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Abstract

Inverse wave scattering problems arise in many applications including computerized/diffraction
tomography, seismology, diffraction/holographic grating design, object identification from
radar singals, and semiconductor quality control. Efficient algorithms exist for some inverse
wave scattering problems in the low- and high-frequency regime or with weak scatterers.
However, inverse wave scattering problems in the resonance regime with strong scatterers
still pose many challenges.

This thesis proposes algorithms for inverse wave scattering problems in the resonance
regime with strong scatterers. These problems are part of, for instance, grating design,
object identification, and semiconductor quality control. The proposed methods are (a) a
spectrally convergent Nyström method for periodic structures in 2-D; (b) a fast Jacobian
approximation method accompanying a Nyström method; (c) a fast and accurate method
for evaluating the potential integrals in the 3-D mixed-potential integral operator with the
Rao-Wilton-Glisson basis function; and (d) optimization with parameterized reduced-order
models. The Nyström method and the method to evaluate the potential integrals accelerate
scattered field evaluations by solving integral equations efficiently. The Jacobian approxima-
tion method and optimization with parameterized reduced-order models efficiently couple
algorithms to evaluate scattered fields due to a guess of the scatterer and optimization
methods to improve the guess.

The Nyström and the Jacobian approximation methods are used to identify the pa-
rameters characterizing a periodic dielectric grating in 2-D. The method to evaluate the
potential integrals and optimization with parameterized reduced-order models are applied
to the problem of identifying simple discrete geometries in 3-D.

Thesis Supervisor: Jacob White
Title: Professor
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Chapter 1

Introduction

1.1 Motivation

In an inverse wave scattering problem, an unknown scatterer is identified by measuring the

scattered field. Inverse wave scattering problems arise in many applications including image

reconstruction from x-ray and ultrasonic measurements [1, 2, 3, 4, 5, 6], seismic analysis

for geophysics and oil-field exploration [7, 8, 9, 10, 11, 12, 13], object identification in

addition to its location and velocity from radar signals [14, 15]. An inverse wave scattering

problem is also a part of a widely used quality control method for semiconductor fabrication

[16, 17, 18, 19, 20, 21, 22, 23].

The difficulty of an inverse wave scattering problem strongly depends on the relative

size of the scatterer to the source wavelength [3, 5, 24]. For high-frequency problems where

the source wavelength is much shorter than the size of the scatterer, the wave propagates

mostly in a straight line, and geometrical optics and acoustics approximations are possible

[3, 25]. Such an approximation leads to efficient solution methods based on the Fourier

slice theorem, and they are widely used in computerized tomography [5, 6]. Low-frequency

problems, where the source wavelength is much longer than the size of the scatterer, become

inverse diffusion problems [3, 25]. These problems are not easy since they are highly ill-

posed. Nevertheless, efficient methods exist [3, 26]. Furthermore, solvers to analyze diffusion

problems are easier to develop and more efficient than those to analyze wave problems

[27, 28, 29, 30, 31], making it easier to couple the solvers to an optimization algorithm and

solve an inverse diffusion problem.

The difficulty of inverse wave scattering problems also depends on the type of the scat-
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terer. If the wavelength is comparable to the size of the scatterer, the problem is in the

resonance regime. Inverse wave scattering problems in the resonance regime is known to

be difficult since diffraction of waves can no longer be ignored. But, the Born or Rytov ap-

proximation is possible for certain scatterers [2, 4, 5]; such approximations lead to problems

similar to high-frequency problems, and efficient algorithms based on the Fourier diffraction

theorem exist [2, 3, 4, 5].

Unfortunately, many inverse wave scattering problems are not high or low in frequency,

nor is it possible to apply the Born or Rytov approximation. Higher frequency, or shorter

wavelength, sources are almost always preferred to lower frequency ones since they provide

higher resolution [5, 6]. But, the choice of source may be limited by other considerations.

For instance, a higher frequency source may not be available when the quality of the source

deteriorates in high frequencies [32, 33], or it has adverse effect to the scatterer, such as

x-rays in medical applications [5].

Inverse wave scattering problems in the resonance regime are interesting as there are

many applications in semiconductor quality control [16, 17, 18, 19, 20, 21, 22, 23], designing

gratings for spectral analysis [34, 35, 36], and object identification from radar signals [14, 15].

These problems are solved iteratively in many cases by combining two parts [37, 38, 39]:

the forward analysis that evaluates the scattered fields due to the source and a guess of the

scatterer, and the inverse analysis that improves the guess. Hence, a guess of the scatterer

is iteratively improved until the computed scattered field due to the guess matches the

measured field.

The inverse wave scattering problem in the resonance regime is challenging in many

ways. First, a highly efficient forward algorithm suitable for repeated evaluation is difficult

to develop. Analytic solutions for wave scattering problems exist only for simple scatterers

[40] such as spheres, ellipsoids, and infinitely long cylinders. Numerical methods have to

be employed for scatterers of practical interest [41, 42, 43, 44, 45, 46] and can be computa-

tionally expensive. A single forward analysis may take from minutes to days for large and

complicated 3-D structures.

The optimization problem corresponding to the inverse analysis is non-convex and ill-

posed in most cases. If an optimization problem is non-convex, finding a global minimum

is practically impossible, and a local optimization algorithm may perform poorly [47, 48].

Even worse, the optimization problem is ill-posed: a small change in data can lead to a
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large change in the solution [49, 50, 28]. Therefore, some form of prior information has to

be incorporated to recover the solution in a reliable manner [49, 51, 52].

Finally, efficient coupling of the forward and inverse analyses poses challenges. Most

efficient optimization algorithms require derivatives of the objective function (and the con-

straints) [47, 53, 54], but derivatives may be hard to evaluate if the forward analysis solves

partial differential or integral equations numerically. Closed form formulae for the deriva-

tives, in most cases, do not exist, and numerical approximations have to be made [55, 54, 56].

In this thesis, techniques to accelerate the forward analysis and to couple forward and in-

verse analyses efficiently are proposed, and they are applied to inverse electromagnetic wave

scattering problems in the resonance regime. The contributions are (a) a spectrally con-

vergent Nyström method for periodic structures in 2-D; (b) a fast Jacobian approximation

method accompanying a Nyström method; (c) a novel method for evaluating the potential

integrals in the 3-D mixed-potential integral operator with the Rao-Wilton-Glisson basis

function; and (d) optimization with parameterized reduced-order models. The proposed

Nyström and Jacobian approximation methods are used to identify parameters character-

izing a periodic dielectric grating in 2-D. The proposed method for potential integrals and

optimization with parameterized reduced-order models are used to identify some simple

discrete geometries in 3-D.

1.2 Thesis Outline

In the next chapter, the necessary background for integral equations for dielectric scattering

in 2-D and 3-D is presented. Other than the subsection on equivalence principles that tries

to elucidate the connection between equivalence principles and underlying mathematical

principles, the chapter is a summary of existing literature.

In chapter 3 and 4, methods for dielectric scattering in 2-D are described. In chapter 3,

the existing spectrally convergent Nyström methods in 2-D are extended to periodic prob-

lems. By retaining the spectral convergence, only a small number of quadrature points are

necessary for the forward analysis. The periodic extension works for continuously periodic

structures, such as surface gratings, as well as discretely periodic structures, such as pho-

tonic crystals consisting of discrete pillars. The proposed method for continuously periodic

structures separates additional singularities due to the periodic sources in the neighboring

15



periods and integrates the singularities with the proposed modified Fejér quadrature. In

addition, the proposed method can analyze structures with periods much larger than the

wavelength by evaluating the separated singularities in a numerically stable manner.

In chapter 4, a fast method to approximate the Jacobian for a shape optimization

problem is proposed. The Jacobian is evaluated approximately using the properties of

the underlying Nyström method and the chain rule. As a result, the cost of the Jacobian

approximation is directly proportional to the number of quadrature points and independent

to the number of optimization variables under certain assumptions. Combined with a

spectrally convergent Nyström method, the cost of the Jacobian approximation is kept

small even for problems with many optimization variables.

Nyström methods are hard to generalize to problems in 3-D, and projection methods,

such as collocation and Galerkin methods, are popular alternatives. Unfortunately, projec-

tion methods for surface integral equations have their own shortcomings, and the next two

chapters address some of them.

Chapter 5 presents a novel method to evaluate the potential integrals in the 3-D mixed-

potential integral operator if the Rao-Wilton-Glisson basis function is used to approximate

the surface currents. These potential integrals are difficult to evaluate since the 3-D Green’s

function is singular. The proposed method first turns the area integral over a flat triangular

panel into line integrals over the panel edges using Gauss’ theorem. Then, faster convergence

of the line integrals is achieved by a change of variable motivated by a complex-domain

mapping. Therefore, the proposed method can evaluate nearby- and singular-potential

integrals accurately and efficiently.

Projection methods tend to converge more slowly than Nyström methods, resulting

in a larger system of linear equations to solve for each forward analysis. A method to

decouple the forward and inverse analyses is proposed in chapter 6, which uses a parame-

terized reduced-order model as a proxy for the original forward analysis. The parameter-

ized reduced-order model is algorithmically constructed by multiple forward analyses and

the polynomial-fit parameterized moment matching before the inverse problem is solved.

The resulting parameterized reduced-order model can be evaluated repeatedly for small

computational cost and can replace the original model for small changes in the optimiza-

tion variables. Furthermore, the Jacobian evaluation is trivial due to the structure of the

reduced-order model. Some improvements to the polynomial-fit parameterized moment
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matching are proposed for scattering problems, together with a graphical method to iden-

tify the moment matching condition for the projection matrix.

Finally, the contributions, their limitations, and possible improvements are summarized

in chapter 7.

1.3 Summary of the Novel Contributions

A number of new contributions are made related to the Nyström method. The singu-

larity separation for periodic Green’s function in section 3.2 and the parameterization in

section 3.3 are novel contributions to the literature. Even though many modified Clenshaw-

Curtis and Fejér quadratures exist, the method proposed in section 3.4 for the logarithmic

singularity has never been introduced up to the author’s knowledge. The fast Jacobian

evaluation method in section 4.3 is new, where the development of the method is inspired

by the isoparametric approach for shape optimization problems [56].

Two improvements for evaluating potential integrals are proposed. One is the dimension

reduction in section 5.3 to turn the surface integral over a flat triangular panel into line

integrals over its edges, and the other is a change of variable in section 5.4 to improve the

convergence of the resulting line integrals.

Finally, three methods are proposed to create a parameterized reduced-order model

for dielectric scattering. First is the moment matching graph in section 6.3 to find the

projection matrix for moment matching. The other two in section 6.4 approximate and

transform the original dielectric scattering model such that the moment matching graph

can be applied.
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Chapter 2

Background in the Maxwell’s

Equations and Integral

Formulations

This chapter summarizes the necessary background in Maxwell’s equations and integral

equations. The only novel contribution is the presentation of equivalence principles as

interpretations to the underlying mathematical principles and their generalization to the

Laplace and Helmholtz equations in subsection 2.2.2. The rest is mainly a summary of the

existing literature on the Maxwell’s equations and integral equations.

Section 2.1 shows the relation between the Maxwell’s equations and the scalar Helmholtz

equation. The Maxwell’s equations are known to be difficult to solve, and decomposing them

into scalar Helmholtz equations greatly simplifies the problem.

The solution to the scalar Helmholtz equations with the Sommerfeld radiation condition

at infinity is shown in section 2.2. A source formulation with only equivalent charges is used

for 2-D dielectric scattering analysis, resulting in a mixture of first-kind and second-kind

integral equations. Even though second-kind integral equations are preferred for numerical

reasons [57, 28], the disadvantage of the mixed first- and second-kind equations is compen-

sated by a spectrally convergent Nyström method proposed in chapter 3.

Equivalence principles are commonly used in Electromagnetics to transform a problem

with a piecewise homogeneous medium into equivalent problems with homogeneous media

[58, 59, 25, 60]. Even though these principles are interpretations of some mathematical
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properties of the governing Maxwell’s equations and the associated boundary value prob-

lems, the connection is not well explained elsewhere except in [58] for one type of equivalence

principles. In subsection 2.2.2, equivalence principles are grouped into two types depending

on the underlying mathematical principle and generalized to the scalar Helmholtz equation.

Similar interpretation and classification can be made for the Maxwell’s equations and the

Laplace equation using the mathematical properties in [61, 62, 27, 28].

Section 2.3 presents the 3-D mixed-potential integral operator as the solution to the

Maxwell’s equations with the Silver-Müller radiation condition at infinity. Then, the PM-

CHW [59, 63, 64] formulation, consisting of only second-kind integral equations is presented

for the 3-D dielectric scattering.

2.1 Simplifying the Maxwell’s Equations

The Maxwell’s equations in the most general form are known to be difficult to solve. For-

tunately, there are special cases where the Maxwell’s equations are simplified to scalar

Helmholtz equations. In this section, two of the well-known cases are presented in detail:

the 2-D Maxwell’s equations and the mixed potential formulation for the 3-D Maxwell’s

equations. Other cases, such as the 1-D Maxwell’s equations and Maxwell’s equations in

sourceless homogeneous medium, can be found in [65, 66, 67].

The main subject of the this section is the time-harmonic Maxwell’s equations with

angular frequency ω. Using the ejωt convention, for instance E(r, t) = Re{E(r)ejωt}, the

time-harmonic Maxwell’s equations are

∇× E = −jωB − M

∇× H = jωD + J

∇ · D = ρe

∇ ·B = ρm

(2.1)

with both the electric and (fictitious) magnetic currents J and M, respectively; E and H

are electric and magnetic fields, D and B are the electric and magnetic flux densities. The

electric and (fictitious) magnetic charges, ρe and ρm respectively, are necessary to ensure
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the conservation of charge given by

∇ ·M = −jωρm

∇ · J = −jωρe.
(2.2)

Note that the negative sign in front of M in (2.1) helps us to recover the conservation law.

Introducing both the electric and (fictitious) magnetic currents makes all the equations

independent, and the resulting symmetry in the equations enables duality arguments as

shown in subsection 2.1.2.

2.1.1 The Maxwell’s Equations in 2-D

If the medium and the sources are invariant in one direction, the problem is considered 2-D,

and the invariant direction is denoted as the z direction in this thesis. The invariance in

the z direction implies that the z-direction derivatives of all the quantities in the Maxwell’s

equations are zero. For instance,

∇× E =

∣

∣

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

∂
∂x

∂
∂y 0

Ex Ey Ez

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∂Ez

∂y
x̂− ∂Ez

∂x
ŷ + (

∂Ey

∂x
− ∂Ez

∂y
)ẑ.

For a homogeneous isotropic medium with D = ǫE and B = µH for permittivity ǫ and

permeability µ, (2.1) with (2.2) replacing the Gauss’ laws simplifies to

∂Ez

∂y
= −jωµHx −Mx

−∂Ez

∂x
= −jωµHy −My

∂Ey

∂x
− ∂Ex

∂y
= −jωµHz −Mz

∂Hz

∂y
= jωǫEx + Jx

−∂Hz

∂x
= jωǫEy + Jy

∂Hy

∂x
− ∂Hx

∂y
= jωǫEz + Jz

∂Mx

∂x
+
∂My

∂y
= −jωρm

∂Jx

∂x
+
∂Jy

∂y
= −jωρe
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These equations can be grouped into two completely decoupled sets of equations [65, 25]:

one with Ez, Hy, and Hz fields,

∂Ez

∂y
= −jωµHx −Mx

−∂Ez

∂x
= −jωµHy −My

∂Hy

∂x
− ∂Hx

∂y
= jωǫEz + Jz

∂Mx

∂x
+
∂My

∂y
= −jωρm,

(2.3)

and the other with Hz, Ey, and Ez,

∂Hz

∂y
= jωǫEx + Jx

−∂Hz

∂x
= jωǫEy + Jy

∂Ey

∂x
− ∂Ex

∂y
= −jωµHz −Mz

∂Jx

∂x
+
∂Jy

∂y
= −jωρe.

(2.4)

The set of equations (2.3) defines the E-polarization problem1. For the E-polarization

problem, Ez is found by solving the scalar Helmholtz equation

∇2Ez + ω2µǫEz = jωµJz −
∂Mx

∂y
+
∂My

∂x

∂Mx

∂x
+
∂My

∂y
= −jωρm

(2.5)

with a suitable boundary condition. Once Ez is found, the corresponding H is, or more

precisely Hx and Hy are, evaluated from

H =
−1

jωµ
(∇× (0, 0, Ez) + M) ⇔















Hx =
−1

jωµ
(
∂Ez

∂y
+Mx)

Hy =
1

jωµ
(
∂Ez

∂x
−My)

. (2.6)

The tangential H component to a surface with normal direction n̂ is frequently used to

enforce the continuity of the tangential fields. One way to evaluate the tangential H at a

1It is also called the transverse magnetic problem.
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sourceless point is

n̂× H =
1

jωµ
[nx

∂Ez

∂x
+ ny

∂Ez

∂y
]ẑ

=
1

jωµ

∂Ez

∂n̂
ẑ,

(2.7)

which is used in subsection 2.2 to derive the integral equations.

To solve the H-polarization problem2 defined by (2.4), Hz is found by solving a similar

scalar Helmholtz equation

∇2Hz + ω2µǫHz = jωǫMz −
∂Jx

∂y
+
∂Jy

∂x

∂Jx

∂x
+
∂Jy

∂y
= −jωρe,

(2.8)

with a suitable boundary condition. Then, the corresponding E and the tangential E

component at a sourceless point with surface normal direction n̂ are

E =
1

jωǫ
(∇× (0, 0,Hz) − J) ⇔















Ex =
1

jωǫ
(
∂Hz

∂y
− Jx)

Ey =
−1

jωǫ
(
∂Hz

∂x
+ Jy)

(2.9)

and

n̂× E =
−1

jωǫ

∂Hz

∂n̂
ẑ,

respectively.

2.1.2 The Mixed-Potential Formulation for the Maxwell’s Equation in

3-D

In order to simplify the derivation, the linearity of the Maxwell’s equations is exploited.

The Maxwell’s equations in (2.1) are decomposed into two sets of equations where only one

2It is also called the transverse electric problem.
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of the current sources is present:

∇× Ee = −jωBe

∇× He = jωDe + J

∇ · De = ρe

∇ · Be = 0

(2.10)

and

∇× Em = −jωBm − M

∇× Hm = jωDm

∇ ·Dm = 0

∇ · Bm = ρm

(2.11)

where the solution to (2.1) is the linear superposition of the two solutions, e.g., E = Ee+Em.

The solution to (2.10) is found in the following, and that of (2.11) is found by duality.

As the first step, the electric vector potential A is introduced to satisfy ∇ ·B = 0 trivially

by defining B = ∇× A:

∇× Ee = −jωBe

∇× He = jωDe + J

∇ · De = ρe

Be = ∇× A

In order to show the role of the potentials more clearly, the left column shows the original

equations that remain, and the right shows the equations with potentials that replace the

original. Substituting Be = ∇×A into ∇×Ee = −jωBe, the scalar potential φe is defined

to trivially satisfy ∇× (E + jωA) = 0:

∇× He = jωDe + J

∇ ·De = ρe

Ee = −jωA −∇φe

Be = ∇× A
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The negative sign in front of ∇φe ensures that the electric field lines point from a positive

charge to a negative charge, consistent with the electrostatics [68, 69].

Assuming homogeneous isotropic media with D = ǫE and B = µH for permittivity ǫ

and permeability µ and substituting the equations in the right column to those in the left

give

Ee = −jωA−∇φe

∇2A + ω2µǫA = −µJ + (∇ ·A + jωµǫφe)

∇2φe + jω∇ ·A = −ρe/ǫ

Be = ∇× A.

(2.12)

There are more unknowns than the equations in (2.12) since B = ∇×A does not uniquely

specify A, and ∇ ·A can be any value [69]. Nevertheless, all the E and B satisfying (2.12)

for different A and φe are the same.

The potentials can be made unique if ∇ · A is constrained. There are more than one

way to do this since the absolute values of the potentials are of no interest. One popular

method is the Lorenz gauge condition [69, 25],

∇ ·A = −jωµǫφe, (2.13)

which gives

∇2A + ω2µǫA = −µJ

∇2φe + ω2µǫφe = −ρe/ǫ
(2.14)

to find the potentials. These equations decouples into scalar Helmholtz equations in the

Cartesian coordinates and are easily solved with a suitable boundary condition, as it will

be shown in section 2.3. Once the potentials A and φe are found, the associated fields are

evaluated from

Ee = −jωA−∇φe

He =
1

µ
∇×A.
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The remaining (2.11) can be solved by duality. Starting from (2.10), the substitutions3

E → H D → B J → M ρe → ρm

H → −E B → −D M → −J ρm → ρe

(2.15)

result in (2.11). This means that the solutions for E and H in (2.11) can be found from

those for H and E in (2.10), respectively.

