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Abstract— In this paper we present several results concerning
the stabilization of piecewise-linear reduced order models. We
include proofs of internal and external stability for models whose
system matrices possess special structures. We then introduce a
new projection scheme, and a new set of weighting functions
which allow us to extend some of these results to piecewise-
linear systems comprised of arbitrary matrices, at least one
of which is Hurwitz. Included are an algorithm for creating
switching piecewise-linear reduced models comprised of globally
exponentially stable systems, and stable simulation results for a
system which produces unstable results when using the standard
TPWL method.

I. INTRODUCTION

Recently there has been a large amount of interest in
piecewise-linear (PWL) model order reduction (MOR) tech-
niques [1], [2], [3], [4], [5], [6], [7], [8]. Currently, PWL
methods, such as the Trajectory Piecewise-Linear (TPWL)
method [9] are probably the only viable known way to handle
strongly nonlinear systems. The issue of stability in TPWL
models has been studied [10], however, no algorithms are yet
available that guarantee the stability of such reduced order
models (ROMs).

The stability of dynamical systems was studied extensively
by Lyapunov over one hundred years ago. Lyapunov’s work
showed that a system’s equilibrium point is stable if there
exists a function, termed ‘Lyapunov function’, which satisfies
certain conditions along the system trajectories [11]. For
linear systems described by Hurwitz matrices, it has been
shown [12] that there always exists a quadratic Lyapunov
function. Recent results provide conditions for the existence
of Lyapunov functions for hybrid switching systems [13],
however such conditions implicitly impose strong constraints
on the structure of the individual linear models.

The construction of stable ROMs for linear systems has also
been a problem of great interest [14], [15], [16], [17]. For
projection-based methods, one can always find an orthogonal
projection which preserves system stability. This result is
based on the fact that a quadratic Lyapunov function for the
original system implies the existence of a quadratic Lyapunov
function for the reduced system. Methods have also been

proposed which use optimization-based fitting techniques to
preserve system stability [18], [19].

In this work we first present a proof of stability for
PWL models comprised of linearized systems which are all
described by matrices with some special structure. We then
present a projection scheme which preserves stability for
any PWL system that permits a quadratic Lyapunov function
(Section III). Applications possessing this property include for
instance nonlinear circuits assembled entirely using two-port
passive devices with monotonic I-V relationships (e.g. diodes,
nonlinear capacitors, nonlinear resistors), or systems includ-
ing arbitrary smooth nonlinearities which are not too strong
relative to the linear part. Such systems produce linearized
models described by diagonally-dominant Hurwitz matrices.
In addition, we present a new projection scheme, and a set
of weighting functions which allow us to extend some of
our results to PWL models comprised of arbitrary matrices
(Section IV). The remainder of the paper presents an algorithm
for creating such stabilized models (Section V), and numerical
results supporting our algorithm (Section VI).

II. BACKGROUND

A. System Stability
In this section we summarize definitions and some basic

results about different types of system stability and their
relationships. Consider the nonlinear dynamical system

ẋ = f (x,u) , y = g(x) (1)

with equilibrium point xeq = 0 such that

f (0,0) = 0 , ∀t.

Here x ∈RN is the state vector, and u∈R, y∈R are the input
and output respectively. The internal stability of System (1) is
defined by the attractiveness of the equilibrium point of the
autonomous system

ẋ = f (x,0). (2)

Specifically, the equilibrium point is said to be exponentially
stable if all solutions starting from arbitrary initial conditions



converge to the equilibrium point exponentially fast. Such
internal stability property can be shown by the existence of a
Lyapunov function – a non-negative function which decreases
monotonically along all system trajectories.

Theorem 2.1 ([11]): The equilibrium point xeq = 0 of sys-
tem (1) is globally exponentially stable if there exist constants
λ1,λ2,λ3 > 0 and a continuously differentiable Lyapunov
function L(x, t) such that

λ1xT x≤ L(x, t)≤ λ2xT x (3)
∂
∂t

L(x, t)≤−λ3xT x (4)

∀t ≥ 0, ∀x ∈ Rn.
We consider xeq = 0 without loss of generality because the
coordinate system can always be redefined in order to translate
the equilibrium point to the origin of a new coordinate system.

