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A Piecewise-Linear Moment-Matching Approach to
Parameterized Model-Order Reduction for

Highly Nonlinear Systems
Bradley N. Bond, Student Member, IEEE, and Luca Daniel, Member, IEEE

Abstract—This paper presents a parameterized reduction tech-
nique for highly nonlinear systems. In our approach, we first
approximate the nonlinear system with a convex combination of
parameterized linear models created by linearizing the nonlinear
system at points along training trajectories. Each of these linear
models is then projected using a moment-matching scheme into a
low-order subspace, resulting in a parameterized reduced-order
nonlinear system. Several options for selecting the linear models
and constructing the projection matrix are presented and ana-
lyzed. In addition, we propose a training scheme which automat-
ically selects parameter-space training points by approximating
parameter sensitivities. Results and comparisons are presented for
three examples which contain distributed strong nonlinearities: a
diode transmission line, a microelectromechanical switch, and a
pulse-narrowing nonlinear transmission line. In most cases, we
are able to accurately capture the parameter dependence over
the parameter ranges of ±50% from the nominal values and to
achieve an average simulation speedup of about 10×.

Index Terms—Model-order reduction (MOR), nonlinear
systems, parameterized reduced-order models (PROMs).

I. INTRODUCTION

THE AUTOMATIC extraction of parameterized macro-
models for modern mixed-signal system-on-chips is an

extremely challenging task due to the presence of several
nonlinear analog circuits and microelectromechanical (MEM)
components. The ability to generate parameterized reduced-
order models (PROMs) of nonlinear dynamical systems could
serve as a first step toward the automatic and accurate character-
ization of geometrically complex components and subcircuits,
eventually enabling their synthesis and optimization.

Several parameterized model-order reduction (PMOR) tech-
niques have been introduced in literature in the past few years.
Some are based on statistical performance evaluation [1]–[4],
and others are based on moment-matching techniques [5]–[11],
on truncated-balance-realization (TBR) techniques [12], and on
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quasi-convex optimization techniques [13]. Very few, such as
[4], also apply to the nonlinear systems.

Several non-PMOR approaches are available for nonlin-
ear systems. For example, the reduction of weakly nonlinear
systems has been shown using Volterra series and moment-
matching techniques [14]–[19]. The reduction of strongly non-
linear systems has been shown using trajectory piecewise-linear
(TPWL) methods combined with the moment-matching tech-
niques [20]–[22], TPWL combined with the TBR techniques
[23], and trajectory piecewise-polynomial combined with the
moment-matching techniques [24], [25].

In [26], we proposed a PMOR technique for nonlinear sys-
tems by exploiting ideas from the nonparameterized TPWL
method for nonlinear systems [22] and from a parameterized
moment-matching technique for linear systems [9]. In such a
method, the nonlinear system is approximated by a collection of
parameterized linear models, which is obtained by linearizing
the nonlinear system at important regions of the state space.
Each linear model is then projected into a reduced space by
application of a projection matrix. The procedure is completed
by selecting a set of weighting functions which combine the
parameterized reduced-order linear models. Here, we expand
upon our previous work by generalizing the nonlinear PMOR
(NLPMOR) algorithm and by examining how the parameter
dependence of the reduced model is affected by the method
with which linearization points and columns for the projection
matrix are chosen. In addition, we propose an adaptive train-
ing scheme which selects parameter-space points for training
by using available trajectory information to approximate the
system sensitivity to the parameters. Requiring fewer training
trajectories reduces the model generation cost and potentially
eliminates redundant linear models. The proposed approach has
been fully tested on the diode circuit and the MEM switch used
in [26] and also on a new highly nonlinear distributed circuit
which is used to propagate soliton waves.

The rest of this paper is organized as follows. Section II
briefly reviews moment matching for linear systems, mo-
ment matching for parameterized linear systems, and a TPWL
method for nonlinear nonparameterized systems. Our new ap-
proach is presented in Section III along with an algorithm for its
implementation. Three parameterized nonlinear-system exam-
ples were chosen to test the proposed method and are described
in detail in Section IV. Results from these examples along
with the algorithm and parameter-space-accuracy analyses are
presented in Section V.

0278-0070/$25.00 © 2007 IEEE
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II. BACKGROUND

A. Moment-Matching MOR for Linear Systems

Consider a linear system

dx
dt

= Ax(t) + Bu(t), y(t) = CTx(t) (1)

where A ∈ RN×N , B ∈ RN×ri , and C ∈ RN×ro . The state
x ∈ RN has a very large order N , and u(t) ∈ Rri and y(t) ∈
Rro are vectors containing the ri inputs and ro outputs, respec-
tively. One approach to reduce the order of such a system in-
volves employing an orthonormal projection matrix V ∈ RN×q

such that x ≈ Vx̂, where x̂ ∈ Rq is the reduced state with
q $ N , obtaining the ROM

dx̂
dt

= Âx̂(t) + B̂u(t), ŷ(t) = ĈTx̂(t) (2)

where Â ∈ Rq×q = VTAV, B̂ ∈ Rq×ri = VTB, and Ĉ ∈
Rq×ro = VTC [27]. For the remainder of this paper, we will
use the convention that vectors are denoted by bold-font lower-
case letters (e.g., x), matrices are denoted by bold-font capital
letters (e.g., A), and scalars are denoted by plain-font symbols
(e.g., t).

The projection matrix is carefully constructed to preserve the
input/output relationship (e.g., transfer function) of the system.
If the projection matrix is chosen such that

{B̃,MB̃,M2B̃, . . . ,Mq−1B̃} ⊆ range(V) (3)

where range(V) = {x ∈ RN |x = Vx̂, x̂ ∈ Rq,V ∈ RN×q},
M = A−1, and B̃ = −A−1B, then the resulting reduced-
system transfer function will match the first q moments of the
Taylor series expansion in the Laplace variable s of the large-
system transfer function [28]

x = [I − sM]−1B̃u =
∞

∑

n=0

snMnB̃u. (4)

B. Moment-Matching PMOR for Linear Systems

Consider a linear system whose dynamical descriptor ma-
trices in the Laplace domain are functions of the Laplace
frequency variable s and of some other geometrical parameters
s1, . . . , sµ

E(s, s1, . . . , sµ)x = Bu (5)

where E ∈ RN×N . By using a polynomial fitting technique and
introducing additional parameters s̃, as shown in [8] and [9],

one can approximate the parameterized system as

[Ẽ0 + s̃1Ẽ1 + · · · + s̃P ẼP ]x = Bu (6)

where Ẽi ∈ RN×N .
System (6) can be rearranged and expanded in a Taylor series

to obtain

x = [I − s̃1M1 − · · · − s̃P MP ]−1B̃u (7)