Of course, one can solve (2.11) by repeating the same steps as for (2.10) while defining

potentials F and φm as

Dm = −∇×F

Hm = −jωF −∇φm.

The result is F and φm satisfying

∇2F + ω2µǫF = −ǫM

∇2φm + ω2µǫφm = −ρm/µ
(2.16)

and the fields are evaluated from

Em =
−1

ǫ
∇× F

Hm = −jωF −∇φm.

2.2 Integral Equations for the 2-D Dielectric Scattering

2.2.1 Solution to the 2-D Boundary Value Problem

The partial differential operators (2.5) and (2.8) are useful to determine the sources J and

M from the fields E and H4, but not the other way around. Integral operators are used to

evaluate the fields from the sources.

In fact, the integral operators are the inverse of the partial differential operators with

a suitable boundary condition. Suppose we want to find φ satisfying the boundary value

problem with

∇2φ(r) + k2φ(r) = −ρ(r)
3Note that there are more than one way to establish duality, and other substitutions can be found in [25].
4This has to be done with care as pointed out in [70], page 162.
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and the Sommerfeld radiation condition at infinity for a known source distribution ρ. The

solution to this problem is given by [65]

φ(r) =

∫

ρ(r′)G(r, r′)dr′. (2.17)

where the Green’s function, or the fundamental solution, G is the solution to the boundary

value problem with a point source δ at r′ for ρ. If the boundary value problem is solved

without any additional condition, the solution is

G(r, r′) =
1

4j
H

(2)
0 (k||r − r′||) (2.18)

where H
(2)
0 is the zeroth order Hankel function of the second kind. If the periodicity of ρ

in one direction is considered, G is the 2-D Green’s function for periodic structures in one

direction as it will be shown in Chapter 3. The domain of integration for (2.17) encloses

the entire source distribution for non-periodic charge distributions and one period of the

source distribution for periodic ones.

2.2.2 Equivalence Principle

For a given problem, equivalent problems maintain the same fields as the given problem

in some part of the domain, called the domain of interest [25, 60]. The fields outside the

domain of interest can be anything for the equivalent problems. Equivalent problems are

useful to reduce the complexity of the original problem if the fields in the domain of interest

is only necessary. Furthermore, they are the cornerstone for developing integral equations

for scattering and radiation in piecewise homogeneous media [59, 71, 72, 63, 73].

Equivalence principles systematically introduce equivalent sources and alter the media

to construct equivalent problems. It is an idea known mostly for the Maxwell’s equations

[58, 25, 60], but it can be easily generalized to the Laplace and scalar Helmholtz equations.

This subsection develops the equivalence principles for the scalar Helmholtz equation.

Equivalence principles are interpretations of mathematical principles and are categorized

into two types. The first type is the interpretation of the Green’s second identity [58].

Suppose φ satisfies the scalar Helmholtz equation ∇2φ + k2φ = 0 for some wavenumber k

in an open exterior domain Ω0 containing infinity. With Sommerfeld radiation condition at
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infinity, the Green’s second identity gives [50]

∫

∂Ω0

φ(r′)
∂G(r, r′)
∂n̂(r′)

− ∂φ(r′)
∂n̂(r′)

G(r, r′)dr′ =











φ(r), r ∈ Ω0

0, r ∈ Ωc
0

(2.19)

where n̂(r′) is the normal derivative pointing into Ω0 at r′, and Ωc
0 is the complement of

Ω0. This means that if charge and dipole given by

ρ(r) = − ∂φ(r)

∂n̂(r)

ψ(r) =φ(r)

(2.20)

are specified over ∂Ω0, the original field is maintained in Ω0. Hence, the new problem with

(2.20) on ∂Ω0 is equivalent to the original problem in Ω0.

The distinguishing features of the first type are (a) the field in Ωc
0 is automatically zero;

and (b) the equivalent sources are directly related to the original field φ by (2.20). The type-

one equivalence principle in Electromagnetics is sometimes called extinction principle due to

the zero field outside of the domain of interest [25], and integral equations based on the type-

one equivalence principle are called the field formulations [59]. Equations similar to (2.19)

exist for the Maxwell’s equations [62] as well as the Laplace equation [27, 28], and type-one

equivalence principles can be derived for these equations as well. Some type-one integral

equations in Electromagnetics are shown in [25, 60] and will be used in subsection 2.3.2.

The second type relies on two mathematical principles: uniqueness principle for the

fields and the existence of a solution to some boundary value problems. The uniqueness

principle relates the field in the volume Ω0 to the field on the boundary ∂Ω0. For instance,

the uniqueness theorems of the scalar Helmholtz equation in section 3.3 of [50] state that

the field in Ω0 is uniquely determined if φ or its normal derivative is specified over ∂Ω0,

and the Sommerfeld radiation condition is given at infinity.

Then, the equivalent sources to support the same field on ∂Ω0 is found by solving a

boundary value problem, and the existence of solutions to the boundary value problem [27,

28, 50, 61] determines what combinations of sources are possible. For the scalar Helmholtz

equation, charge and dipole sources, independently, can support arbitrary φ on ∂Ω0 as

shown in section 3.4 of [50]. Furthermore, both charge ρ and dipole ψ related by ρ = −jαψ
for αRe{k} ≥ 0 can support any φ on ∂Ω0 as shown in section 3.6 of [50].
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If type-two equivalence principles are applied, (a) the field in Ωc
0 can be any value

and determined by the choice of equivalent sources (charge or dipole) and boundary value

problem to solve (support φ or ∂φ/∂n̂); and (b) no direct connection, such as (2.20), exists

between φ and the sources. Integral equations in Electromagnetics based on the type-two

equivalence principles are called source formulations [60]. Similar uniqueness principles

and existence theorems for solutions to boundary value problems exist for the Maxwell’s

equations [61, 25] and the Laplace equation [27, 28].

Regardless of the type, the media in Ωc
0 can be chosen arbitrarily by choosing the

Green’s function for the Green’s second identity or the boundary value problem. If the

homogeneous Green’s function is used, the medium in Ωc
0 becomes the same as Ω0; such a

choice is popular since the homogeneous Green’s function is well known and easy to evaluate,

but other choices are also possible [71, 72, 73, 74].

Consider an example shown in Figure 2-1. Suppose a source distribution ρi non-zero in

Figure 2-1: Example for type-one and type-two equivalence principles.

Ωs supports a nonzero field

φ(r) =

∫

Ωs

G(r, r′)ρi(r′)dr′

in a homogeneous medium. A fictitious boundary ∂Ω0 is drawn such that Ω0 contains Ωs

and infinity, and equivalent sources are specified on ∂Ω0 to create an equivalent problem.

Consider the type-one equivalent principle. Since ∇2φ+ k2φ = ρi, (2.19) becomes [62]

∫

∂Ω0

φ(r′)
∂G(r, r′)
∂n̂(r′)

− ∂φ(r′)
∂n̂(r′)

G(r, r′)dr′ + φ(r) =











φ(r), r ∈ Ω0

0, r ∈ Ωc
0.

(2.21)

The equivalent sources are nonzero and given by (2.20), and the overall effect of ρi, ρ, and

ψ supports the same φ in Ω0 and zero field in Ωc
0. In other words, the field due to ρ and ψ
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are zero in Ω0, despite ρ and ψ being non-zero, and −φ in Ωc
0.

To create an equivalent problem with a type-two equivalent principle using only ρ,

∫

∂Ω0

ρ(r′)G(r, r′)dr′ +
∫

Ωs

ρi(r′)G(r, r′)dr′ = φ(r), r ∈ ∂Ω0

has to be solved for ρ, and the existence of ρ is guaranteed by one of the existence theorems

for the corresponding boundary value problem [50]. The solution for ρ is simply zero; ρi

and ρ together supports the same φ in Ω0, and the field in Ωc
0 happens to be the same as φ.

2.2.3 Integral Equations for the 2-D Dielectric Scattering

Consider a dielectric scatter in free space as shown in Figure 2-2. The outside Ω0 and

Figure 2-2: Equivalence principle for a source formulation.

inside Ω media are characterized by (ǫout, µout) and (ǫin, µin), respectively, and the wave

number is determined by k = ω
√
ǫµ; φ stands for the scattered Ez for the E-polarization

and Hz for the H-polarization. The dielectric scatterer is illuminated by an incident wave

pair (φi
z,φ

i
r), which are Ei

z and (H i
x,H

i
y, 0) for the E-polarization and H i

z and (Ei
x, E

i
y, 0)

for the H-polarization.

Green’s functions for inhomogeneous media are known for simple inhomogeneities, such

as a sphere in a homogeneous medium [69] and planar-stratified media [67]. For arbitrary

piecewise homogeneous medium, the Green’s function is nearly impossible to find and,

mostly likely, hard to evaluate even if it can be found. Therefore, a method to formulate

the problem with known Green’s functions is necessary.
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The problem of finding the Green’s function for an arbitrary medium can be avoided

for a piecewise homogeneous medium if equivalence principle is used [25, 60], and a source

formulation [59] based on equivalent charges alone is used for the 2-D dielectric scattering.

As a result, the equivalent sources do not have an interpretation in terms of the field, and

the formulation has both the first- and second-kind integral equations. Even though the

second-kind integral equations are preferred to the first-kind for various (numerical) reasons

[57, 28], the shortcoming is compensated by the spectrally convergent Nyström method that

will be proposed in chapter 3.

First, the original problem with an inhomogeneous medium is decomposed into two

equivalent problems with homogeneous media and equivalent sources as shown in Figure 2-

2. An exterior equivalent problem is constructed by (a) placing a line of unknown charge

ρout just inside Ω; and (b) replacing the medium of Ω with that of Ω0. Using (2.17), the

field φout due to ρout is given by

φout(r) =

∫

∂Ω
ρout(r′)Gout(r, r′)dr′

whereGout is the Green’s function for the homogeneous medium characterized by (ǫout, µout),

and ∂Ω is the boundary of Ω.

Similarly, an interior equivalent problem is constructed by (a) placing a line of unknown

charge ρin just outside Ω; and (b) replacing the medium of Ω0 with that of Ω. The field φin

due to ρin is

φin(r) =

∫

∂Ω
ρin(r′)Gin(r, r′)dr′

where Gin is the Green’s function for the homogeneous medium characterized by (ǫin, µin).

With proper choice of ρout and ρin, the equivalence principle ensures that











φout(r) = φ(r), r ∈ Ω0

φin(r) = φ(r), r ∈ Ω

where φ is the scattered field of the original problem [60, 25]. This is why they are called

exterior and interior equivalent problems. The values of φout in Ω and φin in Ω0 are unknown

since the equivalence principle is type-two.

In order to find the unknown equivalent sources, continuity of the original scattered field
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φ and the jump in its normal derivative across ∂Ω is used. This gives

∫

∂Ω
ρout(r′)Gout(r, r′)dr′ + φi

z(r) =

∫

∂Ω
ρin(r′)Gin(r, r′)dr′, r ∈ ∂Ω (2.22)

and

αout ∂

∂n̂(r)

∫

∂Ω
ρout(r′)Gout(r, r′)dr′ + ẑ · n̂× φi

r(r)

= αin ∂

∂n̂(r)

∫

∂Ω
ρin(r′)Gin(r, r′)dr′, r ∈ ∂Ω

(2.23)

where n̂(r) is the outward normal to ∂Ω at r. The scaling factors αout and αin are 1/jωµout

and 1/jωµin, respectively, for the E-polarization problem, and −1/jωǫout and −1/jωǫin for

the H-polarization problem5.

Once the equivalent charges are found, it can be used to compute the fields everywhere

using (2.17) and (2.6) or (2.9), depending on E- or H-polarization, with a proper choice of

the Green’s function.

2.3 Integral Equations for the 3-D Dielectric Scattering

2.3.1 Solution to the 3-D Boundary Value Problem

Consider (2.14) with the Silver-Müller radiation boundary condition at infinity. Solving

(2.14) for A and φe componentwize in the Cartesian coordinates with the corresponding

radiation condition at infinity gives

A(r) = µ

∫

J(r′)G(r, r′)dr′

and

φe(r) =
1

ǫ

∫

ρe(r
′)G(r, r′)dr′

with the Green’s function for the homogeneous media [69, 25]

G(r, r′) =
e−jk||r−r′||

4π||r − r′|| .

5It is sometimes more convenient to use the intrinsic impedance η =
p

µ/ǫ instead of ǫ and µ. With the
intrinsic impedance, α = 1/kη and α = −η/k for the E- and H-polarization problems, respectively.
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Therefore, the solution to (2.10) is

Ee(r) = −jωµ
∫

J(r′)G(r, r′)dr′ − 1

ǫ
∇

∫

ρe(r
′)G(r, r′)dr′,

He(r) = ∇×
∫

J(r′)G(r, r′)dr′.
(2.24)

Similarly, the solutions to (2.16) are

F(r) = ǫ

∫

M(r′)G(r, r′)dr′

and

φm(r) =
1

µ

∫

ρm(r′)G(r, r′)dr′,

and the solution to (2.11) is

Em(r) = −∇×
∫

M(r′)G(r, r′)dr′

Hm(r) = −jωǫ
∫

M(r′)G(r, r′)dr′ − 1

µ
∇

∫

ρm(r′)G(r, r′)dr′,

which can also be obtained by applying the substitution rules (2.15) to (2.24).

Combining the results, the electric and magnetic fields due to both the electric and the

magnetic currents are

E(r) = −jωµ
∫

J(r′)G(r, r′)dr′ − 1

ǫ
∇

∫

ρe(r
′)G(r, r′)dr′−

∇×
∫

M(r′)G(r, r′)dr′,
(2.25)

and

H(r) = −jωǫ
∫

M(r′)G(r, r′)dr′ − 1

µ
∇

∫

ρm(r′)G(r, r′)dr′+

∇×
∫

J(r′)G(r, r′)dr′.
(2.26)

Before closing the subsection, we show that (2.25) and (2.26) are related by a vector

identity.

Lemma 1. Suppose V is an open bounded set, and a continuously differentiable X(r) is
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nonzero only for r in V . If the Green’s function satisfies the Helmholtz equation

∇2G(r, r′) + k2G(r, r′) = −δ(r − r′)

and has the additional property

∇G(r, r′) = −∇′G(r, r′),

then

∇×∇×
∫

V
X(r′)G(r, r′)dr′ = ∇

∫

V
[∇′ · X(r′)]G(r, r′)dr′+

k2

∫

V
X(r′)G(r, r′)dr′

holds for r not in V .

Proof. Using the vector identity ∇×∇× a = ∇∇ · a −∇2a,

∇×∇×
∫

V
X(r′)G(r, r′)dr′ = ∇[∇ ·

∫

V
X(r′)G(r, r′)dr′]−

∇2

∫

V
X(r′)G(r, r′)dr′.

(2.27)

Applying the vector identity ∇ · (ab) = ∇a · b + a∇ · b to the first term in (2.27),

∇ ·
∫

V
X(r′)G(r, r′)dr′ =

∫

V
∇G(r, r′) ·X(r′)dr′

= −
∫

V
∇′G(r, r′) ·X(r′)dr′

=

∫

V
[∇′ ·X(r′)]G(r, r′)dr′.

Next, the vector identity ∇2(ab) = (∇2a)b + a(∇2b)6 is applied to the second term in

(2.27), which gives

∇2

∫

V
X(r′)G(r, r′)dr′ =

∫

V
X(r′)[∇2G(r, r′)]dr′

= −k2

∫

V
X(r′)G(r, r′)dr′.

6The Laplacian operators have to be interpreted properly as either scalar or vector Laplacian operator.

34



Starting from (2.25),

H(r) =
−1

jωµ
∇× E(r)

= ∇×
∫

J(r′)G(r, r′)dr′ +
1

jωµ
∇×∇×

∫

M(r′)G(r, r′)dr′,

and applying Lemma 1 and the conservation law gives

H(r) = ∇×
∫

J(r′)G(r, r′)dr′+

1

jωµ
∇

∫

[∇′ ·M(r′)]G(r, r′)dr′ +
k2

jωµ

∫

M(r′)G(r, r′)dr′

= −jωǫ
∫

M(r′)G(r, r′)dr′ − 1

µ
∇

∫

ρm(r′)G(r, r′)dr′+

∇×
∫

J(r′)G(r, r′)dr′.

Of course, duality is an easier way to arrive at the same result.

2.3.2 Integral Equations for the 3-D Dielectric Scattering

Consider a 3-D dielectric scatterer illuminated by incident electric and magnetic fields

(Ei,Hi) as shown in Figure 2-3. Similar to the 2-D case in section 2.2, Ω is the scatterer

Figure 2-3: Equivalence principle for the PMCHW formulation.

characterized by (ǫin, µin), and Ω0 is the outside medium characterized by (ǫout, µout).

PMCHW formulation is a well-known field formulation based on the extinction principle

[59, 63, 64]. In order to create the exterior equivalent problem, the equivalent electric and
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magnetic currents are defined as

J =n̂× (H + Hi)

M = − n̂× (E + Ei)

where n̂ is the outward normal of ∂Ω, and E and H are the unknown scattered electric and

magnetic fields. The choice of equivalent currents comes from the Green’s second identity

and ensures that the resulting total fields are zero in Ω. The direction of the sources have

to be flipped to create the interior equivalent problem; this leads to zero total fields in Ω0.

The integral equations are found by enforcing tangential field continuity across ∂Ω. For

the simplicity of notation, suppose Eout(r;J,M) and Hout(r;J,M) are the electric and

magnetic fields at r for the isotropic homogeneous medium characterized by (ǫout, µout) due

to the source J and M; Ein(r;J,M) and Hin(r;J,M) are defined in a similar manner.

Then, the tangential field continuity translates to

[

Eout(r;J,M) + Ei(r)
]

tan
=

[

Ein(r;−J,−M)
]

tan
, r ∈ ∂Ω

[

Hout(r;J,M) + Hi(r)
]

tan
=

[

Hin(r;−J,−M)
]

tan
, r ∈ ∂Ω

(2.28)

where [·]tan indicates that the tangential components are taken, for instance, by evaluating

the outer product with n̂. From (2.25) and (2.26), E(r;J;M) and H(r;J,M) are

E(r;J,M) = −jkη
∫

J(r′)G(r, r′)dr′ +
η

jk
∇

∫

[∇′
s · J(r′)]G(r, r′)dr′−

∇×
∫

M(r′)G(r, r′)dr′

H(r;J,M) = −j k
η

∫

M(r′)G(r, r′)dr′ +
1

jkη
∇

∫

[∇′
s ·M(r′)]G(r, r′)dr′+

∇×
∫

J(r′)G(r, r′)dr′

(2.29)

where η =
√

µ/ǫ is the intrinsic impedance, and ∇′
s is the surface gradient for sheets of

current [65].

Once the unknown equivalent currents J and M are found, the field can be evaluated

everywhere using E(r;J,M) and H(r;J,M) with −J and −M for inside and J and M for

outside. For more details about the PMCHW formulation, refer to [59, 63, 64] and the

references therein.
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Chapter 3

Nyström Method for Periodic

Structures in 2-D

Scattering by periodic structures has applications in many practically important devices. A

classic expample is gratings used to analyze the spectrum of light [75, 34, 35, 36]. Gratings

are also used as test structures to check and maintain the quality of the semiconductor

fabrication process [16, 17, 18, 19, 20, 21, 22, 23]. Photonic crystals are a relatively new

addition to the list, and they are used to manipulate the flow of light as the flow of electrons

are controlled by semiconductors [76].

Analysis of periodic structures requires specialized methods. Truncation of the struc-

tures can save memory and computing power, but it often leads to incorrect results [77].

Furthermore, truncated structures may still be too large for most conventional methods to

analyze, as it will be demonstrated in section 3.6.

Finite-difference and finite-element methods with periodic boundary conditions can solve

guided wave problems effectively by discretizing one period [75, 78, 79, 42, 80, 81, 82, 83,

84], but it is difficult to apply them to scattering problems since the radiation boundary

condition at infinity needs a special treatment [85, 86, 87, 88, 89, 90, 91, 44, 42]. Rigorous

coupled wave analysis is a mode expansion-type method and solves scattering problems by

periodic structures [34, 35, 36]. The method is well suited for analyzing gratings, but it is

unsuitable for a forward analysis algorithm to solve a inverse wave scattering problem; the

intermediate eigenvalue decomposition step makes the Jacobian evaluation difficult.

