2923 241.642
Barnase—barstar compfex 8269.077
COARSHE 29728 7979.774 63915 8269.077
MEDIUMP 79104 8188.538 88860 8269.077
FINEC 149160 8407.962 133676 8269.077

Table 2.1: Comparison of discretized surface areas witlyaoa molecular (solvent-excluded) surface area. Pn@ukus is taken to
be 1.4. & MSP angle = 1.0, NETGEN level = VERY COARSE; MSP angle = 0.5, NETGEN level = COARSE; MSP angle

= 0.4, NETGEN level = MEDIUM;?: structure preparation is described in Section 2.5.5rom [77], entry 1BRS in the Protein
Databank [78]. All quantities are iA? and have been rounded to the nearest 0401
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METHOD
PROBLEM ANALYTICAL AREA ( A?) AREA OF DISCRETIZED SURFACE
FLAT CURVED
# ELEMENTS| AREA (A?) || # ELEMENTS| AREA (A?)
Atom 72.382
COARSE 74 66.334 40 72.382
MEDIUMP 270 70.554 68 72.382
FINEC 448 71.368 124 72.382
ParallelB dialaniné 467.815
COARSE 396 437.304 564 467.815
MEDIUMP 1268 459.406 714 467.815
FINE® 1846 462.617 1064 467.815
Barnase-barstar compfe 9152.150
COARSHE 10643 8785.722 20053 9152.150
MEDIUMP 31800 9094.782 25835 9152.150
FINEC 87178 9571.220 38767 9152.150

Table 2.2: Comparison of discretized surface areas witlyaca solvent-accessible surface area. Probe raditskentto be 1A. 2
MSP angle = 1.0, NETGEN level = VERY COARSE; MSP angle = 0.5, NETGEN level = COARSE;MSP angle = 0.4, NETGEN
level = MEDIUM; 9: structure preparation is described in Section 2%.6om [77], entry 1BRS in the Protein Databank [78]. All
guantities are ih2 and have been rounded to the nearest 0491



2.5.2 Validating Curved Boundary-Element Integration

To illustrate the correctness of the coordinate transftiona and the polynomial-fitting
method, we used our numerical quadrature techniques to wentpe surface areas of
molecular surfaces. The areas are not expected to exactghritae analytical results
because the Jacobian determinants are not polynomiak 2ablists the pit, belt, and cap
areas calculated by analytical and direct quadrature rdsttamd also by the polynomial-

fitting method for the pit and cap surfaces.

2.5.3 Surface Generalized-Born Calculations

The surface discretization and integration techniquesgmted in this work have been used
to calculate Born radii using the surface-GeneralizedaBoethod introduced by Ghogtt

al. [42] and surface formulations of the Grycuk [55] and Wojtiewski and Lesyng [56]
Generalized Born models. The surface integrals assocwithdthese calculations are
never singular because every evaluation point is the cehtesphere. Figure 2-8 is a plot
of the Born radii computed for the-helical dialanine and parall@-dialanine molecules
using a surface formulation of the Grycuk method; resuksstmown for several levels of
surface discretization. Also shown are the Born radii dated by BEM solution of the
Yoon and Lenhoff formulation of the Poisson—Boltzmann e¢iquig21]. These calculations
takeeg = 4, g, = 80, andk = 0. Note that the surface-Generalized Born radii do not
appreciably change as the discretization is refined. Simelsults are obtained using the

method of Ghoslet al. , or that presented by Wojciechowski and Lesyng (data natsho

2.5.4 Continuum van der Waals Calculations

The surface-continuum van der Waals formulation has beg@teimented [43] and tested
for four of the alanine dipeptide conformations presente8darsdalet al. [79]. Curved-
element discretizations of the solvent-accessible senféere generated using OPLS all-
atom radii [80] and a probe radius of 085in accordance with the Lewiet al. param-

eterization [8] for the TIP4P water model [81]. The Lenndomhes coefficients for each
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METHOD

COARSE MEDIUM FINE
PROBLEM ANALYTICAL || DIRECT FIT DIRECT FIT DIRECT FIT
Atom
CAP 12.566 12.566 | 12.567 | 12.566 | 12.566 | 12.566 | 12.566
Parallelf dialanine
PIT 18.719 18.719 | 18.720 | 18.719 | 18.719 | 18.719 | 18.719
BELT 77.565 77.565 - 77.565 - 77.565 -
CAP 145.358 145.358 | 145.340 | 145.358 | 145.354 | 145.358 | 145.358
Barnase—barstar complex
PIT 2453.293 2453.240| 2453.390| 2453.292| 2453.300| 2453.293| 2453.291
BELT 3195.626 3195.626 - 3195.626 - 3195.626 -
CAP 2620.158 2620.130| 2619.698| 2620.154| 2620.056| 2620.157| 2620.137

Table 2.3: Comparison of pit, belt, and cap areas computexhbiytical, direct quadrature, and polynomial-fitting hets, using the
molecular surface discretizations of Section 2.5.1. AHwfities are irA2 and have been rounded to the nearest 0491
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Born radius (Angstroms)
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Figure 2-8: Generalized Born radii calculated by boundagment method solution of the
linearized Poisson—Boltzmann equation (LPBE) and by exadg surface integrals based
on the GB model proposed by Grycuk [55]. The LPBE radii aretptbin solid lines with

x and the GB radii are plotted with dashed lines and trianglesles, dots, and stars. (a)
Alpha-helix dialanine. (b) Beta-sheet dialanine.

surface integral of the form in Equation 2.9 are determing@propriately mixing the
well depthse and the diameters for each OPLS atom type and the TIP4P water model.

Table 2.4 shows the calculated energies at each discrietizat

2.5.5 Electrostatics Problems

The electrostatic component of the solvation energy foesshsmall boundary-element
systems has been computed using the Yoon and Lenhoff ihfegraulation (Equations 2.1
and 2.2) and dense preconditioned GMRES [82]. Larger systeust be solved using fast,
kernel-independent BEM algorithms such as the fast muéipwthod or FFTSVD [28, 32,
83]. As described in Section 2.2.1, we have used piecevasstant basis functions and
centroid collocation. For all calculations, we assume thatsolute region hag = 4 and

the solvent region hag, = 80.

Spherical Geometry

The solvation energy of a centrally-located charge in a spdidow-dielectric cavity can
be computed analytically if the Laplace equation holds i $blvent region, or numer-

ically using spherical harmonics if the linearized Pois€®oltzmann equation holds in
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[AS]

c5 | aR | c7eq | c7ax

Volume -10.1365 -0.8917 -10.0190 -9.9199
# Elements Energy || # Elements Energy || # Elements Energy | # Elements Energy
429 -10.1369 486 -9.8918 357 -10.0193 421 -9.9201
558 -10.1366 611 -9.8918 479 -10.0192 541 -9.9200
Surface 901 -10.1365 1033 -9.8917 793 -10.0191 863 -9.9199
1912 -10.1365 2069 -9.8917 1746 -10.0190 1782 -9.9199
4877 -10.1365 5247 -9.8917 4245 -10.0190 4585 -9.9199
10035 | -10.1365| 10829 | -9.8917 10418 | -10.0190| 10755 |-9.9199

Table 2.4: Solute—solvent van der Waals interaction easrgstimated using a surface formulation of the Letwl. continuum van der
Waals model and curved surface elements. All energies ameaifmol and have been rounded to the nearest k8al/mol.
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Figure 2-9: Convergence of solvation free energies for draky located charge in a

1A sphere, calculated by BEM numerical solution of the Yood hanhoff integral equa-
tions. For both cases = 4 andg;; = 80. (a)k =0A ~1. (b)k =0.124A 1,

the solvent region. Figure 2-9 illustrates the improveduaacy of curved-element BEM
relative to planar-element methods; Figure 2-9(a) plotsvemyence for non-ionic solu-

tions (.e, Kk =0 A ~1) and Figure 2-9(b) plots convergence to the analyticallteguen
k=0.124A -1,

Dialanine

CHARMM [58] with the CHARMM22 parameter set [11] was used tengrate two
conformations of dialanine (two alanine residues with aety@ated N-terminus and N-
methylamide at the C-terminus). One conformation takesagesp and  angles for a
parallelp-sheet = —119, ¢ = +113); the other conformation takes the average angles

for a right-handedi-helix (p= —57°, = —47°) [84].

Alanine Dipeptide

Scarsdalet al. has presented energy-minimized atomic coordinates farakgonforma-
tions of the alanine dipeptide [79]. A set of curved-elensgnface discretizations at vary-
ing refinement were generated using these coordinates, PA&SI and partial charges,
and a probe radius of 14, Comparing the calculated planar-element and curvechete
energies to their values at the finest discretizations, #tting the absolute deviation as a

function of the number of elements, one obtains Figure 2-10.
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Figure 2-10: Solvation free energies for four conformershef alanine dipeptide; atom
centers are those presented in [79] and PARSE atomic radiipartial charges have been
used [12]. (a) c5 geometry. (bR geometry. (c) c7ax geometry. (d) c7eq geometry.

54



2.6 DISCUSSION

We have defined two classes of compact, curved, two-dimeakgurface elements that
can be used to exactly describe arbitrary solute—solvamdaries according to the most
commonly used boundary definitions. These curved-elemgface discretizations can be
used in a number of surface formulations of biophysical rinderoblems. To numer-

ically evaluate the desired surface integrals over theseattts, we have described a set
of accurate, efficient techniques specialized for theseailosn Computational results il-

lustrate the advantages of curved-element surface dizatiens relative to those based on

planar triangles.

One significant advantage of the curved-element represemgas that the geometry
of the discretized surface does not change as the disdretiza refined. In contrast, flat-
element discretizations describe different boundarid#ffaring refinements, as do curved-
element discretizations based on quadratic or cubic sh&pesed-element methods based
on our discretizations, however, are limited only by theusacy of the integration method
used, and, for boundary-element method problems, also éorither of the basis func-
tions. The curved-element method presented here thereffaes an attractive approach
for calculating Born radii via the SGB method and for compgtsolute—solvent van der
Waals interactions using a continuum model. Furthermarejed-element quadrature in
the far-field is as efficient as far-field flat-element quadh@tbecause one can use the same
order quadrature rules for both. As a result, problems #gire the evaluation of many
more far-field than near-field integrals can benefit signifilyagfrom curved-element meth-
ods without undue increase in computational expense. Iiired a practical matter, the
integration techniques presented in this work are striogliard to implement, requiring

only a few hundred lines of MATLAB code, for example [75].

Although the near-field integration techniques for curvésihments are significantly
slower than those required for flat elements [45, 46], theaextcuracy afforded may be
invaluable for problems that require highly accurate sohg. Because curved elements
allow a significant reduction in the number of unknowns, sdidtretizations provide a

promising approach to reach a target level of accuracy gieestraints on computer mem-
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ory. In the future we may extend these techniques to allovetiaéuation of more compli-
cated integrals, such as the potential induced by a polyalbmiarying charge distribution
on a curved element. Also, the curved-element discretiagirocedure may be modified

to allow the production of coarser meshes.
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Chapter 3

FFTSVD: A Fast Multiscale
Boundary-Element Method Solver
Suitable for Bio-MEMS and

Biomolecule Simulatiort

We present a fast boundary element method (BEM) algorittanighwell-suited for solv-
ing electrostatics problems that arise in traditional air@MEMS design. The algorithm,
FFTSVD, is Green'’s function independent for low-frequekeynels and efficient for in-
homogeneous problems. FFTSVD is a multiscale algorithindeeomposes the problem
domain using an octree and uses sampling to calculate Iokapproximations to dom-
inant source distributions and responses. Long-rangeaittiens at each length scale are
computed using the FFT. Computational results illustriaée the FFTSVD algorithm per-
forms better than precorrected-FFT style algorithms ormtiuétipole style algorithms in

FastCap.

1This chapter was published previously in a special issu&BH Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems [83] with J. P. Bardand M. D. Altman as joint first authors.
(© 2006 IEEE. Personal use of this material is permitted. Hangyermission to reprint/republish this ma-
terial for advertising or promotional purposes or for cieghew collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted componethigfyvork in other works must be obtained from
the IEEE.
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3.1 INTRODUCTION

Microelectromechanical systems (MEMS) have recently bexa popular platform for
biological experiments because they offer new avenuesastigating the structure and
function of biological systems. Their chief advantagesrdva&ditionalin vitro methods
are reduced sample requirements, potentially improvedctieh sensitivity, and struc-
tures of approximately the same dimensions as the systedes investigation [85]. De-
vices have been presented for sorting cells [86], sepgratmd sequencing DNA [87],
and biomolecule detection [88]. Furthermore, becausgswhisensors can be batch fab-
ricated on a single device, parallel experiments and Higbuighput analysis are readily
performed. However, since microfabrication is relativelgpw and expensive, numerical
simulation of MEMS devices is an essential component of #sigh process [89, 90].
Design tools for integrated circuits cannot address mscs problems, and this has mo-
tivated the development of several computer-aided MEM$)desoftware packages, most
of which are based on the finite-element method (FEM) and dedary-element method

(BEM) [91].

BioMEMS, when applied to such problems as biomolecule dietecare often func-
tionalized with receptor molecules that bind targets oéiiest [92]. Molecular labels can
also be used to aid in the detection process [93]. Howeweiintieractions between these
molecules, the MEMS device, and the solvent environmentféea neglected during com-
putational prototyping. In other fields, such as computatichemistry and chemical en-
gineering, continuum models of solvation are often usedudysthe electrostatic compo-
nent of these interactions [94]. These mean-field modelmipdne efficient calculation of
many useful properties, including solvation energies dadtestatic fields [18, 20], and
have been shown to correlate well with more expensive caticuis that include explicit
solvent [7]. However, continuum models are unable to resepecific molecular interac-
tions between solvent molecules and the solute. A varietyaierical techniques can be
used to simulate the continuum models, including the fiditlerence method (FDM), the
finite-element method (FEM), and the boundary-element ate(BEM) [21, 30, 95].

The boundary-element method has a number of advantagésed¢taFDM and FEM,
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such as requiring only surface discretizations and exaethting boundary conditions at
infinity. However, the discretization of boundary integegjuations produces dense lin-
ear systems whose memory costs scaléda¥’) and solution costs scale witB(n3),
wheren is the number of discretization unknowns. This rapid riseast with increas-
ing problem complexity has motivated the development oélrated BEM solvers. Pre-
conditioned Krylov subspace techniques, combined with dgorithms for computing
matrix—vector (MV) products, can require as little @sn) memory and time to solve
BEM problems [96]. Many such algorithms have been presemmetiiding the fast mul-
tipole method (FMM) [97, 98] -matrices [99—101], the precorrected-FFT method [102],
wavelet techniques [103,104], FFT on multipoles [105, 1Rétnel-independent multipole
methods [107, 108], the hierarchical SVD method [109, 1fRine-wave expansion based
approaches [111], and the PILOT algorithm [112]. Some dligmis, such as the origi-
nal FMM, exploit the decay of the integral equation kernk& precorrected-FFT method
makes use of kernel shift-invariance. This work introdueresilgorithm that combines the
benefits of both of these approaches, leading to a methodh&sagxcellent memory and

time efficiency even on highly inhomogeneous problems.

Fast BEM algorithms whose structures depend on kernel dadésr from a common,
well-known problem: computing medium- and long-range riat&ons is still expensive,
even when their numerical low rank is exploited. For ins&me the fast multipole method,
computing the M2L (multipole to local) products dominatbe tmatrix—vector product
time, since each cube can have as many as 124 or 189 intgraaties, depending on the
interaction list definition, and the work per M2L multipltian scales a®©(p*), wherep
is the expansion order and is related to accuracy [97, 9§, IM8ch work has focused
on reducing this cost; for the FMM, plane-wave expansiordd [diagonalize the M2L
translation, but are typically only efficient for large The precorrected-FFT (pFFT) algo-
rithm [102] relies on not the kernel’'s decay but rather igsmglation invariance to achieve
high efficiency. The pFFT method is Green’s function indejsst, even for highly os-
cillatory kernels. Consequently, the method has been eghphi a number of different
fields, including wide-band impedance extraction [114]¢cmwiluidics [72, 115, 116] and

biomolecule electrostatics [117]. One weakness of thegorected-FFT method is that its
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efficiency decreases as the problem domain becomes inogbasihomogeneous [102].
In this work, we introduce a fast BEM algorithm called FFTSVIhe method is well-
suited to MEMS device simulation because it is Green’s fioncindependent and main-
tains high efficiency when solving inhomogeneous probleiitee FFTSVD algorithm is
similar to the PILOT algorithm introduced by Gope and Jaradhy112], in that our algo-
rithm is multiscale and based on an octree decompositiomeoptoblem domain. Similar
to PILOT and IES, our algorithm uses sampling and QR decomposition to catleuke-
duced representations for long-range interactions. Thei§ksed to efficiently compute
the interactions, as in the kernel-independent multipad¢had [108]. Numerical results
from capacitance extraction problems demonstrate thaSMBTis more memory efficient
than FastCap or pFFT and that the algorithm does not haveotiedeneity problem. In
addition, we illustrate electrostatic force analysis byigiating a MEMS comb drive [72].
Finally, we demonstrate the method’s kernel-independbegamlculating the electrostatic
free energy of transferring a small fluorescent moleculmftboe gas phase to aqueous so-
lution, using an integral formulation of a popular continualectrostatics model [21,117].
The following section briefly describes a representativeM@Eelectrostatics prob-
lem, a boundary element method used to solve the problemaamdre complicated
surface formulation for calculating the electrostatic pmment of the solvation energy of
a biomolecule. Section 3.3 presents the FFTSVD algorithmm@utational results and
performance comparisons appear in Section 3.4. Sectiodea&ibes several algorithm

variants and summarizes the chapter.

3.2 BACKGROUND EXAMPLES

In this section we describe two electrostatics problemisahise in BioMEMS design and

describe how they can be addressed using BEM.

3.2.1 MEMS Electrostatic Force Calculation

Consider the electrostatically actuated MEMS comb drikesitated in Figure 3-1. Two

interdigitated polysilicon combs form the drive; one corslfiked to the substrate and
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Figure 3-1: An electrostatically actuated MEMS comb drive.

the other is attached to a flexible tether. Applying a voltdidierence to the two combs
results in an electrostatic force between the two strusfuaed the tethered comb moves
in response [72]. The electrostatic response of the sysiean aipplied voltage difference

can be calculated by solving the first-kind integral equatio

/Sc(r’)G(r;r’)dA’:V(r), (3.1)

whereSis the union of the comb surfaceé(r) is the applied potential on the comb sur-
faces,G(r;r’) = 1/||r —r'|| is the free-space Green'’s function, am@) is the charge den-

sity on the comb surfaces. Note that this is a standard dajpaei extraction problem.

We can compute the axial electrostatic force between thdsdiy the relation

. d_ d1q
F(s) = g E= g5V COV, (3.2)

whereF (s) is the force in the axial directiors,is the separation between the comiBds
the electrostatic energy of the systevnis the vector of conductor potentials, a@(s) is

the capacitance matrix, written as a function of the comlausjon.

To solve Equation 3.1 numerically,we discretize the s@sainton, panels and rep-

resento(r), the charge density on the surface as a weighted combinaticompactly
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supported basis functions defined on the panels:
Mp
a(r) =S %fi(r). (3.3)
2

Here, fi(r) is theit" basis function and; the corresponding weight. Forcing the integral
over the discretized surface to match the known potentialsat of collocation points, we
form the dense linear system

Gx=h. (3.4)

The Green’s function matris is defined by
Gij :/f,—(r’)G(ri,r’)dd, (3.5)

wherer; is theith collocation point andy =V (rj). Alternatively, one can use a Galerkin

method, in which case

G”://ﬁmnmmummmw (3.6)
and

qz/ﬁmwmm (3.7)

The linear system of Equation 3.4 is solved using precoomtiil GMRES [82].

3.2.2 BEM Simulation of Biomolecule Electrostatics

Electrostatic solvation energy, the cost of transferringn@ecule from a nonpolar low
dielectric medium to an aqueous solution with mobile iongayg an important role in
understanding molecular interactions and properties alautate solvation energy, contin-
uum electrostatic models are commonly employed. FiguralBs2rates one such model.
The Richards molecular surface [49] is taken to define thenBary a that separates the
biomolecule interior and the solvent exterior. The interffomodeled as a homogeneous
region of low permittivitye, where the potentiai(r) is governed by the Poisson equation,

and partial atomic charges on the biomolecule atoms are lexdds discrete point charges
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at the atom centers:
2o == 5 5(r —ry), (3.8)

wheren, is the number of discrete point charges apdndr; are theit" charge’s magni-
tude and location, respectively. In the solvent region,lihearized Poisson—Boltzmann

equation

0% (r) = K20(r) (3.9)

governs the potential, where the inverse Debye screening length, depends on the con-
centration of ions in the solution and a higher permittigy We write Green’s theorem
in the interior and exterior regions and then enforce catiyrconditions at the boundary

to produce a pair of coupled integral equations,

—¢ (ra) +][¢ rYdA — ][a "NGa(ra;r')dA
- -Zig_:Gl(ra; i) (3.10)

/ aq) / -y /

][d) ra, "NdA + e“ —n(r )G2(ra;r)dA
=0, (3.11)

wherer, is a point on the surface, denotes the Cauchy principal value integi@, is
the Laplace Green’s functio, is the real Helmholtz Green’s functio%‘%i denotes the
appropriate double layer Green'’s functidr ) is the potential on the surface, a%%l(r) is
the normal derivative of the potential on the surface. Resadee referred to [21,117] for
detailed derivations of the formulation. To solve Equasi@il0 and 3.11 numerically we
define a set of basis functions on the discretized surfaceegmdsent the surface potential

and its normal derivative as weighted combinations of thesss functions:

Q

o(r)

o)
%(r)

3 % fi(r) (3.12)

Q

Zyi fi(r). (3.13)
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Figure 3-2: Continuum model for calculating biomoleculé/ation.