For a linear system

ẋ = Ax+bu(t)

with Hurwitz matrix A, defined as a matrix whose eigenvalues
all have negative real part, i.e. Re(λ(A)) < 0, there always
exists a quadratic Lyapunov function L(x) = xT Px, where P is
a positive definite matrix which solves the Lyapunov equation

PA+AT P =−Q (5)

for some positive-definite matrix Q& 0.
System (1) is said to be externally stable if the system’s

output y(t) can be bounded by a function of the system’s
input u(t). Specifically, the system is said to be small signal
input/output stable if there exist constants r2 > 0 and γ2 < ∞
such that

||y||2 ≤ γ2||u||2 (6)

for all t > t0 given initial state x(0) = 0 and input u(t) such
that ||u||∞ < r2.

The external and internal stability of System (1) are con-
nected by the following theorem.

Theorem 2.2 ([11]): Suppose x = 0 is an exponentially sta-
ble equilibrium of system (1), F(x,u) is continuously differ-
entiable, and F(x,u),g(x,u) are locally Lipschitz continuous
at (0,0), i.e. suppose there exist finite constants k f ,kg,c2 such
that

||F(x,u)−F(z,v)||≤ k f [||x− z||+ ||u− v||] (7)
||g(x,u)−g(z,v)||≤ kg [||x− z||+ ||u− v||] (8)

∀(x,u),(z,v) ∈ Bc2(0) and ∀t ≥ 0, then system (1) is small-
signal input/output stable. Here, Bc2(0) is a ball of radius c2
centered at the origin.

B. Stable Model Order Reduction for Linear Systems
For stable linear systems, there are several projection meth-

ods which are known to preserve stability. Here we consider
one of such techniques.

Theorem 2.3 ([20]): Consider a linear system

ẋ = Ax+bu (9)

where A is a Hurwitz matrix. Let P and Q be symmetric
positive-definite matrices which solve (5), and let V be an
orthonormal projection matrix such that x = V x̂ and x ∈ Rq

where q << N. If U is defined by

UT = (V T PV )−1V T P, (10)

and Â = UT AV , then the reduced order system

˙̂x = Âx̂+ b̂u (11)

is stable.
Proof. To prove the stability of (11), it is sufficient to show
that

P̂Â+ ÂT P̂ =−Q̂ (12)

for some symmetric positive-definite P̂, and symmetric
positive-definite Q. Let’s select symmetric and positive-
definite matrix P̂ = V T PV . By the definition of U ,

P̂Â = V T PVUT AV = V T PAV, (13)

and thus

P̂Â+ ÂT P̂ = V T (PA+AT P)V =−V T QV ≺ 0. (14)

Thus (12) is satisfied for symmetric positive-definite matrix
Q̂ = V T QV !.

C. TPWL Model Order Reduction for Nonlinear Systems
Consider a nonlinear system of order N

ẋ = f (x)+bu , y = cT x, (15)

whose vector field f (x) can be approximated in some impor-
tant regions of the state-space by a convex combination of
affine functions

f (x) = ∑
i

wi(x) [Aix+Ki] , (16)

where

Ai =
∂ f (x)

∂x

∣∣∣
xi

Ki = f (xi)−Aixi (17)

are linearizations of f (x), and wi(x) are weighting functions
such that wi ∈ [0,1] and ∑i wi = 1. It is possible to introduce
a linear projection x = V x̂, where x̂ ∈ Rq and q << N, such
that each linear system is projected into a subspace creating
the piecewise-linear reduced order model

˙̂x = ∑
i

wi(x̂)
[
Âix̂+ K̂i

]
+ b̂u , y = ĉT x̂ (18)

in which we have defined Âi =V T AiV , b̂ =V T b, and ĉ =V T c.
In standard trajectory piecewise-linear methods [9], the

linearization points xi are chosen as states along trajectories
which solve system (1) when driven by some typical inputs
u(t). There are many possible options for generating the
columns of the projection matrix V . For instance, one can use
Krylov vectors of the individual linearized systems [9], [1],
important states from the trajectories [21], or TBR vectors [2].

It is important to notice here that the procedure above may
potentially produce unstable reduced models from originally



stable systems. Such instabilities may arise in three places:
Jacobian matrices Ai of stable nonlinear systems are not
guaranteed to be Hurwitz; V T AiV is not guaranteed to be
Hurwitz even if Ai is Hurwitz; finally, positive sums of Hurwitz
matrices ∑i wiAi are not guaranteed to be Hurwitz.