A surface integral equation method with a specialized Green’s function incorporating
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periodicity is one of the best methods to analyze scattering due to periodic structures [75, 92,

93, 77, 94], especially, as a part of an inverse wave analysis. The method exactly incorporates

the infinite periodicity of the scatterer as well as the radiation boundary condition at infinity,

and only the boundaries of scatterers in a single period have to be discretized. Furthermore,

there is an efficient method to approximate the Jacobian as it will be shown in chapter 4.

This chapter presents a spectrally convergent Nyström method for 2-D structures in-

finitely periodic in one direction. Similar methods for 2-D structures without periodicity

are well established for open arcs [95, 96, 97, 98, 99, 100] as well as scatterers with closed

boundaries [101, 50, 28]. The authors know of no spectrally convergent Nyström method

for periodic structures in 2-D; the existing methods for periodic structures solve the surface

integral equations with projection methods [93, 77, 94].

Spectrally convergent Nyström methods cleverly combine: (a) singularity separation;

(b) parameterization of the boundary; and (c) spectrally convergent numerical integration

scheme for singular weight functions, in order to approximate integral operators with spec-

tral accuracy. The convergence of the integral operator approximation and that of the

solution to the integral equation are closely related. Roughly speaking, the solution of

an integral equation converges spectrally if the numerical approximations to the integral

operators converge spectrally under some mild additional technical assumptions. Formal

convergence theory can be found in chapter 10 and 12 of [28] (general theory) and in

[102, 101, 97, 98] (specific integral equations).

The method described herein varies slightly depending on how the boundary of the

scatterer is parameterized since the type of parameterization affects the singular function

that can be integrated numerically with spectral accuracy. The non-periodic parameteriza-

tion suitable to describe an open boundary, such as a single period of a surface grating, is

considered in this chapter. The method for periodic parameterization commonly used for

closed boundaries is shown in Appendix A.

First, a numerically stable method to evaluate the 2-D Green’s function for infinitely pe-

riodic structures in one direction is summarized in section 3.1. For brevity, the 2-D Green’s

function for infinitely periodic structures in one direction is called the periodic Green’s

function for the rest of the thesis. Then, a spectrally convergent Nyström method for the

monopole and the normal derivative of the monopole operators is developed in the sub-

sequent sections: singularity separation in section 3.2, parameterization in subsection 3.3,
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and spectrally convergent numerical quadratures for unit and singular weight functions in

section 3.4. The resulting discretized integral operators and the discretization of integral

operators are given in section 3.5. Finally, the accuracy and the rate of convergence of the

proposed method are demonstrated in section 3.6.

3.1 Evaluation of the Periodic Green’s Function

The periodic Green’s function is known to be difficult to evaluate. The series in the naive

form converges too slowly and cannot be truncated easily [92, 93, 103, 104]. Many transfor-

mations to improve the convergence of the series have been proposed, including the integral

representations, lattice sums, and Ewald methods [92].

In this section, the Ewald methods in the existing literature are summarized. The

Ewald methods are preferred to other transformations since the singularities can be eas-

ily separated from the smooth part, which is an important for constructing a spectrally

convergent Nyström method in the subsequent sections. The “naive” form is presented in

subsection 3.1.2, and an alternative form that avoids numerical overflow is given in subsec-

tion 3.1.3.

3.1.1 Definition

Consider a scatterer infinitely periodic in x with period T , illuminated by an incident field

φi(x, y) = ejk(βx+cos θiy).

with incident angle θi and β = k sin θi. It is known that the the scattered field φ for the

given problem is quasi-periodic [75, 93, 105],

φ(x+ T, y) = e−jβTφ(x, y).

There are several ways to prove quasi-periodicity: [75] presents a proof based on uniqueness

of the solution for perfectly conducting and dielectric scatterer; and [105] shows an integral

equation based argument for perfectly conducting scatterers. The quasi-periodicity is a

direct result of geometric periodicity, and a more general proof based on symmetry and

group theory is shown in [76].
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Quasi-periodic fields can be represented with the periodic Green’s function. The periodic

Green’s function yields the field everywhere due to point sources periodic in x with period

T and with incremental phase shift of β for each period [104]:

G(r, r′) =
∞
∑

m=−∞
e−jmβT 1

4j
H

(2)
0 (kRm) (3.1)

whereRm =
√

[x− (x′ +mT )]2 + (y − y′)2. This naive form is difficult to evaluate since the

terms decay slowly, and the series cannot be truncated with a few terms [92, 93, 103, 104].

An alternative derivation of the periodic Green’s function starting from the boundary value

problem can be found in [93].

3.1.2 The Ewald Representation

The Ewald method transforms (3.1) to improve the convergence of the series. Using the

spectral representation of the Hankel function [92, 93, 104, 77]

G(r, r′) =
∞
∑

m=−∞
e−jmβT 1

2π

∫ ∞

0

e−R2
ms2+ k2

4s2

s
ds.

Consider dividing the range of integration to [0, E] and [E,∞) for a non-negative value E.

The first series,

G1(r, r
′) =

1

2π

∞
∑

m=−∞
e−jmβT

∫ E

0

e−R2
ms2+ k2

4s2

s
ds,

converges quickly, so it is kept in the spatial domain and truncated. Unfortunately, the

second series,

G2(r, r
′) =

1

2π

∞
∑

m=−∞
e−jmβT

∫ ∞

E

e−R2
ms2+ k2

4s2

s
ds, (3.2)

converges slowly.

Ewald proposed in [106] to evaluate (3.2) in the spectral domain using the Poisson

summation formula [92, 104]; if a function is smooth and decays slowly in the spatial

domain, its spectral representation decays rapidly [107]. After some changes of variables,

G = G1 + G2 with

G1(r, r
′) =

1

4π

∞
∑

m=−∞
e−jmβT

∞
∑

n=0

(Ek)2n

n!
En+1(

R2
m

4E2
) (3.3)
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and

G2(r, r
′) =

1

4T

∞
∑

m=−∞

e−jβm(x−x′)

jγm
[ejγm|y−y′|erfc(jγmE +

|y − y′|
2E

)+

e−jγm|y−y′|erfc(jγmE − |y − y′|
2E

)],

(3.4)

where

βm =β +m
2π

T

γm =
√

k2 − β2
m

with Im{γm} ≤ 01. The complementary error function and exponential integral are

erfc(z) =
2√
π

∫ ∞

z
e−t2dt

and

Em(z) =

∫ ∞

1

e−zt

tm
dt. (3.5)

The complementary error function with complex arguments can be evaluated with the

algorithm in [108]. The first order exponential integral is evaluated with the expint routine

in MATLAB that combines (5.1.11) and (5.1.22) of [109], and the higher order exponential

integrals are evaluated with the recurrence relation in [93, 104] and (5.1.14) of [109].

By a judicious choice of E, the (3.3) and (3.4) converge much faster than the naive form

in (3.1). Refer to [92, 93, 104, 77] for more detailed derivation.

3.1.3 Numerically Stable Ewald Representation

The naive form in (3.4) can create numerical overflow if either (a) m is large; or (b) the

evaluation point is far away from the periodic sources in the y direction. This problem is

caused by exp[−jγm|y − y′|] that grows rapidly for large m and |y − y′|.
The numerical overflow can be avoided if the scaled complementary error function [77,

109],

w(z) = e−z2
erfc(−jz),

is used instead of the complementary error function for G2 [77]. With w, (3.4) can be

1The choice of sign for γm ensures that the value is either decaying or radiating in the y direction.
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re-written as

G2(r, r
′) =

e
−(y−y′)2

4E2

4T

∞
∑

m=−∞

e−jβm(x−x′)e(Eγm)2

jγm
[w(−Eγm + j

|y − y′|
2E

)+

w(−Eγm − j
|y − y′|

2E
)],

(3.6)

which is stable for large values of m. Nevertheless, (3.6) can still cause numerical overflows

for large values of |y − y′| since w grows exponentially along the negative imaginary axis.

Additional properties of w are used to solve this problem. The growth of w can be kept

small regardless of the sign of Im{z} if

|Re{z}| ≥ |Im{z}| (3.7)

since w satisfies [77]

|w(z)| ≤ 2e−(Re{z})2+(Im{z})2 + |w(−z)|.

As a result, if (3.7) does not hold for −Eγm − j |y−y′|
2E , or equivalently |y−y′|

2E2 > Re{γm} −
Im{γm}, the alternative form on the right-hand side of

w(−Eγm − j
|y − y′|

2E
) = 2e−(Eγm)2+

(y−y′)2

4E2 −jγm|y−y′| − w(Eγm + j
|y − y′|

2E
)

is used instead.

Therefore, a numerically stable form of G2 is

G2(r, r
′) =

e
−(y−y′)2

4E2

4T
{

∑

m∈Z1

e−jβm(x−x′)e(Eγm)2

jγm
[w(−Eγm + j

|y − y′|
2E

)+

w(−Eγm − j
|y − y′|

2E
)]+

∑

m∈Z2

e−jβm(x−x′)e(Eγm)2

jγm
[w(−Eγm + j

|y − y′|
2E

)−

w(Eγm + j
|y − y′|

2E
)]} +

1

2T

∑

m∈Z2

e−jβm(x−x′)e−jγm|y−y′|

jγm

(3.8)

where

Z2 = {m ∈ Z||y − y′|
2E2

> Re{γm} − Im{γm}}, (3.9)
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and Z1 partitions the set of all integers Z with Z2.

3.1.4 Derivatives

The derivative evaluations are straightforward. Using (5.1.26) of [109],

∂G1

∂x
(r, r′) =

−1

8πE2

∞
∑

m=−∞
e−jmβT [x− (x′ +mT )]

∞
∑

n=0

(kE)2n

n!
En(

R2
m

4E2
), (3.10)

and
∂G1

∂y
(r, r′) =

−(y − y′)
8πE2

∞
∑

m=−∞
e−jmβT

∞
∑

n=0

(kE)2n

n!
En(

R2
m

4E2
). (3.11)

Similarly, (7.1.20) of [109] gives

∂G2

∂x
(r, r′)

= −e
−(y−y′)2

4E2

4T
{

∑

m∈Z1

βme
−jβm(x−x′)e(Eγm)2

γm
[w(−Eγm + j

|y − y′|
2E

)+

w(−Eγm − j
|y − y′|

2E
)]+

∑

m∈Z2

βme
−jβm(x−x′)e(Eγm)2

γm
[w(−Eγm + j

|y − y′|
2E

)−

w(Eγm + j
|y − y′|

2E
)]} − 1

2T

∑

m∈Z2

βme
−jβm(x−x′)e−jγm|y−y′|

γm
,

(3.12)

and

∂G2

∂y
(r, r′)

=
e

−(y−y′)2

4E2

4T
sgn(y − y′){

∑

m∈Z1

e−jβm(x−x′)e(Eγm)2 [w(−Eγm + j
|y − y′|

2E
)−

w(−Eγm − j
|y − y′|

2E
)] +

∑

m∈Z2

e−jβm(x−x′)e(Eγm)2 [w(−Eγm + j
|y − y′|

2E
)+

w(Eγm + j
|y − y′|

2E
)]} − 1

2T
sgn(y − y′)

∑

m∈Z2

e−jβm(x−x′)e−jγm|y−y′|.

(3.13)
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3.1.5 Summary

The periodic Green’s function is given by G = G1 + G2 where G1 and G2 are in (3.3) and

(3.8), respectively. Its normal derivative is given by

Gn =n̂ · ∇G

=nx(
∂G1

∂x
+
∂G2

∂x
) + ny(

∂G2

∂y
+
∂G2

∂y
)

(3.14)

where the necessary partial derivatives are evaluated by (3.10), (3.12), (3.11), and (3.13).

3.2 Singularity Separation

In order to approximate integral operators with singular Green’s functions with spectral

accuracy, the singular part of the Green’s function has to be separated from the smooth

(infinitely differentiable) part [50, 28], since the numerical integration scheme designed for

smooth functions do not converge spectrally for singular functions, and vice verse [110, 111].

The singularity separation for the periodic Green’s function is different from that for

the 2-D Green’s function in two ways. First, multiple singularities due to the neighboring

sources are separated for non-periodic parameterizations that stretch from one end of the

period to the other end. Second, the series representation of the singularities derived in

in [93, 104] is difficult to evaluate for large values of Rm compared to the wavelength; the

terms in the series oscillate wildly between positive and negative values and introduces

significant cancellation errors. The connection between the series representations and the

Bessel functions has been identified, and the well-established algorithms to evaluate the

Bessel functions can be used to evaluate the singularities.

The singularity sparation for Nyström methods is different from the singularity extrac-

tion in the potential integral evaluation, such as in [30, 112, 113]. The singularity extraction

usually extracts only the dominant singularity, and the resulting function has discontinu-

ities in the derivatives. If such an extraction is used with a Nyström method, the resulting

method will show linear convergence since numerical quadratures designed for smooth func-

tions converge linearly for functions with a discontinuity in the derivatives [110, 111, 114].
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3.2.1 The Periodic Green’s Function

The logarithmic singularity of the periodic Green’s function is part of G1 in (3.3) since

E1(z) = −γ − log z −
∞
∑

m=1

(−1)mzm

mm!
,

where γ is the Euler constant [109]. From the recursion relation in [93, 104],

Es
n(z) = (−1)n

zn−1

(n− 1)!
,

and the function multiplying logR2
0 is

Gs,0(r, r′) =
1

4π

∞
∑

n=0

(Ek)2n

n!
Es

n+1(
R2

0

4E2
)

= − 1

4π

∞
∑

n=0

(−1)n

(n!)2
(
k2R2

0

4
)n.

This summation is difficult to evaluate when (k2R2
0/4) is much larger than one.

Fortunately, this is exactly the expansion of the Bessel function of zeroth order near 0

as shown in (9.1.10) of [109]. Therefore,

Gs,0(r, r′) = − 1

4π
J0(kR0)

alternatively, and the routines to evaluate the Bessel function can be used to evaluate Gs,0

stably for large values of the argument.

When a boundary stretches from one end of the period to the other, the periodic sources

in the neighboring periods slows the convergence of the numerical quadrature for smooth

functions. Therefore, the logarithmic singularities due to the neighboring sources have to

be separated as well. With multiple singularity separation, the periodic Green’s function is

G(r, r′) = Gr(r, r′) + Gs,−1(r, r′) logR2
−1 + Gs,0(r, r′) logR2

0 + Gs,1(r, r′) logR2
1
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where Gr, Gs,−1, Gs,0, and Gs,1 are smooth functions given by

Gs,−1(r, r′) = − 1

4π
ejβTJ0(kR−1)

Gs,0(r, r′) = − 1

4π
J0(kR0)

Gs,1(r, r′) = − 1

4π
e−jβTJ0(kR1),

(3.15)

and

Gr(r, r′) = G(r, r′) − Gs,−1(r, r′) logR2
−1 − Gs,0(r, r′) logR2

0 − Gs,1(r, r′) logR2
1. (3.16)

3.2.2 Normal Derivative of the Periodic Green’s Function

Similarly, the function multiplying logR2
0 for Gn is

Gs,0
n (r, r′) = − 1

8πE2
[nx(x− x′) + ny(y − y′)]

∞
∑

n=1

(Ek)2n

n!
Es

n(
R2

0

4E2
)

=
k2

8π
[nx(x− x′) + ny(y − y′)]

∞
∑

n=0

(−1)n

n!(n+ 1)!
(
k2R2

0

4
)n

=
k

4π
[nx(x− x′) + ny(y − y′)]

J1(kR0)

R0

where (9.1.10) of [109] is used for the last equality. Considering the neighboring singularities,

the normal derivative of the periodic Green’s function can be written as

Gn(r, r′) = Gr
n(r, r′) + Gs,−1

n (r, r′) logR2
−1 + Gs,0

n (r, r′) logR2
0 + Gs,1

n (r, r′) logR2
1

where Gr
n, Gs,−1

n , Gs,0
n , and Gs,1

n are smooth functions given by

Gs,−1
n (r, r′) =

k

4π
[nx(x− x′ + T ) + ny(y − y′)]ejβT J1(kR−1)

R−1

Gs,0
n (r, r′) =

k

4π
[nx(x− x′) + ny(y − y′)]

J1(kR0)

R0

Gs,1
n (r, r′) =

k

4π
[nx(x− x′ − T ) + ny(y − y′)]e−jβT J1(kR1)

R1
,

(3.17)

and

Gr
n(r, r′) = Gn(r, r′) − Gs,−1

n (r, r′) logR2
−1 −Gs,0

n (r, r′) logR2
0 − Gs,1

n (r, r′) logR2
1. (3.18)
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3.3 Parameterization of Boundary

It is difficult to devise a spectrally convergent numerical quadrature that integrates any

smooth function times log ||r − r′||2 since r and r′ can be any two points on an arbitrary

curve. Therefore, a global parameterization is used to simplify the singularity [95, 96, 97,

98, 101, 99, 100, 50, 28].

Consider a smooth vector-valued function q that maps [−1, 1] to a non-self intersecting

open curve from one end of the period to the other. The source and test points are r′ = q(τ)

and r = q(t), respectively, for some τ and t in [−1, 1], and the integral operators become

∫

G(r, r′)ρ(r′)dr′ =

∫ 1

−1
G(q(t),q(τ))ρ(q(τ))||q′(τ)||dτ

and
∫

Gn(r, r′)ρ(r′)dr′ =

∫ 1

−1
Gn(q(t),q(τ))ρ(q(τ))||q′(τ)||dτ .

For convenience of presentation, the parameterization is assumed to start from the left

end of the period and end at the right2. Then, the Green’s function is

G(q(t),q(τ))

= G̃r(q(t),q(τ)) + 2Gs,−1(q(t),q(τ)) log |(t+ 2) − τ |+

2Gs,0(q(t),q(τ)) log |t− τ | + 2Gs,1(q(t),q(τ)) log |(t− 2) − τ |

(3.19)

where

G̃r(q(t),q(τ))

=























































































Gr(q(t),q(τ)) + Gs,−1(q(t),q(τ)) log
R2

−1

|(t+ 2) − τ |2 +

Gs,0(q(t),q(τ)) log
R2

0

|t− τ |2 +

Gs,1(q(t),q(τ)) log
R2

1

|(t− 2) − τ |2 , t 6= τ

Gr(q(t),q(t)) + Gs,−1(q(t),q(t)) log
R2

−1

4
+

2Gs,0(q(t),q(t)) log ||q′(t)||+

Gs,1(q(t),q(t)) log
R2

1

4
, t = τ

(3.20)

2If the direction of the parameterization is the opposite, the |(t±2)−τ | has to be replaced by |(t∓2)−τ |.
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is smooth for |t|, |τ | < 13. The logarithmic singularities no longer depend on the shape of

the boundary and can be integrated more easily.

The same idea can be applied to Gn, and the result is (3.19) and (3.20) with G̃r, Gr,

Gs,−1, Gs,0, and Gs,1 replaced by G̃r
n, Gr

n, Gs,−1
n , Gs,0

n , and Gs,1
n , respectively.

3.4 Numerical Quadrature

Spectrally convergent numerical quadratures of the form

∫ 1

−1
f(τ)dτ =

Nq−1
∑

n=0

w1
n/Nq

f(τn/Nq
)

∫ 1

−1
f(τ) log |t− τ |dτ =

Nq−1
∑

n=0

wlog
n/Nq

(t)f(τn/Nq
)

are devised where f is a smooth function. In addition to the spectral convergence require-

ment, the quadrature points, or abscissas, τn/Nq
should be the same for different weight

functions in order to match the unknowns. Therefore, Gaussian quadratures cannot be

used.

Fejér quadratures for both unit and log |t− τ | weights are developed. Fejér quadratures

use the spectral convergence of the Chebyshev polynomial interpolation at the zeros of a

Chebyshev polynomial for smooth functions on [−1, 1]4. If the interpolated polynomial is

integrated exactly, the result is the first-kind Fejér quadrature [116, 117]. The interpolated

polynomial times log |t−τ | is integrated exactly, and the result is a first-kind modified Fejér

quadrature [118].

The first-kind modified Fejér quadrature to create a spectrally convergent Nyström

method for log |t− τ | weight function is a novel contribution. A similar modified Clenshaw-

Curtis quadrature is used in [119] for the 2-D Green’s function, but the spectral convergence

is not demonstrated. The relation between first/second-kind Fejér and Clenshaw-Curtis

quadratures and their FFT acceleration can be found in [114, 120, 121].