We force the discretized integrals to exactly match the kmewrface conditions at the

panel centroids; this produces the dense linear system

h+% G X KGy(r;r
[ A B G | (3.14)
?I B a_nz €|I| G y 0
where, denoting th&" panel centroid as, the block matrix entries are
Guij = ][fj(r/ )Ga(ri;r')dA (3.15)
0G1 B 6G1 ,
<W>ij — ][f (1o (3.16)

and the block matrice§, and %2 are similarly defined. Note that boundary element

method solution of this problem requires a Green’s funcimolependent fast algorithm.

3.3 FFTSVD ALGORITHM DETAILS

The FFTSVD is a multiscale algorithm like most fast alganghfor low frequency appli-

cations: to compute the total action of the integral operatoa vector, we separate its
actions at different length scales and compute them segpgradmbining them only at the
end. In describing the FFTSVD algorithm, it is helpful tortkiof the basis functions as
sources, fi(r')G(r;r")dr’ as the potential produced by sourcand the collocation points

ri as destinations. Multiplying by G in Equation 3.4 is then computing potentials at all
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Figure 3-3: The multiscale approach to fast matrix multigtion.

the destinations due to all sources. Figure 3-3 illustrdtesnultiscale approach to fast
matrix multiplication: the squar8 denotes a source, and the squares denotedresent

destinations.

3.3.1 Notation

Let d ands denote two sets of panels: th€g s is the submatrix o6 that maps sources in

sto responses id. The number of panels in sets denoted byn;.

3.3.2 Octree Decomposition

We first define the problem domain to be the union of all the semnels that comprise
the discretized surfaces. We then place a bounding cube@tba domain and recursively
decompose the cube using octrees. Given a swdideveli, the nearest neighbors M\are
those cubes at levelthat share a face, edge, or vertex wathrheinteraction listfor sis
denoted as; and defined to be the set of cubes at lewtbhat are not nearest neighborssto
and not descended from any cube in an interaction list of aastar ofs[118]. Figure 3-4
illustrates the exclusion process for a 2-D domain. At evevel, each panel is assigned
to the cube that contains its centroid. Where ambiguity miit result,s denotes either
the cube itself or the set of panels assigned to it. This assgt rule ensures that each
panel—panel interaction is treated exactly once.

The coarsest decomposition is termed level 0 and hasles; coarser decompositions
have null interaction lists. We continue decomposing thaaa until we reach a levélat

which no cube is assigned more thayyax destinations. At each levelevery cubes has
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Figure 3-4: Interacting squares at two levels of decomjuosit

a set of interacting cubdg that are well-separated frogwith respect to the current cube

size. Note that the definition of an interaction list is syntmeed € Is — s € Ig.

3.3.3 Sampling Dominant Sources and Responses

One can compute the potential respofgen Is due to a sourcgs in sby the dense matrix-

vector product

b, = GigsUs (3.17)

Gls s € O nlsan.
However, the separation betwegandls motivates the approximation

Gls,S ~ Ulsvgsrc (3.18)

U, € OMk

S

V;-src e 0%

k < n

S

whereVssrc has orthogonal columns [109]. The matdsrc is small and represents the
source distributions is that produce dominant effects g It is a reduced row basis for
Gi,s. The projection ofjs onto Vs src loosely parallels the fast multipole method’s calcu-
lation of multipoles from sources, in the sense that bothntinétipole expansion and the
productvsfsrcqS capture the important pieces @f when calculating far-field interactions.

We callVssrc the source compression matrix.

66



A similar low-rank approximation can be made to find the rés@an a cubel given a

source distribution ifg:

bg = Gd,1404 (3.19)
~ Ud,desMICIId
Uddest € ek

\/|1— = Dkxnld

k < Ng-

Here,Uq qestiS small and represents tkelominant potential responsesdnthe destination
cube, due to source distributionslin We callUg gestthe destination compression matrix;

Ud,destiS a reduced column basis Gy | ,.

Since itis impractical to computg,, s andGs | for each cube, we use a sampling pro-
cedure inspired by the Kapur and Long hierarchical SVD me{tn69]. Figures 3-5 and 3-
6 illustrate the process of finding a reduced row b&gis.. To determine the row basis,
we begin by selecting one destination per interacting cabmputing the corresponding
rows of G, s, and performing rank-revealing QR factorization with teogonalization on
the transpose of the submatrix. If the submatrix rank istleas half the number of sam-
pled destinations, the QR-determined row basis is corsitter be adequate. Otherwise,
an additional destination is sampled for each interactirgecthe extra destination is cho-
sen to be well-separated from the originally chosen desbimaThe transpose of the new
submatrix is factorized and again required to have ranktless half the total number of

samples. The process of resampling is continued until tipgimed rank threshold is met.

To compute the reduced column badiggestfor the matrixGq ), we select a set of well
separated panels Ig, compute the corresponding columns@f;,, and QR factorize the

submatrix.
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Figure 3-5: Computing dominant row basis &y, s using sampling.
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Figure 3-6: Sampling a small set of long-range interactions
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3.3.4 Computing Long-range Interactions

Consider two well separated cutmsndd. Because the cubes are well separated, we could

find a low-rank approximation tGq s by truncating its SVD:

ba = GgsOs (3.20)
= Ud,szds\/(ISQS (3.21)
~ L]d,sid7s\7d1:sqs (3.22)

where the hat denotes trunctationkaolumns,k < ns. Since the source compression
matrix Vs src finds an approximation to the dominant row spacéqQfs, we expect that it
also approximates the dominant row spac&gg, which is a submatrix oG, s. Similarly,
we expect thallg gest approximates the dominant column spacesgf. A small matrix

Kd,s maps source distributions in the reduced b¥sig: to responses in the reduced basis

Ud dest

¢d = Ud,dest,sV;-srCQ& (3-23)

and it is easy to see that

Kas = UdT,desp‘d,sV&src- (3.24)

Note thatKy s is not diagonal becausddy jestandVssrc Only approximate the singular vec-

tors Ode,S If Vs7src € Dnsts andUd7dest€ Dnkad, theanys € DkkaS.

The action of th&k matrices can be computed in a number of different ways: they c
be computed explicitly, via multipoles, or via an FFT. Exfilstorage is memory intensive,
and multipole representations are Green’s function depreind/NVe have therefore chosen
to implement the memory-efficient, Green’s function indegent FFT translation method

presented by Yingt al.[108].
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Figure 3-7: Schematic of the FFTSVD method for computingloange interactions.

3.3.5 Diagonalizing Long-range Interactions with the FFT

Our method projects sources to a grid, uses an FFT convoltdiaccomplish translation
between source and destination, and interpolates resatts foom the grid. Figure 3-7
illustrates the approach. We introduce two matrid&s;. projects sources in cubjeto the
cube grid, and; g4 interpolates from the grid in cubgto the evaluation points in. We use
an equivalent density scheme similar to those used by phaind White [102] and Birost

al. [107] to determine the projection and interpolation maisic

Projection Matrix Calculation

Given a cubesand the basis function weights for panels irs, we wish to find a set of grid
chargesyg s that reproduce the potential field far fraanWe accomplish this by defining a
spherd” boundings and picking a set of quadrature points [119] on the sphereofig
quadrature pointon[ by rr j, the mapping betweeay and the responses at the quadrature

points can be written &Sr s, where

Grsij = / G(rrj;r')dr’. (3.25)
o panel]

The mapping between grid charges and responses at the tyuradvaints can be written
as
Grgij = G(rr.i.rg,j) (3.26)

whererg j is the position of thg™ grid point. If more quadrature points than grid points

are used for the matching, solving a least squares problees the desired projectid® s:

Pys=Gr ¢Crs. (3.27)
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In practice, one uses the singular value decompositionlte $or Py s.

Interpolation Matrix Calculation

Given grid potentialgly in a cubed, we find the potential$y at the panel centroids id
by interpolation. For problems in which centroid collocatiis used to generate a linear

system of equations, the interpolation matrix is calculate
la.g=(GrGra)' (3.28)

whereGr 4 denotes the Green’s function matrix from the quadratur@tpadnl” to the
panel centroids ird. If Galerkin methods are used rather than centroid colionathe

interpolation matrix is the transpose of the projectionnmat

Diagonal Translation

Once the grid charges is are known, a spatial convolution with the Green’s function
produces the potentials at the grid points in the destinatidbed. This spatial convolution
is diagonalized by the Fourier transform; we write the tfama matrix as? , its inverse by
F~1, and the transform of the Green’s function matrix(ﬁ&s. After calculating the grid
potentials ind, interpolation produces the potentials at the desiredueti@n points. The

matrix Gq s is therefore written as
Gd,s: |d,g5f—1é‘d,sfpg7s- (3.29)

The productdq oF ~1 and 7 Pys could be stored, but in our experience this precomputation
only marginally improves the matrix—vector product timeilhncreasing memory use
sinceF and ¥~ are padded and complex.

In addition to diagonalizing the translation operationw®#n cubes, the FFT signifi-
cantly decreases memory requirements. Using explicitatrices requires storing a small
dense matrix for each pair of cubes; using FFT translationiehtes the expensive per-

pair matrix cost. Instead, each cube has its &yandlg matrices, which are used for all
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long-range interactions. In addition, because the Grdan&tion is translationally invari-
ant, we only need to store a small numbetGoatrices for each octree level; each one
represents a particular relative translation betweenceoand destination cubes. Because

these matrices are diagonal, storage requirements arenalini

Since translation is the dominant cost in the FFTSVD mat@ctor product, efficient
implementation of the translation procedure is esserdiahdximizing performance. The
translation operation is simply an element-wise multgien of two complex vectors,
therefore, forgy grid points per cube side, each translation vectof2g, — 1)2[(2gp —
1)/2+ 1] complex numbers long when using the FFTW library [120]. Thisnber takes
into account padding and symmetry. For example, Wgh= 3, 75 complex numbers are
required, resulting in 250 individual multiplies duringettranslation operation. This num-
ber has been reduced by taking advantage of vectorizatianyhodern CPUs include
instructions that can assist in multiplying complex nunsbeithin a register, effectively
halving the number of required multiplies. For comparisiandard fast multipole method
translations require more multiplications since they avediagonal, and cannot be vec-
torized as easily since they involve matrix—vector produdn addition, we have yet to
exploit additional ways to accelerate the FFTSVD transtatperation. These include
using symmetries between related translation vec@)sguch as those that translate in
opposite directions, and exploiting the fact that for akiahslations, man¢ elements are

purely real.

3.3.6 Local Interactions

At the finest level of the decomposition, interactions bevaearest neighbor cubes are
computed directly by calculating the corresponding denbemtrices ofs. These subma-
trices are denoted b; j where | is the source cube andhe destination. We bound the
complexity of the local interaction computation by contmy the octree decomposition

until each cube has fewer thagmax panels.
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3.3.7 Algorithm Detail

The mapping from source culs&o destination cubd can thus be written as
0g =Ug (Ud lag) F 1GF (PysVs) Vs Gs (3.30)

The computations are grouped to eliminate redundant nhiglijpons; the matrix products

U{ l4.g andPy sVs are stored for each cube rather than recomputed at eveayidter Below,
(1)
j

associated with cubpgat leveli; let the inverse operator map a local vector to the global by

we introduce the restriction operatht;’ that restricts a global vector to a local vector

inserting appropriate zeros. Lietdenote the set of cubes at leveGiven a charge vector

g, the matrix—vector product is computed by the followinggadure:
1. DOWNWARD PASS FOR LONG-RANGE INTERACTIONS: For levels- 0,1, .. .,1:

(a) PROJECT INTO DOMINANT SOURCE SPACE: For each cijbel', com-
pute
(j= -{F(PQJVJ'?SYC)VstrcMJ(I)q- (3.31)

(b) COMPUTE LONG-RANGE INTERACTIONS: For each culpe L', compute

vi=Y Gl (3.32)

selj

(c) DETERMINE TOTAL DOMINANT RESPONSE: For each culpec Li, com-
pute
i),—1 _
6 =0+ M"7U] gee{UT ool 1.0) F 2} (3.33)

2. SUM DIRECT INTERACTIONS: For each culmkat levell, add the contributions

from neighboring cubelly:

)71 s pagsma. (3.34)

SENy

d=0+My
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3.4 COMPUTATIONAL RESULTS

To demonstrate the accuracy, speed, and memory efficiertbg 6fFTSVD algorithm, we
have used FFTSVD to solve for self and mutual capacitanceanious geometries. A
MEMS comb drive example [72] illustrates electrostaticralculation using FFTSVD.
In addition, to show Green’s function independence and fiskable layer kernels, we
have used FFTSVD to solve for the electrostatics of solwdio the highly charged dye
molecule fluorescein. Fluorescein is often used as a fluen¢$abel in BIoOMEMS applica-
tions [121,122], and its electrostatic properties in aggesnlution modulate its interaction

with other molecules and surfaces.

The FFTSVD algorithm has several adjustable parametgyg:is the reduced basis
tolerance;gp is the number of FFT grid points on each side of a finest-leubegnp max
is the maximum number of panels in a finest-level culgaq is the number of quadra-
ture points used on the equivalent density spht@leuresis the tolerance on the relative
residual that the resulting linear equations are solveditahe two finest levelsg, FFT
grid points per cube edge are used, and the number of gritlsqmen edge increases by one
for each successively coarser level; experience has shwtmusing different numbers of
grid points per edge provides significant accuracy impra@sfor marginal memory and
time costs. The parameters used for the following resuétd@r* for eqg, 3 for gp, 32 for

Np,max 25 fornguag and 104 for tolgmres unless otherwise specified.

For capacitance calculations, we compare performancedtCBp, based on the fast
multipole method [113], and fftcap++, based on the pFFT+plémentation of the pre-
corrected-FFT method [123]. All programs were compiledwiitl optimizations using the
Intel C++ compiler version 8.1 and benchmarked on an IntatiBe 4 3.0-GHz desktop
computer with 2 GB of RAM. All parameter settings in FastCap &tcap++ were left at
their defaults, except for the tolerance on solving theltegulinear equations, which was

set to 10 unless otherwise specified.
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3.4.1 Self-Capacitance of a Sphere

In order to test the accuracy of the FFTSVD method, we havdiezpf to solving for
the self-capacitance of a unit 1-m radius sphere, a quadriaywn analytically. Figure 3-8
shows the improvement in accuracy with increasing spheetization for FFTSVD with
values of 3 and 5 fogp, 2nd and 4th order multipoles in FastCap, and default ggttior
fftcap++. A tolerance of 10° for the relative residual when solving the BEM equations was
used in all programs. The analytical value for the self-c#pace of a 1-m radius sphere
is 0.111265 nF as computed by Gauss’ law. The results shawEESVD with a value

of 3 for gp tends to be more accurate than 2nd order multipoles in Fpstl@aaddition,
FFTSVD with low values ofy, tends to overshoot the analytical solution while FastCap
tends to undershoot with truncation of multipole order. Sghndings are consistent across

many geometries when examining convergence behavior.

0.11127

0.111261

0.11125¢

0.11124¢

f
0.11123} *

Capacitance (nF)

+— FFTSVD 9,= 3
_ 4. FFTSVD 9,= 5
—6—FastCap 2nd Order|

0.11122F

- ©- FastCap 4th Order | |
——fftcap++
— Analytical

0.11121F

0.1112

2 4 6 8 10 12
Number of Panels x10*

Figure 3-8: Accuracy versus number of panels for FFTSVDt{Eas and fftcap++ solving
the unit sphere self-capacitance problem.

3.4.2 Woven Bus Example (Homogeneous Problem)

As stated previously, one of the advantages of the FFTSVhodes its use of diagonal
translation operators. This advantage becomes appareas@s of homogeneous geome-
try, since a large number of translation operations areiredquTo examine performance in

a problem with homogeneous geometry, we have applied FFT®\4Iving for the mu-
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Figure 3-9: Homogeneous woven bus capacitance problemefwi@®n01).

tual capacitances between woven bus conductors as in F3gareTable 3.1 summarizes
the results for several woven bus capacitance problemsS¥BTIcan achieve slightly bet-
ter speed and memory performance than precorrected-FH&hwhexpected to excel at
problems with uniform distribution, and significantly ketjperformance as compared to

FastCap.

3.4.3 Inhomogeneous Capacitance Problem

One of the disadvantages of the precorrected-FFT methddhisttlays down a uniform
grid over the entire problem domain, and the simulation tgravs roughly in proportion
to the number of grid points. For simulations in which mosthef domain is empty, there-
fore, the precorrected-FFT algorithm is inefficient. Wedidemonstrated this inefficiency,
and FFTSVD's relative advantage, by configuring a set of aotats as shown in Figure 3-
10. Almost all of the panels in this system are at the edgesaba bounding the domain.
Figure 3-11 plots the matrix—vector product times for thd 8¥D, FastCap and fftcap++
codes, and Figure 3-12 plots the memory requirements. Ascte@, the precorrected-
FFT based fftcap++ code has poor performance, especialliyni® discretizations of the
inhomogeneous problem. FFTSVD performs consistenthebdtian fftcap++ and gener-
ally better than FastCap. The sharp jumps in FFTSVD anddfteanatrix—vector product

time with increasing panel count are due to a change in seteof the optimal octree
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Table 3.1: Comparison of FastCap (FC), fftcap++ (FFT++)RBRASVD (FS) performance in terms of matrix—vector produnet(MV)
and memory usage (MEM) on homogeneous woven bus capacjpanickems with 2, 5 and 10 crossings (woven02n03, woven05n03
woven10n03) and 10 crossings with lower discretizatiorMgmiOn01).

[ Problem [ Panels] FC MV (s) [ FC MEM (MB) [ FFT++ MV (s) | FFT++ MEM (MB) | FS MV (s) | FS MEM (MB) |

woven02n03 3168 0.03 30 0.02 23 0.01 11
woven05n03 18720 0.17 205 0.22 411 0.09 110
wovenlOn0l 8160 0.08 89 0.04 69 0.04 41
wovenlOn03 73440 0.73 901 0.51 818 0.41 466




Figure 3-10: Inhomogeneous capacitance problem.

decomposition depth or FFT grid size, respectively.

3.4.4 MEMS Comb Drive

We have simulated the MEMS comb drive illustrated in Figurgé F2]. We applied a
voltage difference of 1 V to the two structures and used atliearder finite difference
scheme to approximate the derivative in Equation 3.2. Beethe finite-difference scheme
for force calculation requires high accuracy in the capagié calculations, more stringent
parameters are required for these simulations. We have akggkes= 105, EQR= 1076,
dp = 5, Nnquap = 64, and for each discretization we have fixgghax such that the octree
decomposition depth is equal for each of the four geometries

The contribution of each panel to the axial force is plotte&igure 3-13 and the total
axial electrostatic force is plotted in Figure 3-14 as a fiomcof the number of panels used
to discretize the comb drive. We have used general triaragldsnote that the discretiza-
tion scheme is poorly tuned for the calculation of elecabstforces; nonuniform meshes
achieve superior accuracy at reduced panel counts [124] fdrbe can also be calculated
by integrating the squared charge density over the condsattace, but this approach re-

guires specialized treatment because the charge densiynes infinite at the edges and
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Figure 3-13: Magnitudes of panel contributions to the aglattrostatic force. Units are
pN.

corners of the conductors [125, 126].

3.4.5 Solvation of Fluorescein

We have used the integral formulation in Equations 3.10 abdl ® calculate the solvation
energy of fluorescein. To prepare a model for solvation d¢afimns, its structure and par-
tial atomic charges were determined from quantum mechboateulations. Radii were
assigned to each atom and used to generate a triangulatibe afolecular surface. The
interior of the fluorescein molecule was assigned a diatectmstant of 4, and the exte-
rior was assigned a dielectric constant of 80 (for waterhait ionic strength of 0.145 M
(k = 0.124 A-1). FFTSVD was used to solve for both the electrostatic siwatnergy
(Figure 3-15), as well as the total electrostatic potertrathe surface of the fluorescein
molecule (Figure 3-16). We note that the long-range sirghel double-layer integrals can
be computed using only one set of of translation operatiDifferent projection operators
are used to find the corresponding grid charges due to moaapal dipole distributions,

and the grid charges can then be summed for translation.
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Figure 3-14: Calculated total axial electrostatic forceooe comb.
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Figure 3-16: Electrostatic solvation potentials on the enalar surface of fluorescein.
Units are kcal mot! e1,

3.5 DISCUSSION

3.5.1 Algorithm Variants

For problems with a small number of integral operators, mgmonstraints may not be a
significant consideration. In these cases, the matigascan be stored explicitly. These
Kq,s matrices are computed using Equation 3.24, but insteadropatingGq s explicitly,
we project, translate and interpolate an identity matringishe methodology outlined in
Section 3.3.5. Although setup time and memory use increass wxplicit K-matrices are
used, the matrix—vector product time is significantly reztlidNVe have also implemented a
parameter that allows a tradeoff between speed and memethrmigh K-matrices. Pairs
of interacting octree cubes that contain fewer panels tharparameter are handled with
explicit K-matrices, while all other cubes use the FFT-lbaganslation. In this manner,
the balance between speed and memory can be fine-tuned fgivémeapplication.