III. PRESERVATION OF STABILITY IN PWL MODELS

It is difficult to prove internal stability for reduced order
PWL models due to the potential instabilities introduced by
the linearizations, summation of matrices, and projection.
However, there exist many cases where large-order systems
comprised of matrices possessing some special structure can
be shown to be stable. In such cases there may also exist
projection schemes which create stable ROMs. In this section
we shall identify some classes of stable PWL models and then
describe a projection scheme which preserves stability.

To begin, we consider the PWL model

ẋ = ∑
i

wi(x)[Aix+Ki]+bu y = g(x), (19)

and note that it can be rewritten as

ẋ = ∑
i

wi(x)Aix+B(x)u y = g(x), (20)

where
B(x)u =

[
b ∑k wi(x)Ki

][
u1
u2

]
(21)

is a state-dependent input matrix. System (19) is obtained by
selecting u2 = 1 ∀t. Thus systems of the form (19) are a subset
of systems of the form (20), and any stability results which
apply to the latter also apply to the former.

A. Structured System Matrices

Often times the system matrices Ai will all share some nice
structure due to the fact that they are all linearizations of the
same nonlinear function. In such cases it may be possible to
find a Lyapunov function which proves internal stability of the
PWL system. Consider a PWL system comprised of symmetric
Hurwitz matrices. Such systems are encountered for instance
when using TPWL reduction on nonlinear circuits comprised
of nonlinear elements such as nonlinear resistors, nonlinear
capacitors, and diodes.

Prop. 3.1: If each Ai in System (20) is symmetric and
Hurwitz, and wi(x̂) : Rq (→ [0,1] are continuously differentiable
functions such that ∑i wi = 1, then System (20) has a globally
exponentially stable equilibrium point at the origin.

Proof. Consider L(x) = xT x as a candidate Lyapunov func-
tion for the system. Clearly L(x) satisfies condition (3), so
we simply need to verify that ∂L

∂t ≤ −λ3xT x. Since Ai are all
symmetric negative-definite,

∂L(x)
∂t

= 2∑
i

wi(x)xT Aix≤−2min
i

σmin(Ai)xT x

where σmin(Ai) is the smallest singular value of Ai. Thus,
condition (4) is satisfied by selecting λ3 = 2mini σmin(Ai),
hence L(x) is a Lypaunov function for System (20) !.

We next consider system matrices Ai which are Hurwitz
and have a structure such that Ai + AT

i is symmetric and
Hurwitz. For example, Hurwitz matrices which are diagonally-
dominant but not necessarily symmetric. Such matrices could
result from, for instance, the nodal analysis of analog circuits
possessing a mixture of linear elements (some of which
connect all nodes to ground), which generate a Hurwitz
diagonally-dominant symmetric Jacobian, and also transistors,
which generate non-symmetric elements in the Jacobian.

Prop. 3.2: If each matrix Ai in System (20) is such that
Ai +AT

i is Hurwitz and symmetric, and wi(x̂) : Rq (→ [0,1] are
continuously differentiable functions such that ∑i wi = 1, then
System (20) has a globally exponentially stable equilibrium
point at the origin.

Proof. consider the candidate Lyapunov function L(x) =
xT x.

∂L(x)
∂t

= 2∑
i

wi(x)xT Aix = ∑
i

wi(x)xT (
Ai +AT

i
)

x

By definition of Ai, Ai +AT
i is symmetric negative-definite, so

the remainder of the proof follows exactly as in the previous
section !. Thus, for systems comprised of structured Hurwitz
matrices, it may be possible to find a quadratic Lyapunov
function which proves internal stability.

B. Stability of Reduced Order Models
We will now show that it is possible to reduce systems

described in the previous section to obtain a guaranteed stable
ROM. In fact, there exists a projection which guarantees
stability of the reduced model created from any stable system
which permits a quadratic Lyapunov function.

Prop. 3.3: If there exists a quadratic Lyapunov function
L(x) = xT Px which satisfies conditions (3) and (4) for system
(20), then given any right-projection matrix V , there exists a
left-projection matrix U such that the ROM

˙̂x = ∑
i

wi(x̂)Âix+ B̂(x̂)u y = ĝ(x̂), (22)

where Âi = UT AiV , has a globally stable equilibrium point at
the origin.