3This condition is met for open quadrature rules, such as the first-kind Fejér quadrature shown in sub-
section 3.4.

4The zeros of a Chebyshev polynomial are also called the Chebyshev nodes and play an important role
in approximation theory [115].
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3.4.1 First-Kind Fejér Quadratures

Suppose Tl is the lth order Chebyshev polynomial. For a given function f , f̃ interpolating

f at the zeros of the Nqth order Chebyshev polynomial5,

τn/Nq
= cos

(2n − 1)π

2Nq
, n = 1, · · · , Nq, (3.21)

is

f̃(t) =

Nq−1
∑

l=0

′alTl(t) =
1

2
a0 +

Nq−1
∑

l=1

alTl(t)

where

al =
2

Nq

Nq
∑

n=1

Tl(τn/Nq
)f(τn/Nq

).

Integrating f̃(t) times a weight function w(·; t) exactly instead of f gives

∫ 1

−1
f(τ)w(τ ; t)dτ ≈

∫ 1

−1
f̃(τ)w(τ ; t)dτ

=

Nq
∑

n=1

[
2

Nq

Nq−1
∑

l=0

′ cos
l(2n− 1)π

2Nq
Ml(t)]f(τn/Nq

),

where

Ml(t) =

∫ 1

−1
Tl(τ)w(τ ; t)dτ (3.22)

is the modified Chebyshev moment of order l. The resulting numerical quadrature is spec-

trally convergent for a smooth f [123] since the Chebyshev polynomial interpolation error

reduces spectrally for smooth function [115, 124, 114].

3.4.2 Modified Chebyshev Moment Evaluation

The problem of constructing the Fejér quadrature for a given weight function w becomes

the problem of finding the corresponding modified Chebyshev moments. For w(τ) = 1, they

5The Chebyshev polynomial interpolation in [−1, 1] is closely related to the trigonometric polynomial
interpolation in [0, 2π] through a simple cosine transformation. For some f defined in [−1, 1], the Chebyshev
polynomial interpolation can be understood as applying trigonometric polynomial interpolation to the 2π-
periodic function (f ◦ cos) in [0, 2π] [122].
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are known in a closed form:

M1
l =

∫ 1

−1
Tl(τ)dτ

=











0, l: odd

2

1 − l2
, l: even

Therefore, the spectrally convergent quadrature for a smooth f(t) is

∫ 1

−1
f(τ)dτ ≈

Nq
∑

n=1

w1
n/Nq

f(τn/Nq
) (3.23)

where

w1
n/Nq

=
2

Nq

Nq−1
∑

l=0

cos
l(2n− 1)π

2Nq
M1

l .

The modified Chebyshev moments M log
l (t) for w(τ) = log |t − τ |, |t| < 1 are evaluated

by a recurrence relation [118]

(l − 1)(l + 2)M log
l+1(t) − 2t(l2 − 1)M log

l (t) + (l + 1)(l − 2)M log
l−1(t)

=2(−1)l(t+ 1) log(t+ 1) − 2(1 − t) log(1 − t) − (l − 1)M1
l+1 + (l + 1)M1

l−1.
(3.24)

The forward recursion from

M log
0 (t) =(1 + t) log(1 + t) + (1 − t) log(1 − t) − 2

M log
1 (t) =tM log

0 (t) +
1

2
(1 − t)2 log(1 − t) − 1

2
(1 + t)2 log(1 + t) + t

is stable for |t| < 1 [118]. Therefore, the spectrally convergent quadrature for a smooth f

and |t| < 1 is
∫ 1

−1
f(τ) log |t− τ |dτ ≈

Nq
∑

n=1

wlog
n/Nq

(t)f(τn/Nq
) (3.25)

where

wlog
n/Nq

(t) =
2

Nq

Nq−1
∑

l=0

cos
l(2n− 1)π

2Nq
M log

l (t).

For log |(t± 2) − τ | weight function, the recurrence relation in (3.24) fails since (a) the

logarithmic functions are not defined for (t± 2) instead of t; and (b) the forward recursion

50



is no longer stable for |t± 2|, |t| < 1. The generalization of (3.24) to any t is

(l − 1)(l + 2)M log
l+1(t) − 2t(l2 − 1)M log

l (t) + (l + 1)(l − 2)M log
l−1(t)

=2(−1)l(t+ 1) log |t+ 1| − 2(1 − t) log |1 − t| − (l − 1)M1
l+1 + (l + 1)M1

l−1

(3.26)

with

M log
0 (t) =(1 − t) log |1 − t| + (1 + t) log |1 + t| − 2

M log
1 (t) =

1

2
(1 − t2)(log |1 − t| − log |t+ 1|) − t.

(3.27)

The unstable recurrence relation in (3.26) is evaluated with the Olver’s algorithm [125,

126]. The algorithm evaluates the recurrence relation as a boundary value problem to control

the growth of the numerical error by setting Mlmax = 0 for sufficiently large lmax adaptively

determined; it is a reasonable approximation if the moments asymptotically decay to zero

as order increases.

The asymptotic convergence of the modified Chebyshev moments to zero can be shown

indirectly using the bounds on the Fourier coefficients of continuous functions. By the

change of variable τ = cos θ,

M log
l (t) =

∫ 1

−1
Tm(τ) log |t− τ |dτ

=
1

2

∫ π

−π
| sin θ| log |t− cos θ| cos(mθ)dθ,

(3.28)

and the lth order modified Chebyshev moment for log |t − τ | is the lth order Fourier co-

efficient of the 2π periodic function f(θ) = | sin θ| log |t − cos θ|. Since f is continuous for

t 6= ±1, the asymptotic bounds on the Fourier coefficients of continuous functions6 ensure

that the modified Chebyshev moments asymptotically converge to zero.

6An example of such theorem is Theorem 4 in Chapter 2 of [122].
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3.5 Summary of the Method

Consider the monopole operator
∫

G(r, r′)ρ(r′)dr′. Given a non-periodic parameterization

q and r = q(t) for some t ∈ (−1, 1),

∫

G(r, r′)ρ(r′)dr′ ≈
Nq
∑

n=1

[w1
n/Nq

G̃r(q(t),q(τp
n/Nq

))+

2wlog
n/Nq

(t+ 2)Gs,−1(q(t),q(τn/Nq
))+

2wlog
n/Nq

(t)Gs,0(q(t),q(τn/Nq
))+

2wlog
n/Nq

(t− 2)Gs,1(q(t),q(τn/Nq
))]·

||q′(τn/Nq
)||ρ(q(τn/Nq

).

(3.29)

The normal derivative of the monopole operator
∫

Gn(r, r′)ρ(r′)dr′ is discretized simi-

larly, and the result is (3.29) with G̃r, Gs,−1, Gs,0, and Gs,1 replaced by G̃r
n, Gs,−1

n , Gs,0
n ,

and Gs,1
n , respectively.

Consider an integral equation with the monopole operator

∫

G(r, r′)ρ(r′)dr′ = f(r),

where f is a function, which can be another integral operator. In order to get a system

of linear equations, (a) the monopole operator is approximated by (3.29); and (b) the

approximated equation is tested at the quadrature points q(τm/Nq
), m = 1, · · · , Nq. The

result is the system of linear equations

Sρ = f , (3.30)

where

sm,n =[w1
n/Nq

G̃r(q(τm/Nq
),q(τn/Nq

))+

2wlog
n/Nq

(τm/Nq
+ 2)Gs,−1(q(τm/Nq

),q(τn/Nq
))+

2wlog
n/Nq

(τm/Nq
)Gs,0(q(τm/Nq

),q(τn/Nq
))+

2wlog
n/Nq

(τm/Nq
− 2)Gs,1(q(τm/Nq

),q(τn/Nq
))]||q′(τn/Nq

)||,

(3.31)
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and

ρn =ρ(q(τn/Nq
))

fm =f(q(τm/Nq
)),

for m,n = 1, · · · , Nq. Similarly, discretizing and testing

∫

Gn(r, r′)ρ(r′)dr′ = f(r)

for a function f gives

K′ρ = f (3.32)

where the entry k′
m,n of K′ is given by (3.31) with G̃r, Gs,−1, Gs,0, and Gs,1 replaced by

G̃r
n, Gs,−1

n , Gs,0
n , and Gs,1

n , respectively.

As an example, consider the integral equations (2.22) and (2.23) for 2-D dielectric scat-

tering by a homogeneous scatterer whose boundary is parameterized by q. Once discretized

and tested, the resulting system of linear equations is





Sout −Sin

αoutK′out −αinK′in









ρout

ρin



 = −





φi
z

φi
r



 (3.33)

where

ρout
n =ρout(q(τn/Nq

))

ρin
n =ρin(q(τn/Nq

))

φi
z,m =φi

z(q(τm/Nq
))

φi
r,m =ẑ · n̂× φi

r(q(τm/Nq
))

for m,n = 1, · · · , Nq. Once the solutions ρout
E and ρout

H for the E- and H-polarization

problems are found, the outside E at r, not on the boundary, is evaluated by

E = C





ρout
E

ρout
H



 (3.34)
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where 3-by-2Nq matrix C is

C1,Nq+n =
1

jωǫout
w1

n/Nq

∂G

∂y
(r,q(τn/Nq

))

C2,Nq+n =
−1

jωǫout
w1

n/Nq

∂G

∂x
(r,q(τn/Nq

))

C3,n =w1
n/Nq

G(r,q(τn/Nq
)),

n = 1, · · · , Nq, and the other entries are zero.

3.6 Numerical Examples

This section presents some computational results with the proposed Nyström method. First,

the use of periodic Green’s function is justified by comparing the results using truncation and

the proposed methods in subsection 3.6.1. The rate of convergence of the proposed method

is verified for dielectric scattering in subsection 3.6.2. Finally, the effect of smoothness of

the parameterization on the rate of convergence is investigated in subsection 3.6.3.

3.6.1 Truncation versus the Periodic Green’s Function

In order to justify the use of periodic Green’s function, reflectance as a function of the

incident angle is evaluated. An infinitely long film is illuminated by a plane wave from

above with wavelength λ0 and varying incident angles. The dielectric has thickness λ0,

permittivity 12ǫ0, and permeability µ0; and the medium above and below the dielectric film

is vacuum (permittivity ǫ0 and permeability µ0).

First, the infinitely long film is truncated to a 100λ0-long dielectric slab, and the trun-

cated problem is solved using 20 quadrature points per wavelength per unknown equivalent

source. The resulting system of linear equations, similar to (3.33), is too large to fit into

the memory. Therefore, the matrix is sparsified with FFT [127], and the system of linear

equations is solved iteratively with GMRES [128, 129] with circulant matrix preconditioning

[130, 131].

Figure 3-1 shows the reflectance for E- and H-polarizations computed by truncation

superimposed on the reference values from an analytic formula [67, 132]. As immediately

seen, the computed values are quite inaccurate. Furthermore, the accuracy of the result

degrades as the incident angle increases; this is a well known problem of truncation [77].
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Figure 3-1: Reflectance of the dielectric film in air as a function of the incident angle
computed by truncation.

The problem can be completely avoided with the proposed method as shown in Figure 3-

2. The period of the Green’s function is set to λ0, and 20 quadrature points per unknown

equivalent source is used for fair comparison.

Note that, the periodic Green’s function can be used to model semi-infinite domains

without a specialized Green’s function, such as the substrate Green’s function [71, 72, 73, 74].

This is demonstrated with the structure in Figure 3-3, which is a simplified example for a

periodic grating embedded in a substrate. The layers have permittivity of ǫ0, 3.7ǫ0, 12ǫ0,

and 3.7ǫ0 from the top, and the permeability is µ0 for all the layers. The structure is

illuminated by a plane wave from vacuum with wavelength λ0 and varying incident angles,

and the reflectance as a function of the incident angle is shown in Figure 3-4. The example

uses 50 quadrature points per unknown equivalent source.
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Figure 3-2: Reflectance of the dielectric film in air as a function of the incident angle
computed by the proposed Nyström method for the periodic Green’s function.
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Figure 3-3: Periodic grating embedded in a substrate.
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Figure 3-4: Reflectance of the structure in Figure 3-3 as a function of the incident angle.

3.6.2 Convergence Verification

Consider a sinusoidal dielectric interface between vacuum and a medium with 12ǫ0 and µ0

parameterized by7

qx(t) =
1.3827λ0

2
(1 − t)

qy(t) =0.1λ0 sin(π(t+ 1)).

(3.35)

The structure is illuminated by a plane wave from vacuum with wavelength λ0 and incident

angle π/6.

Figure 3-5 shows the relative error in the scattered field measured 10λ0 away from

the structure in the (sin(π/6), cos(π/6), 0) direction. As one can see, the proposed method

clearly shows spectral convergence8. The convergence of the other method that only extracts

the singularity associated with Gs,0 quickly saturates and becomes linear. Since there is no

known analytic solution for this problem, the fields evaluated with 100 quadrature points

per unknown equivalent source for each method are used as the references, and the relative

error between the two references is 5.0043 × 10−8.

The convergence of the field for the structure in Figure 3-3 is shown in Figure 3-6.

7The parameterization is from the right to the left to keep the normal direction point into vacuum, and
a flat interface is avoided to thoroughly test K′.

8Different types of convergence and ways to identify them from the error plots are explained in Chapter
2 of [122].
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Figure 3-5: Relative error in the scattered field due to the dielectric interface in (3.35).

The incident field and the measurement points are identical to those in Figure 3-5, and
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Figure 3-6: Relative error in the scattered field due to the structure in Figure 3-3.

the reference field is computed with 100 quadrature points per equivalent source. The

convergence is still spectral, but it is slower than what is shown in Figure 3-5. This is

due to the small distance between the bottom dielectric interface and part of the dielectric

interface just above it in Figure 3-3.

To understand the relation between the distance between interfaces and the rate of
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convergence further, a wavy dielectric film with 12ǫ0 and µ0 in air is investigated. The

bottom dielectric interface is parameterized by (3.35), and the top dielectric interface is

(3.35) shifted vertically. Figure 3-7 shows the convergence of the scattered field for three

different vertical separations. Even though all three cases converge spectrally, the slope
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Figure 3-7: Relative error in the scattered field for three different film thickness.

strongly depends on the vertical separation: the larger the distance, the steeper the slope.

This is due to the first-kind Fejér quadrature used to evaluate the interaction between

the two interfaces. The convergence of a numerical quadrature for a smooth integrand

deteriorates as the singularities of the integrand in the complex domain approach the domain

of integration [110, 111, 114].

The incident field has wavelength λ0 and incident angle π/6, and the scattered field is

measured at 10λ0 away from the structure in the (sin(π/6), cos(π/6), 0) direction. Finally,

the reference fields are evaluated with 100 quadrature points per unknown equivalent source.

3.6.3 Boundary Approximation

Consider an interface between vacuum and a dielectric medium with 12ǫ0 and µ0 shown in

Figure 3-8. The interface is illuminated by a plane wave from vacuum with wavelength λ0

and incident angle π/6, and the period of the structure is 1.3827λ0.

To see the relation between the smoothness of the parameterization and the rate of

convergence of the solution, the figure shows three different parameterizations: (a) a simple
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Figure 3-8: Three different parameterizations for simple grating with different smoothness.

parameterization with lines and quarter circles; (b) a cubic spline interpolation to qx and

qy with 20 knots while enforcing periodic derivatives at the ends [133]; and (c) a Cheby-

shev polynomial interpolation to qx and qy with 20 samples. Even though they are nearly

indistinguishable in the figure, the simple parameterization has discontinuity in the second

derivative, the cubic spline interpolation is continuous up to the second derivative, and the

Chebyshev interpolation is smooth.

Figure 3-9 shows the relative error in the solution as the number of quadrature points is

increased. Reference values are computed with 100 quadrature points for each parameteri-

zation; the relative error between the reference values computed with simple and Chebyshev

parameterizations is 0.0276, and the relative error between those computed with spline and

Chebyshev parameterizations is 0.0419. The result shows that approximation to the pa-

rameterization is necessary to achieve rapid convergence9. Due to the lack of an analytic

solution, the error introduced by approximating the parameterization is difficult to quantify

but is believed to be small.

For smooth parameterizations, the Chebyshev interpolation converges quickly as the

number of samples increases. Figure 3-10 shows the relative error in the scattered field

as the number of sample points is increased for the problem used for Figure 3-5. The

9The slight non-monotonicity in the convergence is due to the non-uniform distribution of the quadrature
points. Sufficient number of quadrature points are necessary to capture all the details of the parameterization
since the first-kind Fejér quadrature places more quadrature points at the ends.
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Figure 3-9: Relative error in the scattered field for different parameterizations of the inter-
face.
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Figure 3-10: Relative error in the scattered field as the order of the Chebyshev interpolation
is increased.
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Chebyshev interpolation to the original parameterization (3.35) converges quickly since

the parameterization is smooth. The same number of quadrature points, 20 per unknown

equivalent source, is used for all the evaluations.
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Chapter 4

Inverse Problem and Fast Jacobian

Approximation

One of the key problems in differential or integral equation-based optimization is derivative

evaluation. Analytic formulae for the derivatives are unknown in many cases, and numerical

methods to approximate the derivatives can be very expensive [53, 54, 56].

However, if the inverse problem is formulated as a nonlinear least-square problem and

solved with the Levenberg-Marquardt algorithm, only the Jacobian of the residual function

is necessary [134, 135, 54]. Furthermore, if the forward problem is solved with a finite-

difference or finite-element method, the cost of Jacobian approximation can be kept low with

the adjoint method. The finite-difference and finite-element methods give sparse matrices

whose entries are easy to evaluate [41, 42, 43, 44]. Therefore, the major cost of Jacobian

evaluation is the cost of linear system solves, which is reduced to the cost of one linear

solve with the adjoint method [56]. This has made the Levenberg-Marquardt algorithm

with the adjoint method popular in practice, together with other quasi-Newton methods

[135, 54, 53].

The adjoint method alone cannot reduce the cost of Jacobian evaluation sufficiently if

integral equation methods are used for the forward analysis. Integral equation methods

result in dense matrices, and the cost of evaluating the matrix entries is high, especially

when Green’s functions are difficult to evaluate. Therefore, reduction in the number of

linear system solves by the adjoint method alone is insufficient to reduce to overall cost of

Jacobian evaluation.
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A fast method to approximate the Jacobian is proposed for shape optimization problems

if the forward problem is solved by a Nyström method. The proposed method evaluates the

Jacobian with a small number of additional Green’s function evaluations, and the cost of

the Jacobian evaluation is almost independent of the number of optimization variables when

the cost of Green’s function evaluation dominates. Therefore, the method is well-suited for

shape-optimization problems with periodic structures. The proposed method outperforms

the adjoint method alone when there are more than two optimization variables.

The spectrally convergent Nyström method in chapter 3 and the fast Jacobian evaluation

method are used to identify the parameters characterizing a dielectric grating from the

scattered fields. The inverse problem is posed as a nonlinear least-square problem and

solved with the Levenberg-Marquardt algorithm, and the sensitivity of the estimates to the

measurement noise is investigated as the number of sampled wavelengths is increased.

The rest of the chapter is organized as follows: section 4.1 summarizes the nonlinear

least-square problem and the Levenberg-Marquardt algorithm, and section 4.2 presents

the finite-difference and adjoint methods to approximate the Jacobian. The fast Jacobian

approximation method is proposed in section 4.3. Finally, computational examples are

shown in section 4.4.

4.1 The Nonlinear Least-Square Problem and the Levenberg-

Marquardt Algorithm

The nonlinear least-square problem

min
p

||y(p) − ym||22 (4.1)

is one way to estimate the values of interest p = (p1, · · · , pNo) from some measured values

ym using a model y given by

A(p)x(p) =b(p)

y(p) =C(p)x(p).

If integral equations are used for the forward analysis, A(p)x(p) = b(p) is the discretized

and tested integral equation, and y is found by applying an integral operator to the solution
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of the integral equations. An example for 2-D dielectric scattering is shown in (3.33) and

(3.34).

Some variants of the problem can be transformed into (4.1). If measurements are taken

for more than one frequency, the corresponding nonlinear least-square problem is

min
p

∑

m

||y(p;ωm) − ym(ωm)||22,

and it is transformed into (4.1) if











y(·;ω1)

y(·;ω2)
...











and











ym(ω1)

ym(ω2)
...











are used for y and ym, respectively. Similarly, if A, b, or C is a complex-valued function,





Re{y}
Im{y}



 and





Re{ym}
Im{ym}





are used for y and ym, respectively, to naturally recover real p from the optimization

problem.