It is also straightforward to create an FFTSVD variant thiatsrin linear time; the same
method used to generate the projection and interpolatianicea can be used to create
“upward pass” and “downward pass” operators such as thoselfim multipole algorithms.
This variant algorithm is essentially equivalent to theletrindependent method by Yireg
al. [108], except that we allow all the grid charges to be nonzdroe Ying method, in
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contrast, uses only grid charges on the surface of the cube.

The linear-time FFTSVD method requires a greater numberridf gpints per cube,
due to the loss of degrees of freedom during each upward passchild to parent cube.
In addition, the SVD based compression of dominant souncdg@sponses is no longer
computed, since these bases are now taken directly from chidles. This method is ex-
tremely memory efficient since dominant source and respbases are no longer stored,

but it trades off performance to achieve it due to the largquired grid sizes.

Finally, the multilevel structure of FFTSVD allows easy al#elization. Each proces-
sor can be assigned responsibility for a set of cubes one&darsls, and the computation
can proceed independently until the final potential respsase summed. We have imple-
mented parallel FFTSVD using both OpenMP and MPI librariék good results.

3.5.2 Summary

We have developed a fast algorithm for computing the dendexs@ector products re-
quired to solve boundary-element problems using Krylowspale iterative methods. The
FFTSVD method is a multiscale algorithm; an octree decompdise matrix action into
different length scales. For each length scale, we use sagripl calculate reduced bases
for the interactions between well-separated groups of lpariehe FFT is used to diag-
onalize the translation operation that computes the lamge interactions. The method

described here relies on both kernel decay and translatianiance.

Numerical results illustrate that FFTSVD is much more megmefficient than Fast-
Cap or precorrected-FFT, and that it is generally fastem #ither technique on a variety
of problems. In addition, FFTSVD is Green’s-function indapent, unlike FastCap, and
the method performs well even when the problem domain issspapopulated, unlike
precorrected-FFT. Our implementation is well-suited ttvasg@roblems with multiple di-
electric regions. Finally, we note that the structure of dlgorithm permits treatment of
kernels that are not translation-invariant; for such peaid, the<-matrix algorithm variant
should be used rather than the FFT. Together, the algostperformance and flexibility

make FFTSVD an excellent candidate for fast BEM solvers farofluidic and micro-
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electromechanical problems that appear in BloMEMS design.

84



Chapter 4

Accurate Solution of Multi-region
Continuum Electrostatic Problems
Using the Linearized
Poisson—Boltzmann Equation and

Curved Boundary Elements

We present a boundary-element method (BEM) implementdtiosolving problems in

biomolecular electrostatics using the linearized PoisBaftzmann equation. The moti-
vating factor behind this implementation was the desire¢ate an efficient and accurate
solver capable of precisely describing the molecular togiels prevalent in continuum
models. Underlying this implementation are three key fiestuhat address many of the
well-known practical challenges associated with the bampelement method. First, we
present a general boundary-integral approach capable @éling an arbitrary number of

embedded homogeneous dielectric regions with differie¢ediric constants, possible salt
treatment, and point charges. Second, molecular and dlgleessrfaces used to describe

dielectric and ion-exclusion boundaries are discretizith gurved boundary elements that

To be submitted [50].
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faithfully reproduce even complicated geometries. Robusterical integration methods
are employed to accurately evaluate singular and neatsingqitegrals over the curved
boundary elements. Third, we avoid explicitly forming thende BEM matrix, and in-
stead solve the linear system with preconditioned GMREBguse FFTSVD algorithm
to accelerate matrix—vector multiplication. A comparistrthe presented BEM imple-
mentation and standard finite-difference techniques dstrates that for certain classes of
electrostatic calculations, the improved convergencegnas of the BEM approach can
have a significant impact on computed energetics. Theségesiggest that solvers with
improved accuracy may be important to ensure that predisti@sed on continuum mod-
els are limited by the models themselves rather than by ®imothe models’ numerical

evaluation.

4.1 INTRODUCTION

Continuum theories of solvation have become common toalsrfolecular modeling,
and have led to an improved understanding of electrostataractions in biomolecu-
lar systems [9, 94]. One of the most popular models of contimsolvation treats a
molecule and its solvent environment as homogeneous regiblow and high dielec-
tric constants respectively, with embedded point chargemesenting the molecular charge
distribution and Debye—Hiickel theory modeling the effd#ctalt. The linearized Poisson—
Boltzmann equation governs this continuum model, and thpisgon has received much
attention in recent years [6, 10, 127]. The linearized Rwmis8oltzmann equation (LPBE),
an elliptic partial differential equation (PDE) [128], iseWunderstood theoretically and
can be solved numerically using a variety of techniquesutiog finite-difference meth-
ods (FDM) [20, 22, 26, 31, 95, 129-131] finite-element meth@EEM) [25, 30, 132], and
boundary-element methods (BEM) [17,19, 23, 27,28, 32,926, 133—-135].
Boundary-element methods offer several inherent advastager volume-based meth-
ods for solving the LPBE with regions of homogeneous diele¢b4]. For example, the
BEM only requires discretization of problem boundarieseatthan the entire infinite do-

main, and inherently captures the correct zero-potentiahtary condition at infinity. In
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comparison to finite-difference methods, BEM has the ahittmodel point charges ex-

actly rather than requiring grid projection.

Unfortunately, boundary-element methods require sojght®td numerical techniques
in order to be competitive with the flexibility and perforntanof volume-based methods.
Several challenges complicate the implementation of BEbhn&ues for biomolecule
electrostatics. The first challenge arises from the suffesed analysis of the problem.
Some Poisson—Boltzmann modeling problems require tredtofenultiple embedded or
disconnected regions with differing dielectric constaasl screening parameters [136,
137]. These features allow the simulation of solvent-fitadities within macromolecules,
salt-filled regions in large cavities, and an ion-excludiayer surrounding the molecule
with solvent permittivity but no salt. Multiple regions agasily modeled in volume meth-
ods like FDM and FEM because the dielectric constant and tesepce of salt can be
assigned to each grid point or volume element independdntfylementing these features
using BEM requires the discretization of every interfacéMeen dielectric regions and
between those governed by differing PDEs. In contrast,rekbased methods need no
additional degrees of freedom. Previous BEM approaches &iddressed these limitations
by developing specific formulations to treat multiple emibedl dielectric regions without
salt [136], multiple disconnected dielectric bodies witit $137], and hybrid boundary-

element/finite-difference methods to treat ion-exclusayers [33].

A second important challenge for biomolecule BEM is thersgrdependence of solu-
tion accuracy on the quality of the surface representatiothis work and in most others,
the dielectric and ion-exclusion surfaces are describedrding to one of two definitions.
Accessible surfaces [57] are defined as a union of spheresewhe atomic radii are ex-
panded by a probe’s radius. Molecular surfaces [49,59,E38ksent the surface of closest
approach of a probe sphere rolled over a union of spheresseqting a molecule. These
curved surfaces, which consist of portions of spheres and &e analytically defined
but often difficult to discretize because the surfaces haspg and singularities. Most
boundary-element methods for solving the LPBE represeartetisurfaces approximately
using large numbers of planar triangular elements, or garleht can never truly cap-

ture the curved geometries. The importance of using cureeels has already been dis-
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cussed [29, 38], but previous implementations have inttedwther approximations. For
example, other work has modified the molecular surface dieimto avoid singularities

and thin regions, used elements with low-order curvatuaé ¢annot accurately represent
spheres or torii, or discretized surfaces using standandrggal triangles that cannot ex-

actly represent the intersections between atoms.

A third challenge for BEM is that discretization of surfacéeigral equations gives rise
to dense linear systems of equations. As a result, memong soale quadratically in
the number of unknowns. In contrast, the FDM and FEM genespéese matrices that
reflect the local nature of the differential operators. 8wwhe BEM linear system by
matrix factorization require®(n®) time, wheren is the number of unknowns. Computa-
tional costs rapidly become prohibitive for systems withrenthan 16 unknowns, which
is currently insufficient to accurately model large macrdéenales such as proteins. The
guadratic memory and cubic time costs can be reduced ta loregear-linear complexity
by combining two approximation schemes. First, the lingatesns are solved approxi-
mately, rather than exactly, using Krylov subspace iteeatiethods such as the conjugate
gradient method (CG) or the generalized minimum residggrghm (GMRES) [82]. Ev-
ery iteration of a dense Krylov subspace method requiremthigplication of a vector by
the BEM matrix, costing a prohibitiv®(n?) memory and time. A second approximation
reduces the matrix—vector product cost by interpretingfdineation of the product as an
n-body potential calculation [113]. This interpretatiorabtes the use of techniques such
as multipole methods [28, 32,70, 97,113, 134], or multscakthods [135], to reduce the
solution costs td(n) or O(nlogn). Multipole methods require specialized expansions
for every governing equation, and expansions for the LPBE Ih@en developed in recent
years [139]. One disadvantage of the fast multipole metkR&M) in particular is that the
computational costs grow rapidly when improving accurdei0 due to dense translation
operations between multipole and local expansions, naiydhe development of more
efficient techniques [83, 108, 140].

Another challenge for the BEM is that the computation of edats in the dense systems
of linear equations requires the integration of possibhgslar functions over the panels

used to discretize the boundary surfaces. These integsatin be interpreted as the cal-
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culation of the potential, at an evaluation point due to aghalistribution defined on a
boundary element. In contrast, the matrix elements for FDIBEM problems are rela-
tively easily computed. Although analytical expressioxistdor the integral of the Laplace
(Poisson) kernel over flat triangular panels [45, 46], irdéign of the the LPBE kernel, or
integration over general curved domains, require numleamaroximation. When the eval-
uation point is sufficiently far from the panel, quadratusées can be used to perform
numerical integration, even over curved panels [69, 133jweler, when the evaluation
point is near or on the panel, even high-order quadratuesrdb not suffice to capture
the singularity. The evaluation of near-singular and slagintegrals has been noted to
be a limiting factor in the accuracy of BEM implementations molecular electrostat-
ics [27], and a variety of techniques have been developeilitereavoid computing these

integrals [27] or to approximate them with specialized qaade rules [141].

In this work we present a boundary-element method impleatiemifor solving the lin-
earized Poisson—Boltzmann equation (LPBE) that addredkegthese challenges, with
the ultimate goal of achieving high accuracy given reastmabmputational resources.
Three key features underlie the implementation. First, axelleveloped a general boundary-
integral approach that can easily treat an arbitrary nurabembedded regions of homo-
geneous dielectric with different dielectric constantd passibly salt. Second, the accessi-
ble and molecular surfaces are discretized using curveddaosy elements that accurately
capture the problem geometry, employing robust methodstapate self- and near-field
integrals. Third, the dense linear systems are solved ysagpnditioned Krylov subspace

methods and the FFTSVD algorithm [83].

Our Green’s-theorem-based integral-equation formaliouwa for ion-exclusion lay-
ers, solvent-filled cavities in the solute, and multiple lng@neous dielectric regions. Finite-
difference and finite-element simulations have long begralsle of modeling problems
with these features, but this work presents the first detaiéivation for BEM treatment.
The accessible and molecular surfaces are representeatiatgeexactly using curved
boundary-element discretizations that accurately rapredingularities, cusps, and thin
regions. Accurate numerical integration techniques fer shngular Laplace (Poisson)

and LPBE Green'’s functions [38] allow the BEM to achieve gtmmal accuracy. The
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FFTSVD algorithm [83] efficiently sparsifies the dense BEMixaand memory and time
requirements scale effectively linearly in the number aifiary elements. This fast BEM
technique can be applied without modification to comprelssfdhe integral operators in
biomolecule electrostatics. Furthermore, the denselaois operations that dominate the
FMM computational cost are replaced in the FFTSVD methot wibre efficient diagonal

translations, allowing for a better trade-off between cataponal expense and accuracy.

After describing the boundary-element implementation pnesent a set of computa-
tional experiments in order to assess the relative accuaagyomputational cost of finite-
difference and boundary-element method simulations fegrsé categories of calculations.
We calculate the electrostatic contributions to free eiesrgf solvation for an analytically
solvable sphere geometry, a short peptide derived from &nlHubstrate site [142], and
the barnase—barstar protein complex [77]. We also comgiteend non-rigid electrostatic
binding free energies for the wild-type barnase—barstardex as well as three single mu-
tants. Solvation calculations demonstrate that the BEMemted here provides better con-
vergence as a function of compute time. Rigid-binding rssalso suggest that the BEM
converges more rapidly than FDM. However, when comparifiigreintial rigid binding
energies between wild-type and mutant protein complexksrethe structure remains the
same except at the site of mutation, even low-resolutiotefidifference simulations seem
to accurately capture this difference. The curved BEM megan accuracy advantage for
differential non-rigid binding calculations, suggestthgt the accuracy of finite-difference
rigid binding may result from fortuitous cancellation of@r Finally, we demonstrate that
the BEM implementation offers a clear advantage in accuaacycomparable simulation
time for calculations that require repeated solution of $hene problem geometry with
different sets of atomic charges. Electrostatic compoaeatysis [143-145] and charge

optimization [34, 35] are types of calculations that fatbithis category.
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II

Figure 4-1: A one-surface problem in molecular electrastat The molecular interior
(Regionl) is surrounded by a salt solution with high dielectric canstand inverse Debye
lengthk (Regionll).

4.2 THEORY

4.2.1 Green’s theorem integral formulation

We begin our presentation of the multi-region integral fatation by deriving the one-
surface Green’s-theorem-based integral formulationrie=t by Yoon and Lenhoff [21].
This method is also known as the non-derivative Green’srémadormulation [29, 52].
Figure 4-1 illustrates the problem and notation.

A single boundarya divides space into two regions. The molecular interiorelat
regionl, has a uniform dielectric constagitand contains\; discrete point charges. The
it" point charge, located a, is of valueg;. In regionl, the electrostatic potentigl (r) is

governed by a Poisson equation
2 Qi
D% (r)=—73% —-o(r —ri), (4.1)

whered(r —r;) is the Dirac delta function translated hy
The solvent regionl exterior toa represents solvent with mobile ions; we model the
region as having a uniform dielectric constajtand an inverse Debye length In this re-
gion, the electrostatic potentig} (r) is assumed to obey the linearized Poisson—-Boltzmann
equation:
2@y (r) = k2@ (). (4.2)

The free-space Green’s functions for the Poisson and lirezhiPoisson—Boltzmann
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equations are

1 .
G(r;r')y = T Region | (4.3)

eKlIr=r'

S = e

Region I (4.4)
respectively. Across the boundary surfagethe electrostatic potential and the normal
displacement are continuous [51]. Using the relafiba: €E, where the electric fieldE

satisfiesE = —[¢g, we can write the continuity conditions for a pomton the surfaca as

®(ra) = @ (ra) (4.5)
a%—(g(ra) = s”aaq:]' (ra). (4.6)

In Equation 4.6, the normal direction is defined to point ite solvent region.

After specifying the problem domains and boundary cond#jmne applies Green’s

theorem in both regions. Green’s Theorem,

/V (W20 — OO2W] dV = / lw‘;i’_q,‘;‘“} do, 4.7)

whereW(r) and®(r) are two scalar fields, allows the determination of the paéat a
point in a volume/ given the free-space Green’s function for the governingagqo inV

as well as the potential and its normal derivative at the dowsurfaceQ.

We first apply Green’s theorem to find the potential at a pqiim regionl, which has
the bounding surfac® = a. Using the Green’s function (Equation 4.3) and substigitin
W(r') =G (r;r"), d(r') = @(r'), and Equation 4.1, we have

J

dVv/ =

G nir) (- 2 80 —n)) ()G (rir)

/a[G|(r|;r’)%—(2(r’)—m(r’)%(n;r’)} dA. (4.8)

In Equation 4.8 and throughout this section, the normalvdévie of G, is taken with

3G,

respect to the integration variahle that is, I

(r;;r") denotes the potential at induced
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by a normally-oriented dipole at. Simplifying the left-hand side using the definition of
the Green’s function,
O?Gi (ri;1') = =8(ri —1'), (4.9)

eliminates the volume integral in Equation 4.8, and by aaging terms one obtains an
expression for the potential at as a function of the solute charge distribution and the

boundary conditions:

:iig—:Gl(n;ri)—F/a[Gl(n;r’)%_(g(r/)_(ﬂ(r/)a_(rl;r/) dA. (4.10)

To apply Green’s theorem in regioh, one must first bound the region by introducing
a hypothetical surfack at infinity, and using the substitutiolgr’) = Gy, (ry;; 1), ®(r') =
@ (r'), Equation 4.4, and the LPBE Green'’s function definition. uksig the potential
obeys regularity conditions at infinity [23], the surfaceegrals ovef vanish, and we can

write the potential at a poim; in regionll as

(m(r”):/a[G”(r||;r’)aa%(r’)—cm(r’)a;;—n”(r”;r’) dA, (4.11)

and here, as in Equation 4.10, the normal direction is detio@dint into region| .

We derive a pair of coupled integral equations by lettinggbmtsr; andr; approach

a pointr, on the surface. Using Equation 4.10,

@(ra) = lim a(n) (4.12)
= /G|(ra,r’)a dA’—rIILnr l/(p a—' r;r’)dA
+Z G| (rari). (4.13)

The second term in Equation 4.13 can be interpreted as tleafptinduced by a dipole

layer of charge on the surface. Such a potential is discootis as the evaluation point
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crosses the surface and must be handled with care. We write

@ (ra) =]£ {G| (ra; r’)]%—(g(r’) —Q(r >aacr;]|

(rar)] dA’-|— (p| ra) -I—Z .G| (ra;ri),
(4.14)

where { represents a Cauchy principal value integral, and we asshatehe limit as

r, — ra has been taken from the direction opposite the normal. Alairimiting process

applied to Equation 4.11, in which we lgt — ry, yields

on(ra) = f |-G a5 o () 2 1) [ R+ S (). 4.9

Finally, we eliminate the unknowr (ra) andaa%(ra) using the continuity conditions

(Equations 4.5 and 4.6). Two coupled integral equationgdtes

—cg ra +][cg 6—| ra;r')dA — ][6 MG (ra;r')dA = (4.16)
—G(ra;ri
i;& I(a |)
1 ,aG| Ly oQ ;o
50— f @G rar)dR + - (G (rar)an = o (4.17)

Introducing an abbreviated notation allows the equatiorisetwritten as

%I-i-Dﬁa - 0a
0
3l -Di, enSta || 2

where@, and = denote the surface potential and normal displacemeat bdenotes the

(4.18)
0

zl Gi Ga :I

identity operatora 1 abbreviateg!, ands', andD}, denote the single- and double-layer
operators that compute potential at the suriadae to a monopole or dipole charge density

on surfacev, given the Green's functio@ (r;r’). The operato', is defined such that:

0 0
S’Na—? = ]{/G| (ry; r’)W(p\r’,)(r’)dN; (4.19)
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similarly,

0G
DﬂVCPv :]{/an(rlf (ru;r)eu(r)dA. (4.20)

~—

In Equation 4.18, we have also defin@ﬁi =G(rari)-

4.2.2 Numerical solution using the boundary-element metieb

To simultaneously solve Equations 4.16 and 4.17 using thendbary-element method
(BEM), we first approximate the surface variablg$r,) and %—‘ﬂ(ra) as weighted com-

binations of a set afi basis functiong(r),X2(r), ..., Xn(r) on the surface:

@®(ra) ~ Z UkXk(Ta) (4.21)
k=1
%—ﬂ(ra) ~ ViXk(T'a)- (4.22)

k=1

The unknown weightsy andvi are then found by forcing the integral equation to be satis-
fied as closely as possible in some choice of metric.

In this work, we discretize the surfaces into a discrete Sap @on-overlapping curved
boundary elements and use piecewise-constant basisdonac¢hat have a value of one on

a single panel and are zero everywhere else:

1 ifrais on panek
Xk(ra) = _ (4.23)
0 otherwise

Defining the integral equation residual to be the differelnetveen the known condi-
tion on the surface and the integral operator applied to pipecximate solution, one can
form a square linear system by forcing the residual to egera at the boundary-element
centroids, a technique known as centroid collocation [333ing the piecewise-constant

basis functions and denoting the centroid of parar,, the discretized (matrix) form of

the operatoSﬁa from Equation 4.19 has entries

S, :/ Gi(rg;r')dA;, (4.24)
panel
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and the double-layer discretized operaﬂmﬁra similarly has entries

L 0G - /
Di; _]{)ane” gy i IOA: (4.25)

The total matrix equation representing the discretizethfof Equation 4.18 therefore has
dimension 2,. Once this equation is solved, the potential anywhere icesmpaay be

calculated using the discretized forms of Equations 4.104ahl.

4.2.3 Extensionto multiple dielectrics, solvent cavitieand ion-exclusion

layers

Continuum electrostatics models of biomolecular systeamshe defined by multiple em-
bedded regions of differing homogeneous dielectric canistad salt treatment. Integral-
equation formulations that can solve these problems oftessgss a complicated block
structure because there exist numerous operators thakeceanpables on one surface to
conditions on other surfaces. To illustrate this blockatnte, we next present Green’s the-
orem formulations for two-surface and three-surface exampmblems. We then describe
how a tree-based representation of the enclosed regiafitataes the determination of the

appropriate Green’s-theorem-based integral operata@rfotrary multi-region problems.