Proof. Consider U as described in Section II-B

UT = (V T PV )−1V T P, (23)

which results in UTV = I. Now consider L̂(x̂) = x̂TV T PV x̂ as
a Lyapunov function for system (22).

∂L̂(x̂)
∂t

= ∑
i

wi(x̂)x̂TV T PVUT AiV x̂. (24)

Substituting (23) into (24) yields

∂L̂(x̂)
∂t

= ∑
i

wi(x̂)x̂TV T PAiV x̂ =
∂L(V x̂)

∂t

which was assumed to satisfy (4), so the reduced system is
stable !. For structured systems described in the previous
section, we find that U = V .



C. Input-Output Stability

In the previous two sections we showed several cases where
the autonomous systems are exponentially stable, and that this
property can be preserved in the ROM. Exponential stability is
desirable because input/output stability follows from Theorem
2.2.

Prop. 3.4: Consider System (20) where L(x) = xT Px is a
Lyapunov function which satisfies (3) and (4), Âi = UT AiV ,
b̂ = UT b, K̂i = UT Ki for some orthonormal projection matrix
V ∈ RN×q, U as defined in (30), and ĝ(x̂) is Lipschitz con-
tinuous and smooth. If wi(x̂) : Rq (→ [0,1] are continuously
differentiable functions such that ∑i wi = 1, then System (22)
is small signal input/output stable.

Proof. We shall prove this proposition by applying The-
orem 2.2 and using the fact that the autonomous system is
exponentially stable, as shown in Section III-B. Thus, we
merely need to show that

F(x̂,u) = ∑
i

wi(x̂)Âi(x̂)+ ˆ̃B(x̂)u

g(x̂,u) = ĉT x̂

are continuously differentiable and locally Lipschitz continu-
ous at (0,0), as defined in (7).

The output function g(x̂,u) is defined to be Lipschitz in x̂, so
it is continuously differentiable and Lipschitz with constant kg.
Similarly, the vector field F(x̂,u) is continuously differentiable
because it is a sum of products of continuously differentiable
functions.

It can be shown that Lipschitzness of F(x̂,u) is satisfied by
selecting

k f = ∑
i

[
Lw||Âi||+(c2Lw +1) ||K̂i||

]
+ ||b̂||,

where c2 is a bound on the input and Lw is the Lipshcitz
constant for the weighting functions. Thus, Theorem (2.2) is
applicable, and system (22) is small signal input/output stable
!. It follows that the system

˙̂x = ∑
i

wi(x̂)[Âix̂+ K̂i]+ b̂u y = ĝ(x̂), (25)

is also input/output stable.

IV. WEIGHTS AND PROJECTION FOR THE SAKE OF
STABILITY

In the previous section it was shown that stable reduced
order models can be created from system (20) when the system
permits a quadratic Lyapunov function. However, it is possible
that not all of the matrices will have a nice structure, and
some of them many not even be Hurwitz. In this case, the
associated system (20) may be unstable, even though it models
a stable nonlinear system. Thus, it is desirable to “stabilize”
the ROM by selecting an appropriate projection scheme, and
set of weighting functions.

A. Derivation of a New Piecewise-Linear Model

Given a large-order piecewise-linear system, (20), we may
introduce a linear projection x = V x̂ such that

V ˙̂x = ∑
i

wi(x̂) [AiV x̂]+B(x̂)u. (26)

To reduce the number of equations, we define a weighted
piecewise-constant left-projection function

U(x̂) =
κ

∑
k=1

µk(x̂)Uk (27)

where uk(x̂) ∈ [0,1], ∑k uk(x̂) = 1, and Uk ∈ RN×q. Left-
multiplying (26) by U(x̂)T yields

∑
k

µk(x̂)UT
k V ˙̂x = ∑

k
µk(x̂)UT

k

(

∑
i

wi(x̂) [AiV x̂]+B(x̂)u

)

= ∑
k

∑
i

µk(x̂)wi(x̂)UT
k AiV x̂+∑

k
µk(x̂)UT

k Bk(x̂)u

To simplify the notation, we define

Êk = UT
k V B̂k(x̂) = µk(x̂)UT

k B(x)