=
∑

n

(s̃1M1 + · · · + s̃P MP )nB̃u (8)

=
∑

n

∑

k1

. . .
∑

kP

[

Fn
k1,...kP

(M1, . . . ,MP )B̃u
]

sk1
1 , . . . , skP

P

(9)

where B̃ = Ẽ−1
0 B, Mi = −Ẽ−1

0 Ẽi, and Fi ∈ RN×N . The for-
mulas for Fi are long and convoluted. Here, we present only the
formula for the simplified case P = 2 where the pattern of the
vectors Fi is more perceptible. Detailed recursive formulas for
the calculation of Fi with an arbitrary P can be found in [9]. If
P = 2, system (6) becomes

[Ẽ0 + s̃1Ẽ1 + s̃2Ẽ2]x = Bu (10)

and (9) becomes
∑

n

∑

k

[

Fn
k (M1,M2)B̃u

]

sn−k
1 sk

2 (11)

where B̃ = Ẽ−1
0 B, Mi = −Ẽ−1

0 Ẽi, and Fn
k (M1,M2) is

shown at the bottom of the page. This recursive formula gen-
erates vectors of the form

B̃,M1B̃,M2B̃,M2
1B̃, (M1M2 + M2M1)B̃,M2

2B̃, . . .

If we now construct the projection matrix V such that
[

B̃,M1B̃,M2B̃,M2
1B̃, (M1M2 + M2M1)B̃, . . .

]

⊆ range(V) (12)

for the P = 2 case, and

{F0B̃,F1B̃, . . .} ⊆ range(V) (13)

for arbitrary P , then the P -variable Taylor series expansion of
the transfer function of the reduced-order system

[Ê0 + s̃1Ê1+, . . . , s̃P ÊP ]x̂ = B̂u (14)

will match exactly the P -variable Taylor series transfer-
function moments of the original system (6), where
Êi ∈ Rq×q = VTẼiV, and B̂ ∈ Rq×ri = VTB̃.

Fn
k (M1,M2)=







0, if k (∈0, 1,. . ., n
I, if m = 0
M1Fn−1

k (M1,M2) + M2Fn−1
k−1(M1,M2), otherwise
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It is noted in [9] that for a large number of parameters P and
a modest number of moments m matched for each parameter,
this method may generate systems of substantial order O(Pm).

C. TPWL for MOR of Nonlinear Systems

Consider a nonlinear system in the form

dx
dt

= f (x(t)) + Bu(t), y = CTx(t) (15)

where f : RN )→ RN . The TPWL method uses local linear ap-
proximations to represent the nonlinear function f(x), resulting
in a collection of linear models [22]. The nonlinear system can
then be approximated with a weighted combination of the linear
models

dx
dt

=
κ−1
∑

i=0

wi(x,X) [Aix + ki] + Bu(t) (16)

where wi(x,X) denotes some weighting functions which
depend on the state x and the κ linearization points X ∈
RN×κ = [x0,x2, . . . ,xκ−1], and (Ai,ki) represents the lin-
earized model at state xi

Ai =
∂f(x)
∂x

∣

∣

∣

xi

ki = f(xi) −
∂f(x)
∂x

∣

∣

∣

xi

xi.

Since it would be too expensive to uniformly cover the
entire state space with linearizations, models are only created
in important regions of the space where the vector field f(x)
is very nonlinear and where the state is likely to evolve during
simulation. Such important regions can be found for instance by
simulating the nonlinear system with some “typical” training
inputs and restricting the choice of linear models to these
resulting trajectories. One major drawback of this method is
that the accuracy of the reduced model can be highly dependent
on the “richness” of the inputs chosen for the training.

A projection matrix V can now be created by assembling all
the Krylov vectors (3) from each of the linearized models. The
reduced system becomes

dx̂
dt

=
κ−1
∑

i=0

wi(x̂, X̂)
[

Âix̂(t) + k̂i

]

+ B̂u(t) (17)

where Âi = VTAiV, k̂i = VTki, B̂ = VTB, x̂ = VTx,
X̂ = [VTx1, . . . ,VTxκ], and κ is the number of linear mod-
els. The relative weights wi(x̂, X̂) of each linear model vary
dynamically as the state evolves. One possible weighting
scheme is

wi(x̂, X̂) =
exp

[

−βd2
i

m2

]

∑

j exp
[−βd2

j

m2

]

where β is some constant (typically, we used β = 25),
di = ‖x̂ − x̂i‖, and m = mini(di). Other possible weighting
schemes have been proposed in [29] and [30].

III. PMOR FOR NONLINEAR SYSTEMS

A. PROM Description Derivation

Let us consider a system possessing nonlinear dependence
on both the state x(t) and some parameters pi

dx
dt

= f (x(t), p1, p2, . . . , pµ) + B(p1, . . . , pµ)u(t)

y =CTx (18)

where x ∈ RN , f : RN )→ RN , B ∈ RN×ri , and C ∈ RN×ro .
By using, for instance, a polynomial fitting scheme or a Taylor
series approximation in the parameters, we can extract the
parameter dependence from the nonlinear functions by writing

f(x, p1, . . . , pµ) ≈
P−1
∑

j=0

gj(p1, . . . , pµ)fj(x)

B(p1, . . . , pµ)u(t) ≈
P−1
∑

j=0

gj(p1, . . . , pµ)Bju(t) (19)

where gj(p1, . . . , pµ) denotes the scalar functions of the param-
eters, fj(x) denotes the vector-valued functions of the state, and
Bj denotes the constant input matrices. For example, a first-
order Taylor series expansion on f(x, p) would yield

fj(x) =
∂f(x, p)
∂pj

∣

∣

∣

p0
(20)

f0(x) = f(x, p0) −
∑

j

pj0
∂f(x, p)
∂pj

∣

∣

∣

p0
. (21)

By introducing a new set of parameters p̃j = gj(p1, . . . , pµ),
it is finally possible to make the system affine in the new
parameters

dx
dt

=
P−1
∑

j=0

p̃j [fj(x) + Bju(t)] (22)

while retaining the nonlinear dependence on the original param-
eters. In order to keep the equations concise, we choose f0(x)
and B0 to be the terms with no parameter dependence, and thus,
we define p̃0 = 1.