Two-surface formulation

Figure 4-2 is a schematic of a two-surface problem in mobecelectrostatics; salt ions
are not permitted to directly reach the molecular surfacbut instead are bounded by
an accessible surfadea specified distance outside the molecule. The enclosedneolu
between the surfaces is termed the ion-exclusion layerioRegagain representing the
molecular interior, has dielectric constaptandn. point charges. The ion-exclusion layer,
regionll, has dielectric constamf;, and in this region the Laplace equation governs the
electrostatic potential. Regidhl represents solvent with mobile ions and has dielectric
constantgy;; (usually the same ag) but contains a Debye—Huckel salt treatment; the

potential in this region is governed by the linearized Rms®oltzmann equation. This
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problem has continuity conditions at batandb:

@ (ra) = @i(ra) (4.26)
a%—?}(r@ = s”aa%(ra) (4.27)
@1 (") = Qui(rp) (4.28)
e“aa%(rb) = 8|||a‘(;%(rb). (4.29)

The associated integral equations have four surface Vasialwhich are the potential
and normal derivative on both surfaces; %‘—‘r}?, M, %—“r’f. The free-space Green’s functions
in each region are again denoted Gywith the region label as subscrip@, (r;r’), for
instance, denotes the free-space Laplace Green’s functisnn the one-surface deriva-
tion, we apply Green’s theorem in each region using the apu@t@ substitutions, let the
field points approach the bounding surfaces, and elimiretendant variables using the

continuity conditions. The resulting operator takes ttrenfo

I+D2, -, ¢a Sie Gl
3l -Dfia +auSa| +Dfp —Sib i _ 0 (4.30)
—Dhi, +auSa| 3 +Dhy S @ 0 |
_ 1 _lell,b +€||,|||$b|7b 11 %—(ﬁ | L 0 ]

which can be solved with the boundary-element method desetiabove.

Note that the integral operator contains several zero Blodkese blocks arise from
the application of Green'’s theorem in regions for which onenore surfaces do not form
part of that region’s bounding surface. For instance, serfaforms no portion of the
bounding surface for regiol) and consequently variables on surfé#osontribute nothing
to the integral equation derived by applying Green’s theohe regionl. Note also that

two of the integral equations derive from the applicatiolioéen’s theorem in regiolh.
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Figure 4-2: A two-surface problem in molecular electrasgatThe molecular interior (Re-
gionl) is surrounded by an ion-exclusion layer with solvent digzle and no salt (Region
I1), which in turn is surrounded by solvent with a salt treatt{&egionlll ).

Three surface formulation

To identify more general trends in the construction of mitiundary integral operators,
we extend the two surface formulation by adding a solvelgefitavity inside the protein
interior (Figure 4-3). In this problem and for the remaindéthis section, we will follow
the convention that regiohis the outermost solvent region. The additional regdrhas
dielectric constang)y, (generally equal t@, andg ), and is not large enough to contain
an ion-exclusion surface. Again, we apply Green’s theoneraviery region, take limits
on the surface integrals as the field points approach thedawigs, and enforce continuity

conditions. The resulting operator takes the form:

%I"'DICV,C _$V,c ¢

3! = Dfii c+tevan S d  +Dfi b= b =
—DRi ctevanShi ¢ |31 D —Ship ® |

3 -Dhp+enanSy Dhaa ||

~DiptemnSip B +Dfa ~Sa | |®a

I %I - Dﬁa+8||,|$a_ a_%_

i -G
Sia-Ghi i
0
0

0

(4.31)
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Figure 4-3: A three-surface problem in molecular elecatiss. This geometry is analo-
gous to the two-surface problem (Figure 4-2) except thathzentfilled cavity has been
added within the molecular interior (Regitvi). Note that in contrast to previous exam-
ples, the regions and surfaces have been labeled in revelese o

In this expression, the charges in regldhcontribute to two of the integral equations,
both of which derive from the application of Green’s theorenthe region. The point-
charge contributions are found by taking limits as the fiethpin the region approaches
the exterior and interior bounding surfaces. Note that softiee off-diagonal Z 2 blocks
contain nonzero ¥k 2 blocks. These operators represent the contribution ofj@mss
interior (or exterior) bounding surface to the integral &ipn derived by letting the field

point in the region approach an exterior (or interior) bangdurface.

Tree-based general formulation

To derive an integral operator for an arbitrary configumaitdd embedded boundaries with
regions of differing homogeneous dielectric, point chargad salt treatment, we represent
the topology using a tree. Traversing the nodes of the tnexspiective of the order in which
they are visited, allows multiplication by the entire intagoperator taking into account all
necessary interactions. Each node of the tree represemtggion, and is associated with
a dielectric constant and possibly salt treatment or pdiatges. The tree is constructed
such that the node for a given regi¥ns assigned to be the child of the node corresponding
to the region surroundink. Regionl, which is bounded only by a hypothetical surface

at infinity, is defined to be the root node. Furthermore, w®asaste with each node the
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Figure 4-4: Tree representation of a general surface pmabl€he example molecular
geometry shown in (a) might correspond to an encounter caxiytween two associating
proteins (Regionsll 5 andllly), surrounded by a single ion-exclusion layer (Regdibn
which in turn is surrounded by solvent with salt (RegignThe binding partners contain
several solvent filled cavities (Regioiié,_¢), and one cavity is large enough to contain
a small ion-exclusion layer (Region). The tree representation for this example multi-
surface geometry is shown in (b).

exterior bounding surface of the corresponding region.utfggi-4(b) is a tree diagram
constructed to describe the system shown in Figure 4-4(a).

The example geometry used here may be representative ofcamirger complex in
protein—protein binding, where two nearly associated inipghartners (Regiondl 5 and
I11p) are surrounded by a single ion-exclusion layer (Redign There are also several
solvent-filled cavities present in both binding partnersgi®nslVa_¢), and one cavity is

large enough to contain a small ion-exclusion layer (Reyipn

Applying the multi-surface integral operator

A multi-region electrostatics problem with surfaces generates a system afcdupled

integral equations. For each surface, one writes Greeatsém for the regions exterior
and interior to the surface and takes the appropriate lasithe evaluation points approach
the surface. Accordingly, one may refer to the resultinggnal equations as the exterior

and interior equations corresponding to the surface.
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An integral equation derived from an application of Greeh&orem contains contribu-
tions from the surfaces bounding the region. As an examplesider the interior equation
for surfaceQp. Applying Green’s theorem in regidil , defines the potential at a point
in this region as a function of the surface potential andatsmal derivative o1, Qv b,
andQyc. Taking the limit of the Green’s theorem expression as thé fieint approaches
Q1b, We obtain the interior equation. Clearly, a surface’srioteequation contains con-
tributions from the surface as well as its children. Sinijlaa surface’s exterior equation
contains contributions from the surface, its parent, asaillings. This can be seen by

letting the field point approach any of the cavity surfaces.

Multi-surface problems demand that careful attention bid pathe definition of the
surface normal. In this work we follow the mathematical camtvon that a normal always
points outward from the finite volume enclosed by the surfa@eapply the entire multi-
surface operator for an arbitrary problem, we first definea such as shown in Figure 4-
4(b). The tree is traversed depth first, and at each node we sgeral integral operators,
which in the discretized problem correspond to dense blaakira-vector multiplications.
Because each block multiplication may be interpreted asdngputation of the potential
at a surface due to a distribution of monopole or dipole ahang another surface, we
refer to the two surfaces as theurce surfacand thedestination surfaceThe set of block
multiplications is determined by the topology of the sueiscand is defined such that every

non-zero block in the integral operator is applied exactigen

We define four types of block integral operators: the selfeme interior operator, the
self-surface exterior operator, the non-self interiorrapa's, and the non-self exterior op-
erators. As previously discussed, each operator repseaarinhteraction between two sur-
faces. The labelmterior andexterior specify whether the integral operator arises from an
application of Green’s theorem to the region interior oeext to the source surface. The
self and non-self operators are distinguished becausadberdinuity in the self operator

double-layer calculation requires specific treatment.

For every node, the following block matrix-vector multgdtions are performed. Let
the current node correspond to the regkarDenote its parent region W, sibling regions

by S, and child regions bY;. Lowercase letters correspond to the outer bounding ssfac
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T
for these regions. Every dense block is applied to the ve(ccpgr%—‘ﬁ*) .

1. Apply the self-surface interior operator

%I + D;((,x _S%<<7x } (4.32)

and add the result to the node’s interior equation.

2. Apply the self-surface exterior operator

[ %l - D\)/(V,x +8X7W§W7x } (4.33)

and add the result to the node’s exterior equation.

3. Apply the appropriate non-self exterior operator

| Dl +exwsiy | (4.34)

and add the result to the interior equation of plagentnode.

4. For eaclsiblingnodeS, apply the appropriate non-self exterior operator

| Diu exwSix | (4.35)

and add the result to the exterior equation of the siblingenod

5. For eaclchild nodeY;, apply the appropriate non-self interior operator
[ +0%, -g, } (4.36)

and add the result to the exterior equation of the child node.
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4.2.4 Matrix compression with the FFTSVD algorithm

As discussed in the Introduction, boundary-element metlyock rise to dense matrix equa-
tions whose solution by LU factorization or Gaussian eliation require€(n?) time and
O(n?) memory for a system with unknowns. Combining Krylov-subspace iterative meth-
ods with fast-solver algorithms reduces these costs tdyn€qn). The Krylov method
requires only a way to apply the matrto a vector; in contrast, LU factorization and
Gauss elimination require explicit access to every entrp.ofin this work, we use the
FFTSVD algorithm [83] to rapidly apply the dense integratcadors.

FFTSVD, like multipole methods, exploits the smooth dechthe Green’s functions
as the distance between source and evaluation point irseBsth types of methods use
a spatial decomposition of the set of boundary elementsgarate near-field interactions,
which are computed exactly, from far-field or long-rangesrattions, which can be ac-
curately approximated. The long-range interactions apFaqimated by projecting the
dominant panel source distributions, computed using amoxppate singular value de-
composition (SVD), onto a grid. Grid—grid interactions amnputed via the fast Fourier
transform (FFT), and the dominant responses are integabladck to the destination in-
tegral equation collocation points. An overview of the FRWTSmethod is presented in
Figure 4-5, and a fully detailed description of the algaritban be found in reference [83].

For the general multi-boundary Green’s theorem formutgteach node in the tree
contains a FFTSVD-compressed operator that simultangastsies both the single- and

double-layer interactions between all panels that bouadégion.

4.2.5 Preconditioning

It has been previously noted in the literature that the nervdtive Green’s theorem for-
mulation can lead to ill-conditioned systems of linear eopnes, especially with decreasing
boundary-element size [32]. To address this issue, we magkmented preconditioning
in order to efficiently solve these systems with iterativahmoes. By definition, a precon-
ditioner is any matriXP such that the equatidPAx= Pb has better convergence properties

thanAx = b when the systems are solved iteratively. In general, Krytierative methods
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Figure 4-5: An overview of the FFTSVD matrix compressionagithm. FFTSVD uses
a multi-level octree spatial decomposition to separateeb@valuation point interactions
into near- and far-field components at multiple length scalghen two cubes at the finest
length scale are nearby, interactions are computed thrdight integration. However,
when two interacting cubes are well separated, dominamtesare projected onto a cubic
grid and translated to a grid surrounding the recipient cllbe FFT is used to accelerate
this translation operation. Finally, the grid potentiagsidoe interpolated back onto the
dominant responses of the panel centroids. This Figure ées &dapted from [83].

are most efficient at solving linear systems with clusteligdre/alues [146]. Because the
identity matrixl (or multiples) has an optimal clustering,is generally selected such that
P~ A1 but is inexpensive to form and apply.

For the discretized integral operator matrices that arsm fthe Green’s theorem for-
mulation, the dominant entries tend to be the self-influgagas, for which the evaluation
point is on the element over which the integral is perform@dnsequently, a reasonable
choice forP is the inverse of a sparse matrix that contains only thesdeseh entries. As
an examination of Equations 4.18, 4.30, and 4.31 should mokda, the sparse matrix
that includes just the self-influence terms is not diagobad,no row has more than two

non-zero off-diagonals.

4.2.6 Curved panel discretization

In order to generate the basis functions used in the bourelamgent method, we discretize

the molecular and accessible surfaces that define the pnabk® curved elements that
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can exactly represent the underlying geometry [38]. Adbéssurfaces [57], also called
expanded van der Waals surfaces, are generally used to thedeh-exclusion layer and
can be completely described by convex spherical patchesdealby circular arcs. These
circular arcs are not necessarily geodesic arcs, and thuseviie concept of a generalized
spherical triangle (GST) (Figure 4-6(a)) [38, 39]. A GST itheee-sided curved element
that lies on the surface of a sphere, where each edge is atesbwiith a circular arc. If the
arc center for all three edges happens to be the center optieees a traditional spherical
triangle is recovered. A spherical patch can be discretizeda set of GSTs by starting
with a flat element triangulation, and then assigning the@mpate circular arc to each
panel edge. Edges that lie along the interface between aognassigned non-geodesic

arcs that follow the curve of intersection, while all othdges are assigned geodesic arcs.

Molecular surfaces [49, 59, 138], used here to model dietectterfaces, are the sur-
faces of closest approach for the surface of a probe sphatéstholled over a molecule.
They can be described by three types of surface patches@d8jex spherical patches are
defined where the probe sphere is in contact with only one ,aa0ich can be described by
portions of a sphere bounded by circular arcs and discoktvzth GSTs. Concave spherical
re-entrant patches are formed when the probe touches thneere atoms simultaneously,
and are also described by GSTs. When the probe simultaryetmuglhes two atoms, a
portion of a torus is generated. Toroidal regions are disee into four-sided curved torus
panels (Figure 4-6(b)) that are isomorphic to a rectangl€fuly meshed curved panel

discretization for the barnase—barstar complex molecuidace is shown in Figure 4-7.

Techniques for integrating singular Green’s functionsrakiese curved GST and torus
panels have been developed, and are discussed in deta8]inB8iefly, when the eval-
uation point in the integrand is far away from the panel, lander quadrature rules are
used to perform numerical integration. These quadratues are generated by creating a
smooth mapping between a reference flat triangle or reagifgl GSTs and torus panels
respectively) that relates a known quadrature rule on teesple domains [44] to those
applicable on the curved panels. When the evaluation peimear or on the curved panel,
even high-order quadrature rules do not suffice to captweitigularity. As a result, we

adopt specialized methods for each panel type and Gream$idn. For the single-layer
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Figure 4-6: The two types of curved panels used to discretmessible and molecular
surfaces. A generalized spherical triangle (GST) (a), lweetsided region on the surface
of a sphere bounded by three circular arcs. These arcs areepessarily geodesic arcs.
Torus patches on molecular surfaces are discretized usinglal panels (b), which are

isomorphic to a rectangle.

Laplace (Poisson) kernel, we integrate over GSTs usinglaigge that reproduces the
effect of panel curvature using a higher-order distributbo a reference flat triangle [71].
Single-layer Laplace integrals over torus panels are atatliusing a panel-splitting ap-
proach, which avoids integration near the singularity gsiecursive subdivision. When
integrating the double-layer Laplace kernel in the nedd-fiwer both GST and torus pan-
els, we exploit the fact that the double-layer potentiakjgad to the solid angle subtended
by the curved panel when observed from the evaluation p6int]3]. In order to integrate
the linearized Poisson—Boltzmann kernel or its normahMaddisie in the near field, we adopt
a previously presented desingularization technique [38]s method divides the integral
into a singular Laplace component that can be integrateésitted above, and a smooth

component that can be integrated using quadrature.
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Figure 4-7: A rendering of a curved panel discretizationtf@ molecular surface of the
barnase—barstar protein complex. Red regions indicateegmpherical patches, green re-
gions are re-entrant spherical patches, and blue regien®earidal patches. Black lines
indicate the boundaries between panels. The graphic degmcapproximation to the dis-
cretized geometry used for calculation. Every GST and tpamel has been approximated
by a very large number of flat triangles for the purpose of afigation only, and the true
surface normal in conjunction with Phong shading have beed to render the image.
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4.3 COMPUTATIONAL DETAILS

4.3.1 Peptide and protein structure preparation

The structure of a peptide derived from an HIV-1 proteasawvege site was obtained from
the Protein Data Bank (PDB) with accession code 1F7A [148is $tructure contains nine
visible residues of a decameric peptide bound to an indetivanutant of HIV-1 protease;
only the peptide was considered in further calculations. NAterminal acetyl blocking
group and a C-terminal methylamide blocking group were dddehe peptide. The wild-
type structure for the barnase—barstar protein complexalss obtained from the PDB
using accession code 1BRS [77]. To prepare this structurealoulation, we followed a
previous protocol [147] where all but a set of 12 interfagrater molecules were removed.
For both the peptide and barnase—barstar structures, dglratoms were added using
the HBUILD module [148] in thecHARMM computer program [58] using theaRAM22
parameter set [11] and a distance-dependent dielectristaoinof 4. In addition, side-
chain atoms that were missing from the crystal structuras webuilt usingcHARMM and
the defaullPARAM22 geometry. All ionizable residues were left in their stamidstates at
pH 7.

4.3.2 Modeling of barnase—barstar mutations

Three point mutations (E73Q in barnase, D39A in barstar, T&#A in barstar) were built
into the barnase—barstar complex for subsequent analyi$is. alanine mutations were
created by cutting back the wild-type residue tofhearbon. The E73Q mutation was built
by sampling glutamine side-chain dihedral angles in 30-ekegicrements usingHARMM
[58] and thepARAM22 parameter set [11]. For each sampled conformation, tieeciain
was energy minimized until convergence keeping all othamatin the structure fixed. The

lowest energy minimized geometry was taken to represerETI3€) mutation.
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4.3.3 BEM and FFTSVD parameters

Parameters used in the FFTSVD algorithm included a dropaote of 10° for SVD
compression, spatial decomposition until each cube coedlano more than 32 panels,
and a grid size of 4 4 x 4 in each finest-level cube to represent dominant sources and
responses during FFT translation. The boundary-elemetrixreqjuations were solved
using the Krylov subspace method GMRES [82] to a relativigltes of 10°6. All curved

BEM calculations were performed on a 2-way dual-core 2.0 GHizron machine running

a parallel version of the FFTSVD library. All presented thgs are the sum of CPU usage

across all four processors.

4.3.4 Finite-difference solver and parameters

In order to compare our curved-panel boundary-elemenesatvfinite-difference meth-
ods (FDM), we have implemented a FDM solver using previoassgcribed techniques
[22] and an analytical surface representation. This implaietion uses successive over-
relaxation (SOR) with an optimized acceleration factordlve the finite-difference equa-
tions to a relative residual of 18. In order to handle truncation of the boundary condi-
tion at infinity, a focusing scheme [95] was employed in allN\fDalculations where the
molecule of interest occupied first 23% and then 92% of théefidifference grid. For the
low-percent fill run, a Debye—Huickel screened potentiadatvent dielectric was used to
assign potentials to the boundary of the cubic grid. For tgh-percent fill run, boundary
potentials were taken by interpolation from the low-petddhsolution. Although it is
common to average results from multiple translations ofntiedecule relative to the grid
in order to reduce error due to the grid representation [@8ly one placement was used
here to make a fair comparison to the curved BEM, which isrigg&e to translations or
rotations of the geometry. Cubic grids used to discretizeenuar geometries in the FDM
spanned 129 to 481 grid points per Angstrom in increment2pfdich are all solvable
within 4 GB of computer memory. These sizes correspond t rgigolutions of approx-
imately 2.3 to 8.6 grid points per Angstrom for the barnasestar complex. All FDM

calculations were performed in serial on a 2-way dual-cadezHz Opteron machine.
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4.3.5 Electrostatic solvation and binding calculations

All continuum electrostatics calculations were performethg a molecular dielectric con-
stant of 4, a solvent dielectric constant of 80, a moleculaiase with probe radius 1 4
for dielectric interfaces, an accessible surface with praddius 2.0A for ion-exclusion
layers, and an ionic strength of 145 mM. In order to compugestbivation free energy of
a molecule, we take the difference between the energy otilkated state and a reference
state where the solvent dielectric constant is equal to thlecnlar dielectric constant and
no salt is present. The BEM calculates this energy diffezaticectly, and an explicit ref-
erence state is not needed. In the FDM implementation, tergygrof the reference state is

explicitly computed to cancel grid energy.

For rigid-binding calculations, the electrostatic comgohof the free energy of bind-
ing was computed as the sum of Coulombic interactions in thend state and the dif-
ferential solvation energy between the bound complex afidliiely separated individual
binding partners. For the FDM, proper grid placement wasl useaccelerate the calcu-
lation by cancelling the grid energy in the complex with geidergies for the individual
binding partners. Because the BEM only computes the reagiidential rather than the
total electrostatic potential, the Coulombic interactidretween the binding parters must

be explicitly added.

Non-rigid electrostatic binding energies were computedinsy energy minimizing the
geometry of the complex and each of the isolated bindinghpestseparately. The min-
imization was performed usingHARMM and thePARAM22 parameter set, relaxing all
atoms with 1,000 steps of adapted basis Newton—Raphson RABMNnimization using a
distance-dependent dielectric constant of 4. The bindimeygy was then computed using
a thermodynamic cycle where the two isolated binding pastmeere first desolvated to
a vacuum with the molecular dielectric constant. In vacutira,partners were deformed
to their bound-state structures and then rigidly bound,mating all electrostatic changes
with Coulomb’s law in molecular dielectric. Finally, theroplex was re-solvated. The
sum of the energetic changes in these three steps was takie@ @asn-rigid electrostatic

binding free energy. Due to the change in geometry betweehdbnd and unbound states
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in non-rigid binding, the FDM grid energy cancellation tacfue could not be used, and

explicit reference states were employed for all FDM sobstalculations.