Âki = UT
k AiV ˆ̃B(x̂) = ∑

k
B̂k(x̂)

ĉ = V T c

resulting in the final reduced system

∑
k

uk(x̂)Êk ˙̂x = ∑
k

∑
i

[
µk(x̂)wi(x̂)Âki

]
x̂+ ˆ̃B(x̂)u (28)

B. Weighting Functions for Stability

For a system comprised of arbitrary matrices Ai which are
not all Hurwitz, the weighting functions must be specially
constructed to ensure stability. Each Hurwitz matrix can be
thought of as a stable system which may be somewhat per-
turbed by other nearby systems without losing stability. To this
end, we may think of the PWL model as a collection of stable
nonlinear systems centered around the different regions of the
space. This results in a set of M nonlinear vector fields which
satisfy

˙̂x = fm(x̂) = ∑
i

∑
k

µk(x̂)wm
i (x̂)Âkix̂ , for x ∈ Sm, (29)

where Sm is a partition of the space containing the linearization
point from which the Hurwitz matrix Am was created. We
can then ensure that each of these nonlinear systems is
exponentially stable, and select the weighting functions to
create a single nonlinear system which switches between the
stable subsystems.

Prop. 4.1: Consider system (20). If V ∈ RN×q is an ortho-
normal projection matrix, and at least one Am is Hurwitz,
then there exist left-projection matrices Uk, piecewise-smooth
functions uk(x̂) : Rq (→ [0,1], piecewise-smooth switching func-
tions wi(x̂) : Rq (→ [0,1], and a partition of the state-space
into M polyhedra Sm where M is the number of Hurwitz
large matrices Ai, such that system (22) is comprised of M



exponentially stable systems, and Âki = UT
k AiV , b̂k = UT

k b,
K̂ki = UT

k Ki, and ĉ = V T c.
To begin, we partition the state-space into M regions cen-

tered around the linearization points xi corresponding to the
M Hurwitz Jacobian matrices Ai. The partitions are defined as
the polyhedra Sm such that

Sm =
{

x̂ ∈ Rq
∣∣∣ x̂m = argmin

{
min

x̂i
(||x̂− x̂i||)

}}
.

These partition polyhedra may be unbounded and the union
of all partitions covers the entire state-space. In addition, we
define ∆m as half the maximum distance between linearization
point x̂m and all other linearization points x̂i

∆m =
1
2

max
i

{||x̂m− x̂i||} .

If we define, as stated in Section II-B, the matrices

UT
m =

{
(V T PmV )−1V T Pm if m ∈ I
V T if m +∈ I

(30)

where
I =

{
m ∈ {1, . . . ,κ}

∣∣∣ Am is Hurwitz
}

, (31)

and Pm solve (5) for Am, then Êm = UT
mV = I for all m, and

Âmm is Hurwitz. This simplifies the reduced model to

˙̂x = ∑
k

∑
i

[
µk(x̂)wi(x̂)Âki

]
x̂+ ˆ̃B(x̂)u, (32)

and each partition corresponds to a stable matrix.
By bounding the weighting function such that each stable

matrix is not perturbed unstable by the surrounding systems,
we can guarantee exponential stability of each partition model.
It can be shown that each autonomous partition system ˙̂x =
fm(x̂) permits the Lyapunov function Lm(x) = xT Pmx, and thus
has a globally exponentially stable equilibrium point at the
origin, provided we enforce the constraint that wm

m ≥ w∗m for
all x, where

w∗m =
∑k ∑i+=m µk(x̂)σmax(P̂mÂki)

µm(x̂)σmin(P̂mÂmm)+∑k ∑i +=m µk(x̂)σmax(P̂mÂki)
. (33)

The final model will switch between vector fields fm(x̂)
based on which partition the state is in, therefore we define a
single set of weighting functions wi(x̂) which satisfy wm(x̂−
δm) = w∗m for all δm such that ||δm|| = ||∆m|| when x̂ ∈ Sm.
Additionally, we require that wm

m(xm) = 1, and that the weights
decay exponentially from the dominant linearization point xm.
One possible set of functions which satisfy such constraints
are

wi(x) =
exp

{
βm(x̂)(x̂− x̂i)T (x̂− x̂i)

}

∑ j exp
{

βm(x̂)(x̂− x̂ j)T (x̂− x̂ j)
} (34)

where

β(x̂) =
{

log(w∗m)
∆2

m

∣∣∣ m = argmin
i∈I

{||x̂− x̂i||}
}

(35)

switches discretely across the partition borders.

