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Abstract—The major concerns in state-of-the-art model reduc-
tion algorithms are: achieving accuratemodels of sufficiently small
size, numerically stable and efficient generation of the models, and
preservation of system properties such as passivity. Algorithms,
such as PRIMA, generate guaranteed-passive models for systems
with special internal structure, using numerically stable and effi-
cient Krylov-subspace iterations. Truncated balanced realization
(TBR) algorithms, as used to date in the design automation com-
munity, can achieve smaller models with better error control, but
do not necessarily preserve passivity. In this paper, we show how to
construct TBR-like methods that generate guaranteed passive re-
duced models and in addition are applicable to state-space systems
with arbitrary internal structure.

Index Terms—Passive reduced-order modeling, truncated bal-
anced realization (TBR), Lur’e equations, Lyapunov equations,
Krylov subspace.

I. INTRODUCTION

MODEL reduction has been an active research field in de-
sign automation over the past decade. In an integrated

circuits context, initial interest in model reduction techniques
stemmed from efforts to accelerate analysis of circuit intercon-
nect [1]. More recently, model reduction has come to be viewed
as a method for generating compact models from all sorts of
physical system modeling tools [2]–[11].
Because of the need to obtain accurate high-order models at

reasonable computational cost, the Krylov-subspace model re-
duction methods [12]–[14] have occupied the forefront of re-
search over the past five years. The importance of producing
passive reduced models has been realized, and several algo-
rithms that preserve passivity of RLC circuits have appeared
[14]–[18].
Recently, it has become apparent that, while very suitable for

analysis for analysis of large-scale systems, Krylov techniques
such as PRIMA and PVL do not necessarily generate models
as compact as desired (that is, small in order for a given accu-
racy). [2], [19]. Therefore, another approach, that of truncated
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balanced realization (TBR), already well-developed in the con-
trol literature, has been receiving renewed attention in the elec-
tronic design automation community.[20].
Truncated balanced realization algorithms (and their close

relatives that generate optimal norm approximants [21]) are
of importance in their own right. For small systems—a few
hundred states or so—they are superior in accuracy to the
Krylov and other parameter-matching techniques, and also
provide computable bounds on the reduction error. For large
systems, direct application of the techniques used to balance
and truncate the systems is computationally infeasible, since
the computations required have complexity when
performed directly ( being the order of the system to be
reduced). Therefore, the TBR methods are of more interest
when combined with iterative Krylov-subspace procedures.
One formulation of this method is to directly solve the large
Lyapunov equations via a Krylov subspace method [22]–[26].
The reduced models are obtained directly from the reduced
Lyapunov equation. Another viewpoint is to obtain an initial
reduced model via some initial reduction or approximation
technique and then further compress it using a TBR method.
This second viewpoint is somewhat more general since the
initial approximation can be generated by any desired method,
for example rational fitting [27], [18] or a now standard
Krylov-subspace technique [2], [28].
An issue with the TBR-type methods that has not been ad-

dressed inmost of the abovementionedworks is that they cannot
be relied on to preserve passivity. The techniques in [2], [28] use
a passivity-preserving initial reduction, but follow this reduc-
tion with a standard TBR method. There is no guarantee that
the second TBR step will not destroy the passivity of the initial
model. More problematic, no means is given in either work to
determine if the final model is passive – or not.
Less widely appreciated is another dilemma: Krylov methods

such as PRIMA have practical issues that prevent their wide
application to systems outside the class of RLC circuits.
These methods rely on congruence transformations to preserve
positive semi-definiteness of the matrices that are internal
to the state-space representation. However, whether or not a
state-space model represents a passive system is a property of
the input-output transfer function, not a property of the internal
representation. Many passive systems are not conveniently put
into a form for which algorithms such as PRIMA are applicable:
they may have system and descriptor matrices that are not posi-
tive semi-definite. It may not be possible to perform a change of
basis to a convenient form without destroying sparse structure
that may be present in the system, meaning that for large-scale
systems such an approach is infeasible. Some examples include
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the systems that come from rational approximation of tabular
data [29], the magnetic charge formulation of the inductance
problem [30], and general linear circuits, in particular those
with gyrators, formulated in the sparse tableau form. This issue
even appears in RLC circuits: the positive definiteness of the
matrices in the MNA formulation depends on the choices of
signs (the circuit response is of course invariant to this choice).
Further, positive semi-definiteness or even more generally

positive-realness are not necessarily the right properties to seek.
If the state-spacemodel represents scattering ( ) parameters of a
passive system, the system is passive if the norm of the -param-
eter matrix is bounded by unity, and so even the transfer func-
tion has no relation to positive-realness. Such systems cannot
be reduced by congruence with any passivity guarantees. On the
other hand, while not well known in the circuit simulation and
design automation communities, there is a wealth of knowledge
in the systems and control literature pertaining to passivity-re-
lated concepts (e.g., [31]–[33]). Likewise, there exist reduc-
tion algorithms (e.g., [34]) with potentially relevant properties,
though again the significance of the connection does not appear
to be widely appreciated, as, to the best of our knowledge, no
effective truly general-purpose passivity-preserving algorithms
are now widely available. While we will not present a truly gen-
eral, large-scale, passivity-preserving, completely structure-in-
dependent algorithm in this paper, by collecting, applying, and
extending previously obscure techniques, all in the context of
large-scale integrated circuit analysis and Krylov methods, we
hope to provide a first step to that goal.
In this paper, we discuss TBR-like model reduction algo-

rithms that can preserve system passivity, have computable error
bounds, and, unlike other algorithms such as PRIMA, pose no
constraints on the internal structure of the state-space model.
We describe variants that preserve both positive-realness (useful
for systems that represent or parameters) and bounded-re-
alness (useful for systems that represent parameters). These
algorithms can be applied directly to a given state-space descrip-
tion [27], or can be used as the second stage of a Krylov-sub-
space-based procedure [22], [24], [2]. In circuit-related appli-
cations, extra care must be taken so that TBR-type methods
produce models with accurate steady-state response. We show
how to incorporate a particular solution [35] into our overall ap-
proach.
The paper is organized as follows. In Section II, we briefly

present the relevant concepts and properties of the systems
we will be treating, as well as review Krylov-subspace based
methods in the context of model order reduction. In Section III,
we review balanced realizations, present an algorithm for
the procedure as well as some physical interpretation, and
recall available error bounds for truncation of the models.
We also discuss an important special case in which this
technique actually produces passive reduced models. Then, in
Section IV, we present a procedure for constructing TBR-like
methods that guarantee passive reduced models and in addition
are applicable to state-space systems with arbitrary internal
structure. Algorithmic procedures are shown, and a physical
interpretation is provided, along with error bounds for the
algorithms introduced. In Section V we discuss various com-
putational issues and present techniques needed to compute

the passivity-preserving balancing transformations. Then in
Section VI we show examples that illustrate the relevance
of the various algorithms presented in this paper. Finally, in
Section VII, conclusions and acknowledgments are presented.

