
1

Algorithms, Implementation Algorithms, Implementation
and Applications of and Applications of pFFTpFFT++: ++:

OverviewOverview

Zhenhai Zhu
RLE Computational prototyping group, MIT

www.mit.edu/people/zhzhu/pfft.html

•• Brief introduction to fast IE solverBrief introduction to fast IE solver
•• FFTFFT--based methodsbased methods
•• What What pFFTpFFT++ does++ does
•• Project hierarchy of Project hierarchy of pFFTpFFT++++
•• Main classes of Main classes of pFFTpFFT++++
•• User interface of User interface of pFFTpFFT++++

OutlineOutline

Integral Equation MethodIntegral Equation Method

SrrfrrrKSd
S

∈=′′′∫
vvvvv

),()(),(ρ

A simple integral equation:A simple integral equation:

)(span ,)()(
1

rbBrbr jn

n

j
jjn ′=′=′ ∑

=

vvv
αρ

Project the solution on a functional space:Project the solution on a functional space:

1
(,) ,

i k r re
K r r

r r r r

′−

′ =
′ ′− −

v v
v v v v v v

Integral Equation MethodIntegral Equation Method

)(span ,0)(e),(n rtTrrt ini
vvv ==

Enforce the residual to be orthogonal toEnforce the residual to be orthogonal to
another functional space:another functional space:

fA =αA dense linear system:A dense linear system:

)()(),()(e n rfrrrKSdr
S

n
vvvvv

−′′′= ∫ ρ

Residual:Residual:

Some very useful applicationsSome very useful applications

Figures thank to Figures thank to CoventorCoventor

Electrostatic analysis
to compute the
capacitance

Magneto-quasi-static analysis
to compute impedance

Some very useful applicationsSome very useful applications

Courtesy of Harris semiconductor

EMQS analysis: coupling and resonance
Fullwave analysis: radiation

2

© Carleton University Hammerhead UAV
Project, 2000, David Willis

Picture thanks to David
Joe Willis

Some very useful applicationsSome very useful applications

Computational
Aerodynamics

Mirror
Gimbal

Rotate

Picture thanks to
Xin Wang

Stokes Flow Solver
Viscous drag

Recipe for Recipe for
A Fast Integral Equation SolverA Fast Integral Equation Solver

•• An iterative solverAn iterative solver
§§ no no dense LU factorization (O(N3))

•• A preA pre--conditioner (A sparse matrix solver)conditioner (A sparse matrix solver)
§§ Minimize number of iterationsMinimize number of iterations

•• A matrix vector product acceleratorA matrix vector product accelerator
§§ avoid filling the whole matrix which needs avoid filling the whole matrix which needs

O(O(NN22) memory and O() memory and O(NN22) CPU time) CPU time

Fast MatrixFast Matrix--Vector ProductVector Product

The most expensive step:The most expensive step:

Ax
Goal:

2() () or (log())O N O N O N N⇒

WellWell--known Fast Algorithmsknown Fast Algorithms

•• Fast Multiple Method Fast Multiple Method
•• Hierarchical SVDHierarchical SVD
•• Panel Clustering MethodPanel Clustering Method

Key idea:
interaction matrix is low rank

Kernel “Independent” TechniqueKernel “Independent” Technique

Basic requirements:

Reciprocity: (,) (,)G r r G r r′ ′=v v v v

Commonly used Green’s function all satisfy
these requirements

1 1
, , (), ()

n n

i k r r i k r re e
r r r r r r r r

′ ′− −∂ ∂
′ ′ ′ ′− − ∂ − ∂ −

v v v v

v v v v v v v v

Shift invariance: (,) (,)G r r r r G r r′ ′+ + =
v v v v v vV V

FFTFFT--based Methodbased Method

(,) () (),
S

d S G r r r f r r Sρ′ ′ ′ = ∈∫ v v v v v

(,) (,0) ()G r r G r r G r r′ ′ ′= − = −v v v v v v%
Key idea: kernel is shift-invariant

A simple example:

H fα =

3

FFTFFT--based Methodbased Method

, ()
j

i j i j
panel

H dSG r r′ ′= −∫ v v%

1,Only (1,2,...,) are unique. H is a Toeplitz

matrix. Matrix vector product could be computed
using FFT in O(log()) time.

jH j N

N N

=

Operations: Operations: O(O(NNlog(log(NN)))) Memory: O(Memory: O(NN))