The Levenberg-Marquardt algorithm is a popular method for solving nonlinear least-

square problems. Given an initial guess p0, the algorithm iteratively improves the guess by

solving a linearized problem with a trust-region constraint [134, 135, 54]. An update △pm

for the current guess pm is found by solving

min
△pm

||J(pm)△pm − (ym − y(pm))||22

subject to ||△pm|| ≤ δm,

where J(pm) is the Jacobian of y at pm, and δm is the trust-region radius ensuring the

accuracy of the linearization. Then, the improved guess is pm+1 = pm + △pm.

The Levenberg-Marquardt algorithm is reliable and efficient for a wide range of prob-

lems if δm is properly chosen [135, 54]. Even though the method makes quadratic-like

approximation to the original objective function at each step, only the Jacobian of y in p is
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required since the Hessian is approximated from the Jacobian1. This makes the algorithm

attractive especially when the derivatives of the objective function have to be approximated

numerically [135]. For more about the Levenberg-Marquardt algorithm, refer to [135, 54].

Different methods to control δm are shown mainly in [134, 135, 54].

4.2 Jacobian Evaluation via the Adjoint Method

The Jacobian of y can be assembled from the partial derivatives of A, b, and C in pm, the

mth optimization variable. The partial derivatives in pm at p are

Apm(p) = lim
α→0

A(p + αêm) − A(p)

α

bpm(p) = lim
α→0

b(p + αêm) − b(p)

α

Cpm(p) = lim
α→0

C(p + αêm) − C(p)

α

where êm is the unit coordinate vector with one for the mth entry and zeros for the others.

Then, the partial derivative of y in pm at p is

ypm(p) =Cpm(p)x(p) + C(p)xpm(p)

=Cpm(p)x(p) + C(p)A−1(p)[bpm(p) − Apm(p)x(p)],
(4.2)

and the Jacobian of y at p is simply

J(p) = [ypm(p) · · · ypNo
(p)]. (4.3)

The adjoint method can reduce No linear solves in the Jacobian evaluation to one [56].

The adjoint problem

AT (p)W(p) = CT (p)

is solved once, and the solution W(p) is used repeatedly to evaluate all

ypm(p) = Cpm(p)x(p) + WT (p)[bpm(p) − Apm(p)x(p)] (4.4)

1This can lead to slow convergence near a local minimum if the residual y(p) − ym is large at the local
minimum [135].
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for m = 1, · · · , No.

4.3 Fast Jacobian Evaluation

If A is a discretized integral operator, the adjoint method can still be expensive since

(a) Apm is dense; and (b) the evaluation of Apm requires multiple Green’s function or its

derivative evaluations. This section proposes a fast method to evaluate Apm for shape

optimization problems: p only affects the parameterization q(·;p). The proposed method

is similar to the sensitivity analysis method for isoparametric finite-element methods [56].

Methods to evaluate Spm and K′
pm

are developed since Apm is assembed from them

as A is assembled from S and K′. The partial derivative to S, Spm , is evaluated in two

steps. First, the partial derivatives of S in the quadrature points are evaluated. In order

to simplify the notation, xn and yn denote the x and y coordinates of the nth quadrature

point q(τn/Nq
). The x and y components of q′(τn/Nq

) are denoted x′n and y′n. From (3.31),

only the entries in the mth row and column of S change if either xn or yn is modified.

This implies that Sxn and Syn are sparse matrices with non-zero entries in the nth row and

column only2. Similarly, the change in x′n and y′n only affects the mth row of S, and Sx′
n

and Sy′
n

are sparse matrices with a non-zero nth row.

Then, the desired partial derivatives Spm, m = 1, 2, · · · , No, are assembled from Sxn ,

Syn , Sx′
n
, and Sy′

n
, m = 1, 2, · · · , Nq via the chain rule:

Spm(p) =

Nq
∑

n=1

[Sxn(p)
∂xn

∂pm
(p) + Syn(p)

∂yn

∂pm
(p)+

Sx′
n
(p)

∂x′n
∂pm

(p) + Sy′
n
(p)

∂y′n
∂pm

(p)],

where ∂xn/∂m and ∂yn/∂m are the partial derivatives of the x and y components of q(τn/Nq

with respect to pn. Similarly, ∂x′n/∂m and ∂y′n/∂m are those of q′(τn/Nq
) with respect to

pn.

The method to evaluate K′
pm

is almost identical except that K′ depends on q′′(τn/Nq
)

as well. If the x and y components of q′′(τn/Nq
) are denoted x′′n and y′′n, respectively, K′

x′′
n

2The (n, n) entry is zero, to be more precise.
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and K′
y′′

n
are sparse matrices with only the (n, n) entry being non-zero. Therefore,

K′
pm

(p) =

Nq
∑

n=1

[K′
xn

(p)
∂xn

∂pm
(p) + K′

yn
(p)

∂yn

∂pm
(p) + K′

x′
n
(p)

∂x′n
∂pm

(p)+

K′
y′

n
(p)

∂y′n
∂pm

(p) + K′
x′′

n
(p)

∂x′′n
∂pm

(p) + K′
y′′

n
(p)

∂y′′n
∂pm

(p)].

If the partial derivatives are not readily available, they are approximated by a finite-

difference method. For instance, Apm at p is approximated by

Apm(p) ≈ A(p + αêm) − A(p)

α
,

where the rule of thumb to choose α is [134]

△α =
√

eps sgn(pm)max(|pm|, 1);

eps is the machine epsilon for the floating point arithmetic [128]. A symmetric two-sided

approximation is more accurate but doubles the number of additional function evaluations.

The number of additional Green’s function evaluations is small and proportional to the

number of quadrature points Nq, not to the number of optimization variables No. Evalu-

ating the finite-difference approximations to Sxn , Syn , K′
xn

, and K′
yn

requires 2Nq Green’s

function evaluations in addition to what is required to evaluate the operators themselves.

The other partial derivatives do not need any additional Green’s function evaluation if the

Green’s function and its gradient values for the operator evaluations are reused. Therefore,

evaluating all Spm and K′
pm

for m = 1, · · · , No takes 2N2
q additional Green’s function and

2N2
q additional normal derivative evaluations. Since the evaluation of S needs N2

q Green’s

function evaluations, the additional cost to evaluate all Spm is just two additional operator

evaluations. Similar argument applies to K′
pm

evaluations.

The number of quadrature points can be kept small if the Nyström method for forward

analysis converges spectrally. Therefore, the method is ideal for optimization problems with

many optimization variables when it is coupled with the method proposed in Chapter 3, or

other spectrally convergent methods in [95, 96, 97, 98, 101, 99, 100, 50, 28].
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4.4 Numerical Examples

First, the costs of evaluating the Jacobian with the finite-difference approximation and the

proposed method are compared. A flat dielectric interface between two dielectric media is

interpolated with cubic splines with increasing number of knots. The top medium is air,

and the other medium is characterized by 12ǫ0 and µ0. The scattered field due the the

incident field with wavelength λ0 and incident angle π/6 is measured at 10λ0 distance from

the interface in the (cos π/6, sin π/6, 0), and the Jacobian of the scattered field with respect

to the position of the knots is evaluated. Twenty quadrature points per unknown equivalent

source is used for each evaluation.

Figure 4-1 shows the CPU time taken to evaluate the Jacobian with (4.2), (4.4), and the

proposed method. The cost of the proposed method stays nearly constant since the cubic
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Figure 4-1: CPU time taken to evaluate the Jacobian.

spline parameterization is much more inexpensive to evaluate than the periodic Green’s

function. In contrast, the cost of using (4.2) and (4.4) grows linearly as the number of

knots grows; the figure also shows that the cost of repeatedly solving the systems of linear

equations with different right-hand sides for (4.2) is negligible compared to the cost of

approximating the derivatives of the integral operators. The CPU time is evaluated with

the cputime function in MATLAB.

The proposed method is applied to a dielectric grating identification problem. Consider a

grating characterized by four parameters r1, r2, h, and w as shown in Figure 4-2. The media

above and below are air and a dielectric material with permittivity 12ǫ0 and permeability

µ0, and it is illuminated by a plane wave with an incident angle π/6.
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Figure 4-2: Parameterized grating to demonstrate the proposed method.

For a nominal wavelength λ0, the period of the structure is T = 1.3827λ0, and the

nominal parameters are r1,0 = 0.1T , r2,0 = 0.1T , h0 = 0.8λ0, and w0 = 0.3T . The test

conditions for identifying a perturbed structure under the presence of measurement noise

are

• The perturbed parameters r1, r2, h, and w can deviate from the nominal ones by

±5%.

• The measurements are taken 10λ0 away from the surface in the (cos π/6, sin π/6, 0)

direction and contains ±5% measurement noise.

• Three different inverse problems with different numbers of incident wavelengths are

considered: the first uses 1.25λ0; the second uses 1.25λ0 and 2λ0; and the third uses

1.25λ0, 1.62λ0, and 2λ0.

• The boundary is fitted with Chebyshev polynomials with 20 samples for the measure-

ment simulation and forward analysis.

• The proposed Nyström method in Chapter 3 with 20 quadrature points is used for

the measurement simulations and forward analysis.

Figure 4-3 shows the distribution of the relative errors in the estimated parameters from

100 measurements with different measurement noise for the same perturbed structure. The

perturbed structure has r1 = 0.1046T , r2 = 0.1015T , h = 0.7629λ0, and w = 0.3105T .

The result shows that a reasonable estimation is possible even for a single wavelength

measurement, but the sensitivity of the estimates to measurement noise is reduced if multiple

wavelengths are used. The cost of using multiple wavelengths is longer forward analysis
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Figure 4-3: Noise sensitivity of the estimation.

time and the time to approximate the Jacobian, increasing linearly with the number of

wavelengths.
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Chapter 5

Panel Integration

Projection methods, such as collocation and Galerkin methods, are widely used to solve

surface integral equations in 3-D [136, 137, 63, 28, 64, 138]. The projection methods are

more versatile than the Nyström methods since only local approximations to the geometry

and solution are necessary; they discretize the surface of a scatterer with panels and ap-

proximate the solution with basis functions.

Consider the 3-D mixed-potential operator in (2.29). If the electric and magnetic cur-

rents J and M are represented by a set of basis functions {bm},

J(r) =
∑

m

αmbm(r)

M(r) =
∑

m

βmbm(r)

with sets of weights {αm} and {βm}, the resulting fields are

E(r;J,M) = − jkη
∑

m

αm(I1bm)(r) +
η

jk

∑

m

αm(I2bm)(r) −
∑

m

βm(I3bm)(r)

H(r;J,M) = − j
k

η

∑

m

βm(I1bm)(r) +
1

jkη

∑

m

βm(I2bm)(r) +
∑

m

αm(I3bm)(r)
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where

(I1bm)(r) =

∫

bm(r′)G(r, r′)dr′

(I2bm)(r) =∇
∫

[∇′
s · bm(r′)]G(r, r′)dr′

(I3bm)(r) =∇×
∫

bm(r′)G(r, r′)dr′

(5.1)

and

G(r, r′) =
e−jk||r−r′||

4π||r − r′|| .

Therefore, accurate and efficient evaluation of the integrals (I1bm), (I2bm), and (I3bm) are

important for projection methods.

The integrals (5.1) for nearby- and self-interactions are difficult to evaluate since the

Green’s function is singular: it has a peak for r = r′. Conventional numerical quadratures

for smooth functions converge slowly and become quickly expensive to achieve moderate

accuracy. Therefore, efficient integration methods have been the subject of study for a long

time [29, 139, 140, 30, 31, 141, 142, 143, 112, 144, 145, 113, 146, 74, 147, 148].

For the quasi-static case, closed-form formulae have been developed for constant and

linear basis functions by various authors: [29, 139] propose change of variable methods,

[31] presents a projection-based approach, and there are Gauss’s theorem-based methods in

[30, 142]. These formulae are highly accurate and efficient.

There is no analytic formula for full-wave analysis, and different mixtures of analytic

and numerical quadrature techniques are used. Singularity extraction [141, 112, 113] and

singularity cancellation [140, 143, 147, 148] methods are popular [149]. Alternative methods

are dimension reduction schemes, where transformations are used to reduce area (volume)

integrals over panels (volume elements) to line integrals over the edges [142, 144, 145,

146, 74]. The dimension reduction methods achieve (a) the ease of designing an efficient

numerical quadrature; (b) high computational efficiency; and (c) good accuracy for most

nearby- and self-interactions.

The existing methods do not converge spectrally for nearby- and self- interactions. Sin-

gularity extraction methods remove the dominant singularities only, and the discontinuity in

the derivatives of the desingularized integrand slows the convergence of numerical quadra-

tures. Singularity cancellation methods except [147] have problems with nearby-interactions
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whose singularity is hard to cancel. Even though dimension reduction methods avoid prob-

lems with most nearby- and self-interactions, the methods converge poorly if the evaluation

point is close to one of the edges; the integrands of the line integrals become nearly singular,

slowing the numerical quadrature convergence [145].

This chapter proposes a change of variables to improve the convergence of the dimension

reduction method when the evaluation point is close to an edge. The dimension reduction

method reduces the area integrals into line integrals, and a change of variable based on

a complex-domain mapping is used to integrate the resulting line integrals with spectral

accuracy. As a result, the proposed method dramatically reduces the number of quadrature

points to achieve a given accuracy and is effective for points close to a panel edge.

The Rao-Wilton-Glisson (RWG) basis function is reviewed in section 5.2. It is shown

that the integrals in (5.1) for the RWG basis function can be assembled from three auxiliary

integrals. Section 5.3 turns the auxiliary integrals into line integrals over the panel edges,

and the proposed change of variables for the resulting line integrals is shown in section 5.4.

Section 5.5 compares the accuracy and convergence of the proposed method with the sin-

gularity extraction method in [112], the singularity cancellation method in [147], and the

edge-splitting method in [145].

The proposed method can be applied to any flat polygonal panel and volume elements

[74] with straight edges even though only flat triangular panels are considered in this chapter.

The material in this chapter is presented at the 2005 Design Automation Conference [74]

and the 2008 International Microwave Symposium [150].

5.1 Notation

A flat triangular panel △ is defined by three vertices denoted vm, m = 1, 2, 3, and v4 and

v0 are defined to be v1 and v3, respectively, for the convenience of presentation. The edge

opposite to vm is the mth edge of the triangle, and it is characterized by a unit direction

vector l̂m pointing from vm+1 to vm−1 and a unit direction vector ĥm pointing outward and

in the plain containing the panel. Then, the normal direction of the panel is n̂ = ĥm × l̂m

for any m.

The point where the field or potential is evaluated is denoted r, and r′ is a point on △.

In addition, the projection of r to the plane containing the panel is denoted r⊥; ρ is the
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vector from r⊥ and r′ given by ρ = r′ − r⊥, and d is the distance from r to r⊥ evaluated

by d = n̂ · (r′ − r). These symbols are summarized in Figure 5-1.

Figure 5-1: Panel coordinate system.

Some additional values in Figure 5-2 are defined to easily represent line integrals over

an edge. Given r′ on the mth edge, hm is the distance from r⊥ to the edge, and l is the

Figure 5-2: Edge coordinate system.

distance from the point on the edge closest to r (or r⊥, equivalently) to r′. For an edge

with ĥm and l̂m, they are given by

hm =ĥm · (r′ − r)

l =l̂m · (r′ − r).

Note that hm is the same for all r′ on the edge.
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5.2 The Rao-Wilton-Glisson Basis Function and Auxiliary

Integrals

The Rao-Wilton-Glisson (RWG) basis function is a popular linear basis function to approx-

imate both the electric and magnetic currents over a surface [136]. For an edge with length

L, the RWG basis function for the edge shown in Figure 5-3 is

Figure 5-3: The Rao-Wilton-Glisson basis function.

bRWG(r′) =











L

2A+
(r′ − v+), r′ ∈ △+

L

2A− (v− − r′), r′ ∈ △−

where A± are the areas of the two flat triangular panels △± sharing the edge, and v± are

the vertices of △± opposite to the edge. The definition ensures that no charge accumulates

at the edges and removes the need of line charges to satisfy (2.2) [136].

Evaluation of the field due to bRWG is performed panel-wise to save computation [136].

Given a panel △, the integrals

(I1b
1/2
m )(r;△) =

∫

△
b1/2

m (r′)G(r, r′)dr′

(I2b
1/2
m )(r;△) =∇

∫

△
[∇′

s · b1/2
m (r′)]G(r, r′)dr′

(I3b
1/2
m )(r;△) =∇×

∫

△
b1/2

m (r′)G(r, r′)dr′

(5.2)

due to the half linear basis functions b
1/2
m (r′) = r′−vm, m = 1, 2, 3, are evaluated first, and

(I1b
RWG), (I2b

RWG), and (I3b
RWG) are assembled from

(I1b
RWG)(r) =

L

2A+
(I1b

1/2
+ )(r;△+) − L

2A− (I1b
1/2
− )(r;△−)

77



and similarly for the other two.

The integrals in (5.2) is simplified further by introducing auxiliary integrals [146]. The

auxiliary integrals are

I(r;△) =
1

4π

∫

△
G(r, r′)dr′, (5.3)

its gradient ∇I(r;△), and

I(r;△) =
1

4π

∫

△
ρG(r, r′)dr′. (5.4)

Then1,

(I1b
1/2
m )(r;△) =I(r;△) − (vm − r⊥)I(r;△)

(I2b
1/2
m )(r;△) =2∇I(r;△)

(I3b
1/2
m )(r;△) =(vm − r) ×∇I(r;△)

for m = 1, 2, 3. A different set of auxiliary integrals based on area (simplex) coordinates

can be found in [136, 141].

5.3 Dimension Reduction

The auxiliary integrals over a flat triangular panel are transformed to line integrals over

the edges using the Gauss’ theorem [30, 112, 74]. Instead of using the general, and rather

abstract, procedure in [142], we take a concrete approach using partial differential equations.

Reducing (5.3) to line integrals using the Gauss’ theorem is equivalent to finding a

particular solution to the partial differential equation

∇′
s · f = G(r, r′) =

e−jk||r′−r||

||r′ − r|| . (5.6)

1The proof for the last relation is

(I3b
1/2
m )(r;△) =∇×

Z

△

(r′ − vm)G(r, r′)dr′

=

Z

△

∇G(r, r′) × [(r′ − r) − (vm − r)]dr′

=(vm − r) ×∇

Z

△

G(r, r′)dr′

(5.5)

where the vector identity ∇× (ab) = a(∇× b) + (∇a) × b is used.
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It is convenient to write (5.6) in the cylindrical coordinates centered at r⊥, exploiting the

radial symmetry of the right-hand side function. Assuming f = fρρ̂ where ρ̂ is the direction

of ρ, (5.6) becomes

1

ρ

∂

∂ρ
(ρfρ) =

e−jk
√

ρ2+d2

√

ρ2 + d2
.

Such a choice of f is justified since only a particular solution is sought. Therefore, a

particular solution to (5.6) is

f(ρ, d) =
1

−jk
e−jk

√
ρ2+d2

ρ
ρ̂.

Once a particular solution is found, Gauss’ theorem is applied to (5.3) and

I(r;△) =
1

4π
[

∫

△\©ǫ

G(r, r′)dr′ +
∫

©ǫ

G(r, r′)dr′]

=
1

4π
[

∫

∂(△\©ǫ)

e−jk
√

ρ2+d2

−jk
ρ · ĥ
ρ2

dr′ +
∫

©ǫ

G(r, r′)dr′]

where ©ǫ
2 is the intersection of the radius ǫ circle centered at r⊥ with △, ∂(△\©ǫ) is the

boundary of △ \ ©ǫ, and ĥ is the in-plane unit outward direction of △ \ ©ǫ. Since this

holds for any ǫ > 0,

I(r;△) =
1

4π

∫

∂△

e−jk
√

ρ2+d2 − e−jk|d|

−jk
ρ · ĥ
ρ2

dr′, (5.7)

where ∂△ is the boundary of △.

The gradient of I is evaluated by [112, 141]

∇I(r;△) =
∂I

∂n̂
(r;△)n̂ + ∇sI(r;△).

The normal derivative is found by directly differentiating (5.7),

∂I

∂n̂
(r;△) =

1

4π
{−

∫

∂△

d
√

ρ2 + d2
[e−jk

√
ρ2+d2 − e−jk|d|]

ρ · ĥ
ρ2

dr′

+ e−jk|d|
∫

∂△
[sgn(d) − d

√

ρ2 + d2
]
ρ · ĥ
ρ2

dr′}
(5.8)

2The decomposition of △ into △ \ ©ǫ and ©ǫ is necessary since the Gauss’ theorem only applies to
continuously differentiable functions [151].
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where an analytic solution exists for the second integral for flat polygonal panels [30, 112].