II. BACKGROUND

A. State-Space Models
Given a state-space model in descriptor form

(1)

(2)

where , , , ,
, , model reduction algorithms seek to produce a

similar system

(3)

(4)

where , , , , of
order much smaller than the original order , but for which the
outputs and are approximately equal for inputs of
interest. Often the transfer functions

(5)
(6)

are used as a metric for approximation: if
, in some appropriate norm, for some given allowable error
and allowed domain of the complex frequency variable , the
reduced model is accepted as accurate.

B. Passivity
When modeling passive systems—those that cannot produce

energy internally—it is desired that the reduced models also be
passive. Otherwise, the reduced models may cause nonphys-
ical behavior when used in later simulations, such as by gener-
ating energy at high frequencies that causes erratic or unstable
time-domain behavior. For many electrical systems of interest,
passivity is implied by positive-realness of the transfer function.
The function is positive-real (PR)1 if

(7)
(8)
(9)

In the above, denotes complex conjugate, denotes Her-
mitian (complex conjugate and transpose), and in a matrix
context denotes semi-definiteness. In particular, if rep-
resents the (admittance) or (impedance) parameters of a
system, positive-realness of implies that the underlying
state-space description is a representation of a passive system
[33]. If, however, represents the (scattering) parameter
matrix, then to represent a passive system, it is necessary that
1Actually condition (8) is implied by (9).
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be bounded-real [33]. A function is bounded-real
(BR) if

(10)
(11)
(12)

The term “bounded” arises as (12) is equivalent to stating that
in the open right-half plane.

C. Krylov Methods
Recently developed model reduction methods suitable for ap-

plication to large systems are based on Krylov-subspace tech-
niques.
Definition 1 (Krylov Subspace): The Krylov sub-

space generated by a matrix and vector ,
of order , is the space spanned by the set of vectors

. Mathematically, the reduced
models are obtained via a projection operation [36]

(13)

and usually and are constructed so that their columns
span a Krylov subspace. For example, a typical implementation
(PRIMA [37]) is to construct by using the Arnoldi al-
gorithm, thereby spanning a Krylov subspace with ,

. Because of the moment-matching properties of
Krylov-subspaces, the reduced transfer function will
agree with the original up to the first derivatives
on an expansion around some chosen point in the complex
plane (usually ). PVL [12] uses the Lanczos algorithm
to construct two Krylov spaces for formation of and .
Multipoint approximation algorithms use unions of multiple
Krylov spaces to match the frequency response about several
points in the complex plane [36], [38].
The Krylov-subspace methods are very effective if operations

with can be obtained cheaply (via efficient matrix solves or
matrix-vector products), the dimension of the input space is
not too large, and sufficient accuracy can be obtained with a rea-
sonable model order . These conditions usually hold in prac-
tical applications.

Algorithm 1: Reduction via Congruence
1) Compute (e.g., via the Arnoldi algorithm)
2) Compute realization of reduced model as ,

, , ,

The PRIMA algorithm has another interesting property.
Given a starting passive model, if the original state-space
model can be formulated with positive semi-definite and
and , then the transfer function of the final reduced
model will be positive-real, meaning the reduced system is also
passive. This is essentially because the projection operation in
(13) becomes a congruence transform for , and since
congruence transforms preserve positive semi-definiteness,
the reduced inherit the numerical range properties of
their parents, implying that the reduced function is

positive-real. A typical algorithm for reduction using congru-
ence transformations is shown as Algorithm 1. Note however
that it is entirely possible to have systems with positive-real

, and thus underlying passive models, for which the
conditions necessary for using PRIMA do not hold. Such
systems cannot be reduced in a guaranteed positive-real manner
via congruence transformations. Likewise, congruence-based
techniques cannot guarantee bounded-real reduced models
from bounded-real starting systems.
A simple example serves to illustrate. Consider the state-

space model described by the matrices

(14)

(15)

By use of the positive-real lemma [33], it can be shown that the
transfer function is positive-real.
However, since the matrix is indefinite (i.e., has eigen-
values of both signs), not all obtained by orthogonal projec-
tion are definite, so the reduced transfer function is not neces-
sarily positive-real. In particular, choose with

, and let the projectors be . Then,
the one-state reduced model has , and

. The reduced model is not only not positive-real, it is
not even stable.

III. TRUNCATED BALANCED REALIZATIONS

Complementary model reduction techniques are based on
truncated balanced realization. We are mostly interested in
applying TBR procedures as the second stage of a composite
model reduction procedure [2], the first stage being reduction
by a Krylov-based projection method. Note that most of the al-
gorithms in [22], [24], are essentially equivalent to a first-stage
Krylov projection followed by a second-stage TBR procedure.
We first discuss the most commonly used approach before
presenting passivity-preserving variants. Primarily for clarity,
in this section we will assume , as this assumption
simplifies the computational procedure, and also facilitates
comparisons with the literature related to truncated balanced
realization procedures. In addition, most of the cases of interest
for this paper can be easily manipulated to the form.
When is nonsingular, the mapping , ,

will put a descriptor system into standard form
for a system of ordinary differential equations. Even though
it is common in electrical engineering applications to have
situations where is in fact singular and cannot be inverted, in
the situations of interest to us, where an initial projection step
has taken place, usually is nonsingular. The reason for this
is that most Krylov-subspace algorithms in the literature build
projection spaces from powers of the matrix acting on
a seed space given by . To obtain a singular -matrix after
a projection step, the space used for projection would need to
include the nullspace of , but the nullspace is “filtered out”
by the Krylov procedure, and so will not enter the projection
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procedure except for special choices of the seed vectors, or
unless deliberately included by special means. See [39] for a
reduction procedure that can result in singular . We will defer
treatment of cases with singular to Section V-B, where it is
shown how to manipulate these cases into the form discussed
here. We do emphasize that it is possible to formulate the
computational procedure to work with directly,2 but we have
chosen not to do this as a matter of convenience.

