Fast Methods for Simulation of Biomolecule Electrostatics

Shihhsien Kuo Michael Altman Jaydeep Bardhan Bruce Tidor Jacob White

November 12, 2002

Outline

- > Problem statement
- Finite-difference approach and problems
- Integral equation method and advantages
- Fast solver implementation
- > Computational results
- Conclusion and Future work

The Problem of Drug Design

Electrostatics View

Ligand (drug molecule) Receptor (protein molecule)

An Electrostatic Analysis Problem

A Simplified Physical Description

Molecular Surface Representation

Interface Condition

Why Use this Simplified Model?

- Atomistic Level Simulation is too expensive
 - Salt ions and water molecules treated individually
- Continuum Model Matches Well with Experimental Data

Standard Finite-Difference Method set up boundary conditions and solve for grid potentials

Problem 1: Inaccurate Molecular Surface

Integral equation: Interior Problem

Advantages For Integral Equation Formulation

- Directly discretize surfaces
- Point charges treated exactly
- Handles infinite exterior

$$\int_{\Omega} \left[\boldsymbol{j}_{in}(\vec{r}') \frac{\partial G_{in}}{\partial n}(\vec{r};\vec{r}') - G_{in}(\vec{r};\vec{r}') \frac{\partial \boldsymbol{j}_{in}}{\partial n}(\vec{r}') \right] d\vec{r}' = \sum_{k=1}^{N} \frac{q_k}{\boldsymbol{e}_{low}} G_{in}(\vec{r};\vec{r}_k)$$
$$\int_{\Omega} \left[-\boldsymbol{j}_{in}(\vec{r}') \frac{\partial G_{out}}{\partial n}(\vec{r};\vec{r}') + G_{out}(\vec{r};\vec{r}') \frac{1}{\boldsymbol{e}_r} \frac{\partial \boldsymbol{j}_{in}}{\partial n}(\vec{r}') \right] d\vec{r}' = 0$$

Standard piecewise constant collocation discretization method

$$\mathbf{j}_{in}(\vec{r}) \approx \sum_{j} a_{j} B_{j}(\vec{r})$$
$$\frac{\partial \mathbf{j}_{in}}{\partial n}(\vec{r}) \approx \sum_{j} b_{j} B_{j}(\vec{r})$$
$$\vec{r} \in \Omega$$

- Piecewise constant basis functions
- Collocation points at panel centroids

Matrix Equation

$$\begin{bmatrix} \mathbf{D}^{in} & S^{in} \\ \mathbf{D}^{out} & S^{out} \end{bmatrix} \begin{bmatrix} a_j \\ b_j \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{N} \frac{q_k}{4\mathbf{p} \left| \vec{r_i} - \vec{r_k} \right|} \\ 0 \end{bmatrix}$$

$$D_{ij}^{in} = \int_{panel_j} \frac{\partial}{\partial n'} \left(\frac{1}{4\mathbf{p} \left| \vec{r_i} - \vec{r'} \right|} \right) d\vec{r'} \quad S_{ij}^{in} = -\int_{panel_j} \frac{1}{4\mathbf{p} \left| \vec{r_i} - \vec{r'} \right|} d\vec{r'}$$

$$D_{ij}^{out} = -\int_{panel_{j}} \frac{\partial}{\partial n'} \left(\frac{e^{-\mathbf{k}\left|\vec{r_{i}}-\vec{r'}\right|}}{4\mathbf{p}\left|\vec{r_{i}}-\vec{r'}\right|} \right) d\vec{r'} \quad S_{ij}^{out} = \frac{1}{\mathbf{e}_{r}} \int_{panel_{j}} \frac{e^{-\mathbf{k}\left|\vec{r_{i}}-\vec{r'}\right|}}{4\mathbf{p}\left|\vec{r_{i}}-\vec{r'}\right|} d\vec{r'}$$

A sphere molecule: comparison with analytical result

A sphere macromolecule (kappa = 3, eps = 20) 100 = 0.9 с r_c = 0.5 Ε = 0R 10 R \bigcirc R (%) 10² 10³ 10⁴ 10¹ number of panels

Use Fast Integral Equation Solver

 $O(N \log N)$ Matrix-vector multiply

- Multiple Green's functions
- Translation Invariant kernel

$$G_{in}(\vec{r};\vec{r}') = \frac{1}{4\mathbf{p} |\vec{r} - \vec{r}'|}$$
$$G_{out}(\vec{r};\vec{r}') = \frac{e^{-\mathbf{k}|\vec{r} - \vec{r}'|}}{4\mathbf{p} |\vec{r} - \vec{r}'|}$$

Pre-corrected FFT algorithm

- 1) projection of panel charges onto grid charges
- 2) grid potentials due to grid charges are computed by FFT
- 3) potentials on panel centroids are interpolated from grid potentials
- 4) direct interaction and correction among near neighbors

Picture courtesy of J. Phillips

Preconditioner result: Qsi molecule

Preconditioner result: Ecm protein

Accuracy comparison with DelPhi

			E _{solvation} (kcal/mol)	
	# of dielectric panels	# of salt panels	pFFT	DelPhi
Water	17204	9330	-3.14	-3.17
TSA	34114	5842	-34.62	-34.75
ECM	82868	18596	-646.42	-653.88

Convergence Results of Ecm Protein

pFFT

DelPhi

Binding energy calculation of a protein-peptide complex

	Energy calculated (kcal/mol)				
	R _{desolvation}	L _{desolvation}	(R->L) _{interaction}	(L->R) _{interaction}	
pFFT	14.52	24.47	130.80	130.91	
DelPhi	14.51	24.47	131.03	131.03	

Conclusions and Future work

Carefully selected Integral Formulation results in Fast Solver for Biomolecule Electrostatics

Working on coupling to charge optimization problem in drug design

Extending formulation to include more complicated geometry (inner cavities in macromolecule)

Fine tuning existing pre-corrected FFT code