The tangential gradient ∇sI is converted to line integrals using Gauss’ theorem [141, 112]:

∇sI(r;△) = − 1

4π

∫

△
∇′G(r, r′)dr′

= − 1

4π

∫

∂△

e−jk
√

ρ2+d2

√

ρ2 + d2
ĥdr′.

(5.9)

Finally, (5.4) can be reduced to

I(r;△) =
1

4π

∫

∂△

e−jk
√

ρ2+d2 − 1

−jk ĥdr′, (5.10)

following similar steps of solving

∇′
sf = ρ

e−jk
√

ρ2+d2

√

ρ2 + d2
ρ̂

for f and applying Gauss’ theorem.

5.4 Change of Variables

The mth edge integral of (5.7)

1

4π

∫ l+m

l−m

e−jk
√

l2+h2
m+d2 − e−jk|d|

−jk
hm

l2 + h2
m

dl (5.11)

has to be evaluated numerically, where l−m and l+m are the ends of the edge given by

l−m =l̂m · (vm+1 − r)

l+m =l̂m · (vm−1 − r).
(5.12)

The factor hm/(l
2 + h2

m) generates a peak at l = 0 if hm is nearly zero and slows the

convergence of numerical quadratures for smooth functions [145].

Faster convergence is possible with a change of variable motivated by a complex-domain

mapping. The complex-domain mapping

g1(t; δ, ǫ) = δ + ǫsinh[
α+ + α−

2
(t− 1) + α−] (5.13)
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proposed in [152] with α− = asinh(1−δ
ǫ ) and α+ = asinh(1+δ

ǫ ) maps from [−1, 1] to [−1, 1]

while moving the lines of singularity parallel to the real axis at ± π
α−+α+ j to the lines of

singularities from (δ+ǫj) to (δ+∞j) and from (δ−ǫj) to (δ−∞j) parallel to the imaginary

axis. As a result, the ellipse of analyticity of the integrand is enlarged with a proper choice

of δ and ǫ, and the numerical quadratures for smooth functions converge faster [114, 153].

To understand the effect of (5.13), Figure 5-4 shows the quadrature location ln and

weight wn of the Gauss-Legendre quadrature on [−1, 1] and g1(ln; 0, 0.01) and g′1(ln; 0, 0.01)wn .

The choice of δ and ǫ is made to compensate the dominant singularity at ±0.01j for [−1, 1]
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Figure 5-4: Quadrature location and weight for the Gauss-Legendre quadrature in l and
the one in t mapped to l using g1.

domain of integration. The mapped Gauss-Legendre quadrature automatically samples

more near the peak, instead of the ends. Furthermore, the mapped quadrature does not

weight the sampled integrand highly near the peak; this is a sensible thing to do since

sampled value can have large errors near the peak.

To see the effect of the mapping, the left-hand side of

∫ 1

−1

h

l2 + h2
dl = 2 tan−1 1

h

is evaluated numerically using Gauss-Legendre quadrature with and without g1, and the

relative error is plotted in Figure 5-5. Even though the relative errors reduce spectrally for
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Figure 5-5: Relative error in numerically evaluating
∫ 1
−1

h
l2+h2 dl with and without g1.

all the cases, the slopes become quickly gradual as the singularity at ±hj in the complex-

domain approaches the domain of integration if no change of variable is used. The change

of variable g1 steepens the slope significantly.

The mapping (5.13) needs some modification before it can be applied to (5.11). First,

a second mapping

g2(t) =
l−m + l+m

2
t+

l+m − l−m
2

that maps [−1, 1] to [l−m, l
+
m] is necessary with

δ = − l
+
m + l−m
l+m − l−m

, ǫ =
2hm

l+m − l−m
(5.14)

to place the resulting poles at ±hmj. Finally, we observed that the effect of poles at ±hmj

diminishes as d increases, and the mapping starts to slow the convergence of the numerical

integration for large values of d. To avoid this problem, max(|hm|, |d|) is used instead of hm

in (5.14)

Therefore, we propose to evaluate (5.11) as

1

4π

∫ 1

−1

e−jk
√

c21(t)+h2
m+d2 − e−jk|d|

−jk
hm

c21(t) + h2
m

c′1(t)dt
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with

c1(t) = g2(g1(t;−
l+m + l−m
l+m − l−m

,
2max(|hm|, |d|)

l+m − l−m
)). (5.15)

The first integral of (5.8) has the same problem as (5.11), and the change of variable c1 is

applied to improve convergence.

In addition, a similar change of variable

c2(t) = g2(g1(t;−
l+m + l−m
l+m − l−m

,
2
√

h2
m + d2

l+m − l−m
)) (5.16)

is applied to (5.9) and (5.10) to improve the rate of convergence even though the original

integrands do not have any peak. The improvement comes from pushing the branch point

at l = ±
√

h2
m + d2 away from the real axis and enlarging the ellipse of analyticity of the

integrands. Usual numerical integration schemes for smooth functions, such as the Gauss-

Legendre quadrature, are applied to the resulting integrals.

5.5 Numerical Examples

To show the effectiveness of the complex-domain mapping, the proposed method is compared

with three existing methods. The first method is our implementation of the singularity

extraction method proposed in [112] with the numerical cubature rules in [154, 155]. The

second is our implementation of the line integration method with edge splitting in [145]

using a Gauss-Legendre quadrature rule. The last is our implementation of the Khayat-

Wilton transform method introduced in [147]. The proposed mapping method uses the

Gauss-Legendre quadrature rule.

The comparison is made only for I since the rate of convergence of ∇I and I shows

similar improvement with the change of variables in (5.15) and (5.16). Subsection 5.5.1

tests the self- and nearby-interactions using the same test cases used as in [144, 147]. The

proposed method does not suffer from cancellation errors when distant interactions are

computed, and it is shown in subsection 5.5.2. Finally, subsection 5.5.3 shows comparison

between the proposed and singularity extraction methods for a lossy medium.
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5.5.1 Self- and Nearby-Interactions

Figure 5-6 shows the panel and the three evaluation points at a given wavelength λ:

(0.01λ, 0.01λ, 0) and (0.03λ, 0.03λ, 0) for a self interaction and (0.01λ, 0.01λ, 0.01λ) for a

nearby interaction.

Figure 5-6: Test case used for self- and nearby-interactions.

Figure 5-7 shows the convergence of four different methods at (0.01λ, 0.01λ, 0). The

relative errors are computed with respect to the 14-digit reference values in Table II of

[147]. The proposed method (solid line) shows a greater rate of convergence than all the

existing methods. Note that achieving high accuracy is nearly impossible with the existing

methods due to their slow convergence.
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Figure 5-7: Convergence at (0.01λ, 0.01λ, 0).

To see the difference between the edge splitting and complex-domain mapping method

better, the convergence of the methods at (0.03λ, 0.03λ, 0) is shown in Figure 5-8. The point
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(0.03λ, 0.03λ, 0) is close to the centroid of the triangle, and the edge-splitting methods shows

a better convergence than the previous test case. By comparing Figure 5-7 and Figure 5-

8, we can see that the convergence of the edge-splitting method depends on how close

the evaluation point is to an edge, while the proposed method (solid line) shows robust

convergence regardless of the evaluation point.
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Figure 5-8: Convergence at (0.03λ, 0.03λ, 0).

The nearby interactions are tested by lifting the evaluation point at (0.01λ, 0.01λ, 0) to

(0.01λ, 0.01λ, 0.01λ). The convergence for the methods is shown in Figure 5-9 with respect

to the reference values computed with the proposed method with 300 quadrature points.

Again, the proposed method (solid line) shows rapid convergence and outperforms all other

methods, even though the improvement is not as significant as in Figure 5-7.

Figure 5-10 shows the relative error of the methods while the evaluation point moves

parallel to the x-axis through (0, 0.05λ, 0) to test self- and nearby-interactions. One can see

that the proposed method (solid line) achieves small relative error for all self- and nearby-

evaluation points. As shown in Figure 5-7 and Figure 5-9, the proposed method converges

much more quickly than the existing methods as the number of quadrature points grow.

This is demonstrated again in Figure 5-11. Hence, the proposed method can easily meet

high accuracy requirements, if necessary.

The reference values are computed with the proposed method using 300 quadrature
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Figure 5-9: Convergence at (0.01λ, 0.01λ, 0.01λ).
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Figure 5-10: Moving the evaluation point on the plane, parallel to the x-axis.
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Figure 5-11: Approximately doubling the number of quadrature points.

number of quadrature 6 9 12 15 18

average 5.09e-5 6.93e-8 9.50e-11 5.76e-13 4.03e-13
maximum 4.03e-4 2.04e-6 9.69e-9 3.97e-11 3.75e-12

Table 5.1: Average and maximum relative error for different numbers of quadrature points.

points, and the Khayat-Wilton transform uses two quadrature points in Figure 5-10 and

three quadrature points in Figure 5-11 for each radial and transverse direction. The vertical

solid lines show the panel boundaries, and the numbers of quadrature points used for each

method are shown in the legend.

5.5.2 Distant Interactions

To show that the proposed method does not suffer from cancellation errors for distant

interactions, thousand random points distributed between distances of 0.3 wavelengths and

ten wavelengths from the center of the panel are used to test the accuracy of the proposed

method. The singularity extraction method with 37 cubature points is used to compute

the reference values since singularity extraction methods are known to work well for distant

interactions. Table 5.1 summarizes the average and the maximum relative errors for different

numbers of quadrature points.
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5.5.3 Lossy Media

To see the accuracy of the proposed method in lossy media, the frequency sweep test in

[146] is performed with the same condition: panel vertices are at (α,−α, 0), (α,α/2, 0),

and (−2α,α/2, 0); and the evaluation point is placed at (0, 0, α) with α = 1e − 3[m] in

copper medium (σ = 5.8 × 107[Sm−1]). For the reference, the proposed method is used

while increasing the number of sample points until four consecutive values of I are the same

up to 14 digits.

The relative error in I is shown in Figure 5-12. The proposed method is more robust

to the increase in loss than the singularity extraction method. Furthermore, the accuracy

of the proposed method improves significantly as the number of sample points is increased

from nine to 15; the singularity extraction method performs better than the proposed for

low loss and very small number of sample points.
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Figure 5-12: Relative error as a function of frequency in copper.
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Chapter 6

Inverse Analysis with

Parameterized Model Order

Reduction

Solutions from projection methods usually converge more slowly than those from Nyström

methods since projection methods make local and low-order approximation to either the

geometry or the solution [28, 156, 157, 158]. Better rate of convergence can be achieved if

the approximation to the geometry or the solution is improved [156, 157, 158]. Examples are

curved panels for better geometry approximation [156, 158] and higher order basis functions

for better approximation of the solution [157].

The rate of convergence of the projection methods is still linear even with these improve-

ments. As a result, a larger system of linear equations, compared to the Nyström method,

has to be solved for each forward analysis to meet the given accuracy requirements. There-

fore, the overall inverse wave scattering analysis becomes considerably slower.

This chapter proposes a method that uses a parameterized reduced-order model to

replace the forward analysis. Such a low-order model is called a proxy or a surrogate in

some fields since it acts as a proxy for the original forward analysis [159, 160, 161], and

the proposed method is similar to [162, 163, 164, 165, 166, 167, 168] in a sense since some

computation is done before the optimization to improve the forward analysis efficiency.

Novel contributions are made in three ways: (a) the moment matching graph; (b) tech-

niques to extend the polynomial-fit parameterized moment matching (PMM) to scattering
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problems; and (c) a fast method to solve inverse wave scattering problems by coupling a pa-

rameterized reduced-order model and optimization. The result is a more efficient Jacobian

evaluation as well as forward analysis.

First, the Galerkin method is used to discretize the PMCHW formulation in section 2.3,

and the PMM and polynomial-fit PMM are summarized in section 6.2. The moment match-

ing graph in section 6.3 generalizes the existing PMM and finds the condition on the pro-

jection matrix to match the moments when the system matrix is a polynomial function

of the optimization variables. Section 6.4 presents extensions to the polynomial-fit PMM

for scattering problems. A brief summary of the proposed method is given in section 6.5.

Finally, Jacobian evaluation is explained in section 6.6, and the method is used to identify

some discrete 3-D objects in section 6.7. This chapter is an extension to [169] presented at

the 2005 International Microwave Symposium.

6.1 The PMCHW Formulation

Suppose the boundary of the scatterer is discretized, and the electric and magnetic currents

are approximated by M Rao-Wilton-Glisson basis functions [136]

J(r) =

M
∑

n=1

αnb
RWG
n (r)

M(r) =
M
∑

n=1

βnb
RWG
n (r).

The fields due to the discretized currents using (2.29) are

E(r;J,M) = − jkη

M
∑

n=1

αn(I1b
RWG
n )(r) +

η

jk

M
∑

n=1

αn(I2b
RWG
n )(r) −

M
∑

n=1

βn(I3b
RWG
n )(r)

H(r;J,M) = − j
k

η

M
∑

n=1

βn(I1b
RWG
n )(r) +

1

jkη

M
∑

n=1

βn(I2b
RWG
n )(r) +

M
∑

n=1

αn(I3b
RWG
n )(r).

where (I1b
RWG
n ), (I2b

RWG
n ), and (I3b

RWG
n ) are evaluated with the proposed method in

chapter 5. The system of linear equations after discretizing and testing the PMCHW
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formulation in (2.28) is





ηoutLout + ηinLin −Kout − Kin

Kout + Kin Lout/ηout + Lin/ηin









α

β



 = −





bE

bH



 (6.1)

where

Lm,n = − jk

∫

bRWG
m (r) · (I1b

RWG
n )(r)dr +

1

jk

∫

bRWG
m (r) · (I2b

RWG
n )(r)dr

Km,n =

∫

bRWG
m (r) · (I3b

RWG
n )(r)dr

bE,m =

∫

bRWG
m (r) ·Ei(r)dr

bH,m =

∫

bRWG
m (r) ·Hi(r)dr

for m,n = 1, · · · ,M . The outer integrals are evaluated numerically without difficulty since

the potential integrals behave reasonably [151]. Note that
∫

bRWG
m (r) · (I2b

RWG
n )(r)dr can

be simplified further by moving the gradient operator to the test basis function [136].

Once α and β are found, the outside E at r is found by

E = C





α

β



 (6.2)

where the nth column C:,n of the 3-by-2M matrix C is given by

C:,n = − jkη(I1b
RWG
n )(r) +

η

jk
(I2b

RWG
n )(r)

C:,M+n =(I3b
RWG
n )(r)

for n = 1, · · · ,M .
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6.2 Background for the Parameterized Moment Matching

6.2.1 The Parameterized Moment Matching

Consider a model

(A0 −
No
∑

m=1

pmAm)x(p) =b

y(p) =Cx(p)

(6.3)

to compute y as a function of p where Am, m = 0, · · · , No are M -by-M matrices. Each

evaluation of y(p) requires a linear system solve of size M -by-M , which can be expensive

for models like (6.1) and (6.2).

An approximation to y is made using the PMM in [170, 171, 172, 173, 174, 175, 176].

The reduced system is

(Â0 −
No
∑

m=1

pmÂm)x̂(p) =b̂

ŷ(p) =Ĉx̂(p)

(6.4)

with Âm = VHAmV for m = 0, · · · , No, b̂ = Vb, and Ĉ = CV for some M -by-m V

with orthonormal columns. Hence, the evaluation of ŷ(p) requires a linear system solve of

size m-by-m. In order for ŷ to approximate y, the projection matrix V must be chosen

carefully; the PMM in [170, 171, 172, 173, 174, 175, 176] chooses V so that the first few

Taylor expansion coefficients of ŷ in p match those of y, which is a generalization of the

single parameter case in [177, 178, 179] and the references therein. The Taylor expansion

coefficient are called moments due to the time domain interpretation [180].

For A that is a polynomial in p, the products of parameters are re-defined to be in-

dependent parameters, and the PMM is applied to the resulting affine function with more

parameters. Chapter 6.3 proposes a graph-based moment matching to determine V while

incorporating the products of parameters without re-definition.
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6.2.2 The Polynomial-Fit Parameterized Moment Matching

Consider a model

A(p;ω)x(p;ω) =b(p;ω)

y(p;ω) =C(p;ω)x(p;ω).
(6.5)

as a function of optimization variables p and the angular frequency ω; an example is the

discretized and tested PMCHW formulation in (6.1) and (6.2).

In practice, the functional dependence of A on p and ω is not known explicitly and

unlikely to be a polynomial of p and ω. Therefore, the PMM in subsection 6.2.1 cannot be

applied in its original form.

The polynomial-fit PMM in [174, 176] samples A(pm;ωm) for different pm’s and ωm’s

and fits the entries of the sampled matrices with polynomials. For instance, the entry-by-

entry polynomial fit Ã(p;ω) to A(p;ω) is

Ã(p;ω) = Ã0 −
No+1
∑

m=1

pmÃm −
No+1
∑

m=1

pmpnÃm,n − · · · (6.6)

where pNo+1 = ω for notational convenience. Then, the PMM can be applied [172, 174, 176].

6.2.3 Justification for Fitting Matrix Entries

The PMM or the polynomial-fit PMM is not the only method to find ŷ. There are at least

three different ways depending on when fitting occurs. In this subsection, these options are

examined, and the use of the polynomial-fit PMM is justified for scattering problems.

First and the most straightforward method computes the response y(pm;ωm) for a

number of different pm’s and ωm’s and constructs ỹ as polynomial or rational fit.[181]. The

memory footprint is small since only 3-by-1 vectors of y(pm;ωm) have to be stored, but

most of the information from the forward analysis is lost. Examples are [181, 182, 183].

The polynomial-fit PMM explained in subsection 6.2.2 is the other extreme. The method

tries to use all the information gathered from the boundary element analysis and requires

a large amount of memory to store sampled M -by-M matrices. The third method fits the

surface currents x, and it is a compromise between the first and the second methods.

In addition to the memory footprint, the ease of polynomial or rational fit should be
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considered since fitting a highly nonlinear function is known to be difficult, especially if the

function oscillates or has peaks, such as y from (6.1) and (6.2) [184, 19]. Furthermore, x is

an even stronger nonlinear function than y since C in (6.2) smoothens x to compute y. In

contrast, the entries of A, C, and b are averaged potentials and fields as functions of the

parameters. Therefore, the polynomial-fit PMM is the most reasonable choice for optical

scattering problems.

6.3 The Moment Matching Graph

An alternative method to construct V for a polynomial A in p without re-defining products

of parameters as independent ones is proposed. Even though there is a more general method

for an arbitrary A [171, 173, 175], the proposed method has its own advantage: it is

specialized for polynomials and graphical. The sufficient condition for V to match moments

of y is identified by traversing the corresponding moment matching graph and collecting the

node values. Furthermore, the method identifies the condition to match a single moment

instead of all the moments of the same order. The proposed method is used in [185] to gain

insight into the PMM and to reduce computation for large number of parameters.

For the convenience of the notation, let us define pm = pm1
1 · · · pmNo

No
. The inequalities

on m are interpreted elementwise, e.g.

m ≥ 0 ⇔ mn ≥ 0, n = 1, · · · , No.

Given a set I of non-negative vectors of dimension No excluding 0, the proposed algo-

rithm reduces

(A0 −
∑

m∈I
pmAm)x(p) =b

y(p) =Cx(p)

(6.7)

with an invertible A0 to

(Â0 −
∑

m∈I
pmÂm)x̂(p) =b̂

ŷ(p) =Ĉx̂(p)

(6.8)
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with

Âm =VHAV, m ∈ {0} ∪ I

b̂ =VHb

Ĉ =CV,

(6.9)

for some M -by-m matrix V with orthonormal columns while matching the first few Taylor

expansion coefficients of ŷ in p with those of y.

6.3.1 Construction of the Moment Matching Graph

The moment matching graph is completely characterized by a set of nodes

N = {(m1, · · · ,mNo) ≥ 0},

a set of directed edges E , and the node values vm associated with the node m in N . Given

I, the set of edges are given by

E = {(n,m) : m − n ∈ I},

and the node values are determined by the following rule:

1. v0 = A−1
0 b.

2. If m is not 0,

vm =















0, if no edge entering
∑

n: m−n∈I
(A−1

0 Am−n)vn, otherwise.
(6.10)

For example, consider

(A(0,0) − p1A(1,0) − p2
1A(2,0) − p1p2A(1,1))x(p) =b

y(p) =Cx(p).
(6.11)

Then, I = {(1, 0), (2, 0), (1, 1)}, and the corresponding moment matching graph for ||m||1 ≤
3, m ∈ N is shown in Figure 6-1. For this moment matching graph,
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Figure 6-1: Moment matching graph for (6.11).