4.3.6 Generating curved panel discretizations

Molecular and accessible surfaces were discretized imegedupanels starting with high-
quality flat triangular meshes for spherical regions frora grogram NETGEN [149].
These panels were then converted, along with torus patohesirved panels using pre-
viously described methods [38]. Curved-panel discratpat for molecular geometries
were generated such that memory requirements did not exc&l For the sphere test
case, discretizations were obtained between roughly 8®&riD0 curved panels includ-
ing ion-exclusion and dielectric interface surfaces. erpeptide example, panel counts
spanned approximately 5,200 to 128,000, and for the vabausase—barstar complexes,
the span was roughly 92,000 to 310,000 total curved panels.

4.4 RESULTS AND DISCUSSION

For all calculations, we compared our boundary elementiteetuthose generated using
finite-difference methods. Although geometric measuresbeadefined for such compar-
isons [28, 135], we chose to use compute time as our metragtermine which method
can achieve superior convergence properties given a cemadount of time. We could not
guarantee that the geometry of the problem being solvedaistigxhe same in both meth-
ods because different algorithms were used to generatecalateboundaries. Therefore,
for systems without closed-form solutions, the level ofwagence for a particular method

was assessed solely on how little the solution changed a®thpute time increased.

4.4.1 Electrostatic solvation free energies

One of the simplest linearized Poisson-Boltzmann calmriatis the computation of the
electrostatic component of the free energy associatedthttransfer of a molecule from

low- to high-dielectric medium, where the high-dielectggion contains an ion-exclusion

111



—#— Curved Boundary Element|
—+— Finite Difference

W' \/\‘\\—\ |

Relative Error from Analytical (kcal/mol)

10" 10° 10° 10
Compute Time (s)

Figure 4-8: Convergence plot for the solvation free eneagyafsphere with an eccentric
charge and ion-exclusion layer. The relative error fromahalytical solution is plotted
as a function of compute time. Results are compared betveecurved BEM and FDM
implementations. The curved BEM accuracy is limited to Sigisl given the settings used
in the FFTSVD matrix compression.

layer with salt outside. This quantity, known as the elestitic solvation free energy, is
useful in many calculations and forms the basis for compgutitore complex quantities
such as electrostatic binding energies. We first validatedrulti-surface formulation by
computing the solvation free energy for a simple spheriesi tase, which has a closed-
form solution. Then, we gauged the accuracy of the solvexhyngning more complicated
geometries including a peptide derived from an HIV-1 sidistsite and the barnase—barstar

protein—protein complex.

Sphere with ion-exclusion layer

In order to test the correctness of the multiple surface tdation, the electrostatic solva-
tion free energy for a sphere of radiuf\with a charge of+1e placed 0.5A away from
the center was computed. An ion-exclusion layer was added Butside the sphere sur-
face, creating a two boundary problem. BEM and FDM solutiese compared to the
analytical solvation energy for this geometry [35] to gexterthe convergence plot shown
in Figure 4-8.

From the sphere convergence results, it is clear that thed BEM method is able to
achieve superior accuracy given the same amount of comipugeass the finite difference

method. For this problem, the FDM is limited to 2—3 digits otaracy, even when using
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Figure 4-9: Computed solvation free energies, using cuBEll and FDM, for an HIV-1
substrate peptide (a) and the barnase—barstar compleXlib)absolute electrostatic sol-
vation free energy is plotted as a function of compute time,the selected discretizations
used up to 4 GB of computer memory.
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resolutions greater than 50 grid points per Angstrom. Trnééid ability of finite-difference
methods to achieve high accuracy has been noted previausheiliterature [150], al-
though we obtain better than 1% accuracy on this sphere dgarijpe accuracy of the
curved BEM is limited to 5-6 digits given the settings sedelcin the FFTSVD matrix
compression procedure. Additional accuracy can be adthieyéncreasing the size of the
grids used to represent long-range interactions, at theresgpof additional computational

cost.

HIV-1 protease substrate peptide

To evaluate the method on a more complex example, the ed¢atiosolvation energy for a
peptide derived from an HIV-1 substrate site was computetyl8=M and FDM including

salt and an ion-exclusion layer. The computed solvatiomggneas plotted as a function
of compute time (Figure 4-9(a)). It is clear from examiningu¥e 4-9(a) that the solutions
provided by the curved BEM implementation seem more corethan those obtained
from the FDM. Although it is unclear whether the two methods eonverge to the same
answer for this complex geometry, the solution at the higtissretization levels for the
curved BEM are changing by as little as F0kcal/mol, while those from FDM are still

changing on the order of tenths of kcal/mol.
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Barnase—barstar complex

In order to be competitive with finite-difference methodsg turved boundary-element
method presented here must be able to achieve high acclueaggipcompute time on large
macromolecules, where the number of curved panels reqtordiscretize the geometry
can be large. To test the solver on a moderately sized preysitem, we computed the
solvation free energy of the barnase—barstar protein ecanjpy,151,152], a model binding
system for which electrostatic interactions have been showe important[147,152—-155].
In addition to an ion-exclusion layer, the problem geométctuded four solvent-filled
cavities inside the main dielectric boundary. A comparibetween the BEM and FDM
for computing the absolute solvation energy of this compéeghown in Figure 4-9(b).
Even the finest BEM and FDM discretizations that can be sobvea computer with 4 GB
of memory give answers that differ by 8—9 kcal/mol. Furthereyit is difficult to establish
whether the two methods will converge to the same answer. edexythe curved BEM
profile does appear to be relatively flat, even though thetisolghanged by approximately

0.2 kcal/mol between the two highest-resolution calcatai

As can be seen in Figure 4-9(b), even the lowest BEM dis@itiz obtained for the
barnase—barstar complex requires more compute time teamdhest discretization used
for the FDM. The timings for the FDM remain relatively constacross the presented
problems because they depend primarily on the grid size.omtrast, the BEM requires
more curved panels to discretize a larger molecular syrfaseilting in significantly in-

creased simulation cost.

The accuracy of the BEM scales with the panel density; acagly the larger barnase—
barstar complex cannot be discretized at the same level adeaaible for the peptide
example. The BEM-calculation solvation energies in Figuded(a) and 4-9(b) exhibit
similar curvature, and the “knees” of the two curves are s&pd by approximately a factor
of ten in compute time. This difference is as expected camsig the ratio of the surface
areas for the peptide and barnase—barstar complex&@)ﬁﬁd 801932 respectively). The
level of FDM convergence might also be expected to suffeddager problems due to

decreasing grid resolution given the same number of gridtpoiSurprisingly, the FDM
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Figure 4-10: Comparison of preconditioning strategiesmwbaving for the electrostatic
solvation free energy of an HIV-1 protease substrate pepmtigicretized with 18,657 and
7,089 panels on the dielectric and ion-exclusion surfaespectively. The block-diagonal
preconditioner significantly reduces the number of GMRE&itions required to solve the
linear system of BEM equations to a relative residual of10

appeared to lose less relative accuracy with increasinglgmo size as compared to the
BEM. For the peptide and barnase—barstar solvation ersethie highest resolution FDM
calculations were still changing by approximately 0.05 8rflkcal/mol respectively. In
the curved BEM results, they were changing by 0.001 and Galrkol, indicating a larger

fold loss in convergence.

4.4.2 Importance of preconditioning

To demonstrate how effectively the block-diagonal prediomer accelerates convergence
of the iterative solution of the BEM equations, we repealwdsblvation energy calculation
for one discretization of the peptide example using seyaetonditioners. Specifically,
we performed the calculation without preconditioning,wét purely diagonal precondi-
tioner, and with the presented block-diagonal preconaéio As shown in Figure 4-10,
the number of GMRES iterations required to achieve a redatdsidual of 10° without
preconditioning was 422. The purely diagonal precondéraequired 198 iterations, and
the full block-diagonal preconditioner reduced this euatifer to 40 iterations. The block-
diagonal preconditioner generally allows even complexwetoies such as proteins to be

solved to a relative residual of 18in approximately 100 GMRES iterations or less.
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4.4.3 Rigid electrostatic binding free energies

Another useful quantity often calculated using the LPBE &iasl the rigid electrostatic
binding free energy between a pair of interacting moleculyse component of this quan-
tity is the difference in solvation energy between the bostate and two unbound states
where the binding partners are rigidly separated to infinftlgis differential electrostatic
solvation is added to the direct Coulombic interactions enlaetween the partners in the
bound state. To measure the role that LPBE solver accuragg h this class of calcu-
lations, as well as compare the curved BEM to FDM, we compthiedigid electrostatic
binding free energies for the wild-type barnase—barstarpdex and three experimentally
characterized single mutants (E73Q in barnase, T42A and\8Barstar) [152,156,157]
that have been previously shown to have a significant effiectlectrostatic binding cal-
culations [153, 158-160]. These mutations were built ihi wild-type barnase—barstar
complex with minimal perturbation, where all atoms remdiimethe same position except
at the site of mutation.

The results of these rigid electrostatic binding calcolagiare shown in Figure 4-11.
For the wild-type barnase—barstar structure as well as thi&mh complexes, the BEM
calculations showed smaller changes in the computed @sevgih increasing problem

discretization.

4.4.4 Differential rigid electrostatic binding free energes between mu-

tants and wild type

Often, when comparing a set of protein mutations to iderttifyse with improved elec-
trostatic properties, one is more interested in the redagiectrostatic rigid binding free
energies as compared to wild type than the absolute bindiagyees themselves. To gauge
the effect of solver accuracy on relative binding free eigsgve calculated the difference
in rigid electrostatic binding free energy between eachamiuand the wild type at every
level of problem discretization (Figure 4-12).

For all mutants studied, both methods appear to be conveoyeshths of kcal/mol

or better, and give very similar relative binding energiesw discretizations of the FDM
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Figure 4-11: Comparison between curved BEM and FDM for camptthe electrostatic
component of the rigid binding free energy between the Wifte barnase—barstar complex
(a), and three mutant complexes, E73Q in barstar (b), D3%amase (c), and T42A in
barnase (d). The binding energy obtained is plotted as aimof the compute time
required. In (a), several FDM and BEM results are labeleth wieir discretization level
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Figure 4-12: Comparison between curved BEM and FDM for campurelative rigid
electrostatic binding energies between mutant and wibe-tyarnase—barstar complexes.
Results are shown for the mutations E73Q in barstar (a), DB3farnase (b), and T42A
in barnase (c). The relative binding energy is plotted asiatfan of the compute time for
the mutant complex rigid binding energy.

provide solutions very close to the final answer in a very slimount of time. This may be
due to error cancellation because the mutant structurkes difle from the wild type. For
problems in which electrostatic energies are being conadagéveen structures for which
most atoms are located at identical positions, finite-tkfiee methods may be a better
choice than the boundary-element method presented heremiliperturbation relative-
binding calculations are often used when making predisttonmprove protein binding or

stability, especially in the field of protein design [2, 1662].
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4.4.5 Non-rigid electrostatic binding free energies

The rigid binding model, although a useful approximatisrdeficient in that it does not al-
low structural relaxation in the bound and unbound statess€quently, a variety of meth-
ods have been presented in the literature for treating igi-effects in protein—protein
binding using continuum electrostatics [14,163]. Oneudeamost techniques share is that
there is no longer a direct correspondence between theityagbatomic coordinates in the
bound and unbound states. As a result, we hypothesizechn&0OM would no longer be
able to take advantage of cancellation of error when comguton-rigid binding effects,
and that the accuracy of the overall calculation would ddtrongly on the ability to in-
dependently converge the solvation energy for each statestthis idea, we implemented
a crude non-rigid binding scheme involving independentimization of the complex and
unbound binding partners and a thermodynamic cycle to ctenglectrostatic energies.
The non-rigid electrostatic binding energies for mutargsersubtracted from those for the

wild-type barnase—barstar complex to generate non-regative binding energies.

As shown in Figure 4-13, the curved BEM method regains anracguadvantage in
non-rigid binding calculations. The curves in this ploteeble those from absolute bind-
ing energy calculations (Figure 4-11). The finite-diffezersolution does not appear to be
well converged at low resolution, and seems to graduallyagygh the boundary-element

solution.

Because grid cancellation could not be exploited in nordrgnding to avoid refer-
ence state calculations in the FDM, we computed the solvati@ach state independently
allowing the protein complex or binding partners to fill thatiee finite-difference grid.
Therefore, when subtracting the solvation energies ofibmgartners from the bound
complex, we were subtracting calculations solved at veffemint grid resolutions. To
determine if this was responsible for the inability of FDMdonverge relative non-rigid
electrostatic binding energies, we repeated the calomlaising fixed grid placement to
ensure that the solvation energy of each state was compiuteaghly the same number of
grid points per Angstrom. However, this modification did moprove the ability of FDM

to converge relative non-rigid binding energies (data hot\g).
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Figure 4-13: Comparison between curved BEM and FDM for caimguelative non-rigid
electrostatic binding energies between mutant and wibe-tyarnase—barstar complexes.
Results are shown for the mutations E73Q on barstar (a), #BBarnase (b), and T42A
on barnase (c) The relative binding energy is plotted as etifumof the compute time for
the mutant complex non-rigid binding energy.
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4.4.6 Multiple electrostatic solves for the same problem ganetry

As shown in the previous Results sections, the curved BEt¥ipagh offering better con-
vergence properties, is quite time consuming on large ge@aesuch as proteins. The
dominant computational cost in our implementation is casping the integral operators
using the FFTSVD algorithm, which primarily involves contimg costly integrals over
nearby curved panels. In contrast, the FDM requires vettg litme to initialize the sys-
tem of linear equations and spends almost all compute tilvengadhem. However, there
exist several types of useful electrostatic calculatibrag involve multiple simulations of
the same problem geometry; for these problems, the expeB&M “setup” time can be

amortized over all calculations.

One such example is charge optimization [34, 35, 147], whietermines the optimal
partial atomic charges for a ligand that minimize the etestatic component of its binding
free energy with a receptor molecule. In charge optimiratiwo geometries for the ligand
are considered: the bound state, where it is complexed tétiheceptor molecule, and the
unbound state, where it is isolated in solution. Each ligetmatge is set te-1e indepen-
dently, leaving all others at zero, and one determines tifiereince in solvation potential
at the ligand charge locations between the bound and unksiates by solving the LPBE
twice. This produces the ligand desolvation matrix, an irtggt component of the charge
optimization equation [34, 35]. OverallnZolves of the LPBE are required, whares
the number of atoms in the ligand. When using the BEM, eadie’stategral operator
only needs to be compressed once, and the compressed oparatee used to solve time

right-hand sides that only depend on the atomic charges.

To compare the performance of the curved BEM and FDM on a ehapgimization
problem, we computed the ligand desolvation matrix for taauis the wild-type barnase—
barstar complex. In total, 1403 simulations were perfornmedach of the bound and
unbound states. In Table 4.1 we report the time requiredngopee the ligand desolvation
matrix for three discretization levels of the finite-difeice and curved boundary-element
methods. The panel densities and grid spacings mention&abie 4.1 may be compared

to the labeled points on the absolute binding free energysplown in Figure 4.4.3.
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Method |

Grid Points Per Angstrom Time (S)

2.3 41,868

FOM 4.6 637,930
6.3 1,774,146

Panels Per Angstrom | Time (s)

9.4 755,343
Curved BEM 12.6 1,347,300
19.0 2,024,024

Table 4.1: Compute time required to calculate the entrigh@figand desolvation matrix
for barnase in the wild-type barnase—barstar complex. &tbrttne curved BEM and FDM,

the calculation was repeated at three discretizationdeer the curved BEM, the panel
density reported is for all surfaces in the bound state géyme

For the finer discretization BEM calculations, the computeetis comparable to that
required for the finer FDM discretizations. Relating thesemdtization levels to the con-
vergence plot suggests that for these multiple-solve prob] the BEM may offer superior

accuracy for similar computational cost.

4.5 CONCLUSIONS

In conclusion, we have presented an implementation of thedeary-element method for
linearized Poisson—Boltzmann continuum electrostaties is capable of achieving high
accuracy and solving the same topologies of dielectric Hatias, point charges, and salt
regions that volume-based methods are capable of solvieger8& techniques were em-
ployed to overcome several of the well-known practical {aions of the BEM. These
included a general Green’s-theorem integral formulatmmnhultiple embedded regions,
curved panel discretization with robust integration med#jcand preconditioned Krylov
subspace methods combined with matrix compression usengRi SVD algorithm.
Comparing the performance of the curved BEM against a neferdinite-difference
solver identified types of calculations for which improvegaracy may be important. For
example, when computing absolute electrostatic solvdtemenergies or the electrostatic
component of rigid binding energies, the curved BEM methitel® superior convergence

properties. Even at the highest discretizations possiltlew4 GB of computer mem-
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ory, finite-difference methods did not appear to be conwkrgse the solutions continued to
change significantly with increased expenditure of conmgutesources. However, when
comparing differential rigid binding energies between amitand wild-type protein com-
plexes, even coarse finite-difference simulations suffioedhpture relative effects. This is
not surprising considering that the local structural pdxdtions allow for cancellation of
error. Relative rigid binding calculations with local geetry perturbations are prevalent
in ranking the results of molecular design efforts [145)d dinite-difference methods are
an attractive tool for this class of computation. Howevdrew non-rigid effects were in-
troduced into the binding model, and the bound and unboiatdsstvere allowed to relax
independently, finite-difference methods lost their cogeace advantage. Therefore, as
more sophisticated non-rigid models of binding are empddpeanking results of molec-
ular design calculations, higher accuracy LPBE solverk sis¢the presented curved BEM
may become necessary to make reliable predictions.

In the current implementation, the computational resaureguired to obtain solu-
tions converged to tenths of kcal/mol on protein geomeatessomewhat higher than what
would be commonly available on a desktop workstation atttinie. In order to compute a
well converged protein solvation or binding energy in a fewts, a workstation with four
processors and 4 GB of memory are currently required. Becdngsproblem geometry is
already represented essentially exactly, it is likely tiat primary source of error in the
method arises from the use of piecewise-constant repeassm of the surface variables.
Higher-order basis functions may allow a significant redurcin the number of unknowns,
and thus the required memory. However, two complicatioas mhmay limit higher-order
methods are that the numerical integrations are more timswnuing, and that the com-
pressibility of the discretized operator may decreases it yet clear where the optimal
trade-off lies between basis function complexity and thes@plications, and improve-
ments in this area should be capable of reducing the time @&mdary usage of the curved

BEM implementation to more accessible levels.
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Chapter 5

A Co-optimization Approach for
Optimizing Electrostatic Interactions

between Biomolecules

In this work we present a computationally efficient approfmthcalculating a molecular
charge distribution that optimizes the electrostatic congnt of the free energy of binding
to another molecule. The electrostatic optimization tiiedeveloped over several years,
can require substantial amounts of computer simulaticor poi optimization, and our ap-
proach can in some circumstances greatly reduce the relqroraputational expense. The
approach uses an implicit matrix form for the objective fiime Hessian that directly cou-
ples the optimization to a numerical method used to simuatkecular electrostatics. The
implicit-Hessian method can be applied to unconstrainaededisas constrained optimiza-
tion problems, and results illustrate not only that the rodtécales advantageously but also

that realistic problems can be solved.

5.1 INTRODUCTION

A natural guestion in molecular design problems is whethearadidate design, or lig-

and, is optimal for binding the target, and if not, what madifions might be made to

To be submitted [164]; some portions of this chapter have peslished previously [165, 166].
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improve binding affinity or specificity. If one accepts shapenplementarity as a given re-
quirement, close packing interactions are relatively fizetbng candidates; however, the
long-range electrostatic interactions possess highlable energetics [34]. Furthermore,
because the binding reaction sacrifices electrostatitactiens between solvent and ligand
and between solvent and target for ones between target ganatli the electrostatic con-
tribution to binding free energies is not particularly initte. Therefore, the important but
challenging goal is to design optimal electrostatic int&oas to balance these competing
terms. Questions in molecular biology regarding the evatubf biomolecules to serve
specific functions or bind targets with high affinity and gfieity, may also be interpreted

as questions regarding optimization of a particular objedtinction [167].

The Tidor laboratory has developed over several years adtieal framework for ana-
lyzing the optimality of the electrostatic interactiondween molecules [34, 35, 147,167—
169]. The framework rests on a linear-response model oteedolvent electrostatic in-
teractions, and has generally been implemented usinganti electrostatic models (see,
for example, references [3,9]). The electrostatic bindheg energy between spherical
binding partners was studied, and it was shown that the paldticoefficients representing
one partner’s charge distribution could be optimized [3%he convexity of the electro-
static component of a rigid binding free energy was demated, and the approach was
extended to allow not only multipole coefficients as a bastdar optimization, but also
discrete point charges and an “inverse-image” basis [38kelwork showed that under
the continuum model and a small set of assumptions, therestatic binding free energy
would be favorable for many realistic systems [168]. In #&ddj a measure of electro-
static specificity was defined and studied in the context efdffinity optimization frame-
work [170].