It is desirable to write the system as (22) because such
form permits approximating each nonlinear function fj(x) as
an affine function without affecting the parameter dependence
of the system

p̃jfj(x) ≈ p̃j

[

fj(xi) +
∂fj
∂x

(x − xi)
]

= p̃j [Aijx + kij ]

Aij =
∂fj(x)
∂x

∣

∣

∣

xi

kij = fj(xi) −
∂fj(x)
∂x

∣

∣

∣

xi

xi
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where Aij ∈ RN×N , and kij ∈ RN .
This allows, as in [22], an approximation of the nonlinear

functions fj(x) as a collection of local linearizations around
different points xi in the state space

dx
dt

=
κ−1
∑

i=0

P−1
∑

j=0

wi(x,X)p̃j [Aijx + kij + Bju] (23)

where wi(x,X) denotes the weighting functions which vary
dynamically with the state.

Now that the system matrices Aij have no implicit parameter
dependence, standard projection techniques can be applied to
each of the linear systems in (23). For example, by using a
projection matrix V ∈ RN×q , the system becomes

dx̂
dt

=
κ−1
∑

i=0

P−1
∑

j=0

wi(x̂, X̂)p̃j [Âij x̂ + k̂ij + B̂ju]

y = ĈTx̂ (24)

where x̂ ∈ Rq , Âij ∈ Rq×q = VTAijV, k̂ij ∈ Rq = VTkij ,
B̂j ∈ Rq×ri = VTBj , Ĉ ∈ Rq×ro = VTC, x = Vx̂, and
X̂ ∈ Rq×κ = [VTx0, . . . ,VTxκ−1], resulting in a ROM which
possesses a parameter dependence similar to that of the original
model.

In order to complete the procedure, two algorithms need to
be specified: how to choose the linearization points xi and how
to construct a projection matrix V. These two methods will be
discussed in detail in the following sections, and then, they will
be combined to create the proposed NLPMOR algorithm.

B. Selecting Linearization Points

In the standard TPWL [20]–[25], linearization points are
chosen along the state trajectories generated by typical training
inputs. By using a similar idea, additional trajectories can be
created by training with system (22) at a set of points in
the parameter space {p̃j}. This additional training produces
linear models in new state-space regions where variations in the
parameter are likely to drive the state. As with the training
inputs, if we know a range of practical parameter values over
which the system will be evaluated, we can restrict the param-
eter training points to that set. Additionally, if we have an in-
formation about the sensitivity of the system to each parameter,
training should be performed in regions where the system is
most sensitive to the parameter. Section III-D presents a method
for approximating these sensitivities using this information to
select the training points.

Computing the exact training trajectories requires a simula-
tion of the full nonlinear system, which may be prohibitively
expensive. Alternatively, one could use “approximate training
trajectories.” In this case, rather than simulating the full nonlin-
ear system, we simulate a linearized model. It is assumed that
this linearized model is accurate as long as the current simulated
state stays in some neighborhood of the linearization state.
Once the current simulated state leaves such a neighborhood,

a new linearized model is created at the current state, and the
procedure continues on in this manner.

The additional trajectories created by parameter-space train-
ing increase the cost of constructing the model but do not
significantly affect the cost of simulating the ROM. Since the
weighting functions in (24) are typically nonzero for just a
few models at any particular time, only the closest models are
considered for weighting, and a larger set of models does not
significantly affect the simulation time [29]. Thus, by holding
the order of the reduced system fixed and adding additional
models from the new trajectories, the interpolation of the non-
linearity fj(x) in (22) can be improved without increasing the
simulation time.

C. Constructing the Projection Matrix

As in PMOR for linear systems [5], [8], [9], the columns of
the projection matrix V can be chosen to span the subspace
generated by the vectors from a multivariable Taylor series
expansion about each parameter p̃j in (23). This is similar to the
scheme used in Section II-B except that, in this case, the model
is nonlinear. Therefore, the projection vectors are constructed
using the vectors produced by a multivariable Taylor series ex-
pansion (with respect to the frequency and all of the parameters)
of the transfer functions of each of the κ-linearized models
created during the training. Constructing V in this manner
ensures that the PROM will match the moments of the transfer
functions of each of the linearized systems with respect to both
the frequency and parameter values.

It is important to note here that it would be possible to gen-
erate parameterized projection vectors using other projection-
based PMOR methods (for example, [6], [7], [10]–[12]).
However, moment matching is suitable for this method because
it is relatively cheap to compute a few moments from each
linearization while it is being generated, and the parameterized
moments allow us to more carefully fit the transfer functions
around the frequencies and the parameter values at which the
training trajectories were created.

The training procedure produces κ linear models that capture
the nonlinear effects of the original system. In addition to creat-
ing Krylov vectors from these κ models, it may be beneficial
to also create the Krylov vectors at additional points along
the training trajectories. This does not significantly increase
the computational cost because when solving the nonlinear
system with an implicit time integration scheme (e.g., Newton’s
method with the backward Euler method), we produce lin-
earizations at every time step; hence, the additional cost is
merely a few system solves per additional Krylov vector.

One additional difference between the linear case in
Section II-B and the nonlinear case is the constant vector k
in (23)—an artifact of the state linearizations. This term can
be treated as a second input vector b2 with a constant input
u2(t) = 1. Thus, (23) becomes

dx
dt

=
κ−1
∑

i=0

P−1
∑

j=0

wi(x,X)p̃j [Aijx(t) + b2iju2(t) + Bju(t)] .

(25)
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To account for this term, several Krylov vectors should also be
generated as in Section II-B for each linear model with k in
place of B.

The matching of moments about multiple expansion points
for every linear model may quickly increase the number of
columns in the projection matrix. As V becomes large, sim-
ulation of the ROM will become costly. One way to keep
the size of the reduced system small is to perform a singular
value decomposition (SVD) on the projection matrix [12], [31],
[32]. The SVD is relatively inexpensive because the projection
matrix is very tall and also relatively “skinny.” After SVD,
only vectors corresponding to the largest q singular values are
selected as columns for the new projection matrix V, resulting
in a reduced system of small order q.

D. Selecting Parameter-Space Training Points

One possible method of selecting the parameter values for
training in the parameter space is to predict whether a change
in parameter value will cause the state to visit new regions
of the state space, which are not supported by the current
projection operation subspace. Let us define x(t, p̃a, ωa) ∈
RN for t ∈ [0, T ] as a trajectory which solves (22) at p̃a =
[p̃0a, p̃1a, . . . , p̃P−1a]T driven by a sinusoidal input at fre-
quency ωa, and V as the subspace spanned by the columns
of the projection matrix V, which was constructed such that
x(t, p̃a, ωa) ∈ V. If it can be shown that x(t, p̃b, ωa) ∈ V for
some p̃b = p̃a + ∆p̃ without computing x(t, p̃b, ωa), then
there is no need to train at p̃b to generate more projection
vectors.