N ={(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3), · · · }

E ={((0, 0), (1, 0)), ((0, 0), (2, 0)), ((0, 0), (1, 1)),

((1, 0), (2, 0)), ((1, 0), (3, 0)), ((1, 0), (2, 1)), · · · },

and the node values are

v(0,0) =b̆

v(1,0) =Ă(1,0)b̆

v(0,1) =0

v(2,0) =[Ă(2,0) + Ă2
(1,0)]b̆

v(1,1) =Ă(1,1)b̆

v(0,2) =0

v(3,0) =[Ă(1,0)Ă(2,0) + Ă3
(1,0) + Ă(2,0)Ă(1,0)]b̆

v(2,1) =[Ă(1,1)Ă(1,0) + Ă(1,0)Ă(1,1)]b̆

v(1,2) =0

v(0,3) =0

where

b̆ =(A−1
(0,0)

b)

Ăm =A−1
(0,0)Am

(6.12)

are used for brevity.

96



6.3.2 Properties of the Moment Matching Graph

The moment matching graph can be used to evaluate the moments of x in p explicitly. For

instance, consider the example in (6.11). With Neumann expansion,

x(p) =(A(0,0) − p1A(1,0) − p2
1A(2,0) − p1p2A(1,1))

−1b

=(I − p1Ă(1,0) − p2
1Ă(2,0) − p1p2Ă(1,1))

−1b̆

=

∞
∑

m=0

(p1Ă(1,0) − p2
1Ă(2,0) − p1p2Ă(1,1))

mb̆

=v(0,0) + p1v(1,0) + p2
1v(2,0) + p1p2v(1,1) + p3

1v(3,0) + p2
1p2v(2,1) + · · ·

(6.13)

where the simplified notation in (6.12) is used.

This property is of little value in practice [177, 178], but it is summarized in the following

Lemma since it is used to prove the moment matching property of the graph.

Lemma 6.3.1. Given I,

(A0 −
∑

m∈I
pmAm)−1b =

∑

m∈(Z+
0 )No

pmvm (6.14)

where vm is the node value in (6.10), and Z+
0 is the set of non-negative integers.

Proof. The proof is based on the strong mathematical induction, and the coefficient mul-

tiplying pm is denoted wm. The Lemma holds trivially for w0 = v0 = A−1
0 b. Suppoe

wl = vl for all l, ||l||1 < m: From Neumann expansion, wmpm with ||m||1 = m is part of

(
∑

n∈I
A−1

0 Anp
n)(

∑

||l||1<m

wlp
l)

or

wm =
∑

n: m−n∈I
(A−1

0 An)wn =
∑

n: m−n∈I
(A−1

0 An)vn,

which is exactly how the node values are evaluated. This concludes the proof.

Consider the moment matching graphs for (6.7) and (6.8). The node and edge sets of

the two graphs are identical, and the nodes values are denoted vm for (6.7) and v̂m for

(6.8). The following is the key Theorem to establish the moment matching property of the

graph.
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Theorem 6.3.2. Given m, if V with orthonormal columns satisfies vm ∈ colsp(V) and

VHvn =v̂n

vn ∈colsp(V)
(6.15)

for all n satisfying m− n ∈ I,

VHvm = v̂m. (6.16)

Proof. For m = 0,

v̂0 =(VHA0V)−1VHb (6.9)

=(VHA0V)−1VHA0v0

=VHv0

(6.17)

since VVHv0 = v0 for any v0 ∈ colsp(V). Similarly,

v̂m =Â−1
0

∑

n: m−n∈I
Âm−nv̂n (6.10)

=(VHA0V)−1
∑

n: m−n∈I
(VHAm−nV)VHvn (6.9) and (6.15)

=(VHA0V)−1VH
∑

n: m−n∈I
Am−nvn

=(VHA0V)−1VHA0vm (6.10)

=VHvm

for m not equal to 0.

The moment matching property of the graph is a direct consequence of Theorem 6.3.2.

Note that similar insights are used in [176, 186].

Corollary 6.3.3. If the condition in Theorem 6.3.2 holds, the m moments of y and ŷ are

matched.

Proof.

Ĉv̂m =CVVHvm

=Cvm

(6.18)
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since vm ∈ colsp(V).

As a result, the condition to match the m moments is found by traversing the moment

matching graph of the original system backward from node m to node 0 and collecting the

node values. For instance, the condition to match the (2, 1) moment for (6.11) is

{v(2,1),v(1,1),v(1,0),v(0,0)} ∈ colsp(V).

6.4 Improvements to the Polynomial-Fit Parameterized Mo-

ment Matching

In this section, we investigate the additional issues related to (a) fitting C(pm;ωm) with

respect to ω and (b) constructing V when b also depends on p and ωare investigated.

6.4.1 Fitting in Frequency

For the structures of interest, the size of the scattering surface is of the order of a wavelength,

while the measurement point is usually a number of wavelengths away. Under this setting,

the entries of C are strong nonlinear functions of ω that oscillates. This can be seen from

the 3-D Green’s function,

G(r, r′) =
e−jω

√
ǫµ||r′−r||

4π||r′ − r|| ,

which rapidly oscillates even with a small change in ω when ||r− r′|| is large.

Polynomial fitting is not accurate for oscillating functions; to improve the accuracy of the

fit, a nominal distance is factored out. Assume that there is a cluster of panels distributed

within a range smaller than ω, and let the center of the cluster be r0. By factoring out

||r0 − r||, G becomes

G(r, r′) = e−jω
√

ǫµ||r0−r|| e
−jω

√
ǫµ(||r′−r||−||r0−r||)

4π||r′ − r||
= e−jω

√
ǫµ||r0−r||G′(r, r′)

and (||r′ − r|| − ||r0 − r||) in G′ remains small. Hence, G′ no longer oscillates and is fitted

easily with a polynomial. A generalization of the idea can be found in [187].
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6.4.2 Removing Parameter Dependency of b

For the scattering problem, the input b is a function of p and ω since the integrals of the

incident fields change as the scattering surface or the frequency changes. Even after b is

approximated with an entry-by-entry polynomial fit, the PMM cannot be applied to find

V since the PMM assumes that b is a constant.

A modification to Ã, b̃, and C̃ is proposed to have a constant right-hand side vector.

The modified system is

Ã′(p;ω) x̃′(p;ω) =b̃′

ỹ(p;ω) =C̃′(p;ω) x̃′(p;ω),
(6.19)

where

Ã′
m,n,··· =







































Ã0 −b̃0

0 α



 , for Ã′
0





Ãm,n,··· −b̃m,n,···

0 0



 , otherwise

,

b̃′ =

















0
...

0

α

















,

and

C̃′
m,n,··· =

[

C̃m,n,··· 0
]

.

The scalar α should be chosen to maintain the conditioning of A′
0, and a reasonable choice

is the maximum diagonal entry of Ã0. Then, the PMM can be readily applied to (6.19)

and construct V.
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6.5 Summary of the Method

The reduced model for dielectric scattering

Â(p;ω)x̂(p;ω) =b̂

ŷ(p;ω) =Ĉ(p;ω)x̂(p;ω)
(6.20)

with1

Â(p;ω) =Â0 −
No+1
∑

m=1

pmÂm −
No+1
∑

m,n=1

pmpnÂm,n − · · ·

Ĉ(p;ω) =Ĉ0 −
No+1
∑

m=1

pmĈm −
No+1
∑

m,n=1

pmpnĈm,n − · · ·

is constructed as follows:

1. The matrices A(p;ω) and C(p;ω) and the vector b(p;ω) in (6.5) are fitted with

methods in subsection 6.2.2 and 6.4.1, resulting in

Ã(p;ω) =Ã0 −
No+1
∑

m=1

pmÃm −
No+1
∑

m,n=1

pmpnÃm,n − · · ·

C̃(p;ω) =C̃0 −
No+1
∑

m=1

pmC̃m −
No+1
∑

m,n=1

pmpnC̃m,n − · · ·

and

b̃(p;ω) = b̃0 −
No+1
∑

m=1

pmb̃m −
No+1
∑

m,n=1

pmpnb̃m,n − · · · .

2. The parameter dependence of b on p and ω is removed using the method in subsec-

tion 6.4.2, resulting in

Ã′(p;ω) =Ã′
0 −

No+1
∑

m=1

pmÃ′
m −

No+1
∑

m,n=1

pmpnÃ
′
m,n − · · ·

C̃′(p;ω) =C̃′
0 −

No+1
∑

m=1

pmC̃′
m −

No+1
∑

m,n=1

pmpnC̃
′
m,n − · · ·

and b̃′.

1For convenience of notation, pNo+1 = ω is used.
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3. The projection matrix V with orthonormal columns is found, and the reduced system

is constructed by

Âm,n,··· = VHÃ′
m,n,···V

Ĉm,n,··· = C̃′
m,n,···V

for m,n, · · · = 1, · · · , No + 1, and b̂ = VH b̃′.

6.6 Inverse Scattering Analysis

In order the identify p from the measurements ym(ωm), a nonlinear least-square problem

min
p

∑

m

||ŷ(p;ωm) − ym(ωm)||22 (6.21)

is solved.

The Jacobian evaluation for the Levenberg-Marquardt algorithm is trivial since the

partial derivatives of the reduced integral operators are straightforward to evaluate. For

example,

Âpm(p;ω) = −Âm −
No+1
∑

n=1

pnÂm,n − · · · , m = 1, · · · , No (6.22)

and the Jacobian is easily assembled using (4.2) or, more preferably, (4.4).

6.7 Numerical Examples

6.7.1 Case One: a Sphere

The scatterer is a ball of silicon dioxide with permittivity 11.7ǫ0 and permeability µ0. For

a nominal length λ0 = 200nm, the test conditions are

• The radius of the sphere is r ∈ [0.475λ0, 0.525λ0] with the nominal value of r0 = 0.5λ0.

• The incident field is a plane wave with λ ∈ [0.95λ0, 1.05λ0], coming from θ = π/3,

polarized in the x̂-direction; the phase is set to zero at the origin.

• The scattered field is measured at distance 20.013λ0 away from center in the (1, 1, 1)

direction.
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The values for λ/λ0 and r/r0 are sampled at 0.95, 0.99, 1.01, and 1.05; and they are

fitted with a third order polynomial. Then, moments are matched at (λ/λ0, r/r0) = (1, 1),

(0.95, 0.95) up to the first order. The reduced model is of size 30-by-30 compared to the

original model of size 576-by-576, and it is parameterized in both the wavelength and the

radius. As a result, our approach gives a factor of about 8000 times speedup in each model

evaluation.

The measured scattered fields ym(ωm) are evaluated at three different wavelengths, and

the optimizer has converged to a minimum of 97.3nm, identifying the true value 97nm with

an error of 0.3%.

6.7.2 Case Two: a Pillar

The pillar to be identified has the width w in both the x̂- and ŷ-directions and the height

h in the ẑ-direction. The test conditions are

• The width and the height are w ∈ [0.11λ0, 0.14λ0] and h ∈ [0.225λ0, 0.275λ0] with the

nominal values of w0 = 0.125λ0 and h0 = 0.25λ0, respectively.

• The same incident field and observation point are used as in the sphere case.

The values for w/w0 and h/h0 are sampled at 0.85, 0.95, 1.05, and 1.15; and they are

fitted with a third order polynomial. Then, moments are matched at (w/w0, h/h0) = (1, 1)

up to the second order. Note that the wavelength is no longer a parameter, and three

separate models are built for different wavelengths. The original models are of size 540-by-

540 each and the reduced models are of size 50-by-50 each, which gives a factor of about

1000 times speedup.

Again, ym(ωm) are evaluated at three different wavelengths, and the optimizer has

converged to 104.9nm, identifying the true value of 105nm with 0.1% error.
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Chapter 7

Conclusions and Future Work

A number of fast techniques to solve inverse wave scattering problems in the resonance

regime were proposed with an emphasis on faster forward analysis and efficient coupling of

the forward and inverse analyses.

First, spectrally convergent Nyström method for scattering by an periodic 2-D structure

was proposed. The method separates additional singularities due to the periodic sources in

the neighboring periods and integrates the singularities with the modified Fejér quadrature.

As a result, periodic structures in 2-D can be analyzed accurately with little memory and

computation.

Then, a fast method to approximate the Jacobian for shape optimization problems was

proposed. The proposed method requires only a few additional Green’s function evalua-

tions, and the cost of Jacobian evaluation does not depend on the number of optimization

variables, but on the number of quadrature points, when the Green’s function is expen-

sive to evaluate. Therefore, the proposed method is ideal if there are many optimization

variables, and a spectrally convergent Nyström method is used for the forward analysis.

Two methods were proposed for problems in 3-D. A new method to evaluate the potential

integrals associated with the 3-D mixed-potential integral operator with the Rao-Wilton-

Glisson basis function was proposed. The proposed method reduces the surface integral into

line integrals and improves the convergence of the line integrals with a change of variables

motivated by a complex-domain mapping. The superior accuracy and convergence of the

proposed method, compared with a number of existing methods, were demonstrated for

nearby- and self-interactions.
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A parameterized reduced-order model was introduced to replace the forward analysis,

and the slow convergence of projection methods to solve integral equations in 3-D is hid-

den from the inverse analysis. Improvements to the polynomial-fit parameterized moment

matching was proposed for scattering problems, together with the moment matching graph

to identify the condition for the projection matrix to match moments. The method was

used to identify simple discrete scatterers in 3-D.

Nevertheless, there is room for improvement. A spectrally convergent Nyström method

for purely second-kind integral equations for 2-D dielectric scattering can be useful. Second-

kind integral equations have better numerical properties than the first-kind [59, 28], and the

use of purely second-kind integral equations can improve the quality of the entry-by-entry

polynomial fit for the polynomial-fit parameterized moment matching. To solve purely

second-kind integral equations, one has to develop a spectrally accurate approximation to

the hyper-singular operator. The methods in [101, 99] for the 2-D Green’s function can be

a reasonable starting point.

The change of variable proposed in chapter 5 is not optimal, and the performance

degrades if the evaluation point is lifted slightly from the plane containting the panel,

as pointed out briefly in section 5.5. The change of variable may be improved with a

futher insight into the integrand as the distance between the evaluation point and the plane

containing the panel increases.

It is difficult to apply the polynomial-fit parameterized moment matching to problems

with many optimization variables; this can be improved in mainly two ways. The polynomial

fitting quickly becomes difficult and expensive as the number of parameters increases. Sparse

grids [188] can be a useful idea to reduce the number of samples while maintaining good

accuracy of fit.

Secondly, the complexity of the parameterized moment matching algorithm increases

exponentially as the number of parameters increases [176, 185]. This problem has to be

addressed in order to keep the size of the reduced order model manageable. The sampling

method in [185] can be a good point to start.
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Appendix A

Nyström Method for Periodic

Parameterizations

The Nyström method for periodic Green’s function in chapter 3 is extended to structures

parameterized by periodic functions. Parameterization by periodic functions are useful

for structures with closed boundaries, such as photonic crystals with discrete pillars. The

resulting method is very similar to the method for the (non-periodic) 2-D Green’s function

in [101, 50, 28].

The singularity separation in section 3.2 also applies to problems with periodic pa-

rameterizations. The smooth functions Gs,−1, Gs,0, Gs,1, and Gr for the periodic Green’s

function are defined in (3.15) and (3.16), and the corresponding smooth functions Gs,−1
n ,

Gs,0
n , Gs,1

n , and Gr
n for the normal derivative of the periodic Green’s function are defined in

(3.17) and (3.18).

A.1 Parameterization of Boundary

Consider a smooth 2π-periodic vector valued function q, q(t+2π) = q(t), that maps [0, 2π]

to a non-self intersecting closed curve completely contained in a period [101, 50, 28]. The

tails of the logarithmic singularity created by the neighboring periodic sources are smooth

enough to be integrated without a specialized numerical quadrature. Therefore,

G(q(t),q(τ)) = G̃r(q(t),q(τ)) + Gs,0(q(t),q(τ)) log(4 sin2 t− τ

2
) (A.1)
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where

G̃r(q(t),q(τ))

=











































Gr(q(t),q(τ)) + Gs,−1(q(t),q(τ)) logR2
−1+

Gs,0(q(t),q(τ)) log
R2

0

4 sin2 t−τ
2

+ Gs,1(q(t),q(τ)) logR2
1, t 6= τ

Gr(q(t),q(t)) + Gs,−1(q(t),q(t)) logR2
−1+

2Gs,0(q(t),q(t)) log ||q′(t)|| + Gs,1(q(t),q(t)) logR2
1, t = τ.

(A.2)

The singularity log(4 sin2 t−τ
2 ) is chosen since it is 2π-periodic and behaves like log |t− τ | in

the limit of τ approaching t. Furthermore, a spectrally convergent numerical quadrature for

a smooth 2π-periodic function times the singularity exists as it will be shown in section A.2.

The same idea can be applied to Gn, and the result is (A.1) and (A.2) with G̃r, Gr,

Gs,−1, Gs,0, and Gs,1 replaced by G̃r
n, Gr

n, Gs,−1
n , Gs,0

n , and Gs,1
n .

A.2 Numerical Quadrature

The numerical quadratures for smooth 2π-periodic functions and such functions times

log(sin2 t−τ
2 ) are well established [189, 102, 101, 97, 98, 99, 100, 28], and they rely on the

spectral convergence of trigonometric interpolation with equally spaced points for smooth

2π-periodic functions. Given a 2π-periodic f , f̃ that interpolates f at Nq equally spaced

points is

f̃(t) =































1

Nq

Nq
∑

n=1

f(τn/Nq
)[

ν
∑

l=−ν

ejl(t−τn/Nq )], Nq = 2ν + 1

1

Nq

Nq
∑

n=1

f(τn/Nq
)[

ν
∑

l=−ν

′′ejl(t−τn/Nq )], Nq = 2ν

where τn/Nq
= 2π(n − 1)/Nq, n = 1, · · · , Nq. The double primed summation means that

the first and the last terms are halved.

A spectrally convergent numerical quadrature for
∫ 2π
0 f(τ)w(τ)dτ can be constructed

by evaluating
∫ 2π
0 f̃(τ)w(τ)dτ exactly since the error in trigonometric interpolation reduces

spectrally [115, 123, 122]. For w(τ) = 1, integrating f̃ is trivial and the resulting numerical
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quadrature is simply the trapezoidal rule [123, 122]:

∫ 2π

0
f(τ)dτ ≈

Nq
∑

n=1

w1
n/Nq

f(τn/Nq
) (A.3)

where

w1
n/Nq

=
2π

Nq
. (A.4)

For w(τ ; t) = log(4 sin2 t−τ
2 ),

∫ 2π

0
f(τ) log(4 sin2 t− τ

2
)dτ ≈

Nq
∑

n=1

wlog
n/Nq

(t)f(τn/Nq
) (A.5)

with

wlog
n/Nq

(t) =



























− 4π

Nq

ν
∑

l=1

1

l
cos[l(t− τn/Nq

)], Nq = 2ν + 1

− 4π

Nq
{

ν−1
∑

l=1

1

l
cos[l(t− τn/Nq

)] +
1

2ν
cos[ν(t− τn/Nq

)]}, Nq = 2ν

since
∫ 2π

0
log(4 sin2 τ

2
)ejlτdτ =











0, l = 0

−2π

|l| , l = ±1,±2, · · ·

as in chapter 8 of [28].

A.3 Summary of the Method

Consider the monopole operator
∫

G(r, r′)ρ(r′)dr′. For r = q(t) for some t ∈ [0, 2π], the

discretized monopole operator is

∫

G(r, r′)ρ(r′)dr′ ≈
Nq
∑

n=1

[w1
n/Nq

G̃r(q(t),q(τn/Nq
))+

wlog
n/Nq

(t)Gs,0(q(t),q(τn/Nq
))]||q′(τn/Nq

)||ρ(q(τn/Nq
)).

(A.6)

The normal derivative of the monopole operator
∫

Gn(r, r′)ρ(r′)dr′ is discretized simi-

larly, and the result is (A.6) with G̃r and Gs,0 replaced by G̃r
n and Gs,0

n .
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For periodic parameterization, the entries of S in (3.30) are given by

sm,n =[w1
n/Nq

G̃r(q(τm/Nq
),q(τn/Nq

))+

2wlog
n/Nq

(τm/Nq
)Gs,0(q(τm/Nq

),q(τn/Nq
))]||q′(τn/Nq

)||
(A.7)

for m,n = 1, · · · , Nq. The entries of K′ are given by (A.7) with G̃r and Gs,0 replaced with

G̃r
n and Gs,0

n , respectively.