A. Standard Approach
The TBR procedure as first presented in [20] is centered

around information obtained from the controllability Gram-
mian , which can be obtained from solving the Lyapunov
equation

(16)

for , and the observability Grammian , which can be ob-
tained from the dual Lyapunov equation

(17)

for .
Under a similarity transformation of the state-space model

(18)

the input-output properties of state-space model, such as the
transfer function, are invariant (only the internal variables are
changed). The grammians, however, vary under the rules

(19)

and so are not invariant. The TBR procedure is based on two
observations about and . First, the eigenvalues of the
product are invariant. These eigenvalues, the Hankel sin-
gular values, contain useful information about the input–output
behavior of the system. In particular, “small” eigenvalues of

correspond to internal sub-systems that have a weak ef-
fect on the input-output behavior of the system and are, there-
fore, close to nonobservable or noncontrollable or both. Second,
since the Grammians transform under congruence, and as any
two symmetric matrices can be simultaneously diagonalized by
an appropriate congruence transformation [40], it is possible to
find a similarity transformation that leaves the state-space
system dynamics unchanged, but makes the (transformed)
and equal and diagonal3 . In these coordinates, with

, we may partition into

(20)

where describes the “strong” sub-systems to be retained and
the “weak” sub-systems to be deleted. Conformally parti-

tioning the transformed matrices as

(21)

2For example, (16), becomes .
3To see this it may help to note that and transform according to the

same congruence operation; but if is diagonalized, so is .

and truncating the model, retaining , ,
as the reduced system, therefore has the effect of deleting the
“weak” internal subsystems. A complete TBR algorithm [41] is
shown as Algorithm 2. An approach with improved numerical
properties may be found in [42].

Algorithm 2: Truncated Balanced Realization (TBR)
1) Solve for
2) Solve for
3) Compute Cholesky factors , ,
4) Compute SVD of Cholesky product where
is diagonal positive and have orthonormal columns
5) Compute the balancing transformations ,

6) Form the balanced realization as , ,

7) Select reduced model order and partition , , confor-
mally
8) Truncate , , to form the reduced realization , ,

B. Error Bounds
One of the attractive aspects of TBR methods is that com-

putable error bounds are available. If the -th diagonal entry of
the matrix in Algorithm 2 is given by , and the ordered

, then the error in the transfer function of
the order- reduced model is bounded by [21]

(22)

C. Physical Interpretation of the TBR Procedure
In order to later contrast the physical significance of pas-

sivity-preserving TBRmethods, here we review the physical in-
terpretation of the method in Algorithm 2.
The observability Grammian is related to the norm of

the output produced in free evolution ( , ) from
an initial state at time 0

(23)
The controllability Grammian , on the other hand, is related
to the minimum norm of the input over all possible input that
can control the system to the state at time 0.

(24)

Noting that and are the
norms of the system output (restricted to ) and the system
input (on ) respectively, it is seen that small eigenvalues
of the observability Grammian are associated with “normal
modes” [20] (state eigenvectors) that produce small free evo-
lution output norms. These modes are, therefore, relatively
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unimportant for the system response. Similarly, small eigen-
values of the controllability Grammian are associated with
state eigenvectors that we can control only with an input with
large norm (regardless of what trajectory we follow to reach
them). Hence the system is not very likely to be driven into those
states and they are not likely to be important for the system re-
sponse. It can be noticed that some modes, although difficult
to be controlled by the input, could produce large outputs. Vice
versa, there can be some modes that, although producing small
output norms, are controlled with small input norm. This is the
reason for the balancing procedure that transforms to coordi-
nates that “balance” the importance of past inputs and future
outputs, the weighting being revealed by the eigenvalues of the
product of the observability and controllability Grammians. The
algorithm will keep in the final reduced model only modes that
are:
• both easily controllable, meaning they do not require a
large input norm to reach, and

• easily observable, meaning that they produce free evolu-
tion outputs with large norms.

We now turn to the question of when TBR procedures pro-
duce passive reduced models.

D. Passivity Preservation in Symmetrizable Systems
It turns out that there is a special system case, of relevance

to integrated circuits applications, for which the standard TBR
procedure (Algorithm 2) always produces positive-real reduced
models. Suppose that the state-space model is symmetric, that is

, , and furthermore is negative semi-definite.
Since , the system
is positive-real. From (16) and (17) it follows that .
From inspecting step 5 in Algorithm 2, we find that .
Thus the similarity transformation is a congruence transforma-
tion. The reduced must be negative semi-definite, and we will
likewise have . Therefore, the reduced system is posi-
tive-real. We, therefore, have the following broader result:
Theorem 1: Suppose a state-space system is linearly trans-

formable to a system of the form in (1), with , ,
, , . A reduced model generated via Algo-

rithm 2 is positive-real.
Proof: If the system is already in the special stated form,

it is positive-real [14]. That the TBR procedure applies to sys-
tems transformable to this form follows because the balancing
transformation is essentially unique as explained in [20]. In par-
ticular, given a state-space model in balanced coordinates, the
matrix can differ from any other also in balanced coordi-
nates by at most a similarity transformation by a matrix that is
diagonal with diagonal entries . Therefore, there exists some
and some such that

(25)
Likewise, for any , in balanced coordinates, there is some
such that , .
Theorem 1 would seem to state that the TBR procedure has

passivity-preserving properties similar to PRIMA, but it is actu-
ally more general in one sense, and more restrictive in another.
It is more general in the sense that the starting system need

only be transformable to a symmetric, internally positive-real
system. The passivity-preserving reduction property is indepen-
dent of the system coordinates. This is a very desirable property.
In contrast, the positive semi-definiteness preserving properties
of congruence transformations depend on the coordinate system
used and are not preserved under similarity transformations.
Theorem 1 is undesirably restrictive in the sense that it only

applies to systems that fall into the symmetrizable class, such as
RL and RC circuits in MNA form, and reductions of such forms
via congruence. Not all systems, however, fall into this class,
and more powerful techniques are needed to preserve passivity
in TBR methods. These techniques will be coordinate-indepen-
dent, and completely general.