The solution x(t, p̃b, ωa) can be approximated with a first-
order Taylor series expansion in p̃ as

x(t, p̃b, ωa) ≈ x(t, p̃a, ωa) +
∂x
∂p̃

∣

∣

∣

p̃a
∆p̃ (26)

where ∆p̃ = [∆p̃0, . . . ,∆p̃P−1]T ∈ RP , and (∂x/∂p̃) ∈
RN×P . If (∂x/∂p̃) ∈ V, then x(t, p̃b, ωa) ∈ V because V is a
linear subspace; therefore, linear combinations of elements in
V are also in V.

To compute ∂x/∂p̃, let us first denote xk = x(tk, p̃a, ωa) for
1 ≤ k ≤ τ as a sample of trajectory x(t, p̃a, ωa) at tk and, then,
define x̄ ∈ RNτ = [xT

1 , . . . ,xT
τ ]T as a stack of the τ trajectory

samples into one long vector. Since x solves (22), this new
variable x̄ approximately solves the system

D̄x̄ =
P−1
∑

j=0

p̃j

[

f̄j(x̄) + B̄j

]

(27)

where D̄ ∈ RNτ×Nτ is a finite difference time-derivative
operator, f̄j : RNτ )→ RNτ = [fT

j (x1), . . . , fT
j (xτ )]T, and

B̄j ∈ RNτ = [(Bu(t1))T, . . . , (Bu(tτ ))T]T. Differentiating
this system with respect to each of the parameters yields

D̄
∂x̄
∂p̃

= ˜̄f(x̄) +
P−1
∑

j=0

p̃j
∂ f̄j
∂x

∂x̄
∂p̃

(28)

where (∂ f̄/∂x̄) ∈ RNτ×Nτ , (∂x̄/∂p̃) ∈ RNτ×P , and ˜̄f ∈
RNτ×P is

˜̄f(x̄) =
[(

f̄0(x̄) + B̄0

)

, . . . ,
(

f̄P−1(x̄) + B̄P−1

)]

. (29)

This can be rearranged into the linear system


D̄ −
P−1
∑

j=0

p̃j
∂ f̄j
∂x̄





∂x̄
∂p̃

= ˜̄f(x̄) (30)

whose solution is a narrow matrix ∂x̄/∂p̃ such that

∂x̄
∂p̃

=











∂x
∂p̃0

∣

∣

∣

t=t1
. . . ∂x

∂p̃P−1

∣

∣

∣

t=t1
...

. . .
...

∂x
∂p̃0

∣

∣

∣

t=tτ

. . . ∂x
∂p̃P−1

∣

∣

∣

t=tτ











. (31)

System (30) is large; however, ∂ f̄/∂x̄ is very sparse, and ˜̄f
is narrow and sparse. Assembling the system requires no extra
work because both the Jacobians and the function evaluations
in (30) were already computed at every time step during the
training process.

If ∂x/∂p̃ is well approximated by vectors in V, then its
largest singular vectors, defined as ∂̃x/∂p, are orthogonal to
the null space of VT, defined as N (VT), i.e.,

∥

∥

∥

∥

∥

∥

(

∂̃x
∂p

)T

N (VT)

∥

∥

∥

∥

∥

∥

≤ ε (32)

where ε is a small tolerance.
Note that even if solution ∂̃x/∂p is in V, it may still be

beneficial to add new linearization points from the trajectory
x(t, p̃b, ωa). If each linearized model is assumed to be accurate
in some δ-ball around its linearization point, then no models are
needed if

‖x(t, p̃a, ωa) − x(t, p̃b, ωa)‖ < δ (33)

for all t’s. From (26), this is equivalent to
∥

∥

∥

∥

∂x(t)
∂p

∥

∥

∥

∥

≤ δ

‖∆p‖ (34)

for all values of t.
Thus, one could perform the aforementioned checks while

the trajectory at p̃a is being created, and one would know at the
end of the trajectory whether it is necessary to train at a nearby
parameter-space point p̃b.

E. Proposed NLPMOR Algorithm

An algorithm for NLPMOR is constructed by defining both
a linearization scheme (i.e., a method to choose linearization
points for linear models) and a projection scheme (i.e., a
method to construct the projection matrix V). By combining
the parameterization options in Sections III-B and C, we obtain
four different schemes for training, presented in Table I, and
four different schemes for constructing V, presented in Table II.
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TABLE I
FOUR OPTIONS IN SELECTING LINEARIZATION POINTS FROM THE

TRAINING TRAJECTORIES

TABLE II
FOUR OPTIONS IN CONSTRUCTING THE PROJECTION MATRIX

A generic NLPMOR algorithm which incorporates each of
these options is presented in Algorithm 1.

In order to select a linearization scheme, two decisions need
to be made: whether to exactly compute the trajectories or to
merely approximate the trajectories and whether to train in the
parameter space. If exact trajectories are used, the nonlinear
system and the current linear model are solved to obtain xt and
xi, which are the states of the nonlinear system and linearized
model, respectively, at time t. By defining ∆ = ‖xt − xi‖
as the distance between the solution of the nonlinear system
and the solution of the linearized system, a new model is
created whenever ∆ > δ, where δ is some preset tolerance. A
linearization of the original nonlinear system consists of a pair
{Atj ,ktj} as in (23). If approximate training trajectories are
used, rather than comparing the linear-system solution xi to
the nonlinear-system solution, we compare xi to the previous
linearization points xLj . By setting ∆ = minj ‖xi − xLj‖,
linearizations are created when the state xi strays too far from
the closest of all the precalculated linearization points xLj ,
i.e., ∆ > δ.

In order to select a projection scheme, we need to decide
which linear models the Krylov vectors are generated from
and which Taylor expansion is used to compute the vectors.
When the system is trained with exact trajectories, the linear
models are available at every time step, and it is cheap to create
several Krylov vectors at each step (achieved in Algorithm 1
by setting KrAll = 1). If approximate trajectories are used for
training, or if the cost of creating Krylov vectors at every time
step is prohibitive, then the Krylov vectors are computed only
from the linear models (obtained in Algorithm 1 by setting
KrAll = 0).