A.4 Numerical Example

Consider electromagnetic scattering by a layer of dielectric cylinders infinitely periodic in x.

The cylinders consist of dielectric matrial with 12ǫ0 and µ0, and the background medium

is air. The structure is illuminated from above by a plane wave with wavelength λ0 and

varying incident angles; the radius of a cylinder is 0.3472λ0 and the distance between the

centers of two neighboring cylinders is 1.3827λ0.

Figure A-1 shows the reflectance of both E- and H-polarizations as the function of the

incident angle. The discretized integral equations for the proposed method is similar to

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

s−polarization (fft)
p−polarization (fft)
s−polarization (periodic)
p−polarization (periodic)

Figure A-1: Reflectance of identical dielectric cylinders in air and infinitely periodic in x as
a function of the incident angle.

(3.33) except that Sin and K ′in uses the 2-D Green’s function rather than the periodic

Green’s function; constructing spectrally convergent approximations to S and K ′ for the 2-
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D Green’s function is well-established and shown in [101, 50, 28]. Furthermore, the method

can be immediately generalized to more complicated structures, such as the Fabry-Perot

structure analyzed in [93].

To show the correctness of the proposed method, the infinitely periodic structure is

truncated after 100 periods, and the reflectance is computed using the same techniques to

construct Figure 3-1. The two results match well, and the difference becomes smaller as

more periods are considered for the truncation method.

Finally, Figure A-2 shows the spectral convergence of the proposed method if it is used

to evaluate the scattered field due the infinitely periodic cylinders. The reference solution
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Figure A-2: Relative error in the scattered field.

uses 100-point numerical quadrature.
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Appendix B

Analytic Solutions to Scattering by

a Circular 2-D Cylinder

Acoustic and electromagnetic scattering due to an infinitely long circular cylinder of various

types is commonly used to check the validity of the code. Even though the analytic solutions

are found by Sir Rayleigh in 1918 [190], and the results are summarized in [70, 40, 60] and

many others, detailed derivations are difficult to find.

This chapter explains how the analytic solutions are derived in detail. The solutions

for acoustic scattering by sound-soft, sound-hard, and transparent cylinders are derived in

section B.1; the solutions for electromagnetic scattering by perfectly electrically conducting

and dielectric cylinders are shown in section B.2.

B.1 Acoustic Scattering by a Circular 2-D Cylinder

Consider the linear acoustic scattering of an incoming plane wave by a circular cylinder of

radius a centered at the origin. If the outside medium and the scatterer are characterized

by the wave numbers kout and kin, the scattered velocity potential φ satisfies

∇2φ+ (kin)2φ = 0 (B.1)

and

∇2φ+ (kout)2φ = 0 (B.2)
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inside and outside media, respectively.

Without loss of generality, the incident field is assumed to come from the right due to

the symmetry of the scatterer in θ,

φI = e−jkout·r = ejk
outr cos θ, (B.3)

where kout = (−kout, 0, 0) and r = r(cos θ, sin θ, 0) are used.

B.1.1 Solution to the Scalar Helmholtz Equation

Consider

∇2φ+ k2φ = 0 ⇔ ∂2φ

∂x2
+
∂2φ

∂y2
+ k2φ = 0 (B.4)

for some k. Due to the symmetry of scatterer, it is more convenient to consider (B.4) in

the polar coordinate:
1

r

∂

∂r
(r
∂φ

∂r
) +

1

r2
∂2φ

∂θ2
+ k2φ = 0.

Suppose Rν and Θν are functions of r and θ only, respectively. Using the separation of

variables, RνΘν is a solution, and

1

Rν(r)
[r2
d2Rν(r)

dr2
+ r

dRν(r)

dr
+ k2r2Rν(r)] = − 1

Θν(θ)

d2Θν(θ)

dθ2
= ν2,

where ν = 0, 1, · · · is the separation constant chosen to make Θν periodic in θ. Since all

RνΘν , ν = 0, 1, · · · , are solutions for (B.4), the general solution is

φ(r, θ) =

∞
∑

ν=0

aνRν(r)Θν(θ) (B.5)

for some arbitrary constants aν determined by the boundary condition.

The ordinary differential equation for Θν is

d2Θν(θ)

dθ2
+ ν2Θν(θ) = 0,

and the solution is

Θν(θ) = A′
ν cos(nθ) +B′

ν sin(nθ)

for some constants A′
ν and B′

ν .
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Solving for Rν requires a little more work; the ordinary differential equation for Rν ,

r2
d2Rν(r)

dr2
+ r

dRν(r)

dr
+ (k2r2 − ν2)Rν(r) = 0,

is equivalent to the well-known Bessel differential equation,

w2 d
2Rν(w

k )

dw2
+ w

dRν(w
k )

dw
+ (w2 − ν2)Rν(

w

k
) = 0.

Therefore, Rν can be written as the linear combination of either the first- and second-kind

Bessel functions or the first- and second-kind Hankel functions.

The choice depends on the type of the boundary condition to be considered. For (B.2),

it is more convenient to write Rν in terms of the first- and second-kind Hankel functions:

Rν(
w

kout
) = C ′

νH
(1)
ν (w) +D′

νH
(2)
ν (w)

⇔ Rν(r) = C ′
νH

(1)
ν (koutr) +D′

νH
(2)
ν (koutr)

for some constants C ′
ν and D′

ν . Therefore, the general solution is1

φout(r, θ) =

∞
∑

ν=0

[A′
ν cos(νθ) +B′

ν sin(νθ)][C ′
νH

(1)
ν (koutr) +D′

νH
(2)
ν (koutr)]. (B.6)

The general solution in (B.6) is simplified using the properties of φout. Since φout should

be even in θ and radiate outwards, B′
ν = 0 and C ′

ν = 02. Therefore,

φout(r, θ) =
∞
∑

ν=0

′AνH
(2)
ν (koutr) cos(νθ) (B.7)

with unknown constants Aν , ν = 0, 1, · · · , determined by the boundary condition. The

primed summation means that the first term in the summation is halved.

For (B.1), it is more convenient to write Rν in terms of the first- and second-kind Bessel

functions, and the general solution solution is

φin(r, θ) =

∞
∑

ν=0

[A′
ν cos(νθ) +B′

ν sin(νθ)][E′
νJν(k

inr) + F ′
νNν(kinr)]

1For the convenience of notation, aνA′

ν and aνB′

ν are redefined as A′

ν and B′

ν , respectively.
2This means ejωt convention is used, i.e. ϕ(r, t) = Re{φ(r)ejωt}.
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for some constants E′
ν and F ′

ν , ν = 0, 1, · · · . Since the solution has to be even in θ and

bounded, B′
ν = 0 and F ′

ν = 0. The simpler form of the general solution is

φin(r, θ) =

∞
∑

ν=0

′BνJν(k
inr) cos(νθ)

with unknown constants Bν , ν = 0, 1, · · · , also determined by the boundary condition.

B.1.2 Expansion of φI

Since φ is given in terms of the Bessel functions, φI is expanded in a similar manner. Using

the Jacobi-Anger expansion,

ejz cos θ =
∞
∑

ν=−∞
jνJν(z)ejνθ,

φI(r, θ) =J0(k
outr) + 2

∞
∑

ν=1

jνJν(k
outr) cos(νθ)

=2

∞
∑

ν=0

′jνJν(koutr) cos(νθ).

(B.8)

B.1.3 Sound-Soft Scatterer

The total velocity potential at the surface of a sound-soft scatter is zero [191, 192],

φout(a, θ) = −φI(a, θ)

for 0 ≤ θ ≤ 2π. Using (B.7) and (B.8),

Aν = −2jν
Jν(k

outa)

H
(2)
ν (kouta)

, ν = 0, 1, · · · .

B.1.4 Sound-Hard Scatterer

The normal derivative of the velocity potential at the surface of a sound-hard scatterer is

zero [191, 192],
∂φout

∂r
(a, θ) = −∂φI

∂r
(a, θ)
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for 0 ≤ θ ≤ 2π. Using the derivatives of (B.7) and (B.8)3,

∂φout

∂r
(r, θ) = kout

∞
∑

ν=0

′AνH
(2)
ν

′
(koutr) cos(νθ) (B.9)

and
∂φI

∂r
(r, θ) = 2kout

∞
∑

ν=0

′jνJ ′
ν(k

outr) cos(νθ), (B.10)

the coefficients are

Aν = −2jν
J ′

ν(k
outa)

H
(2)
ν

′
(kouta)

, ν = 0, 1, · · · .

B.1.5 Transparent Scatterer

The boundary condition for a transparent scatter is the continuity of velocity potential,

φin(a, θ) = φout(a, θ) + φI(a, θ),

and the jump in the normal derivative of the velocity potential,

αin∂φ
in

∂n̂
(a, θ) = αout[

∂φout

∂n̂
(a, θ) +

∂φI

∂n̂
(a, θ)]

with some αin and αout [191, 192]. Using (B.9), (B.10), and

∂φin

∂r
(r, θ) = kin

∞
∑

ν=0

′BνJ
′
ν(k

inr) cos(νθ),

the coefficients can be found from





H
(2)
ν (kouta) −Jν(k

ina)

αoutkoutH
(2)
ν

′
(kouta) −αinkinJ ′

ν(k
ina)









Aν

Bν



 = −2jν





Jν(k
outa)

αoutkoutJ ′
ν(kouta)



 .

3The derivatives can be evaluated from (9.1.27) of [109], which translates to

J ′

ν(z) = Jν−1(z) −
ν

z
Jν(z)

H(2)
ν

′

(z) = H
(2)
ν−1(z) −

ν

z
H(2)

ν (z).
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The solutions are simplified to more meaningful forms. Starting from Aν ,

Aν = − 2jν
αoutkoutJν(k

ina)J ′
ν(kouta) − αinkinJν(k

outa)J ′
ν(kina)

αoutkoutJν(kina)H
(2)
ν

′
(kouta) − αinkinH

(2)
ν (kouta)J ′

ν(kina)

= − 2jν
αoutkoutJν(k

ina)J ′
ν(kouta)

Jν(kouta) − αinkinJ ′
ν(kina)

αoutkoutJν(kina)H
(2)
ν

′

(kouta)

H
(2)
ν (kouta)

− αinkinJ ′
ν(k

ina)

Jν(k
outa)

H
(2)
ν (kouta)

= − 2jν
αoutkout J ′

ν(kouta)
Jν(kouta) − αinkin J ′

ν(kina)
Jν(kina)

αoutkout H
(2)
ν

′

(kouta)

H
(2)
ν (kouta)

− αinkin J ′
ν(kina)

Jν(kina)

Jν(kouta)

H
(2)
ν (kouta)

for ν = 0, 1, · · · . Similarly,

Bν = − 2jν
αoutkoutH

(2)
ν (kouta)J ′

ν(kouta) − αoutkoutJν(kouta)H
(2)
ν

′
(kouta)

αoutkoutJν(kina)H
(2)
ν

′
(kouta) − αinkinH

(2)
ν (kouta)J ′

ν(kina)

= − 2jν
αoutkoutJ ′

ν(kouta) − αoutkoutJν(kouta)H
(2)
ν

′

(kouta)

H
(2)
ν (kouta)

αoutkoutJν(kina)H
(2)
ν

′

(kouta)

H
(2)
ν (kouta)

− αinkinJ ′
ν(kina)

= − 2jν
αoutkout J ′

ν(kouta)
Jν(kouta) − αoutkout H

(2)
ν

′

(kouta)

H
(2)
ν (kouta)

αoutkout H
(2)
ν

′

(kouta)

H
(2)
ν (kouta)

− αinkin J ′
ν(kina)

Jν(kina)

Jν(k
outa)

Jν(kina)

for ν = 0, 1, · · · .

B.2 Electromagnetic Scattering by a Circular 2-D Cylinder

Consider the electromagnetic scattering of an incoming plane wave by a circular cylinder

of radius a centered at the origin. As explained in subsection 2.1.1, solving the Maxwell’s

equation for 2-D problems is equivalent to solving two scalar Helmholtz equations. They

are (B.1) and (B.2) with Ez instead of φ for the E-polarization and with Hz for the H-

polarization.

The inside and outside media are characterized by (kin, ηin), and (kout, ηout), respectively.

The wavenumber k and the intrinsic impedance η are given by

k = ω
√
ǫµ
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and

η =

√

µ

ǫ
,

where ǫ and µ are the permittivity and permeability of the medium, and ω is the angular

frequency.

Similar to acoustic scattering, the incident field is assumed to come from the right.

Then, EI = (0, EI,y, EI,z) is

EI,y =E0
I e

jkoutr cos θ

EI,z =ejk
outr cos θ.

for some given complex constant E0
I , and HI is completely determined by the Maxwell’s

equations in (2.1): HI = (0,HI,y,HI,z) with

HI,y =
1

ηout
ejk

outr cos θ

HI,z = − E0
I

ηout
ejk

outr cos θ.

B.2.1 Solutions to the Scalar Helmholtz Equations

Consider the E-polarization. From the analysis in subsection B.1.1, the general solutions

to (B.1) and (B.2) with Ez instead of φ for a cylindrical scatterer are

Eout
z (r, θ) =

∞
∑

ν=0

′CνH
(2)
ν (koutr) cos(νθ)

Ein
z (r, θ) =

∞
∑

ν=0

′DνJν(kinr) cos(νθ)

(B.11)

where Cν and Dν , ν = 0, 1, · · · , are unknown constants determined by the boundary condi-

tion.

The corresponding magnetic field can be found from the Maxwell’s equations. Since the

scatterer is a cylinder, the cylindrical coordinate representation of the curl operator gives

the tangential components directly:

∇× f = [
1

r

∂fz

∂θ
− ∂fθ

∂z
]r̂ + [

∂fr

∂z
− ∂fz

∂r
]θ̂ +

1

r
[
∂

∂r
(rfθ) −

∂fr

∂θ
]ẑ
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for some vector valued function f = (fr, fθ, fz).

Hence,

Hr =
−1

jkηr

∂Ez

∂θ

Hθ =
1

jkη

∂Ez

∂r
,

(B.12)

and the term-by-term differentiation of (B.11) gives

Hout
r (r, θ) =

−j
koutηout

∞
∑

ν=1

νCν
H

(2)
ν (koutr)

r
sin(νθ)

H in
r (r, θ) =

−j
kinηin

∞
∑

ν=1

νDν
Jν(kinr)

r
sin(νθ)

and

Hout
θ (r, θ) =

−j
ηout

∞
∑

ν=0

′CνH
(2)
ν

′
(koutr) cos(νθ)

H in
θ (r, θ) =

−j
ηin

∞
∑

ν=0

′DνJ
′
ν(kinr) cos(νθ).

The H-polarization works in a similar way. The general solutions for a circular scatterer

are

Hout
z (r, θ) =

∞
∑

ν=0

′EνH
(2)
ν (koutr) cos(νθ)

H in
z (r, θ) =

∞
∑

ν=0

′FνJν(k
inr) cos(νθ)

where Eν and Fν , ν = 0, 1, · · · , are unknown constants determined by the boundary condi-

tion. From

Er =
η

jkr

∂Hz

∂θ

Eθ =
−η
jk

∂Hz

∂r
,

(B.13)

120



the corresponding electric fields are

Eout
r (r, θ) =

jηout

kout

∞
∑

ν=1

νEν
H

(2)
ν (koutr)

r
sin(νθ)

Ein
r (r, θ) =

jηin

kin

∞
∑

ν=1

νFν
Jν(kinr)

r
sin(νθ)

and

Eout
θ (r, θ) =jηout

∞
∑

ν=0

′EνH
(2)
ν

′
(koutr) cos(νθ)

Ein
θ (r, θ) =jηin

∞
∑

ν=0

′FνJ
′
ν(kinr) cos(νθ).

B.2.2 Expansion of EI and HI

In order to enforce boundary conditions at the surface of the cylindrical scatterer, the

tangential fields at the surface has to be expanded in terms of Bessel functions. Following

the idea in subsection B.1.2, the z-components of the fields are

EI,z(r, θ) = 2

∞
∑

ν=0

′jνJν(k
outr) cos(νθ)

for the E-polarization and

HI,z(r, θ) = −2E0
I

ηout

∞
∑

ν=0

′jνJν(koutr) cos(νθ)

for the H-polarization. Using (B.12) and (B.13), the corresponding θ-components of the

fields are

HI,θ(r, θ) =
−2j

ηout

∞
∑

ν=0

′jνJ ′
ν(koutr) cos(νθ)

and

EI,θ(r, θ) = −2jE0
I

∞
∑

ν=0

′jνJ ′
ν(koutr) cos(νθ).
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B.2.3 Perfectly Electrically Conducting Scatterer

The tangential electric field on the surface of a perfectly electrically conducting scatterer is

zero. For the E-polarization, this means

Eout
z (a, θ) = −EI,z(a, θ),

and

Cν = −2jν
Jν(k

outa)

H
(2)
ν (kouta)

, ν = 0, 1, · · ·

The result is identical to that of the acoustically sound-soft scattering in subsection B.1.3.

For the H-polarization, the boundary condition translates to

Eout
θ (a, θ) = −EI,θ(a, θ),

and

Eν =
2E0

I j
ν

ηout

J ′
ν(k

outa)

H
(2)
ν

′
(kouta)

, ν = 0, 1, · · · ,

which is evaluated by scaling the acoustically sound-hard scattering result in subsection B.1.4

by −E0
I /η

out.

B.2.4 Dielectric Scatterer

The boundary condition for dielectric scatterers is the continuity of the tangential electric

and magnetic fields. For the E-polarization, this means

Eout
z (a, θ) + EI,z(a, θ) =Ein

z (a, θ)

Hout
θ (a, θ) +HI,θ(a, θ) =H in

θ (a, θ)

or





H
(2)
ν (kouta) −Jν(k

ina)

1
ηoutH

(2)
ν

′
(kouta) − 1

ηinJ
′
ν(kina)









Cν

Dν



 = −2jν





Jν(kouta)

1
ηoutJ

′
ν(kouta)



 ,
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and the solution is

Cν = −2jν
1

ηout
J ′

ν(kouta)
Jν(kouta) − 1

ηin
J ′

ν(kina)
Jν(kina)

1
ηout

H
(2)
ν

′

(kouta)

H
(2)
ν (kouta)

− 1
ηin

J ′
ν(kina)

Jν(kina)

Jν(k
outa)

H
(2)
ν (kouta)

and

Dν = −2jν
1

ηout
J ′

ν(kouta)
Jν(kouta) − 1

ηout
H

(2)
ν

′

(kouta)

H
(2)
ν (kouta)

1
ηout

H
(2)
ν

′

(kouta)

H
(2)
ν (kouta)

− 1
ηin

J ′
ν(kina)

Jν(kina)

Jν(k
outa)

Jν(kina)

for ν = 0, 1, · · · . These values are evaluated from the acoustically transparent scattering

result in subsection B.1.5 using αout = 1/(koutηout) and αin = 1/(kinηin).

For the H-polarization, the boundary condition translates to

Hout
z (a, θ) +HI,z(a, θ) =H in

z (a, θ)

Eout
θ (a, θ) + EI,θ(a, θ) =Ein

θ (a, θ)

or





H
(2)
ν (kouta) −Jν(kina)

ηoutH
(2)
ν

′
(kouta) −ηinJ ′

ν(k
ina)









Eν

Fν



 =
2E0

I j
ν

ηout





Jν(k
outa)

ηoutJ ′
ν(kouta)



 ,

and the solution is

Eν =
2E0

I j
ν

ηout

ηout J ′
ν(kouta)

Jν(kouta) − ηin J ′
ν(kina)

Jν(kina)

ηout H
(2)
ν

′

(kouta)

H
(2)
ν (kouta)

− ηin J ′
ν(kina)

Jν(kina)

Jν(k
outa)

H
(2)
ν (kouta)

and

Fν =
2E0

I j
ν

ηout

ηout J ′
ν(kouta)

Jν(kouta) − ηout H
(2)
ν

′

(kouta)

H
(2)
ν (kouta)

ηout H
(2)
ν

′

(kouta)

H
(2)
ν (kouta)

− ηin J ′
ν(kina)

Jν(kina)

Jν(kouta)

Jν(kina)

for ν = 0, 1, · · · . Again, these values are evaluated from the acoustically transparent scat-

tering results in subsection B.1.5 using αout = ηout/kout and αin = ηin/kin and scaling the

result by −E0
I /η

out.
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