The electrostatic optimization theory has been appliedudysa number of molecular
systems. Chonget al. [154] applied the original model [34] to barnase and fourat th
small sets of biochemically reasonable charge distribsticould closely reproduce the
computed optimal charge distribution. Lee and Tidor stddiee extremely tight-binding
partners barnase and barstar [147,167] and suggestedatistdris electrostatically opti-

mized to bind to barnase. Other researchers have sincaedpmmtradictory results, but
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the simulation methodologies have differed in significagtiagls [155, 160]. In particular,
the electrostatic simulations have been conducted usimgl®@aWaals surfaces rather than
solvent-excluded surfaces to represent the solute—gotielectric interface; this choice
appears to have been made so that the computed electrdsiatiog free energies best
match the total experimental binding free energies. Intzeradpplication of the optimiza-
tion theory, Kangas and Tidor studied the enzyBiesubtilischorismate mutase [169],
and their analysis indicated a particularly promising rfiodtion to improve the binding
affinity of a transition-state analog inhibitor—the rematent of a carboxylate group by a
nitro group. Mandal and Hilvert synthesized the proposéaditor and the resulting ligand
bound the enzyme more tightly, in agreement with the contjoutal analysis, to become
the tightest-binding chorismate mutase inhibitor in tierdture [171]. Sulea and Purisima
have studied charge optimization to study problems ranfgorg cation—protein binding to
the optimization of protein—protein interfaces [172]; ddé&ion, they have explored the use
of the charge optimization framework as a means to idenhift $pots” for binding [173].
Simset al. studied two protein kinases, protein kinase A (PKA) and ioydependent
kinase 2 (CDK2), and several inhibitors [174]. Green andTftave applied charge opti-
mization theory to two systems [145,175]. In one, they destrated that glutaminyl-tRNA
synthetase is optimized for its substrates [175]. Morentdgeghey proposed optimization-
theory-based mutations to 5-Helix, which inhibits HIV-1 migrane fusion by gp41 [145].
Armstrong et al. have studied several inhibitors of neuraminidase and sitedla lead-
optimization approach [176]. Very recently, Gilson expldra statistical-mechanical ap-

proach to extend the theory to allow the optimization of téiligands [177].

The application of electrostatic optimization theory igsfirated, however, by a com-
putational difficulty that arises while optimizing largembers of charges, or while ex-
ploring the optimality of multiple sets of binding partnetsplementations of the charge
optimization process have required multiple solutiondeffoisson or linearized Poisson—
Boltzmann equation to obtain complete information aboatghadratic objective function
prior to optimization [154]. A constant number of simulaisds typically executed for each
charge to be optimized [35,154]; although this precomjpartatost scales linearly, the pro-

portionality constant can be quite large. In this chapterpvesent a novel PDE-constrained
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optimization approach that avoids the initial computatemmd by doing so reduces the com-
putational expense to be effectively independent of theberrof charges [165, 166]. The
approach achieves this high efficiency by breaking the blawkabstraction of the electro-
statics solver and coupling the electrostatics simulatiethod directly to the optimization
equations. Our work specifically focuses on boundary-etemethod (BEM) simulation
coupled to optimization, but an analogous approach can Ipeemented using popular
finite-difference methods [18, 20, 22, 26, 31].

The remainder of this chapter is outlined as follows. Théfing section briefly in-
troduces the theory of electrostatic optimization as preskby Lee, Kangas, and Tidor,
numerical methods for calculating electrostatics in a ioonim model, and the coupled
optimization-simulation, or co-optimization, approablattis the focus of this work. Sec-
tion 5.3 describes several important facets of the implaatem for the co-optimization
method. Section 5.4 illustrates the method’s applicatmsdveral model problems and
to a realistic problem in biomolecule electrostatic opgation. Section 5.5 concludes the
chapter with a summary and brief discussion of promisingriiapplications for the co-

optimization technique.

5.2 THEORY

5.2.1 The Continuum Electrostatic Model and Numerical Simiation

with Boundary-Element Methods

The electrostatic contribution to a binding free energyoisimonly estimated using a ther-
modynamic cycle such as that shown in Figure 1. Three of #yesshvolve the transfer of
a molecule or complex from a low-dielectric environmentte solvent. The difference in
free energy between the two states is the solvation freggreand the electrostatic compo-
nent of this free energy is commonly estimated using a cantimelectrostatic model [3,9].
In this section, we present a continuum model and a numenietiod to compute the elec-
trostatic solvation free energy of a solute. The presesmas directed towards expressing

this change in free energy as a simple operator expressjiedgo the distribution of
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charge in the solute. Figure 5-1 illustrates one continuumdeh The molecule—solvent

Figure 5-1: A continuum model for estimating the electrostaomponent of a solute’s
solvation free energy. In this Figurg, andg represent the low-dielectric protein region
and the high-dielectric solvent regiof.is the boundary between the dielectric regiams.
andqp are two representative point charges in the protein.

boundaryQ, commonly taken to be the Richards molecular surface [4)amates the
molecular interior, regioh, from the solvent exterior, regidh. The interior is modeled as
a homogeneous dielectric with low dielectric constgrand a charge distribution; in this
work, we assume that the distribution consistsgfliscrete point charges, tiif€ of which
is located at; and has valugjj. The electrostatic potential in regidrsatisfies a Poisson
equation:

R4 (1) = _.nc 2—:6(r—ri). (5.1)

The solvent region is modeled as a homogeneous dielectiithigh dielectric constant

€1 in which the electrostatic potential satisfies the Laplapsagion
O?u (r) =0, (5.2)
for non-ionic solutions, or the linearized Poisson—Bokirm equation
02011 (r) = K% (r), (5.3)

wherex is the inverse Debye length, for dilute ionic solutions. Thatinuity of the poten-

tial and normal displacement furnish boundary conditiamsbth regions.
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This set of coupled partial differential equations (PDE) ba transformed into boundary-
integral equations [17, 21, 23, 28, 83, 178] and solved nigally using the boundary-
element methode(g, reference [54]). Here, simply to obtain the general operak-
pression for the electrostatic solvation free energy, wes@mt one widely used integral
formulation, the apparent surface charge (ASC) method ntloaels electrostatics in non-
ionic solutions [16, 17, 19, 36, 178] and a simple boundaeyent method to solve it.
More complex integral formulations allow the treatment o ionic solutions [21, 23]
and geometries with multiple dielectric regions [83]. Weschiébe the ASC formulation
to introduce the operators inherent to boundary-elememtlsitions in electrostatics; the

remainder of the theory section will apply these operators.

In the apparent surface charge method, one solves an egptiyabblem with uniform
dielectric constant, throughout space and finds a fictitious distribution of cbawg the
surface that reproduces the continuity conditions of thgimal problem. This fictitious
surface charge, which we denotedny(r), for a pointr on the surface, satisfies the integral

equation

& +E& ][ r')dA _ 0 X Gi
ACECIN e P T on(r) 2, eIt ]|

(5.4)

Once the apparent surface charge is found, the reactiomt@dtenduced at a point; in
the solute by polarization of the solute in response to th&scharges may be computed
according to

Or(r) = _ %) 4q. (5.5)

Q4T [[r —r'||
The vector of reaction potentials at the charge locationgltarefore be seen as the image

of the charge distribution under three linear mappings:
Or = MM, M. (5.6)

The first,M1, maps the charge distribution to the induced field at theedtet boundary;
that is, applied ta@ it gives the RHS in Equation 5.4. The operall&th;1 maps the induced
field to the induced surface charge, calculatingr) given the RHS in Equation 5.4. Fi-
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nally, the integral operatdviz maps the induced surface charge to the reaction potentials a

the charge locations.

To solve Equation 5.4 for general geometries and chargghiisbns, one introduces

a set of basis functions defined on the surface, representsntnown functioro(r) ap-
proximately as a weighted combination of the basis funsti@md chooses the weights to
make the approximate solution satisfy the discretizedynaleequation as closely as possi-
ble in some metric. Usually, it is convenient to discretize surface into a set of surface,
or boundary, elements, before defining the basis functiGoesamonly, these elements are
planar triangles [21, 178], although curved-element diszations have been described by
several groups [19, 23, 38]. Using a setrpfpiecewise-constant basis functions defined

such that

1 ifrison panel
Xi(r) = - (5.7)
0 otherwise

and using a Galerkin method [54] in which the inner integsaévaluated via one-point
guadrature, one obtains the dense linear system= M1q, in which x; represents the
unknown weight on thé" basis function, and the system entries are

g 0 aj dA
Mo — _a.+][ 5.8
&l 261 Jpaneli ON(r) 4T [|r — | 58

0 aj dA
My — / j i | 5.9
2= Joaner o) dmE[Ir g 7)) (5:9)
0 q; dA
Myji — —/ , 5.10
& panei ON(F) 47 [T — 1| (-10)

wherea; denotes the area of paniele = 212!, n(r) denotes the outward normal Bt

re; denotes the centroid of paneland f denotes a Cauchy principal value integral. The
approach presented here differs slightly from, and offieqsroved accuracy relative to, the
centroid-collocation BEM for the ASC, which essentiallypapximates the outer Galerkin

integral using one-point quadrature [36, 37].

Because the charge distribution is assumed to be a set oétdigmint charges, the dif-

ference in electrostatic free energy between the unifgrdomain and the mixed dielectric
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problem is simply
26 = Zola, (5.11)

wheredr denotes the vector of reaction potentials computed aitbbarge locations. The
operatordMy, Mo, andMs are all dense matrices when discretized, and the eledista
component of the solvation free energy can be written as

AGXS = q"Sq (5.12)

solv

where we have defined the solvation maix %MgMz_lM]_.

Because solving dense matrix equations witanknowns using LU factorization re-
quiresO(n?) memory andO(n®) time, more efficient methods have been developed to
reduce these demands to linear or near-linear scaling32868178]. These methods com-
bine Krylov-subspace iterative methods [146] such as GMB2Pwith fast, approximate
algorithms to apply the discretized integral operator maty a vector. The fast multi-
pole method [96, 97] is one such algorithm. This work repogtailts computed using the
precorrected-FFT algorithm [102] and the FFTSVD algori{id3l.

5.2.2 Electrostatic Optimization

Writing down the electrostatic contribution to each of theps in Figure 5-2, we have

0,es 0,es 0,es 0,es 0,es
AGbind - _AGsole - AGsol\gR + Ac':'bindJows + AGsoI\gL—R’ (5.13)

where the solvation free energies for the ligand, receptaat,complex are denoted by the
subscriptd,, R, andL — R, and the Coulomb interaction energysinbetween the partners

is WrittenAGg‘iﬁzylo\Ns. Using Equation 5.12 for the three solvation terms, oneinbta

AGgiﬁz = _q-lL— LunboundL — q-FI;Runboun(ﬂR + (GQR)TQL + Q(T‘,CbounOCIQ (5.14)

whereq. andgr denote the ligand and receptor charge distributiogs= (q.,qr)" is

the union of these distributionk, R, andC denote the appropriate desolvation penalty
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Figure 5-2: A thermodynamic cycle for estimating bindingegrenergies. The shaded re-
gion on the lower set of panels represent aqueous solver.upper panels represent a
uniform low dielectric with zero ionic strength throughout

matrices, and the electrostatic component of the low-digtebinding free energy, which is
simply the Coulomb energy between the ligand and recepagehdistributions, has been
written (Gar) " gL, where the matrixc maps receptor charge values to Coulomb potentials

at the ligand-charge locations given the bound-state gggme

We consider the variational electrostatic binding freergpaGy:" [35], which is the

portion ofAGg’iﬁz that is dependent on the ligand charges. We therefore deopetbond

term in Equation 5.14 and remove the contribution of the fieah that depends only on

the receptor charges. Then Equation 5.14 can be rewritten as
AGgi\rﬁr = _q-lL— LunboundlL + q-ll_- LbounddL + quGT a. + qECtganoqL- (5.15)
The final two energy terms are both linear in the ligand chaedees, and the expression
L,R
C= GqR+Cb0undqR7 (5'16)

which represents the total receptor-charge-induced figliedigand charges in the bound

state, may be used to further simplify Equation 5.15:

AGgixgr = 0] LbounddL — 9 LunboundlL + €T alL (5.17)
= q-[ (Lbound— Lunbound dL + c’ OL- (5.18)

Kangas and Tidor showed that the difference of the two symmpositive definite op-

eratorsLynbound @Nd Lpoung IS NONNnegative definite if one assumes that the ligand binds

133



rigidly [35]. The variational electrostatic binding frepexgy is therefore a convex function

with respect to the ligand charge distribution, and therstex unique minimal free energy.

5.2.3 Co-Optimization: Coupling Simulation and Optimization

In this section we introduce the essential idea behind theptionization approach to
biomolecule electrostatic optimization. Suppose that w&hed to find the minimum of
the function

minimize x"Lx+c'x, (5.19)

whereL € [0"*"c js symmetric, non-negative definite, and can be written as
L = MsM, My, (5.20)

whereMsz € O"%*M M, ¢ O™M andM; € O™ are dense matrices, anu>> n.. The

minimizerx* is found where the gradient is zero:
2LX" = —c. (5.21)

If the constituent matricdgl; are too large to be stored in memory, but have some properties
enabling their actions on vectors to be computed approxiyahen one could calculate

one column at a time by repeatedly solving
Mayi = M18&, (5.22)

using Krylov-subspace iterative methods [146]; hereepresents the canonicll unit
vector with 1 at position and zero everywhere else. Krylov methods for solving linear
systems generate a sequence of increasingly accuratexappte solutions{yil,yiz, b

and at thek'" iteration the iterate lies in the span fiksKrylov vectors

(M1&,MaM1e,..., M5 IM1g).
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Once an acceptable approximation is found, one multipliés M5 to obtain the'" col-
umn ofL. Such an approach obviously requirgssolutions of Equation 5.22 before the
minimum can be found. A simple alternative to findixigwithout column-by-column cal-
culation ofL would be to use Krylov-subspace methods to stlve- b. While forming the
power seriedb, Lb,L?b,...}, however, every application afrequires a solution of Equa-
tion 5.22. IfL is difficult to precondition, or if multiple optimizations@to be performed,
the total number of solves of Equation 5.22 can quickly appinoor exceed.. The diffi-
culty is that applyind- requires an application dmz’l, which in turn requires an iterative

solve.

Directly applyingM, does not require an iterative solve, however, and the coropt
zation has been designed to solMex2 —c without ever actually applying/lz‘l. The
co-optimization idea is to solve ayuivalent systeraf equations that recovers the same
optimizerx* by introducing an auxiliary variablg'. Forx* to solve Equation 5.21, the two

variables must satisfy

Mix" = May* (5.23)
2Mazy* = —c, (5.24)
which can be written in matrix form as

0 2Ms3 x* —C
My —M; A 0

(5.25)

The form M3M£1M1 resembles the Schur complement of a 2-by-2 block matrixaedu

during block factorization; that is, to solve

A B X* e
= , (5.26)
C D y* f
one can first solve the Schur system
(A—BD IC)x=e—BD ICf (5.27)
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for x and then back-substitute to calculgteLetting A= 0 andf = 0 makes the parallel
clear. For this reason, we refer to the co-optimization agpin as a reverse-Schur comple-

ment method.

5.2.4 Biomolecule Electrostatic Co-Optimization

In this section we present methods for solving biomolecldeteostatic optimization prob-
lems using the co-optimization approach. We formulategiofehe most common types of
electrostatic optimization problems: unconstrainecgdimequality constrained, and box-
inequality constrained. Section 3.2 will describe precétoing techniques for the result-

ing co-optimization systems.

Unconstrained Optimization

To solve the unconstrained program

minimize qT (Lbound— Lunbound 9+ CTq (5.28)

it suffices to set the objective gradient to zero [35]:

2 (Lpound— Lunbound g = —C. (5.29)

This system may be solved analogously to Equation 5.21,usechoth of the solvation

matrices have the Schur complement operator form. Herergwarse Schur complements
are needed. The two sets of introduced auxiliary variableghe basis-function weights
for the bound and unbound boundary-element problems; hesoeg the apparent surface

charge integral formulation to solve the electrostatidoypgms, the resulting system is of

the form
0 M3 —2my q* —c
MP —ME 0 x| =1 0 |. (5.30)
M 0 —Mj X 0
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Note that this system of equations solves three problemglsimeously: the optimization
problem, the bound-state electrostatic problem, and thewmd-state electrostatic prob-

lem.

Optimizing Problems with Linear Equality Constraints

It is often desirable to impose linear equality constraimtiie optimization. One may wish
to force the total ligand charge, or a subset of charges e &aarticular sum (for instance,
on an amino-acid side chain) [167,169,173,174]. A solutimtine resulting optimization

problem

minimize q' (Lbound— Lunbound a4+ c'q
(5.31)

subjectto Acq=Db
may be found using a single linear solve, because the optinw@nditions are linear.
Typically, the constraint matri¥d; has entries that are either zero or one, and the right-

hand-side vectdp has integer entries. The co-optimization system to be dat/e

0 Al 2mp -—2my q* —c
A* b
fe = : (5.32)
MP —M8 X0+ 0
My -My XU 0

Optimizing Problems with Linear Inequality and Equality Co nstraints

Bound constraints are often imposed on each charge to etimirthe calculated charges
are physically reasonable [167,169,173,174]. The optiynabnditions for inequality-
constrained problems are nonlinear, and solution methodsuch problems are corre-

spondingly more complex. The linearly constrained quacipabgram to be solved is

minimize q' (Lbound— Lunbound 9+ c'q
subjectto Acq=Db (5.33)
and m <qg <Mj,Vie{l,. .. n},
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wherem and M; represent the lower and upper bounds on the value foittheharge.
Defining L = Lyound— Lunboung We transform Equation 5.33 into the standard form for a

guadratic program,

minimize y'Qy+d'y

subjectto Ay=nh (5.34)
and y>0
with the substitutions
m+t= g, t>0 (5.35)
q+r= M, r>0 (5.36)
t
y= (5.37)
r
d= c+Lm (5.38)
b—A:m
h= Ac (5.39)
M—m
L O
Q= (5.40)
00
A= { Ae } (5.41)
I
(5.42)

Because the objective is convex and the constraints ala Jitie program of Equation 5.34
satisfies a constraint qualification [179], and consequéntifind a global minimizer it

suffices to find a primal vector*, a Lagrange multiplier vector*, and a dual slack vector
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s" that satisfy the Karush—Kuhn-Tucker (KKT) conditions:

s = 2Qy +d—AT)\* (5.43)
Ay = h (5.44)
0 = ys Vie{l,...,2n} (5.45)
(y",s) > O (5.46)

To find such a set of vectors, we use a primal-dual interiontpuethod described in refer-
ence [180]. Such methods calcul&®, A, s*) using a modified Newton—Raphson method,

finding the roots of the vector-valued function

2Qy+d—ATA—s
F(y,A,8) = Ay—b , (5.47)
Ys

whereY is a diagonal matrix withyi; =y;. The steps are scaled to ensure that Equa-
tion 5.46 holds for every iterate and biased to keep the ps@rproducty;s approximately
equal [180].

The Newton—Raphson step at iteratlois computed by linearizing about the current
iterate and solvingAx = —F + ¢, whereJ is the Jacobian at the current iterafeis the
current function value, biases the step, ark is the computed step. Férof the form of

Equation 5.47, we solve the modified Newton—Raphson equatio

2Q —-AT —| Ayl —d+ K — 2QyK + ATAK 0
A 0 O ANKHL | = b— A + 0 , (5.48)
$ 0 vk || s —Ykske GUMIE

Nc

where the second term on the right-hand side is the bias degiskthe productgs ap-
proximately equal. An iteratg/, Ak, s¢) that satisfies the equality constraints and satisfies
yiS = 1 Vi for some positiver is said to be on the central path [180], and optimization

is most rapid close to this path. Two reverse-Schur compiésnenfold Equation 5.48,
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resulting in the system

0 O|-Al —1|-1]|2m8 —2mYy A<+l
0 0| 0 I 0 0 Ark+l
Ac 0l 0 0|0| O 0 ANKHL
| 1| 0 0|0] O 0 AL | = (5.49)
) 0 o|Ykl o0 0 Astt
MP Ol O O|O0|-MY O AXKHLD
My 0O 0O 0]0| 0 —My || O]
[ d— 2L(m+t4) s+ ATAK £ AK |
S A
b— Acm— Actk
M —m—tk—rk ;
—-YkSe+6 (y;%zsk e

—MP(tk+ m) — MBxkb
—MY(tk+m) — MyxeY

where we have denoted the Lagrange multipliers of the twokblows of A asA; andA,

respectively.

5.2.5 Co-Optimization Method Analysis

Numerical calculation of the explicit Hessian via repeaeldition of the linearized Poisson—
Boltzmann problem produces a mattixhat contains minor, unphysical asymmetry, and
can be highly ill-conditioned. Symmetrizing the Hessiathwhe simple rule. — (L +
LT)/2 frequently produces a matrix with very small negative eigéues. The eigenspace
corresponding to unphysical eigenvalues is commonly ergm@oved from the optimiza-
tion search space, or heavily penalized [167, 170]. Suchlaegation methods are not
feasible for implicit-Hessian approaches because thexmattries are not explicitly avail-
able, and every multiplication bl is expensive. Although the implicit-Hessian method

has not been analyzed completely yet, one may argue thghtanimation linear systems
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have spectral properties that tend to favor regularizedoqapate solutions when they are
solved via Krylov subspace methods. The argument is baseéanty-ideal precondition-
ing of the unconstrained co-optimization system, and ttayais resembles the approach

of De Sturler and Liesen [181], which drew in turn from work Myrphy et al. [182].