The constraint on I allows us to consider non-Hurwitz
reduced matrices Âu as perturbations to the dominant linear
model, e.g. we consider wqAq +wuAu where Aq is the dominant
model with wq > 1

2 and Au is non-Hurwitz, but we do not
allow the non-Hurwitz matrix to be a dominant linear model,
e.g. wu(x) < 1

2 ∀x. This ensures that the system still satisfies
the Lyapunov constraints without completely disregarding the
unstable interpolation model, which would sacrifice accuracy
in the approximation of the original vector field F(x).

To completely specify the reduced order system (28), we
must specify a set of left-projection weights µk(x̂). One pos-
sible choice of µk(x̂) which simplifies the weighting functions
wi(x̂) is

µq(x̂) =

{
1 if x̂ ∈ Sq

0 if x̂ +∈ Sq,

which gives the weighting function bound

w∗m =
∑i +=m σmax(PmAmi)

σmin(PmAmm)+∑i +=m σmax(PmAmi)
.

This choice of uk greatly reduces the dominant weight bound
w∗m by eliminating all of the cross terms Âki for k += i, thus
allowing smoother transitions between the regions.

Thus, by selecting Uk as defined in (30) and wi(x̂) as
defined in (34), each autonomous system (29) has a globally
exponentially stable equilibrium point at the origin. Guaran-
teeing stability of the switching model for arbitrary switching
sequences will require additional constraints on the switching
between partitions, which we are not considering in this work.
However, it is unlikely in practice that switching will make the
set of exponentially stable models unstable.

V. STPWL ALGORITHM

Using the above projection technique and weighting func-
tions, we have developed an algorithm which produces PWL
reduced models comprised of stable switching systems, created
from an originally stable large-order nonlinear system. Our
procedure, presented in Algorithm 1, is described as follows.

Given a stable nonlinear system

ẋ = f (x)+bu, (36)

a training procedure is used to obtain κ linear models. We
require at least one of such linear models to be described by
a Hurwitz matrix. In practice, the majority of linearizations of
typical stable systems will be Hurwitz matrices. In particular, a
linearization around the equilibrium point x = 0 of system (36)
will always produces a Hurwitz matrix [10]. Information from
the trajectories and linear models is then used to construct an
orthonormal projection matrix V , using for instance one of the
methods mentioned in Section (II-C). For each Hurwitz matrix
Am, a Lyapunov equation (5) is solved to obtain a positive-
definite matrix Pm, which is then used to compute the left-
projection matrix Um = (V T PmV )−1V T Pm, as defined in (30).
However, since the computation of Um requires only V T Pm,
as opposed to Pm, any part of Pm which lies in the null space



Algorithm 1 STPWL
1: Train System (36) to obtain κ linear models Ai
2: Construct orthonormal right-projection matrix V
3: Define I as in (31)
4: for m = 1 : κ do
5: if m ∈ I then
6: Solve a low-rank Lyapunov equation for Pm:

PmAm +AT
mPm =−Q

7: end if
8: Compute Um as defined in (30)
9: for i = 1 : κ do

10: Project each system with Um

Âmi = UT
m AiV b̂ = UT

m b

11: end for
12: Compute ∆m as defined in (IV-B)
13: Compute w∗m as defined in (33)
14: end for
15: Obtain ROM of the form

˙̂x =
κ

∑
k=1

κ

∑
i=1

µk(x̂)wi(x̂)Âkix̂+ B̂(x̂)u

where

wi(x̂) =
exp

(
β(x̂)(x̂− x̂i)T (x̂− x̂i)

)

∑ j exp(β(x̂)(x̂− x̂ j)T (x̂− x̂ j))

β(x̂) =
{

log(w∗m)
∆2

m

∣∣∣ m = argmin
i∈I

{||x̂− x̂i||}
}

of V T will be eliminated. Thus, it is sufficient to solve a low-
rank Lyapunov equation to obtain a rank-q Pm with which
the left-projection matrices can be computed. The resulting
P̂m = V T PmV and Âmi are used to compute weighting function
bounds, as defined in (33), for each dominant linearization
point. Lastly, a set of projection weights uk are chosen such
that ∑i µk = 1.