IV. PASSIVITY-PRESERVING TRUNCATED BALANCED
REALIZATIONS

A. Positive Real Conditions
We will show in Section VI, by means of a simple example,

that the TBR procedure of Algorithm 2 does not necessarily pro-
duce passive models. In making assessments about passivity, we
require a tool that can assess the positive-realness of a state-
space model in a global manner. One such tool is the posi-
tive-real lemma [33], which states that is positive-real if
and only if there exist matrices , , such that the
Lur’e equations

(26)
(27)
(28)

are satisfied, and ( is positive semi-definite).
is analogous to the controllability Grammian. In fact, it is the
controllability Grammian for a system with the input-to-state
mapping given by the matrix . It should not be surprising that
there is a dual set of Lur’e equations for , ,
that are obtained from (26)–(28) by the substitutions ,

, . The dual equations

(29)
(30)
(31)

have a corresponding observability quantity for a posi-
tive-real . It is easy to verify that , transform under
similarity transformation just as , (19), that their eigen-
values are invariant, and in fact in most respects they behave as
the Grammians , .

B. Guaranteed Passive Balanced Truncations
Apassivity-preserving reduction procedure follows by noting

that the Lur’e equations can be solved for the quantities ,
which may then be used as the basis for a TBR procedure. We
may find a coordinate system in which , with
again diagonal. In this coordinate system, the matrices ,
, may be partitioned and truncated, just as for the standard

TBR procedure, to give the reduced model defined by ( , ,
). We present this as Algorithm 3 and call it PR-TBR, as
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it preserves positive-realness of the transfer function. Several
approaches that turn out to give essentially similar results have
appeared previously in different contexts [34], [43], [44].

Algorithm 3: Positive-Real TBR (PR-TBR)
1) Solve (26)–(28) for and (29)–(31) for .
2) Proceed with steps 3–8 in Algorithm 2, substituting for

and for .

Theorem 2: Algorithm 3 applied to systems with posi-
tive-real transfer functions produces reduced models with
positive-real transfer functions.

Proof: From the form of the partitioning, (20) and (21),
likewise partitioning either or , it is clear that the reduced
system, in the PR-balanced coordinates, satisfies

(32)
(33)
(34)

Therefore, the reduced system satisfies the Lur’e equations with
positive semi-definite ( as ). By the posi-
tive-real lemma, the reduced system is positive-real.
We emphasize that Theorem 2 holds regardless of the internal

form of the state-space system. Again, this is not true for con-
gruence-based procedures.

C. Bounded-Real Conditions
To obtain equivalent TBR procedures that guarantee a final

transfer function that is bounded-real, useful when working
with transfer functions representing -parameters, we need the
bounded real equations

(35)
(36)
(37)

and the corresponding dual equations

(38)
(39)
(40)

that are satisfied with , if the system transfer
function is bounded-real. Algorithm 4 performs truncated bal-
anced realization while guaranteeing the boundedness of the re-
duced transfer function4 .

Algorithm 4: Bounded-Real TBR (BR-TBR)
1) Solve (35)–(37) for and (38)–(40) for .
2) Proceed with steps 3–8 in Algorithm 2, substituting for

and for .

D. A Hybrid Approach
In many cases, while not guaranteed by construction, it is

often the case that the TBR approximants produced by Algo-
4The bound does not have to be unity; it can be any positive constant.

rithm 2 turn out to be positive-real. Therefore, we propose Al-
gorithm 5, which performs the TBR procedure, solves the pos-
itive-real (or bounded-real) equations for the reduced model in
order to check its passivity, and if it turns out not to be passive,
discards it and proceeds to Algorithm 3 (or Algorithm 4). There
is an advantage in this procedure as often the TBR approximates
are more accurate for a given order than PR-TBR. Because of
the cubic scaling of cost, it is relatively cheap, compared to the
cost of the TBR reduction, to check a reduced model for pas-
sivity since the reduced system is presumably of lower order. As
often the TBRmodels are passive, the net effect of the composite
algorithm is to approximately double the cost in the worst case,
versus usually getting better models at smaller cost (PR-TBR
“costs” more than TBR) in the more-common average case.
Algorithm 5, which appropriately combines all of the pre-

viously presented algorithms, can be used as generic flow for
generating accurate guaranteed passive reduced-order models
of systems with arbitrary structure.

Algorithm 5: Hybrid TBR
1) Perform Algorithm 2.
2) Using the reduced model matrices , , , solve (26)–(28)
for (or (35)–(37) for ).
3) if (26)–(28) (or (35)–(37)) are solvable and (or
),

then terminate and return , , .
else discard TBR-reduced model and proceed with Algorithm 3
(or 4).

E. Error Bounds
Asmentioned in Section III-B, one of the attractive aspects of

TBR-likemethods is that computable error bounds are available.
Fortunately that is also the case for the positive-real (bounded-
real) algorithms introduced in this paper. For bounded-real sys-
tems, as discussed in Section IV-C, if the th diagonal entry of
the matrix obtained from Algorithm 4 is given by , and

, then the error in the transfer function
of the order- reduced model is bounded by

(41)

an expression strikingly similar to (22) (see [43]). For the pos-
itive-real case unfortunately no such simplified bound exists.
Under the same definitions, the best available error bound is
given by

(42)

(see [44] where a similar technique was proposed and the error
bound was derived). Discussion and derivation of these bounds
is beyond the scope of this paper. Note however, that for the spe-
cific procedure discussed here, the will all be less that unity
if is nonsingular. If is singular, and has rank , then
singular values will be identically unity. Modes corresponding
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to these singular values cannot be truncated. In the case where
, the bound of (42) becomes nonsensical. In this case, we

are not aware of a procedure to compute a bound.