Consider solving the unconstrained optimization problatroduced in Section 5.2.3,
and assume that we know the exact invevsg' of the dense matrit,. This matrix,
which could be used to ideally precondition the BEM systeamn be used to design a

preconditioner for Equation 5.25 . The preconditioner
P= (5.50)
M,

produces the preconditioned system matrix

0 2M3
PA= . (5.51)
MMy I

We now show that ifL is nonsingular, the preconditioned mati has 21 or 2n+ 1

eigenvalues. The eigenvalue equationPdris

2M3 u u
=\ : (5.52)
My IMp I v v

The second equation gives the relation
M, MU= (1+)), (5.53)

which can be substituted into the first equation to give areraiglue equation fok =
M3M, 1My
1
M3M, *M1u = SAI+Nu (5.54)
Therefore every eigenvalyeof L is associated with two eigenvalugs andA_ of the

preconditioned matri¥A, and these eigenvalues can be obtained by solving the ditadra
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equation:

A= _]':l:— */21—'—8“ (5.55)

If L is nonsingular, this relation gives2listinct eigenvalues foPA. To deduce the re-
mainder of the spectrum, note thdg can have rank no greater thapassuming it has full
rank (which it must, for. to be nonsingular), its nullspace is of ramk— n. Picking an
arbitrary normalized vector from this subspace, it is clear th@,v")T is an eigenvector
of the preconditioned matrix, with unity as the correspogdeigenvalue. Note that the
largest magnitude eigenvalueslore mapped to the largest magnitude eigenvalues of the
preconditioned system, subject to a square-root scalelafid As a result, the dominant
search directions will be explored during the early Kryltarations.

In general M, ! is not available; if instead the BEM preconditioner is veitv, X +
E, whereE is the perturbation from the ideal preconditioner, the ymbdtion from the

preconditioned reverse-Schur system is

0 0
EMi —EM;

(5.56)

If ||E|| is small, the eigenvalues of the inexactly preconditionedesn might be expected
to lie close to those from the exactly preconditioned systepending on the condition
number of the eigenvector matrix [183]. However, such arnyamahas not yet been per-

formed.

5.3 IMPLEMENTATION

5.3.1 Preconditioning

The co-optimization approach requires the solution of onenore large linear systems
with block structure in which several of the largest blocks dense and cannot be stored
explicitly. As discussed in Section 5.2.1, BEM problems esenmonly solved using a
combination of Krylov-subspace iterative methods and dgorithms for approximately

calculating the required dense matrix—vector (MV) produdior the co-optimization ap-
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proach to offer competitive performance, we must be ableoteesthe co-optimization
systems using relatively few MV products. Otherwise, it rhayfaster to calculate the full

Hessian explicitly using effective BEM preconditioner8]8

We begin by defining an approximate Hesslias L, — L, where we have defined two

approximate desolvation penalty matrices. These matratesthe form

Loju= MS,b/upié/uMl,b/U7 (5.57)

whereM1 and M3 correspond to the operators of the same name that were skstus
Section 5.2.1, an&, denotes the preconditioner for the corresponding BEM syste.,

when solving the bound-state boundary-element electics{aroblem one solves
P2bM2,pX = P2pM1 b0, (5.58)

whereq_ is the vector of ligand charges.

Using the approximate Hessian, we can write preconditefmrthe co-optimization

problems. The unconstrained problem (5.30) may be solfemesitly using the matrix

—

Pnc= | P (5.59)
Py

as a preconditioner. For the equality constrained co-apétion system (5.32), we use

-EAI -
Ac

pb

Py

as a preconditioner. For box-constrained optimizatiomlenms solved using the Hessian-
implicit primal-dual method, each modified Newton—Raphstep found using Equation 5.50

requires its own preconditioner because the system mattiegend on the current iterate.
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Using the same notation as in Section 5.2.4, the systemtopditioner takes the form

L —AT —
A
Phox= | & Yk . (5.61)

Fib

Py

5.3.2 Accelerating Primal-Dual Method Convergence

The centering parametérin Equation 5.48 dictates how strongly the algorithm attesmp
to keep the pairwise producy#s'f equal. Ifg is set close to unity, iterates stay close to
the central path and the algorithm is robust, but the algwrinakes slow progress towards
an optimal solution. If instead is set very small, progress can be rapid but the optimiza-
tion may stagnate. If an iterate approaches the boundatyedegsible regioty,s) > 0,

the algorithm can make unacceptably slow progress. Wriggpgested setting = 0.4 for
every iteration [180]. This balances robustness againstergence. For biomolecule op-
timization problems, we have studied a set of simple modahlpms of varying size and
designed a new rule that pick&, the centering parameter at tki8 iteration, based on a

rule dependent largely on the previous step multipier!.
Algorithm 1 Choosing centering parametét:
=04
ifak-1> 0.7
=01
if ak-1 > 0.95and k> 8
6=0.01

This schedule was determined by practical experience \iffderent model problems. The
heuristic assumes that significant progress on the previetetion has left the current
iterate in a position to make good progress again. This gssomis generally safe after a

few iterations, and the two cases in whith< 0.4 address its shortcomings.
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5.4 COMPUTATIONAL RESULTS

5.4.1 Co-Optimization Method Scales Advantageously

We have examined the performance of the implicit-Hessigmmageh relative to explicit-
Hessian optimization methods. Test optimization probleanthese studies were generated
using a fixed geometry of concentric spheres of radids@nd 4A. Then. ligand charges
were randomly placed in the ligand and receptor spheres @e@ate, ance random
equality constraints were imposed. Random box constractiovsm andM were gener-
ated. The Yoon and Lenhoff Green’s theorem formulation wsesduio calculate reaction
potentials at the ligand charge locations assungirg4 in the solute and = 80 in the
solvent, withk = 0.124A —1,

The unconstrained and linear-equality constrained opttion problems can be solved
completely using a single Krylov subspace solve, as distlss Section 5.2.4. Accord-
ingly, the computational advantage of using the Hessigpliaihmethod is evident even for
very small optimization problems. Figure 5-3 is a plot of thst, measured by the number
of applied matrix—vector products, needed to solve equabistrained problems using
the implicit-Hessian method or by explicitly calculatingetHessian. These simulations
were performed using a large-scale implementation basddleopFFT++ (precorrected-
FFT++) fast BEM library [114] and the PETSc scientific libygt84]; the linear system of

Equation 5.32 was solved to 1relative tolerance using GMRES.
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Figure 5-3: Performance of new algorithm on equality canséd problems.
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We have also studied the computational scaling of the Hesgsialicit primal-dual
method [165]. The Hessian-implicit solver was implememted ATLAB [75], and the un-
bound and bound surfaces were discretized using 124 andalffisp The biased Newton—
Raphson steps were calculated using GMRES [82] solved ttesatwe of 108. The
optimization was said to be converged when the slacknetatiginy’ swas less thaﬁ%ﬁ.
Figure 5-4 is a plot of the number of matrix—vector produetguired to solve sample prob-

lems using the implicit- and explicit-Hessian methods.
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Figure 5-4: Computational scaling of the Hessian-impficitnal-dual method.

5.4.2 Comparison to Alternative Methods

We compared the Hessian-implicit primal-dual method todineple implicit-Hessian al-
ternative scheme mentioned in Section 2.3, and solvedaemequality-constrained prob-
lems using both HIPD and the primal-dual interior-pointiopzation code KNITRO [185].
KNITRO implements a barrier method and solves each sub@nolbising sequential qua-
dratic programming, each iteration of which is solved usiogjugate gradients (CG). Each
CG iteration requires one multiplication by the Hesdiamnd therefore an iterative solve
of the bound and unbound BEM problems. We solved each optioiz problem in KNI-
TRO problem by explicitly computing the Hessian and letti{i/dITRO use the Hessian.
The cost was then estimated by multiplying the total numb&NITRO CG iterations by

the average number of BEM matrix—vector multiplicationguieed to find each column of
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L. Figure 5-5 is a plot of the computational cost of each mefloodeveral problems of
varying dimension. Itis clear that HIPD offers superiorfpenance; however, it should be
noted that the KNITRO linear solves have not been precamdtl using the approximate

Hessiari.
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Figure 5-5: Performance of proposed Hessian-implicit meétind an alternative approach
for problems with linear equality and inequality consttain

The original implementation of the HIPD method [165], whietied on the relatively
conservative choice of centering parameétet 0.4 as discussed in Section 5.3.2. We have
compared the performance of the more aggressive schedilie tmnservative algorithm;

Figure 5-6 illustrates that the presented algorithm is @xiprately twice as fast.
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Figure 5-6: Performance of original and current implemiois.
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5.4.3 Realistic Biomolecule Optimization Problem: ECM/T3\

We first demonstrated in reference [166] that the co-opttion approach was viable for
problems of biological significance. For this demonstratiee studiecE. coli chorismate
mutase (ECM) and a transition state analog (TSA) inhibif@9]. The TSA molecule
has 26 charges to be optimized, and the Hessian-implidiesysolved at every iteration
has over 130,000 unknowns. In Figure 5-7 are plotted thenghfT SA charges computed
using an explicit-Hessian optimizer and the PETSc-baseztoprected-FFT-accelerated
co-optimization solver. The total charge has been com&dato sum to-2e, and each
charge has been constrained to have magnitude less #8a& 0The primal-dual method

was terminated whey' s < 10~4/,/2nc.
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Figure 5-7: Optimal charges computed using the implicitd arplicit-Hessian optimiza-
tion methods.

5.5 DISCUSSION

In this chapter, we have presented an alternative approasbliving problems in biomolecule
electrostatic optimization. Our implicit-Hessian optaaiion technique combines Krylov-
subspace iterative methods, fast boundary-element methlodrs, and the optimization
problems directly. By breaking the abstraction betweeruttion methods and the opti-
mization, the method achieves exceptional performantegtefely reducing the computa-

tional expense for some problems from linear-time to congiane. The implicit-Hessian
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approach can be applied to constrained as well as uncarmedrgroblems, and we have
successfully applied the method to a realistic exampleamibiecule design. Although a
convergence analysis for these methods has so far not besiblgo an analysis restricted

to unconstrained problems suggests that these methodisl sfeorobust.

We note that there exist applications in which repeatechopétions will be executed
for the same geometry but with varying constraints [174]clSimvestigations are better
suited to be studied the explicit-Hessian approach, becthes cost to precompute the
explicit Hessian is effectively amortized over all optimimons. That is, compared to the
Hessian calculation cost, optimization is effectivelyefrén contrast, the implicit-Hessian
cost remains a non-negligible constant for each solve. Wewarently exploring possible

ways to reuse computation between optimizations.

Future applications will focus on problems in which the implimethod may be used
reliably. Buried, near-buried, and small ligands tend teehaell-conditioned eigenspaces.
These problems, which do not require explicit modificatibthe Hessian [169], are well-
suited to the new method. Because these problems will likefyully exploit the method’s
advantageous scaling, the new method is best used to ig&tspiroblems in which only a
small number of optimizations are to be performed for eadnydry, where each ligand
is of small to moderate size, and multiple binding geomstaere to be studied for each
ligand.

For instance, one interesting application might be to ektére work of Sulea and
Purisima [173]. This work generated a large number of péssifpand geometries, each
of which was designed with high shape complementarity toraqodar region of the pro-
tein surface. They optimized a single central charge fohdigand and used this charge
value, and its effect on binding free energy, as tools toattarize surface reactivity and
identify likely binding sites. The implicit-Hessian ap@ah would allow many chemically
reasonable geometries such as carboxylates or aminoideidigins, to be substituted in
these ligand geometries, rather than just single chargesngparable cost to the original
analysis presented in reference [173].

Another profitable use may be to explore optimization of fdxiligands. Although

Kangas and Tidor proved convexity of the electrostatic roj#tation problem for rigid
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binding, clearly many binding reactions involve ligand fmmational change, and an opti-
mization theory for these cases could significantly implaetdcomputational ligand design
community. Gilson [177] has shown that in general, confdiomal changes on bind-
ing give rise to non-convex objective functions, but ther@ynaxist restricted classes of
problems in which flexible-ligand optimization may be penfi@d. The implicit-Hessian
method may permit an extensive exploration of non-rigidrojgiation problems in order

to identify these classes.
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Chapter 6

Conclusion

Computational modeling of interactions between biomdkeinas become an essential
tool for biological science and engineering. Despite tpe#ctical value, these computer
simulations can implement only crude approximate modaidHe interactions — even
the simplest of diatoms cannot be solved exactly with quantwechanics! That these
computational models are approximate should not be causeust them aside. Instead,
the numerical methods and simulation protocols be devdlopeefully and in accordance
with the models’ inherent uncertainties.

The philosophy underlying much of this thesis work is thatige problems and inves-
tigations of mechanism, when studied using an uncertainetnddserve the model’s strin-
gent solution. Excessively approximate numerical metloaafsrender useless even well-
conceived scientific studies, because computationakgddypotheses — for instance,
that a particular functional group is likely to be enrichadhi set of tight-binding ligands
— should be based on the mathematical model itself, or inratloeds on an explicitly
stated set of assumptions. Careless or inappropriatelyedppumerical techniques can
generate hypotheses that reflect computational artifatherthan the model. As a result,
the best-case scenario for a model simulated poorly isttherniains untested and therefore
untrusted. In a worst-case scenario, experimental evelsmgports a hypothesis that owes
more to numerical error than to the model, and careless sisdlyads one to conclude
validity of the model.

In this thesis, we have presented a highly accurate bourelangent method solver for
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biomolecule electrostatics problems. The implementasitwased on three core techniques
developed during the thesis research: a general Greestsein-based integral formulation
for treating multiple embedded homogeneous regions, teBBM algorithm FFTSVD,
and a set of techniques to discretize solute—solvent atdesf using curved boundary el-
ements and to integrate singular functions over the elesneflhte challenge involved in
developing an accurate solver that could remain competitith existing finite-difference
solvers was a rather surprising result, particularly faearchers from other domains; in
electrical engineering, for instance, surface formutaioffer a much clearer practical
advantage as well as the numerous theoretical advantagassded in Chapter 4. The
remarkable performance of modern FDM for molecular eletatics may be attributed
in large part to the extensive and thorough numerical erpants performed over many
years by several groups, most notably those led by Profe&aory Honig and J. Andrew

McCammon.

The philosophy discussed in the preceding paragraph stsydesvever, that new nu-
merical approaches may be warranted to optimally expleittntinuing explosion in com-
putational processing power. The thesis has presentedarseterical techniques to im-
prove the accuracy and efficiency with which one may caleutaportant components of a
molecule’s solvation free energy. The described techrsigoése continuum-theory-based
surface formulations of these molecular modeling problefne thesis contributions may

be grouped into four areas.

First, we have advanced two of the popular boundary-integraation formulations of
continuum electrostatics models for biomolecule analySise formulation we have stud-
ied is the non-derivative Green’s theorem formulation [24 have extended this mixed
first-second kind equation to treat multiple boundariesas®ng regions of differing ho-
mogeneous dielectric constant with possible salt treatfB88h In particular, we can model
the ion-exclusion layer surrounding the molecular solagewell as ion-exclusion layers
that may exist inside water-filled cavities within the seluiin addition, we have examined
discretization of the induced-surface charge or equitatbarge formulation, which is a
purely second-kind integral equation that can be used ttystlectrostatic interactions in

non-ionic solution. We have demonstrated that the soldmuracy depends strongly on
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the process of discretizing the integral equations [36]nWather integral formulations of
biomolecule electrostatics exist, however, and it seeketylithat there remain theoretical
and numerical improvements that may be made to these as kalinstance, the purely
second-kind formulation described by Jufgral. contains an integral operator that re-
sembles that of the equivalent-charge formulation [23} Ghalocation method of Tausch,
Wang, and White [37] may therefore find advantageous agitghere just as it did for

the equivalent-charge formulation.

Second, we have designed, implemented, and optimized,&é&sel-independent al-
gorithm, called FFTSVD, to numerically solve boundaryegyal equations on complex
molecular geometries. The FFTSVD algorithm rapidly coneguithe matrix-vector prod-
ucts required to solve the BEM equations using preconditiokrylov-subspace iterative
methods [50]. The algorithm combines an octree decompaositf the problem domain
with a sampling-based reduced-basis representation ddiigerange interactions. The in-
teractions between reduced-bases are calculated effjcieatthe FFT. The structure of
our algorithm is well-suited for solving problems in whidfetboundary-elements occupy
a small fraction of a bounding cube surrounding the problemain. In addition, the
multi-level approach to multiplication suggests a natarad efficient parallelization. De-
veloping a production-quality BEM solver based on this alfon is an important goal for
future work, because it will enable the solution of largesrbolecule problems as well as

the modeling of problems in other domains such as micro- ame4fluidics.

Curved-panel methods for surface formulations in biomaktmodeling comprise the
third major contribution of this thesis [38]. First, we hadefined two classes of curved
panels that are general enough to allow the essentially disaretization of van der Waals,
solvent-accessible, and solvent-excluded surfaces.nBewee@ have described one method
for obtaining such discretizations given a set of sphereéecentheir radii, and the radius
of the probe sphere to be rolled around the sphere union.d,Tiwe have demonstrated
a number of numerical integration techniques for evalgatar-field, near-singular, and
singular integrals over these curved panels. The bounglaryient electrostatics research
discussed in this thesis has focused entirely on using\iseeconstant basis functions and

centroid collocation. Higher-order basis functions mansgicantly reduce the amount of
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computer memory resources required to reach a given lewglafracy, and for this reason
we expect future work in this area to study ways by which sua$idfunctions may be

integrated efficiently.

The thesis has also developed a coupled simulation/ogtrarzapproach to efficiently
solve for the charge distribution in a biomolecule that mites the free energy of bind-
ing to another molecule, given that the potential respasifiaear, that the molecules bind
rigidly, and that no charge transfer occurs on binding [16blis co-optimization tech-
nique, which in spirit resembles PDE-constrained optitnramethods, relies on an im-
plicit representation of the Hessian and solves the opétian problem simultaneously
with two electrostatic simulations, using preconditionéglov subspace iterative meth-
ods. Thisimplicit-Hessianmethod can be applied to unconstrained problems as well as
those with linear equality and inequality constraints. Végehapplied the co-optimization
method to realistic biomolecule optimization problemseTiethod was applied to a small
validating test case, that d&. coli chorismate mutase and a transition-state analog in-
hibitor [166]. The results demonstrated that the acceddrablution method solves the
optimization problem and that the computed optimal chagjesely match the optimal
charges calculated by the traditional charge-optimiraéipproach in which the full ex-
plicit Hessian is calculated one column at a time. In a secondoing investigation, we
are studying multiple ligands of the serine protease thioifit86] and their relative elec-
trostatic optimalities. The co-optimization techniqueyfiad profitable future applications
in rational drug design processes as well as in studies téiprdigand and protein—protein

interactions.

It seems likely that some of the most exciting numerical wiorkhe future will lie
in the areas of accelerating the simulation of closelyteelgphysical problems, and in
coupling physical simulation with optimization. The siratibn of multiple geometries is
recognized to be a useful approach for several types of itapbcalculations such as pKa
shifts [187] and binding free energies [188]. The developha¢ accelerated methods for
biophysical simulation could possibly feed back to manyeottiomains of engineering,
including aerospace, electrical, and mechanical. Suclvssavver would not only have

significant impact for design processes, but more impdstantvould represent a step
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forward for bridging the computational life sciences witloma traditional computational
research communities.

The coupling of simulation and optimization is a new anddgpgrowing field of cur-
rent interest. Molecular design represents one of the ni@dlenging problems for which
such approaches may be conceived. As already discussexktém mathematical models
are relatively simplistic and highly approximate; furtimere, the high-dimensional search
spaces are discrete. The development of efficient methoputee the search space will
certainly continue to be an important and active area ofarebe Many traditional math-
ematical programming approaches begin from a completefg@dion of the objective
function and constraints. However, for some types of mdéadesign problems such as
the electrostatic optimization problem, even obtaininghscomplete information can be
prohibitive or infeasible. A exciting, inherently multistiplinary paradigm is emerging
to address these and similar challenges in many domaimsetr@ous acceleration can be
achieved by breaking the abstraction between the optimoizatethod and the means used
to obtain information about the objective. Branch-and#zbmethods, for instance, offerin
a sense a means to coarse-grain the search process by ysiogagate methods to bound
the objective function at each branch. As a second exan@dntplicit-Hessian method
for electrostatic optimization breaks the black-box aagton of the linearized Poisson—
Boltzmann solver. Rather than introducing approximatimnghe LPBE calculations, the
discretized model is itself coupled directly to the optiatian process and a self-consistent
solution is obtained directly. This intimate coupling akhentirely eliminates the need to

precompute information about the objective function.
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Appendix A

Extracting Curved Panel

Discretizationst

Accessible and van der Waals Surfaces

Accessible and van der Waals surfaces can be described hyoh sgherical patches,
where each patch represents a solvent-exposed portionatban When an atom (or a
probe-radius-expanded atom) intersects another, the fitvers surfaces form a circle of
intersection, and all the atom’s surface beyond the plarikisfircle is buried inside the
other atom. Consequently, each spherical patch can belosddry an intersection of the
sphere and a set of half-spaces, which are derived by arellytsolving for the planes of
intersection between the given sphere and all the intengespheres. To mesh a spher-
ical patch, we first obtain a high-quality flat triangular aetization using the program
NETGEN [149]. NETGEN meshes surfaces based on a constewsziid geometry (CSG)
scheme in which geometries are defined using boolean opesabin primitives such as
spheres and half-spaces.