VI. RESULTS

The proposed algorithm was tested on a stable physical
system which generates non-symmetric, and possibly non-
Hurwitz, Jacobian matrices. Such example is a micromachined
switch MEMS device, which is well documented in [1], [2].
The physical system is described by the pair of nonlinear
partial differential equations

ÊI0h3w
∂4z
∂x4 −S0hw

∂2z
∂x2 = Felec +

∫ w

0
(P−Pa)dy−ρ0hw

∂2z
∂t2

(37)

∇ ·
(
(1+6K)z3P∇P

)
= 12µ

∂(Pz)
∂t

, (38)

which may be discretized into m sections lengthwise and n
sections widthwise to obtain

∂x1

∂t
=

x2

3x2
1

∂x2

∂t
=

2x2
2

3x3
1
− 3ε0

2ρ0h
v2 +

3x2
1

ρ0hw

∫ w

0
(x3− pa)dy

+
3x2

1
ρ0hw

[
S0hw

∂2x1

∂x2 −EIh3w
∂4x1

∂x4

]

∂x3

∂t
=−x2x3

3x3
1

+
1

12µx1
∇

((
1+6

λ
x1

)
x3

1x3∇x3

)
,

where the state variables are chosen as x1 = z ∈ Rm, x2 =
∂u3

∂t ∈ Rm, and x3 = P ∈ Rmn. A detailed description of these
functions can be found in [10].

System (37) was trained with a series of sinusoidal inputs
with frequencies near 30MHz to obtain a set of κ linear
models, and a right projection matrix V , which was constructed
with a moment matching approach. From this point, two sep-
arate reduced models were created – one using the traditional
TPWL projection technique with smooth weighting functions,
referred to as the TPWL-ROM, and one using the procedure
described in Algorithm 1, referred to as the STPWL-ROM.
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Fig. 1. Maximum real part of the eigenvalues of each system matrix Âi
created from a Hurwitz matrix Ai using the traditional TPWL method.

First we compare the Hurwitzness of the reduced linear
model matrices created by the two reduction methods. Figure
1 plots the maximum real part of the eigenvalues of each
reduced system matrix Âmm created from a Hurwitz matrix
Am for the TPWL-ROM model. Despite each large matrix
Am being Hurwitz, Figure 1 shows that in nearly every case
the Hurwitzness was lost during projection. The eigenvalues
for the STPWL-ROM however, as plotted in Figure 2, are
all negative, resulting in Hurwitz reduced system matrices, as
expected from Section IV-B.

The two reduced order models were then simulated with
a set of sinusoidal inputs similar in frequency and amplitude
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Fig. 2. Maximum real part of the eigenvalues of each system matrix Âi
created from a Hurwitz matrix Ai using the proposed projection method in
Algorithm 1.
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Fig. 3. Output of the TPWL-ROM driven by a set of inputs. The solid line
indicates the output of the full nonlinear system, and the crosses indicate the
ROM.

to the training inputs from which the linearized models were
created. Figure 3 depicts the output of the TPWL-ROM for
such inputs, and it is shown to explode. Hence, this model is
unstable. However, Figure 4 plots the output of the STPWL-
ROM for those same inputs, and it is seen that the STPWL-
ROM produces stable outputs, which are also very accurate
for those inputs.

VII. CONCLUSION

In this paper we have presented proofs of internal and ex-
ternal stability for piecewise-linear reduced order models that
are created from linear models described by system matrices
with specific structures. Additionally, we have proposed a new
projection scheme, and a new set of weighting functions which
allow us to create, from arbitrary Hurwitz matrices, piecewise-
linear reduced order models which are comprised of a set of
guaranteed stable models. Lastly, we have presented results
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Fig. 4. Output of the STPWL-ROM driven by a set of inputs. The solid line
indicates the output of the full nonlinear system, and the crosses indicate the
ROM.

for one example where a stable nonlinear system produces un-
stable inaccurate reduced models using the traditional TPWL
approach, while our proposed algorithm produces a reduced
model with stable and accurate results.
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