F. Physical Interpretation of the PR/BR-TBR Procedures
In Section III-C we discussed how the TBR procedure, and

eigenvalues of associated Grammians, could be interpreted in
terms of the relative importance of system modes to the system
input and output norms. It turns out that the PR/BR-TBR tech-
niques have a similar interpretation, but one that is more closely
tied to a circuit-theoretic notion of energy. To make this con-
nection, we draw upon concepts from the theory of dissipative
dynamical systems, discussion of which can be found in [31],
[32], [43].
In order to provide a physical interpretation for the

PR/BR-TBR algorithm let us introduce the concept of a supply
function . A supply function describes the rate at
which power is supplied by the environment into the system,
and typically is defined such that implies a
positive amount of energy input, while means
energy is extracted from the system back to the environment.
When the system inputs and outputs are currents or voltages,
i.e., when the system transfer function represents impedance
or admittance matrices, we may use the supply function

. When the system transfer function
represents scattering parameters, we may use the supply
function . Regardless of
the particular form of supply function we can further define the
following two quantities:

(43)

(44)

where is the available storage energy, or maximum en-
ergy that can be extracted from the system over any possible tra-
jectory of the state from an initial state at time 0. can
be interpreted as the required supply, or the minimum amount of
energy that must be provided by the environment to the system
in order to control the system to state at time 0 over any pos-
sible trajectory. It can be shown ([31], [32]) that for dissipative
and controllable systems, is always a positive number
not larger than

(45)

Furthermore, it can be shown ([31], [32]) that the solutions
and to the positive real Lur’e (29)–(31) and their

dual (26)–(28), respectively, obtained from the procedure in
Section V have a physical interpretation for passive immittance
systems in terms of the energy quantities and

(46)
(47)

Using a similar argument to the classical TBR interpretation,
small eigenvalues of are associated with modes for which
the maximum energy we can extract, , is small. They
are, therefore, not likely to be important “energy-wise” for the
system response. Small eigenvalues of are associated with
modes for which the minimum amount of energy we
have to supply in order to reach them is large. Hence it is rel-
atively difficult to drive the system into those states and they
are not likely to be important “energy-wise” for the system re-
sponse.
As in the classical TBR, it can be noticed that some modes,

although energy-wise hardly accessible, are energy-wise im-
portant and we can extract back from them large amounts of
energy. Vice-versa, there can be some modes for which, al-
though we cannot extract large amounts of energy, they require
a small amount of energy to reach. Thus, in a similar way as
classical TBR, PR-TBR balances the importance of past energy
inputs and future energy outputs by transforming to a coordi-
nate system in which and are equal and diagonal, and
in which the invariant quantities that are the eigenvalues of the
product of and are easily calculated. The algorithm will
keep in the final reduced model only modes that are:
• both “energy-wise” easily “controllable”, that is they do
not need much energy input to be reached;

• and “energy-wise” easily “observable”, that is, it is pos-
sible to extract a lot of energy from them.

It is also interesting to note ([34], [31], [43]) that the solutions
and of the positive real Lur’e (29)–(31) and their dual

(26)–(28), are related and not unique. Specifically, there exists
a minimal solution and a maximal solution for
(29)–(31), a minimal solution and a maximal solution

for (26)–(28), such that

(48)
(49)

The procedure in SectionV produces theminimal solutions used
in (46)–(47) respectively

(50)
(51)

The same physical interpretation presented above for positive
real systems representing impedance or admittance can be given
to bounded real systems representing scattering parameters by
defining as in [43]

(52)
(53)

where and are the minimal solutions of the bounded real
Lur’e (38)–(40) and their dual (35)–(37), respectively, obtained
from the procedure in Section V.

V. COMPUTATIONAL CONSIDERATIONS

In this section, we discuss the computational techniques
needed to compute the passivity-preserving balancing transfor-
mations. The complexity of the algorithms presented is cubic
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in the number of state variables, due to the use of direct, dense
linear algebra for eigenvector computations and matrix–matrix
products. Thus, standard TBR and the passive-TBR variants
cannot be directly applied to extremely large systems such
as large collections of interconnect because of the high cubic
computational complexity. However, this cost is acceptable if
the algorithms are being applied to systems that are moderate
in size, as is usually the case with systems that result from a
prior reduction step. Therefore, we wish to reiterate that in the
case of large systems, one would use the TBR algorithms as
a “second step” of a “two-step” reduction procedure. During
the first step, whenever possible (see Section II), one would
use the less computationally demanding (but less efficient)
Krylov subspace guaranteed passive reduction techniques such
as PRIMA to reduce the originally very large system to order
around few hundreds. At such point one can easily use without
much computational effort passive-TBR to reduce the system
to order around 10 to 20. This “two-step” procedure produces
a much better compression (i.e., better accuracy for the same
final order) than using PRIMA to reduce in one single step the
original very large system to the final order around 10 to 20.
Focusing now exclusively on the second-step reduction, first

we show how the basic computations may be performed for sys-
tems in the standard form of (1)–(2). Next, we show how more
general models described by differential-algebraic systems can
be put into this form for purposes of reduction. Finally, we dis-
cuss techniques needed to handle a special case (singular or zero
-matrix) that often occurs in integrated circuit (IC) applica-

tions.

A. Solving the Lur’e Equations

Solution of the Lur’e equations and solution of algebraic Ric-
cati equations (ARE’s) are closely related. An overview of basic
numerically robust computational procedures is given in [45].
We summarize this procedure below. See [46] and references
therein for more recent coverage of related computational prob-
lems.
Solution of the Lur’e equations, and related AREs, can be

done by computing the invariant subspace of a matrix pencil
, i.e., solving a generalized eigenvalue problem. Of

course, as is usual, for reasons of numerical stability, it is desir-
able to avoid eigenvector computations, and instead work with
Schur (or generalized Schur) forms that can expose invariant
subspaces in a numerically stable manner. In the positive-real
case, the pencil we need is ,

(54)
Suppose that via some means we have computed an invariant
subspace that satisfies ,

, of the special form

(55)

where , . Then from the invariance
condition , it can be verified that is indeed the
solution to (26)–(28). To compute an invariant subspace of such
a special form, the rank- singularity of the pencil is first com-
pressed [45] using a QR factorization of to reduce the dimen-
sion of the pencil to . Then, we find an invariant subspace

(for example, via the QZmethod [47]) of the form

(56)

can be computed as . To obtain the extremal
solutions discussed in Section IV-F, which incidentally corre-
spond to minimum-phase spectral factors [43], we take the sub-
space that corresponds to stable eigenvalues of the pencil. In the
regular case, if a stable subspace (in particular, if the pencil has
pure imaginary eigenvalues) cannot be constructed, the system
is not positive-real.