If collocation method with constant basis is used
and all panels are identical

Separation of Regular Grid From Separation of Regular Grid From
DiscretizationDiscretization PanelsPanels

pFFTpFFT Algorithm:Algorithm:
Basic stepsBasic steps

(1)

(2)

(3)

(4)

[]αPQg = :Project (1)

[]αDd =Ψ :Direct (4)

[] gg I φ=Ψ :eInterpolat (3)

[] gg QH=φ :Convolve (2)

[] [][][] α)(PHIDdg +=Ψ+Ψ=Ψ

pFFTpFFT Algorithm:Algorithm:
Basic IdeaBasic Idea

bggggbbbbb NNNNNNNNNN PHIDA ××××× +=][][][][][

A sparse representation A sparse representation
of the system matrixof the system matrix

)())log(()()()(2
bggbbb NONNONONONO

2() () () () ()b b b g bO N O N O N O N O N

Application: Application: FastImpFastImp
16 x 8 316 x 8 3--turn spiral arrayturn spiral array

180k panels, 1.44 million unknowns, grid 256 x 128 x 8

FastImp: 11.7 hours, 11.9 Gb

Application: Application: FastImpFastImp
MIT logo with 123 3MIT logo with 123 3--turn spiralsturn spirals

173k panels, 1.38 million unknowns, grid 1024 x 256 x 8

FastImp: 14.2 hours, 11.8 Gb

4

Breakdown of CPU time (seconds)Breakdown of CPU time (seconds)

42247422475124451244totaltotal

25168 (80 25168 (80 iteriter))32424 (77 32424 (77 iteriter))GMRES (GMRES (toltol=1e=1e--3)3)

1927192715121512LU factorization of LU factorization of PPrr

53535454Form the Form the preconditionerpreconditioner PPrr

14353143531363813638DD and and HH matricesmatrices

746746890890PP and and II matricesmatrices

16x8 array16x8 arrayMIT logoMIT logo

Notice the difference in GMRES is only about 25%,
small considering the grid size is different by a factor of 8.

Breakdown of Memory (Mb)Breakdown of Memory (Mb)

Notice the difference in convolution matrix is consistent
with the difference in grid size

11.9611.9611.8511.85totaltotal
2.212.212.032.03GMRESGMRES

2.762.762.722.72PrePre--conditionerconditioner
0.700.700.650.65Maps between grids and panelsMaps between grids and panels

0.130.130.680.68Convolution matrixConvolution matrix

0.230.230.220.22Interpolation matrixInterpolation matrix

0.390.390.380.38Projection matrixProjection matrix

5.545.545.175.17Direct matrixDirect matrix

16x8 array16x8 arrayMIT logoMIT logo

Project hierarchy of Project hierarchy of pFFTpFFT++++

pfft++

src

inc

test

lib

Interface header file, template codes

Source codes

Example drivers

Library binary pfft.o, clapack.a

doc Documentations

Main classes of Main classes of pFFTpFFT++++

Pfft

InterpMat

ProjectMat

DirectMat

GridData

Grid

Element

GridElement

SpRowMat

SpColMat

Stencil

Vector3D

Fast3DConv

G2GUnion

FFTW

SpVec SpVecElement

TNT:Matrix, Vector

Cubature

clapack

GridIndex

Level 1 Level 2 Level 3

KernelIntegration

Level 4

Accessory classes of Accessory classes of pFFTpFFT++++

• Discretization
v element

• Kernels
v EikrOverR OneOverR EkrOverR

• Panel integration
v StaticCollocation FullwaveCollocation

• Iterative solver
v gmres

• Pre-conditioner
v SuperLU

Spare matrix Spare matrix classeseclassese

• Compressed Column format
q see spColMat.h

• Compressed row format
q see spRowMat.h

Sparse matrix is extensively used in pFFT++.
It is one of the building blocks.

5

User interface of User interface of pFFTpFFT++++

See pfft++/test/driver1.cc

See pfft++/test/driver2.cc

See pfft++/test/driver3.cc

Demo of three drivers

•• Download Download
•• CompileCompile
•• Run three driversRun three drivers
•• Write a simple driver of your Write a simple driver of your

own for a two kernel caseown for a two kernel case

Today’s GoalsToday’s Goals

∫

 ′
′

′
+′′′

S

r
rdn

rrdG
rrrGSd)(

)(
),(

)(),(vv
vvvvv σρ

•• Algorithms: Projection and Algorithms: Projection and
InterpolationInterpolation

•• Implementation: Implementation: projectMat.hprojectMat.h
and and interpMat.hinterpMat.h

NextNext