Once the discretization is obtained, each planar triargg®nverted to a GST by as-
signing an arc center to each edge. If an edge lies on one tialfispace planes, its arc
center is assigned to be the center of the circle of intdsethat defines the half-space.

Occasionally, coarse triangular discretizations contiaamgles whose edges lie on more

To be submitted as an appendix with Chapter 2 [38].
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than one plane. These situations do not reflect the molegelametry but instead are a
consequence of the NETGEN discretization procedure; saomgtries are therefore dis-
cretized more finely. If a planar-triangle edge does notria ihalf-space plane, the arc
center is assigned to be the center of the sphere; as a tesutiprresponding GST arc is
part of a great circle. After forming the GST, it is checkeetsure that it conforms to the
definition presented in Section 3.2. Specifically, it is erdithat the arcs only intersect at
their end points and that the internal jump angles are lessrthadians. If any GST fails

these checks, the entire spherical patch is rediscretizefirzer level.

Molecular Surfaces

Molecular surfaces are discretized in two stages. In thediege, we increase the atomic
radii by the probe radius and use NETGEN to generate a sehem@ssible surface by
meshing the union of the expanded spheres. During the tizatien process, NETGEN
determines every point on the accessible surface where tirmore expanded atoms si-
multaneously intersect, as well as every circular arc gardrby the intersection of two
expanded sphere surfaces. The intersection of three or ancsebecomes a fixed probe
position for the molecular surface. The probe position ga&ies one or more concave-
spherical patches of reentrant surface because this gosnnultaneously a probe-radius
distance away from three or more atoms. Each circular amexin two fixed probe posi-
tions along the intersection of two expanded atoms. Beddugsarc is composed of points
equidistant from exactly two atoms, this arc indicates tresence of a toroidal surface
patch. The accurate determination of these features iabtuluring the second stage of

discretization, in which the specified spherical and tabhtches are meshed directly.

Spherical Contact Patches

Spherical contact patches on molecular surfaces are deddma every solvent-exposed
atom. The patches are meshed similarly to the sphericahgsiton van der Waals and
accessible surfaces; however, contact patches on malesuufaces are bounded by the

half-space planes located at sphere—torus intersectinarrthan at sphere—sphere inter-
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sections. The positions of these shifted planes are comaurtalytically by determining
the point of tangency between the given sphere and the ppieeeswhen it simultaneously

touches each neighboring atom.

Spherical Reentrant Patches

Spherical reentrant patches are meshed by placing a spheadias equal to the probe
radius at each triple or higher intersection point deteediduring the discretization of the
solvent-accessible surface. Recall that these intemseptints are formed where multiple
circular arcs meet, and that these arcs represent torcadiethgs. The spherical reentrant
patch is therefore intersected with three or more half-sjpéanes, each of which represents
a boundary between the probe sphere and the toroidal patettieed from the correspond-
ing circular arc.

Each plane is analytically defined by three points: the cesftéhe probe sphere and
the centers of the two atoms associated with the torus. Wkeessary, additional half-
space planes are generated from probe-probe intersentiamsanner similar to accessible
surface meshing. Once the probe sphere and half-spacebdwvealentified, discretization

proceeds identically to accessible spherical patch mgshin

Toroidal Patches

Each circular arc of the accessible surface is associatddome toroidal patch on the
molecular surface. The arc traces out the path taken by titercef the sphere as it rolls
tangent to its two associated atoms. Therefore, the tdrpitah is a portion of a torus
centered at the analytical center of the circle of inteisacbetween the two expanded
atoms of the accessible surface. The torus’s princi@aidy axes lie in the circle plane
and thez axis is parallel to the vector pointing between the atomersn{The torus’s inner
radiusa s the probe radius, and the outer radius the radius of the intersection circle.

If two probe positions terminate the accessible-surfacetae toroidal patch will be
bounded irB. The range irB is determined by fixing one torus principal axis to point from
the torus center to the first probe position and then by tatkiaglot product of this axis with

the vector pointing from the torus center to the second ppusition. If the accessible-
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surface arc is not terminated by probe positions, the t@asinplete, and spaf@, 211 in
theO direction.

The bounds onp are found by the following procedure: specify an arbitrarghe
position on the accessible-surface circle of intersecfidren compute the vector pointing
from the probe center to the center of the torus. Take the amiyst of this vector with
one pointing from the probe position to the center of eaclheftbrus’s associated atoms.
Each dot product is the cosine of one of the bounding anfgles

If the torus has an outer radius less than its inner radies ¢ < a), and if in addition
the range inp overlaps the rangft— arcco$<), 1+ arccog<)], then the toroidal patch
consists of two disconnected pieces of surface. The twonsgif such a self-intersecting
torus are meshed separately.

Once the bounds on the toroidal patch are determined, thenrég discretized into
toroidal panels by dividing the ranges @fandy into an integral number of pieces such

that the arc lengths of the panel edges are similar to thasergeed for GST panels.
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Appendix B

Coordinate Transformation from the
Standard Triangle to the Generalized

Spherical Trianglel

In this appendix we describe how the parametric coordin@teg map to a pointx,y,z) on

a GST, and how we compuld|, the determinant of the transformation Jacobian. Figure 2-
5 illustrates the spherical coordinate system; the coatdip € [0, ] describes the angle
from the positivex axis, and the coordinatec [0, 21 describes the angle from the positive
zaxis. The anglefstart andWeng are defined as shown in the Figure. For any p6in)

we define a circl€(n) as shown; this circle is the set of points on the sphere at

P(N) = Wstart + N(WYend — Wstart) - (B.1)

Obviouslyg—‘rl]’(r]) = Wend— Wstart- The intersection o(n) with the two arcs, andag pro-
duce two points, andrs, which are defined to be &start(n), W(N)) and(Beng(nN),W(N))-

The 6 coordinate of the mapped point is set to

8(&,n) = Bstart(N) + =—— (Bend(N) — Ostart(N)) - (B.2)

§
1-n

To be submitted as an appendix with Chapter 2 [38].
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We have also the first derivatives

g—g(ﬁ,n) = ﬁ(eend(m—estartm)); (B.3)
09 aestart E aeend aestart
) = T S (D) - Ty )
3
+ 1-n)2 (Bend(N) — Bstart(N)) - (B.4)

Denoting the mapped point iy the Jacobian determinant is

dr  dr
|J| = '_

a X anl’ (B.5)

where

dr aroe  oro
— = Loy (B.6)

dg 080% Ay oF
dr or 00 a?a_qJ

an ~ deon " apon’ &
Trivially, we have

00  Bend(N) — Bstart(N)

% = - (B.8)

0

% = ll—’end—qutart (B_9)

oy

% -0 (B.10)

The derivativeg—?] is more challenging to calculate. The rotation arfijlg, defined by the

relation
Bstart(n) = tan‘l(%), (B.11)
has the first derivative
dy ,dz
destart_ 1 Zdn ydr]
dn 14 (X2 z(n)

Ny

z(n
where we have omitted adding the subscsiatrt to the variabley andz, and the angle

Beng IS defined analogously.
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The derivative%(r]) andg—g(r]) are defined by finding the anglesuch that 3 satisfies
T3 = Teenter+ Xc0S ) +Ysin(a), (B.13)

wherer centeriS the center of the circle defining the GST arc amahdy form an orthonormal

basis for the plane in which the arc lies. We then find the ne:e@eivatives by

drs

i = —Xsin(a) +ycoga) (B.14)
da dx /dx\ ! -

T m@)
dr3  drzda

T = dodn (B.16)

and taking they andz components 0%3.
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Appendix C

Curved Panel Integration Techniques for

Other Integrands?

Linearized Poisson—Boltzmann Kernel

The single-layer linearized Poisson—Boltzmann integrals

o(r) :/ e N (C.1)

Q 4r|r —r'||

can be evaluated by decomposing the integral into a sum ofntewe easily computed
integrals [32]: -
_ aK|[r=r
q:(r):/gﬁow— leTﬁr—_r,H. (C.2)
The first term is merely the single-layer Laplace integrdipse calculation we have al-
ready discussed. The second term is very smooth in the redadr-&ind can therefore be
integrated using the quadrature schemes described iro8é&cH. In the far-field, the entire

integral in Equation C.1 can be computed easily using dgeatirature.

Double-layer linearized Poisson—Boltzmann integrals lmarcomputed in an exactly

analoguous fashion.

To be submitted as an appendix with Chapter 2 [38].
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Surface-Generalized-Born Kernels

The surface-Generalized-Born integrals all take the fofrBquation 2.6 but with different
exponents depending on whether one begins from the volumaufations of Still et al. ,
Grycuk, or Wojciechowski and Lesyng [41, 55, 56]. The regdicurved-element integrals

are all nonsingular because the evaluation points are alg@yere centers. The integrands

rapid decay allows far-field quadrature to be used to comgluteeeded interactions.

Continuum van der Waals Kernels

The surface continuum van der Waals method requires evatuaitsurface integrals of the
form shown in Equation 2.9, where again the evaluation pan¢ always sphere centers.
The cvdW integrals over the solvent-accessible surfaceéhamefore never singular, and

again far-field quadrature techniques may be used.
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Appendix D

Accurate Discretization of the
Apparent-Surface Charge Formulation
for Biomolecule Electrostatics In

Non-ionic Solutiong

ABSTRACT

The electrostatic interactions between biomolecules ahest are generally difficult to
model because there exist an enormous number of solvergaetegf freedom. Continuum
electrostatic models provide an approximate method toyaaahese interactions; these
models are typically solved numerically in either diffetiahor integral form. In this paper
we demonstrate the importance of using an appropriate ncahéechnique, called qualo-
cation, for a popular integral formulation of the electetits problem. Numerical results
illustrate that qualocation exhibits superior accuradgtiee to naive implementations. We

also show that the integral formulation is extremely welhditioned and converges rapidly

1This appendix appeared in the proceedings of the 2005 IEEEe@ance on Engineering in Medicine
and Biology [36].
(© 2005 IEEE. Personal use of this material is permitted. Hangyermission to reprint/republish this ma-
terial for advertising or promotional purposes or for cieghew collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted componethigfyvork in other works must be obtained from
the IEEE.

167



when iterative methods are used to solve the discretizednakequation.

D.1 INTRODUCTION

Electrostatic interactions within and between biomoleswre known to play important
structural and functional roles [9, 189]. Analyzing thesteractions computationally is
challenging because solvent molecules surround the bewulds of interest, so the phys-
ical problem has an enormous number of degrees of freedomteM@arlo and molecular
dynamics methods [7,9, 190-193] treat all or most of theesdlmolecules explicitly, but

for many problems the computational expense is prohibitive

Continuum models offer an alternative approach to studpiogolecule electrostat-
ics [9, 15, 26, 40, 94]. In these models, macroscopic lawslaft@statics are assumed
to hold in the molecule interior and in the solvent, and th&ulitng systems of partial
differential equations are solved numerically on a compuEenite difference methods,
finite element methods, and boundary element methods (BEN all been applied to the
biomolecule electrostatics problem [18,21,23,31,138].18he boundary element method
offers numerical advantages such as an improved repréisentéthe biomolecule—solvent
interface and exact treatment of discrete point chargese te study an integral formu-
lation and boundary element technique for solving biomdkeelectrostatics problems in

which the solvent ionic strength is zero.

The integral formulation, called the equivalent chargefolation (ECF), has been pre-
viously discussed in the literature [16, 195]. In this wor& demonstrate that a numerical
technique called qualocation [37] substantially improaesuracy when compared to naive
implementations of the integral formulation. The qualawaimethod can be applied to
many types of BEM problems in addition to the biomoleculebtem discussed here.

The following section introduces the electrostatics made the boundary element
method used to solve the model numerically. Section D.3gmtssthe ECF—qualocation
method and Section D.4 illustrates the method’s performavith computational results.

Section D.5 summarizes the paper.
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D.2 BACKGROUND

D.2.1 Mixed Discrete-Continuum Electrostatics Model

Figure D-1 illustrates the mixed discrete—continuum etestatics model. The boundary

Q separates the molecular interior from the solvent extefdas taken to be the Richards

molecular surface [49], which is formed by rolling a probéege around the union of van

der Waals—radius spheres located at the atom centers. ¢ehiteemolecular interior as a

homogeneous medium with permittivigy, in which the electrostatic potential obeys the
Poisson equation

P01 =~y Jar—n) (0.1)

wheren, is the number of discrete point charges anahdg; denote the location and value
of theit" charge. The solvent region is treated as a homogeneous medih a much

higher permittivitye;,, and in this region the Laplace equation holds:
024y (r) = 0. (D.2)

At the dielectric boundary, the potential and normal congrdrof the displacement field

are continuous:

di(ro) = ou(ro) (D.3)
8|%t]l(rg) = €||a§%(rg). (D.4)

D.2.2 The Boundary-Element Method

Consider the problem of computing the capacitance of a adimdusphere, whose surface

is S, suspended in free space. By setting the potential on therspb unity and solving
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Figure D-1: Mixed discrete-continuum electrostatics mode

the first kind integral equation

/S o(r')dA wir), (D.5)

dreo|[r—r'||

we can integrate(r) overSto find the capacitance. To solve the problem numerically, we
discretize the boundary surface into a sehgipanels and represent the soluto(r) on

the discretized surface as a weighted combination of cottysapported basis functions:
Np
a(r) =" yixi(r). (D.6)
2

Here, x;(r) denotes thé" basis function ang; the associated weight. In this paper, we
use piecewise-constant basis functions such that eactidortiakes value unity on a single

panel and is zero everywhere else:

1 ifrison panel
Xi(r) = _ (D.7)
0 otherwise
In general, the span of the basis functions will not perméatxsolution of the original
integral equation. Instead, consider computing the basistion weights so as to reduce

the residuaR(r), which is the difference between the known poteri#iat) and the result
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of applying the integral operator to the approximate soluti
Np
R(r) = W(r) —/G(r;r’) (Z\ini<r/)> dA. (D.8)
S =

In the commonly used centroid collocation scheiRg,) is forced to be zero at the basis

function centroids [196]. The resulting linear system ishaf formAy = b with

A =[Gl x(r)dR (D.9)
b = W), (D.10)

wherer, is the centroid of panel Alternatively, Galerkin methods force the residual to
be orthogonal to the basis functiofigi, X2, --,Xn,}. Galerkin methods produce linear

systems of equations of the sade—= b form, though now the entries are

Aj = /S/Sxi(r’)G(r’;r”)xj(r”)dA’dA” (D.11)

b — /SXi(r’)qJ(r’)dA’. (D.12)

For both the collocation and Galerkin methods, the lineatesys can be solved using

sparsification-accelerated iterative methods [82, 96].197

D.3 THE ECF—QUALOCATION METHOD

D.3.1 Integral Formulation

The essential idea of the equivalent charge formulatioa replace the original problem,
which has two dielectric regions, with a simpler problengwh in Figure D-2, which is a

Poisson problem with the same dielectric constant everyavinespace. In Figure D-2, we
have replaced the solvent dielectgjc with € from the interior and introduced a fictitious
layer of chargeo,(r) on the surface. The variablés and$;; denote the potential in the
modified problem. Finding a surface charge lagg(r) such that the original boundary

conditions (Equations D.3 and D.4) hold ensures that thetisol of the homogeneous
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Figure D-2: Physical model of the equivalent charge forrioita

dielectric problem is equivalent to that of the original tiple dielectric region problem.

Because the dielectric constant is homogeneous througipade in the equivalent

problem, we can write the potential as

_Op(r)dA”

D.13
Z14ns|||r—r.H 4ns|||r—r’H ( )

The normal component of the electric field at a paionh the surface is therefore

o) Qi
an'") = anm i;4ns|Hr T

0 op(r')dA

D.14
on(r) Jo 4 ||r —r'||’ ( )

and the discontinuity in the integral term implies that esfithe surface must be specified.
In the homogeneous dielectric problem, the charge denstgrehines the discontinuity of

the normal component of the electric field by the relation[51

L) L)
(1) =5 (r) = 0p(r) /2. (D.15)
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Combining (D.15), (D.4), and (D.14) gives

€+ & dA/
28|(8|—8|| an 4T[£|||I’—I”||

= D.16
an Z4Tr£|||r—r,|| (D-16)
which is known as the equivalent charge formulation [195]1®e integral ovef) is taken

to be the principal value integral.

D.3.2 Qualocation Method

We now motivate the qualocation approach as it was deschpéd@uschet al.[37], and
present both collocation and qualocation as simplificatiohthe Galerkin method. To
solve Equation D.16 numerically via the Galerkin methoddmgeretize the molecular sur-
face intony, flat triangles and represent the surface charge) as a weighted combination
of piecewise constant basis functions. We then define aualsR[r) similar to Equa-
tion D.8 and enforcg R(r)x;(r)dA= 0 for each basis functiogy(r). This produces a set

of equations of the form:

/ (s|+s|| y.dA / ][ yjdAdA
paneli 2£1 (€ —&11) paneli panelj an r) 4re|[r —r'||

/ okdA
panel an( ) 4 ATl ||r —ryl|’

(D.17)

where agairy; is the weight associated with tfif€ basis function.

The centroid collocation method simplifies the Galerkin moetby replacing each in-
tegral over pandlwith a midpoint quadrature rule; the inner integral of thelole integral
is then evaluated analytically [45, 46]. However, the inéegl of the outer integral is non-
smooth for nearby panels because the nomiglon panel has a component in the plane
of panelj. As a result, midpoint quadrature and the resulting cotiooesscheme are inac-

curate.

In contrast, the qualocation method replaces the innegiatewhich is smooth, with a
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midpoint quadrature rule. The resulting system has entries

&+
. et S D.18
0 aj dA
L D.19
A0 = e o A o] (019
0 gk dA
o D.2
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whereq; is the area of panel Using qualocation, the outer, non-smooth integral can be

evaluated analytically and the smooth inner integral igs@ximated accurately.

D.4 RESULTS

We have implemented the ECF—qualocation formulation uieg~FTSVD fast BEM al-
gorithm [83] to rapidly apply the dense discretized intégq@erator. The method relies
on the observation that the qualocation operator is theddednspose of the double layer
potential operator [37]. We compare the ECF—qualocatiothateto ECF—collocation as
well as to a more complex formulation derived from Greenéotiem [21,117]. In contrast
to the ECF formulation, which has one variable per panel araintegral operator, the
Green’s theorem formulation has two surface variables peejpand requires two integral

operators.

D.4.1 Sphere

To test the accuracy of the ECF—qualocation method, we ctedphbe electrostatic com-
ponent of the solvation free energy for a sphere withdaradius and a central <€lcharge.

We compare the numerical results with the analytical angseahe surface discretization
is refined. Figure D-3 is a plot of the results computed uswipcation and qualocation
methods as well as those from a Green’s theorem formula®idyilfl7]. The qualocation
method is clearly superior in accuracy to the collocationhmad; surprisingly, qualocation
returns a slightly more accurate answer than the Greernssd¢hemethod, which has twice

as many degrees of freedom.
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Figure D-3: Improvement in accuracy with increasing paisdmrttization when computing
the solvation energy of a A radius sphere with a central etharge. Results for the
Green’s theorem, ECF—collocation, and ECF—qualocationdtations are shown.

D.4.2 Barnase—Barstar Protein Complex

We also computed the electrostatic component of the solv&tee energy for the barnase—
barstar protein complex (1BRS in the Protein Data Bank).[Fifure D-4 is a convergence
plot that compares the ECF—qualocation result, the EClkeaatlon result, and the Green’s

theorem result as the surface discretization is refined.

D.4.3 Iterative Method Convergence

It is well known [37] that second-kind integral operatorgisas the ECF formulation in
Equation D.16 are well-conditioned. The discretized lm®stems have tightly clustered
spectra, which leads to rapid convergence when Krylovtiteranethods are used instead
of Gaussian elimination. The Green’s theorem formulat@h, L17] is instead a mixed
first-second kind equation; its poorer conditioning neitatss the development of effec-
tive preconditioners [96, 117]. To illustrate the advaetags conditioning, we have solved
the barnase—barstar problem using the ECF—qualocatiomocheising both no precondi-
tioner and a diagonal preconditioner, and the Green’s émdormulation with no precon-
ditioner as well as with the block diagonal preconditionersented by Kuet al.[117]. In

Figure D-5 we plot the relative GMRES residuals as a funabibiteration count.

175



-620
—640+ x
PELE Rl

-660f EEL L
= » =" *”
o ’
£ -680f .
©
g
< _700}
>
=y
2 -7201
s
2 -740 #
=2 1
o ]
N -760 1

1
1
~780r K —6— Green's Theorem| |
1 - % = ECF-Collocation
-800 * 4+ ECF-Qualocation|
1 2 3 4 5 6 7 8 9 10 11
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D.5 SUMMARY

We have presented a numerical technique for calculatingl#wtrostatic component of the
solvation free energy of biomolecules for solutions withozenic strength. The technique
is based on the equivalent charge formulation [16, 196] efetlectrostatics problem. Our
technique differs from earlier presentations because wa #linear system of equations
using qualocation [37] rather than centroid collocationGalerkin methods. We have
demonstrated that the qualocation approach exhibits swpmrcuracy, and that Krylov
iterative methods converge rapidly for ECF—qualocatimbjams because the second-kind
integral formulation is extremely well-conditioned. It m®on-trivial to extend the ECF

formulation to treat problems in which the solvent ioni@siyth is non-zero.
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