B. Additive Decomposition of Nonstandard Systems
In general, state-space models must be written in the form

(57)

(58)

where the matrix is singular. Extensions of the positive-real
lemma are available for models in the descriptor form where
is singular such that the transfer function cannot be put into the
standard form [46]. A full coverage of all special cases, and the
details of manipulating directly, is beyond the scope of this
paper. Instead we propose a simple procedure that will allow us
to use the method in Section V-A for solving the positive real
equations.We propose performing an additive decomposition of
the transfer function into the form

(59)

where is strictly proper, i.e., it is a purely rational function,
as . will contain the portion of the

transfer function that is nonzero as .
For a bounded real function, can approach a constant,

but can have no higher order terms in , so

(60)

for some such that . For a positive-real function,
may have a pole at infinity, but if so it must be simple with

a Hermitian, nonnegative definite, residue matrix [33]. There-
fore, in the positive-real case

(61)

for some such that , .
To perform such a decomposition, by using the procedure

from [48] we first transform the system to an
equivalent system where the matrix pencil

is block-diagonal. In this form the system may be
written as

(62)
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(63)

The block partitioning is chosen such that the sub-pencil
contains all the ’infinite’ structure of the system. will

have zeros on the diagonal, and will be nonsingular. ( ,
) will contain all the finite structure, and will be non-

singular by construction. Next, by defining

(64)
(65)

we may transform to an equivalent system
that has a structure resembling the

Weierstrass form [49],

(66)

(67)

Here, will be nonsingular and will be a nilpotent matrix,
that is, a matrix such that for some . For the
systems of interest in this paper, it turns out that generally
or .
With the system in this form, the transfer function can be

decomposed as

(68)

so it is clear that the strictly proper term is given by

(69)

Likewise, it turns out that the matrices , , contain all
information about the “infinite” behavior of the transfer func-
tion,

(70)

To see that indeed is composed only of termswith powers
of for , i.e., the terms in our particular case,
we inspect the form of . Because is nilpotent,

can be written as a finite series in terms of powers
of .

(71)

For example, consider . In this case, noting that

(72)
we conclude that . The first two terms in
the expansion are enough to calculate the information we need.
The first term leads to

(73)

and the second to

(74)

Note that, for a positive-real system, it must be the case that ei-
ther , or for all . In any event these
terms may be deleted from the model without harm since they
do not appear in the input/output relation. For bounded real sys-
tems, all terms for may be removed. Note additionally
that is also known as the index of the DAE in (57). DAE’s with
index greater than 1 are not accurately solved by the algorithms
typically used in circuit simulators [50].
Finally, consider the state-space model in standard form

(75)

(76)

with transfer function

(77)

If is bounded-real, then and .
is positive-real if is positive-real as well, because
is analytic in the open right half-plane, and

Therefore, to obtain a passive reduced model of the original
system of (57) and (58), we may apply the passivity-preserving
model reduction methods to the system in (75) and (76).
As an aside, note that this procedure also provides a means to

perform a passivity check on descriptor systems. In particular,
the descriptor system of (1) and (2) is positive-real if and only
if , and the matrices , , , satisfy
the positive-real conditions (26)–(28) or (29)–(31). The system
is bounded-real if and only if and the matrices ,
, , satisfy the bounded-real conditions (35)–(37) or

(38)–(40).

C. Infinite Zeroes
It is known that the simple procedure in Section V-A breaks

down when the transfer function has a zero exactly on the
imaginary axis (including a zero at infinity). The positive-real
equations can still be solved in this case [34], but more sophisti-
cated computational procedures are necessary. Of particular in-
terest in IC applications is the case . In this case, we have
used the method for solving the positive-real equations given in
[51].
Note that physical systems, modeled to a high level of fidelity,

are usually strictly positive real, so do not have troublesome
zeros. The additive decomposition procedure of Section V-B
may be necessary to reveal this. Even if is singular, may
be nonsingular.

D. Achieving DC Accuracy
It is known that the TBR technique in Algorithm 2 often leads

to reduced models that exhibit a mismatch of the dc gain when
compared to the original unreduced model. It was noticed pre-
viously that the technique tends to give good approximations of
the impulse response, but the approximation may have a large
steady-state error for the step response. In general, in fact, the
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algorithm tends to perform better at high frequencies than at dc,
showing a high-frequency error that tends to zero. While this
might be acceptable in certain applications of the technique, it
is a significant problem when considered in the context of cir-
cuit level model order reduction. Therefore, such property has
always been regarded as a significant drawback of the technique.
In order to address this problem, a useful computational tool

is transformation to the reciprocal system. This approach has
previously been presented in the context of what is called the
singular perturbation approximation, first when applied to bal-
anced system [35], [52] and also in the context of positive- and
bounded-real systems [53]. This approximation relies typically
on the fact that it is possible to partition the state vector into
two sets of variables. One of these sets is composed of vari-
ables which are termed “fast,” i.e., its states have very fast tran-
sient dynamics and decay rapidly to certain steady values in the
neighborhood of a given frequency (for instance for the
dc case that we are interested here, but the technique is easily
generalized for any frequency ).
Given an initial system with transfer function , the re-

ciprocal system is a state-space system with transfer function
. In some problems, there is an advantage to performing

balanced truncation on the reciprocal system because of the fre-
quency properties of the error. The reciprocal transformation
maps into , so balancing the reciprocal system
tends to produce better approximations at low frequencies.
In [35] it was shown that the model obtained with the singular

perturbation approximation to an internally balanced system,
i.e., the model obtained by truncating the reciprocal system of
an internally balanced system, enjoys the same error bounds
as the truncated balanced approximation. Furthermore, since it
is easy to prove that the reciprocal of a (strictly) positive-real
(bounded-real) system is also (strictly) positive-real (bounded-
real) (see [53]) it is then clear that one can combine the re-
ciprocal system technique with Algorithm 3. The resulting re-
duced-order model will, therefore, be guaranteed positive-real
(bounded-real). We, therefore, propose Algorithm 6 in order to
generate reduced-order models that do not suffer from dc ac-
curacy problems. In fact, the models generated by Algorithm 6
will match the transfer function exactly at dc ( ).