Finally, the Krylov vectors could be created either with
a single variable Taylor series expansion about the Laplace
variable s, which is referred to in Algorithm 1 as MORV,
or with a multivariable Taylor series expansion about s and
all of the parameters, which is referred to in Algorithm 1
as PMORV.

Algorithm 1 NLPMOR
1: for each Training Input Signal do
2: for each Training Point in the Parameter Space do
3: Linearize nonlinear system at initial state xL0

4: while t < tfinal do
5: Simulate linearized model to compute its next

state xi

6: Set KrLin = 0
7: if Exact Training Trajectories then
8: Simulate nonlinear system to compute its next

state xt

9: Compute ∆ = ‖xt − xi‖
10: Set xn = xt

11: else if Approximate Training Trajectories then
12: Compute ∆ = minj ‖xLj − xi‖
13: Set xn = xi

14: end if
15: if ∆ > δ then
16: Linearize nonlinear system at current state xn

17: j ← j + 1
18: xLj = xn

19: KrLin = 1
20: end if
21: if (KrAll‖KrLin) then
22: if MORV then
23: Use (3) to compute Vnew

24: else if PMORV then
25: Use (13) to compute Vnew

26: end if
27: Ṽ = [Ṽ Vnew]
28: end if
29: end while
30: end for
31: end for
32: Construct a new projection matrix V using only the

dominant singular vectors of Ṽ
33: Project systems using V
34: Select weighting functions w(x,X)

The notation in Tables I and II will be used in this paper
to identify different kinds of model reduction algorithms. For
instance, when we write a TemVpl PROM, we mean that
the reduced model is created by training with exact trajec-
tories at multiple points in the parameter space and is re-
duced with a PMOR projection matrix with vectors taken only
from the linear models created. As another example of our
notation, when we compare TxxVmx and TxxVpx models in
Section V, we mean that we intend to examine only the effects
of the MOR moment matching versus the PMOR moment
matching.

F. Algorithm Costs

Since computing each Krylov vector requires one system
solve, the cost of constructing the projection matrix can be mea-
sured in a number of system solves. Such costs are summarized
in Table III. For a projection matrix created by generating the
m MORV Krylov vectors from the κ linear models, the cost
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TABLE III
COSTS OF CONSTRUCTING THE PROJECTION MATRIX USING THE FOUR

AVAILABLE OPTIONS, MEASURED IN SYSTEM SOLVES PER TRAJECTORY

TABLE IV
COSTS OF TRAINING THE SYSTEM USING THE FOUR AVAILABLE

OPTIONS, MEASURED IN SYSTEM SOLVES PER INPUT

of constructing the projection matrix is O(κm). If instead the
PMORV vectors are chosen and the system has P parameters,
then the cost of constructing V becomes O(κPm). When the
Krylov vectors are generated from every trajectory step, the
costs become O(Tm) and O(TPm), respectively, where T is
the total number of time steps in a trajectory.

The exact training trajectories are created by solving the
large nonlinear system at each time step. If each trajectory
contains T points and each nonlinear solve requires γ Newton
iterations, a single trajectory will cost O(γT ) system solves.
For the approximate trajectory algorithms, the cost of a single
trajectory is reduced to O(T ) solves, as shown in Table IV.
Finally, for a system with P parameters and r training values
for each parameter, a single input will generate rP different
training trajectories.

IV. EXAMPLES

Three example systems were chosen to help illustrate the
advantages of NLPMOR. All three examples are physical sys-
tems which contain strong nonlinearities that are distributed
throughout the devices and possess dependence on several
geometrical parameters. For each example, a derivation of the
original system model is presented, followed by the results from
our different algorithms.

A. Diode Transmission Line

The first example considered is a diode transmission line,
which was used in the original TPWL papers [22], [23]. This
allows for some relative accuracy comparisons between our
new method and a well-established result in literature. The
transmission line, shown in Fig. 1, is a nonlinear analog circuit
containing a chain of strongly nonlinear diodes, resistors, and
capacitors.

We chose the nodal voltages as the system state and derived
the system equations using Kirchoff’s current law and nodal

Fig. 1. Nonlinear transmission line circuit containing diodes [22], [23].

analysis. An equation for interior node j has the form

C
dxj

dt
=

xj−1 − 2xj + xj+1

r

+ Id

[

e
1

vT
(xj−1−xj) − e

1
vT

(xj−xj+1)
]

(35)

leading to a state-space system of the form

E
dx
dt

= −1
r
QTQx − IdQTd(x, vT) + bu(t). (36)

Here, Q ∈ RN×N is the adjacency matrix for the resistor and
diode networks, and E ∈ RN×N is the capacitance matrix. Vec-
tor d(x, vT) = −QTφ(x, vT), where φ(x, vT) : R × RN )→
RN . Its jth row is φj(x, vT) = e(1/vT)qT

j x − 1, where qj is the
jth column of Q. Vector b ∈ RN relates the state equations
to the input which is an ideal current source u(t) = i(t). All
resistors have a value of 1 Ω, whereas all capacitors have a
value of 10 pF. The constitutive relation for the diodes is φ(v) =
Id(e(1/vT)v − 1), where vT is the threshold voltage, and v is
the voltage across the device. Values of Id = 0.1 nA and vt =
25 mV were used as nominal values. Three parameters were
considered for the diode transmission line: the resistor values r,
the diode threshold voltage vT, and the diode saturation current
Id. The situation is simplified if the parameters are defined
as pG = 1/r, pV = 1/vT, and pI = Id. Since (36) possesses
nonlinear dependence on pV , the system must first be expanded
in powers of pV . We chose to use a second-order expansion
about the nominal value pV = (1/25 mV) = 40 V−1

E
dx
dt

=pGGx+pId0(x)+pIpV d1(x)+pIp
2
V d2(x) + bu(t)

(37)

where

G = −QTQ

d0(x) = −QT

[

d(x, vT0) −
1

vT0

∂d(x, vT0)
∂( 1

vT0
)

+
1

2v2
T0

∂2d(x, vT0)
∂( 1

vT0
)2

]

d1(x) = −QT

[

∂d(x, vT0)
∂( 1

vT0
)

− 1
vT0

∂2d(x, vT0)
∂( 1

vT0
)2

]

d2(x) = −QT 1
2
∂2d(x, vT0)
∂( 1

vT0
)2

.

