Algorithms, Implementation
and Applications of pFFT++:
Overview

Zhenhai Zhu
RLE Computational prototyping group, MIT
www.mit.edu/people/zhzhu/pfft.html

Qutline

Brief introduction to fast IE solver
FFT-based methods

What pFFT++ does

Project hierarchy of pFFT++

Main classes of pFFT++

User interface of pFFT++

Integral Equation Method

A simpleintegral equation.
CHSK(r,rgr (r§=f(r), rl

iklr-r¢
K(F.rg=— " ©
\r - r¢ r-r¢

Proj ect the solution on a functional space:

r(F9=8a,b,(r9, B, =span(b,(r9)

Integral Equation Method

Residual:

e, (F) = (PISK (7, F9r ,(FY- f ()

Enforcetheresdual to be orthogonal to
another functional space:

(t;(r),e,(r)) =0, T, =span(t;(F))

A denselinear system: Aa = f

Some very useful applications

Electrostatic analysis Magneto-quasi-static analysis
to computethe to compute impedance
capacitance

= BEM Front End, version 1.0 control30.sim (==
|FHE Edit View Analy:

Help

Figures thank to Coventor

File name: controi30.sim - Simulation: computation] — Visible: Surface; Qinfo

Some very useful applications

EMQSanalysis. coupling and resonance
Fullwave analysis. radiation

Some very useful applications

Computational Stokes Flow Solver
Aerodynamics Viscous drag
Gimbal
M{rror
"l
Picture thanks to David Picturethanksto

Joe Willis Xin Wang

Recipe for
A Fast Integral Equation Solver

 An iterative solver
= nodense LU factorization (O(N3))
e A pre-conditioner (A sparse matrix solver)
= Minimize number of iterations
e A matrix vector product accelerator
= avoid filling the whole matrix which needs
O(N?) memory and O(N?%) CPU time

Fast Matrix-Vector Product

Themost expensive step:.

AX

Goal:

O(N°) P O(N) or O(Nlog(N))

Well-known Fast Algorithms

 Fast Multiple Method
 Hierarchical SVD
 Panel Clustering Method

Key idea:
Interaction matrix islow rank

Kernel “Independent” Technique

Basic requirements:
Reciprocity: G(r,r9 =G(re¢r)
Shift invariance: G(F +ar,r&+ar) =G(r,rd

Commonly used Green’sfunction all satisfy
these requirements

1 eik\r-r¢ q 1 q eik\r-rgt
r-r¢ |r-r¢ qn (\r- r¢)’ n (\r- r¢)

FFT-based Method

Key idea: kerne isshift-invariant
G(F,Fr) =G(r - r¢0) = G(r - 19

A simple example:

[T [T T T T []
CHSG(r,r9r (rg=f(r), rl S

Ha="f

FFT-based Method

|f collocation method with constant basisis used
and all panelsare identical

H, = (\) dS@(ri_ FTQ
panel;

OnlyH,; (j =12,...,N) areunique. H isa Toeplitz
matrix. Matrix vector product could be computed
using FFT in O(Nlog(N)) time.

Operations: O(Nlog(N)) Memory: O(N)

Separation of Regular Grid From

VAV
N

NVAN .
SXE

i YA v v
===

s A

Discretization Panels

AN A AL
S\

PFFT Algorithm:

Basic steps
(1) Project: Q, =[Pl
.\(1) /0 9 L B B
| /%\. | . (2) Convalve: f ; = [H]Qg
*(4) 2) _ _
‘ (3) Interpolate: Y :[I]fg
(4) Direct: Y, =D&

Y =Y, +Y,=(D]+[1][H]P)a

PFFT Algorithm:
Basic Idea

A sparse representation
of the system matrix

[Aly, n, =[DIn, n, [, n, [HIn, n, [Pl n,
O(N,") O(N,) O(N,) O(N,log(N)) O(N,)
O(N,") O(N,) O(N,) O(Ny) O(N,)

Application: Fastimp
16 x 8 3-turn spiral array

180k panels, 1.44 million unknowns, grid 256 x 128 x 8

Fastimp: 11.7 hours, 11.9 Gb

Application: Fastimp
MIT logo with 123 3-turn spirals

173k panels, 1.38 million unknowns, grid 1024 x 256 x 8

Fastimp: 14.2 hours, 11.8 Gb

Breakdown of CPU time (seconds)

MIT logo 16x8 array
P and | matrices 890 746
D and H matrices 13638 14353
Form the preconditioner P, 54 53
LU factorization of P, 1512 1927
GMRES (tol=1e-3) 32424 (77 iter) | 25168 (80 iter)
total 51244 42247

Notice the difference in GMRES is only about 25%,
small considering the grid size is different by a factor of 8.

Breakdown of Memory (MDb)

MIT logo 16x8 array
Direct matrix 5.17 5.54
Projection matrix 0.38 0.39
Interpolation matrix 0.22 0.23
Convolution matrix 0.68 0.13
Maps between grids and panels 0.65 0.70
Pre-conditioner 2.72 2.76
GMRES 2.03 2.21
total 11.85 11.96

Notice the difference in convolution matrix 1S consistent
with the difference in grid size

Project hierarchy of pFFT++

| pfft++

Interface header file, template codes
Example drivers

Library binary pfft.o, clapack.a

Documentations

Main classes of pFFT++

Level 1 Level 2 Level 3 Level 4
. TNT:Matrix, Vector |
Stencil
Cubaturel
| I nter pM at SpRowM at clapack |

| ProjectMat SpColMat SpVec |'—‘| SpVecElement
Pfft

| DirectM at G2GUnion I—l Gridlndexl

Kernellntegration |

| GridData

Fast3DConv [— FFTW |

| Element

Vector 3D |

| GridEIementl

Accessory classes of pFFT++

Discr etization
» element
Kernels
« EIkKrOverR OneOverR EkrOverR
Panel integration
» StaticCollocation FullwaveCollocation
| ter ative solver
gmres
Pre-conditioner
SuperLU

Spare matrix classese

Sparse matrix isextensively used in pFFT++.
It Is one of the building blocks.

e Compressed Column format
1 see spColMat.h

e Compressed row format
d see spRowMat.h

User interface of pFFT++

See pfft++/test/driver1.cc
See pfft++/test/driver2.cc
See pfft++/test/driver3.cc

Demo of threedrivers

Today's Goals

e Download
« Compile
e Run three drivers

e Write a simple driver of your
own for atwo kernel case

dG(r,r9

isEa(r o (r rg
o an e

Next

e Algorithms: Projection and
Interpolation

 Implementation: projectMat.h
and interpMat.h