Algorithm 6: DC-Accurate TBR
1) Perform the reciprocal transformation [53] ,

, ,
2) Perform Algorithm 2, Algorithm 3, or Algorithm 4.
3) Perform the inverse reciprocal transformation ,

, ,

It is interesting to note that this behavior of the TBR-like al-
gorithms is reminiscent of the situation in moment-matching
Krylov methods: Krylov spaces based on tend to match well
at infinity, while those based on tend to match well at dc.
The contrast is much less strong in the TBR case because of
its near-optimality properties. On transfer functions with large
norm away from either dc or infinity, TBR will achieve good
relative error near the large-norm areas preferentially, as must
be done to achieve an absolute error bound.

Fig. 1. Minimum eigenvalue of transfer functions used to illustrate
non-positive-real reduced model generated by standard TBR procedure. Solid
line: original (positive-real) order-26 transfer function. Dashed line: TBR result
of order 7. Dashed–dotted line: PR-TBR result of order 7. Note negative sign
of TBR results indicating non-positive-realness.

VI. RESULTS

In this section, we show examples that illustrate the rele-
vance and applicability of the various algorithms presented in
this paper.

A. A Non-Passive ROM Generated by TBR
First, we demonstrate empirically that standard TBR (Algo-

rithm 2) can generate models that are not passive by examining
a 26-state lumped circuit model of a crystal filter.We configured
the circuit to model the two-port impedance parameters from the
input to a differential output. This created a 26-state state-space
model that is positive-real. We then generated all the possible
TBR models of orders 1–26, and used the positive real lemma
to inspect them for positive-realness (equivalent to passivity in
this case). Several of the models were found to be nonpassive
(see Fig. 1).We then generated all the possible PR-TBRmodels.
All were found to be positive-real as expected.
Note that the , matrices for this test case were obtained

via MNA analysis, and in particular, satisfy the conditions nec-
essary to apply PRIMA (they are of the form given by (2) in [37]
with and , , and nonnegative definite). Since
this example could form a subsystem of a larger passive system,
or be the result of some previous reduction procedure, its exis-
tence proves that examples exist for which PRIMA is applicable
and produces passive models, but for which TBR generates non-
passive approximations in a second-stage procedure.

B. A Symmetrizable System
Our next example (Fig. 2) is a spiral inductor modeled with

the magnetoquasistatic electromagnetic tool FASTHENRY
[54]. This example first appeared in [2]. In general, as we
mentioned already in many other parts of this paper, model
order reduction is a “two-step” procedure. During the first step
one would use “nonoptimal” but computationally tractable
Krylov subspace moment matching techniques such as PRIMA,
since the original system is typically too large to be handle
by the more optimal TBR techniques. For this example the
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(a)

(b)

Fig. 2. (a) Real part of reduced models of impedance (resistance) of spiral
inductor. (b) Imaginary part of impedance divided by (inductance) of
spiral inductor. Solid line: 60–state PRIMAmodel which is the result of the first
step of a typical reduction procedure. As a second step one could apply either
TBR or PR-TBR. Dashed line: model of order 5 generated via TBR. Dash–cross
line: Model of order 5 generated using PR-TBR on inverse system. All models
in this example are positive-real.

initial system of around 1500 states is reduced to a 60-state
positive-real model using PRIMA. This model is nearly exact
in the frequency range shown.
Since this order is still considered excessive, and since Krylov

subspace model reduction techniques are in general not optimal,
when comparing accuracy for a given final order it is standard
procedure to further reduce the PRIMA model using TBR. The
frequency responses of the PRIMA model, TBR model, and
PR-TBR model are shown in Fig. 2, and the time-domain re-
sponses are shown in Fig. 3. In [2], it was commented that the
reduced models after the TBR procedure appeared to be passive,
but no explanation was given. Here we have rigorously checked,
using the positive-real lemma, that the models were indeed pas-
sive, and gave a proof as to why, for symmetrizable systems
such as this, that should be the case. Note, however, that the
results shown in Fig. 2 from TBR and PR-TBR are slightly dif-
ferent. This is not surprising as, while both TBR and PR-TBR
guarantee passivity in this case, they are different computational
techniques with different physical interpretations and different

Fig. 3. Voltage response across spiral inductor, in parallel with small
capacitor, driven by short current pulse. Response computed from original
model (solid line), TBR approximation of second order (dash line) and PR-TBR
approximation of fifth order (dash–dotted line, nearly exact) are shown.

error properties. Given that PR-TBR is more computationally
involved than TBR, for the special case of symmetrizable sys-
tems it makes sense to use TBR exclusively.

C. A Bounded-Real Example From Rational Function Fitting

In the next example we consider the bounded-real variant of
the TBR procedure (BR-TBR). First, a rational fitting method
was used to fit a high-order model to tabulated two-port -pa-
rameter data originating from a full-wave EM field solver. The
fitting algorithm, which has provision for automatic estimation
of model order, was tuned to a conservative setting, and gener-
ated an order-42 initial model that was nearly an exact fit to
the data in the given frequency range. The resulting 42-state
model was much larger than desired for final simulation, so the
BR-TBR procedure was used to reduce the model to six states.
The results are shown in Fig. 4. The reduced model had norm
bounded by unity, indicating that it represented a passive ele-
ment. Several models of orders six to eight were also generated
by both TBR and congruence transform strategies, but all had

norms ranging from 1.05 to 1.9, i.e., they were not pas-
sive. Such techniques are, therefore, unusable for this type of
systems. We likewise re-iterate that PRIMA is not suitable for
these systems either [29].

D. A PEEC Connector

This example features a connector structure from Teradyne
Inc. composed of 18 pins with a ground shield around and
between the conductors. This structure or portions of it were
previously used [19] to illustrate a PEEC formulation based on
PRIMA that generates passive reduced-order models. While
the resulting model was indeed provably passive, disappointing
reductions were reported, due mostly to the inability of the
PRIMA algorithm to zero-in on the relevant modes of the
system. In fact volume discretization of the interior of the
conductors in order to properly model skin-effect leads to the
appearance of various internal subsystems that have negligible
effect in the structure impedance but which can fool the PRIMA



12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 8, AUGUST 2003

Fig. 4. Magnitude of rational function fit and reduced model for -parameters tabulated by full-wave field solver. Solid line shows initial data and oder-42 rational
fit (complete overlap). Dash-dotted line shows order-6 reduced model obtained via BR-TBR.