Note that the system is still nonlinear in the state. To
test our reduction algorithms, we created a reduced model
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Fig. 2. Model created for the diode transmission line with original size N =
200 parameterized in pG = 1/r by training at pG0 = {0.75pG0, pG0, 2pG0}
with pG0 = 1. The PROM has size q = 10 and was simulated at a range of pG
values in the interval [0.7pG0, 2.5pG0], resulting in a speedup of about 10×.

Fig. 3. MEM switch is a polysilicon beam fixed at both ends and suspended
over a semiconducting pad and substrate [22], [23].

parameterized in pG. Fig. 2 compares the simulation output of
the full nonlinear system with that of the PROM over a large
range of parameter values which vary from the nominal value
by as much as −30% and +150%.

B. Micromachined Switch

The second example is a micromachined switch [22], [23].
The switch consists of a polysilicon fixed–fixed beam sus-
pended over a polysilicon pad on a silicon substrate, as shown
in Fig. 3. When a voltage is applied between the beam and the
substrate, the electrostatic force generated pulls the beam down
toward the pad. If the force is large enough, the beam will come
into contact with the pad closing the circuit. In addition to being
used as a switch, this device can be used as a pressure sensor
due to its extreme sensitivity to the surrounding atmospheric
conditions. The unknowns of interest in this system are the
deflection of the beam z(x, t) and the air pressure between the
beam and the substrate P (x, y, t). The system of equations is
assembled by discretizing the coupled 1-D Euler’s beam (38)
and the 2-D Reynold’s squeeze-film damping (39), taken from
[22]. A finite difference scheme was used for the discretization,
using m points for the length and n points for the width, and
since the length of the beam is much greater than the width, the

vertical deflection is assumed to be uniform across the width,
and only the pressure was discretized in the width

ÊI0h
3w

∂4z

∂x4
− S0hw

∂2z

∂x2
=Felec +

w
∫

0

(P − Pa)dy

− ρ0hw
∂2z

∂t2
(38)

∇ ·
(

(1 + 6K)z3P∇P
)

=12µ
∂(Pz)
∂t

. (39)

Here, Felec = −(ε0wv2/wu2) is the electrostatic force across
the plates resulting from the applied voltage v, where v2 is the
input to the system. The beam is 2.2 µm above the substrate
(z0 = 2.2 µm), 610 µm in length, and has a width of 40 µm.
The other constants are permittivity of free space ε0 = 8.854 ×
10−6 F/m, permeability µ = 1.82 × 10−5 kg/m · s, moment of
inertia I0 = 1/12, Young’s modulus Ê = 149 GPa, Knudsen
number K = λ/z0, λ = 0.064, stress coefficient S0 = −3.7,
and density ρ0 = 2300 kg/m3. The aforementioned equations
can be separated into three partial differential equations

∂z

∂t
=

∂3z

∂t3
1

3z2

∂4z

∂t4
=

(

∂3z

∂t3

)2 2
3z3

− 3ε0
2ρ0h

v2 +
3z2

ρ0hw
S0hw

∂2z

∂x2

+
3z2

ρ0hw





w
∫

0

(P − Pa)dy − EIh3w
∂4z

∂x4





∂P

∂t
= − ∂3z

∂t3
P

3z3
+

1
12 µz

∇
((

1 + 6
λ

z

)

z3P∇P

)

.

We choose the state-space variables to be x1 ∈ Rm = z, x2 ∈
Rm = ∂u3/∂t, and x3 ∈ Rmn = P , and the parameters to
be Young’s modulus pE = E and stress coefficient pS = S.
Rearranging the discretized system equations to obtain linearity
in each parameter results in the system

∂x1

∂t
= f10(x1,x2)

∂x2

∂t
= f20(x1,x2,x3)+ pSf21(x1,x2)+ pEf22(x1)+bu(t)

∂x3

∂t
= f30(x1,x2,x3)

where the total system has an order N = m(n + 2), f10 ∈ Rm,
f20, f21, f22 ∈ Rm, and f30 ∈ Rmn. A detailed description of
these functions can be found in [33]. The beam is fixed at
both ends and initially in equilibrium; therefore, the applied
boundary conditions are

z(x, 0) = z0, P (x, y, 0) = Pa, z(0, t) = z(l, t) = z0.
(40)

Other constraints enforced are

∂P (0, y, t)
∂x

=
∂P (l, y, t)

∂x
=0, P (x, 0, t)=P (x,w, t)=Pa

(41)
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Fig. 4. Output of a micromachined switch model parameterized in pE and pS
and simulated at nine different sets of parameter values on an evenly spaced grid
where pE ∈ [0.6pE0, 1.4pE0], and pS ∈ [0.6pS0, 1.4pS0]. The solid lines
represent the original model with order N = 144, the crosses represent the
reduced model of order q = 20, the resulting speedup in simulation was about
15×, and the nominal parameter values are [pE0, pS0] = [1.49 × 105,−3.7].

Fig. 5. Pulse-narrowing transmission line circuit containing nonlinear
capacitors [34].

where the initial height and pressure are z0 = 2.3 µm and Pa =
1.103 × 105 Pa, respectively. Typical inputs for this system are
sinusoids u(t) = (v cos(ωt))2 with ω = (10π/30) MHz and
v = 7 or a step input u(t) = v2 for t > 0 with v = 7. The
system output is the deflection of the beam center point.

For this example, a reduced model parameterized in pE and
pS was created by training with the sinusoidal inputs. The
model was then simulated at nine different sets of parameter
values on an evenly spaced grid with each parameter varying
up to ±40% from the nominal values. The outputs from the
simulation along with the output of the full nonlinear system
are shown in Fig. 4.

C. Pulse-Narrowing Transmission Line

The final example considered is a nonlinear transmission line
used for signal shaping. One example of such a line, shown in
Fig. 5, contains distributed nonlinear capacitors. The resulting
wave equation for this transmission line contains a nonlinear
term which sharpens the peaks in a wave traveling down the
line. Hence, these devices may be useful in pulse-narrowing
applications. A thorough analysis of this line can be found
in [34]. The nonlinearity arises from the voltage dependence
of the capacitors Cn = C(Vn) ≈ C0(1 − bcVn). By setting the

system state to the node voltages and branch currents, the
system equations can be derived using Kirchoff’s current law
and nodal analysis. The input is an ideal voltage source u(t) =
Vs(t), and the output is the voltage at some node m along
the line y(t) = Vm(t). By using this formulation, the system
equations for an interior node n would be of the form

Cn(Vn)
dVn

dt
= In−1 − In (42)

Ln
dIn

dt
= Vn − Vn+1 (43)

leading to the state-space model
[

ẋ
ż

]

=
[ 1

C0
fV (x, z)

1
L fI(x, z)

]

+
[

0
1
Lb

]

u(t) (44)

where the nth equations of fV and fI are

fV n(x, z) =
zn−1 − zn

1 − bcxn
(45)

fIn(x, z) =xn − xn+1. (46)

Here, b is the vector of voltage-source inputs. Typical capacitor
and inductor values are 100 pF and 100 pH, respectively.
Parameters of interest for the pulse-narrowing transmission line
are the inductor values, the capacitor values, and bc which is a
parameter that adjusts the nonlinearity of the line. These three
parameters all affect the shaping of the wave as it travels down
the line. For this example, PROMs were created by training
with a sinusoidal input with u(t) = v sin(ωt) at a frequency
of 5 GHz. The PMOR moment matching generated moments
about parameter expansion points equal to the parameter values
used in the training. To test this example, we parameterized the
system in pC = 1/C and pL = 1/L, resulting in a system of
the form

[

ẋ
ż

]

=pL

([

0
fI(x, z)

]

+
[

0
b1

]

u(t)
)

+ pC

[

fV (x, z)
0

]

. (47)

Fig. 6 compares the output of the full system and a PROM for
the pulse-narrowing transmission line simulated at five different
parameter values varying as much as −90% and +100%.

V. ALGORITHM COMPARATIVE ANALYSIS

In this section, we examine the accuracy of models created
with the different linearization and projection schemes from
Tables I and II. Specifically considered is how the different
linearization and projection options affect the accuracy of the
PROM in the parameter space. We also wish to determine
whether the parameter-space accuracy of the PROM is limited
by the original linearization of the nonlinear system with re-
spect to the parameters.

A. Training in the Parameter Space

The effects of training at different points in the parameter
space (described in Section III-B) can be seen by comparing
the TxmVxx models with the TxsVxx models. As explained at
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Fig. 6. Output from a model of the pulse-narrowing transmission line sim-
ulated at five different values of pL = 1/L on the interval [0.1pL0, 2pL0],
where pL0 = 1011. The model was reduced from the large order N = 200 to
the reduced order q = 50 which resulted in a speedup of ∼5×.

Fig. 7. TemVpl and TesVpl models of the micromachined switch example
parameterized in pE and simulated over a range of parameter values. Each
model was reduced from the large order N = 150 to the reduced order q = 30.

the end of Section III-E, we use the notations from Tables I
and II to identify different kinds of models. Trajectories created
with different parameter values will likely evolve in different
regions of the state space, thus resulting in different collections
of linear models. The first test compares the TemVpl and TesVpl

models of the micromachined switch. By considering pE as
the parameter, one model was created by training at pE =
pE0 = 149 GPa, and the other was created by training at pE =
[0.95pE0, 1.05pE0]. The projection matrices for both models
were created by matching the parameter moments at E0 and
the frequency moments at the input frequency f = 1 GHz. The
models were simulated at a set of parameter values in the range
[0.9pE0, 1.1pE0]. Fig. 7 compares the maximum percent error
for each model, which is defined as

max
t

(

|y(t) − ŷ(t)|
|y(t)|

)

× 100. (48)

Fig. 8. Norm of the error, as defined in (49), over time for a TesVml model
trained at pI = 10−10A and a TemVml model trained at [0.5pI0 , 1.3pI0 ].
The system was reduced from the original order N = 100 to the reduced order
q = 50.

A similar comparison is made in Fig. 8 with TesVml and
TemVml models of the diode transmission line parameterized
in pI . In this figure, the error plotted is the norm of e(t), where

e(t) = |y(t) − ŷ(t)| . (49)

These models were constructed by training at pI = pI0 =
0.1 nA for Tes and pI = [0.5pI0 , 1.3pI0 ] for Tem.

Both Figs. 7 and 8 show that the greatest accuracy occurs
close to the training parameter value for the model created
by training at a single point. However, both figures also show
that the model created by training at multiple parameter-space
points is more accurate in a larger region around the training
values.

B. Parameterizing the Projection Matrix

The benefits of parameterizing the projection matrix via
PMOR moment matching, as in Section III-C, can be examined
by comparing the TxxVmx models with the TxxVpx models.

Fig. 9 compares the total simulation error at different param-
eter values for the TesVml and TesVpl models of the diode
transmission line parameterized in pI . As with the parameter-
space training, this figure suggests that the Vml model is more
accurate close to the nominal parameter value, whereas the Vpl

model is less accurate at the nominal value but more accurate
over a larger range of parameter values.

C. Krylov Vectors From Extra Models

To determine whether the linear models created during the
training produce the Krylov vectors which span a near-optimal-
reduced space, we compare the TxxVxl models with the TxxVxp

models. Both PROMs contain the same number of linear mod-
els κ and have the same reduced order q. Fig. 10 compares
the output from these two models. The results, however, are
system-dependent.
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Fig. 9. Norm of the error, as defined in (49), for two ROMs of the diode
transmission line parameterized in pI and simulated at a range of parameter
values using sinusoidal inputs. The models are TesVml and TesVpl and were
reduced from the large order N = 100 to the reduced order q = 40.

Fig. 10. Two models of the pulse-narrowing transmission line parameterized
in pL. The circles use vectors from every point of the trajectories, and the
crosses use vectors only from the k = 181 linear models. In both cases, an
SVD was used on V, and both models were projected from the large order
N = 200 down to the same reduced order q = 50.

We also considered the diode transmission line parameter-
ized in pR, and in this case, there is no discernable advantage
to the Vxa model. In general, we suspect that the Vxa model
will not be less accurate than the Vxl model. Before the SVD
in step 32 of Algorithm 1, the Vxa projection matrix contains
all of the columns in the Vxl projection matrix. Therefore,
from a practical point of view, after SVD, the Vxa projection
matrix will correspond to a subspace at least approximately as
good as the projection matrix from the Vxl model. However,
theoretically, it is important to note here that using a projection
matrix constructed using an SVD in this manner can no longer
guarantee an absolutely exact match of transfer-function mo-
ments between the original linearized models and the reduced
models.

Fig. 11. Percent error in the output of the reduced models of micromachined
switch. The solid curves correspond to the models constructed with approxi-
mate training trajectories (Tax models), whereas the dashed curves correspond
to the models constructed with exact training trajectories (Tex models). Both
models were then simulated at three different parameter values.