algorithm. In order to address such issue in [28] the same ex-
ample was used to illustrate a two-step algorithm for RLC order
reduction based on PRIMA followed by TBR, in an attempt
to solve the above problem. Significant order reductions were
reported after the second step of reduction as TBR is able to
determine that those modes are not observable nor controllable.
While this clearly shows that further reduction after the PRIMA
stage is possible and indeed desirable, passivity was no longer
guaranteed in the final, smaller models.
Here we have used the same example and checked the pas-

sivity of reduced-ordermodels of various orders.We believe that
the modes that are being discarded by TBR are related to the in-
ternal subsystems resulting from skin-effect modeling. As such
the character of the problem after the initial PRIMA reduction
is predominantly RL, a type of system for which we know that
TBR is passive (see Section III-D). Once more we generated
all the possible TBR models for the system obtained after the
PRIMA reduction and used the positive real lemma to inspect
them for positive-realness (again equivalent to passivity in this
case). Due to the almost symmetric nature of the systems, al-
most all the models we obtained were found to be passive. How-
ever, models of order 19 and 29 were found to be nonpassive,
a problem if the model is to be used in time-domain simula-
tions. This example shows once more that TBR can indeed lead
to large reductions in model-order but can produce nonphysical
models. The example also presents a strong case for using the
hybrid algorithm presented earlier (see Section IV-D and Algo-
rithm 5). Since the majority of the TBR-produced models are

likely to be passive it is advantageous to obtain such a model,
check it for passivity, and only proceed to the PR-TBR algo-
rithm if the passivity check fails. Of course, it would be possible,
using TBR, to compute and check another model of slightly dif-
ferent order, and this is fairly easy to do since TBR essentially
produces models of all orders simultaneously. However in gen-
eral changing the order is not guaranteed to always produce a
passive model. In fact, as the next example shows, there are sys-
tems where TBR almost never produces a passive model. This
is a particular problem when one of the requirements specified
by the user is having a model of a particular size or no larger
than a certain size. Furthermore, since there is a cost associated
with the passivity check, it is not practical to check “too many”
alternative models before proceeding to PR-TBR.

E. An RLC Line
For our next example we use a 40-segment uniform RLC line

that is -dominated. The values of the line were chosen to be
, . For the purpose of comparison

we computed 25th-order models using both TBR and PR-TBR.
Fig. 5(a) shows the low-frequency behavior of the exact line
impedance as well as that obtained using the two models. For
this particular case it turns out that PR-TBR performs much
better than regular TBR in terms of themodel error.More impor-
tant, however is the result shown in Fig. 5(b) where we plot the
minimal eigenvalue of the symmetric part of the transfer func-
tion as a function of frequency. As can be seen from the plot,
the minimal eigenvalue for the TBR model can go below zero
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(a) (b)

Fig. 5. (a) Magnitude of for LC line in normalized units. (b) Minimum eigenvalue of symmetric part of reduced model transfer function. Note that the
minimum eigenvalue of the TBR model drops below zero for some frequencies, indicating nonpassivity.

at some frequencies which implies that the model is nonpassive
and may produce nonphysical responses when used in time-do-
main simulations. In fact, on this example, almost none of the
models produced by TBR were passive. Only very high order
models exhibiting an almost exact match to the transfer func-
tion over the entire frequency axis were passive. In contrast, all
the models produced by the PR-TBR method were found to be
passive, as expected.

F. DC Accuracy Improvement

Our final example illustrates the behavior of the reciprocal
system technique in preserving accuracy at low frequencies. An
abstract system of order 64was constructed, and the PR-TBR al-
gorithm, both the “standard” and the “reciprocal” variants, were
applied to generate reduced models of order 4. Since PR-TBR
was used, both reduced models were guaranteed-passive. The
results are shown in Fig. 6. Standard PR-TBR is very accurate
at high frequencies, but not so accurate near dc. The reciprocal
variant is very accurate near dc, but trades this for accuracy at
high frequencies. Note that both methods show a fairly good
match to the features around the sharp large-amplitude reso-
nance. This is in agreement with [35], where it is shown that
using the reciprocal transformation before and after the bal-
anced-truncation procedure results in models that are exactly
accurate at dc. In fact, it is possible to choose any frequency
point such that the reciprocal systems can be computed and
then reduced as an approximation at any frequency , such that
the reduced model will match the value of the original system
at .

Fig. 6. Solid line: Original order-64 model. Dash–dotted line: order-6 reduced
model from PR-TBR. Dash line: order-6 reduced model PR–TBR, reciprocal
variant.

VII. CONCLUSION

In this paper, we presented a family of algorithms that can
be used to compute guaranteed passive, reduced-order models
of controllable accuracy for state-space systems with arbitrary
internal structure.
The algorithms presented are similar to the well-known trun-

cated balanced realization (TBR) techniques and share some of
their advantages, such as computable error bounds. However,
unlike standard TBR techniques, the algorithms presented have
been shown to produce provably passive reduced-order models.
In addition, unlike other techniques known to also produce pas-
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sive reduction, the algorithms presented pose no constraints on
the internal structure of the state-space. They are thus equally
well applicable to systems that represent for instance or
parameters as well as systems that represent parameters. An
hybrid algorithm was also presented where a TBRmodel is first
computed, then checked for passivity and the passive-TBR al-
gorithm is only used if that check fails. Our hybrid algorithm
is more reliable than simply slightly changing the order of the
produced model which can often produce passive systems, al-
though not always. In addition we also examined a dc-accu-
rate technique that can be used in conjunction with the algo-
rithms presented in order to produce models that have accurate
steady-state responses.
We have experimented with our techniques in a large number

of settings and have shown that they can be used as standalone
procedures or as part of second step reductions for systems with
a large number of unknowns, perhaps replacing the usual TBR
procedure. We have thus applied our method to obtain reduced
models of various structures, namely the two-port impedance
of a crystal filter, a spiral inductors, a large connector and an
RLC line. All models were found to be accurate and passive.
All previously known techniques failed to produce acceptable
models in some of the examples used.
Further applications of the algorithms are possible, for ex-

ample, balancing the Lyapunov observability Grammian versus
the Lur’e controllability Grammian could be useful in obtaining
passivemodels in situations (common inRLC interconnect anal-
ysis) where the number of outputs (e.g., from voltage observa-
tion points) exceeds the number of inputs (i.e., drivers).
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