D. Approximate Training Trajectories

Generating exact training trajectories can be often very ex-
pensive. Alternatively, one could instead use approximate train-
ing trajectories. In this section, we compare the two approaches
examining the TaxVxx models and the TexVxx models.

By using the micromachined switch example parameterized
in pE , the TesVml and TasVml models were created. The two
models were then simulated at three different parameter values
close to the training values. Fig. 11 compares the percent error
of the PROM output for the two models.

Although the model created with exact trajectories is more
accurate, both models still produce outputs with a maximum
error smaller than 0.5%.

E. Effects of Linearizing in Parameters

Lastly, we consider the effects of linearizing the original
nonlinear system (18) with respect to the parameters (22). An
important question to ask is whether the dominant factor in de-
termining the accuracy of the PROM is a result of projecting the
system into a low-order subspace or a result of this linearization
in the parameters.

To investigate this, we considered the diode transmission line
with parameter pV . Since the original system was nonlinear in
pV , (36) was expanded to second order about some nominal
value pV0 to obtain system (37) which is linear in powers of pV

but still nonlinear in the state x. A model was created using
sinusoids as training inputs and a nominal parameter value
pV0 = 40 for expansion and training. Fig. 12 compares the
output error at different parameter values between the original
system (18), the model expanded in powers of the parameters
(22), and the PROM (24). In this case, we define the error
em(p) as

em(p) =
(

maxt |y(t) − y0(t)|
maxt |y0(t)|

)

× 100 (50)
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Fig. 12. Output error, as defined in (50), between three different diode
line models parameterized in pV and simulated over a range of parameter
values. The pluses correspond to the error between systems (18) and (24), the
circles correspond to the error between systems (18) and (22), and the crosses
correspond to the error between systems (22) and (24).

where y(t) is the output of one system at parameter value p, and
y0(t) is the output of the other system at parameter value p.

It can be seen that for this particular case, the PROM error is
not significantly worse than the error from the large nonlinear
system which was expanded in powers of the parameters (22).
This indicates that both aspects of the reduction process, i.e.,
finding a good subspace and selecting linearization points,
worked well for this example. However, the accuracy of both
models compared with the original system (18) declines rapidly
as the parameter value moves beyond ±10%. For this example,
we can conclude that if an accuracy over a larger range of
parameter values is needed, a higher order expansion in the
parameter would be required.

F. Sensitivity to Parameters

To determine how accurately the parameter dependence of
the original system is captured in the PROM, we can compare
output sensitivity with the changes in the parameters for both
the original system and the PROMs. Fig. 13 compares these
sensitivities for several parameters for each of the three example
systems. We define the sensitivity δy(p) as

δy(p) =
(

maxt |y(t) − y0(t)|
maxt |y0(t)|

)

× 100 (51)

where y(t) is the system output at parameter value p, and y0(t)
is the system output at nominal parameter value p0.

The figure shows that the PROMs do, in fact, capture the
parameter dependence of the original system over a significant
range of parameter values. The exact range of values depends
on the system and the parameter considered, as the system
sensitivity is different for each parameter.

To validate our parameter-selecting training scheme in
Section III-D, we approximate the gradient of the state with
respect to the parameters ∂x/∂p and examine whether it lies in

Fig. 13. Output sensitivity of models to parameter changes, as defined in
(50). The solid lines represent the original systems, and the symbols represent
the associated PROMs. Several parameters were considered for each example
system, with the circles corresponding to the pulse-narrowing transmission line,
the stars corresponding to the MEM switch, and the diamonds corresponding
to the diode line.

TABLE V
EQUATION (52) COMPUTED ON THREE DIFFERENT TRAJECTORIES,

CORRESPONDING TO 0.5p0, p0, AND 1.5p0, FOR EACH
PARAMETER IN OUR THREE EXAMPLES

the subspace spanned by the columns of the projection matrix
V. By the fundamental theorem of linear algebra, this can be
determined by checking if ∂x/∂p is orthogonal to the left null
space of V, which we define as

ep(p) =

∥

∥

∥

∥

∥

∥

(

∂̃x
∂p

)T

N (VT)

∥

∥

∥

∥

∥

∥

. (52)

Here, ∂̃x/∂p is the largest three singular vectors of ∂x/∂p
as computed in (30). Both the singular vectors and N (VT)
are normalized; hence, ep(p) ∈ [0, 1] with ep(p) = 0 corre-
sponding to ∂̃x/∂p exactly in the subspace spanned by the
columns of V, and ep(p) = 1 corresponding to ∂̃x/∂p exactly
orthogonal to the subspace spanned by the columns of V. We
have computed this quantity at three different parameter values
for each parameter in each system and compared the results in
Table V.

The results of this test indicate that in some cases, such as
for parameters pE and pS in the MEM switch, we do not need
to train at additional parameter values to capture the parameter
dependence of the original system. It also shows that in other
cases, such as for parameters pL and pC in the pulse-narrowing
transmission line, increasing the range of the parameter values
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will take the trajectory to a significantly different subspace,
and the reduced model would need to be updated by training
that system at the additional parameter values. In general, these
results match with what we experienced in the training process,
as we found the pulse-narrowing transmission line to be the
most difficult system to model and the MEM switch to be
the easiest. As a matter of fact, we can observe a correlation
between the results in Table V and the sensitivities shown in
Fig. 13. Both tests indicate that the pulse-narrowing transmis-
sion line is the most sensitive to changes in the parameters and
that the MEM switch is least sensitive to the parameter changes.

VI. CONCLUSION

We have presented an algorithm for the parameterized
model-order reduction of highly nonlinear systems, which con-
sists of a linearization scheme and a projection scheme, each
of which is chosen from four possible options. The different
approaches were tested on three examples: a diode transmission
line, a MEM switch, and a pulse-narrowing transmission line.

For a PROM of order q containing κ linear models, the
parameter-space accuracy of the model is characterized by the
distribution of the κ linearization points across the state space
and by the q vectors which define the column span of the
projection matrix. We have found that high local parameter-
space accuracy can be achieved by placing all κ linearization
points on the trajectories resulting from training at a single
parameter-space point or by creating the Krylov vectors using
a single variable Taylor series expansion. Alternatively, higher
global parameter-space accuracy can be attained by placing
the linearization points on trajectories created by training at
multiple points in the parameter space and by using a multivari-
able Taylor series expansion to create vectors for the projection
matrix.

Finally, we have shown that the generated reduced models
can capture the system sensitivity to the different parameters,
and these sensitivities can be approximated and used for the
purpose of the parameter-space training point selection.
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