Algorithms, Implementation and Applications of pFFT++: More on projection and interpolation

Zhenhai Zhu
RLE Computational prototyping group, MIT
www.mit.edu/people/zhzhu/pfft.html

Outline

- Error bound
- Loss of accuracy in doublelayer potential
- Consistent polynomials
- Compact stencil
- Selection of three stencil sizes
- Implementation details

1D polynomial fit

Suppose the function is

$$f(x) = \frac{1}{x}$$

Using a second-order polynomial to interpolate around x_0 , the <u>relative</u> error is

$$e \approx \left(\frac{h}{x_0}\right)^3$$

where h is the uniform grid spacing.

See "Introduction to numerical analysis" by Stoer and Bulirsch

1D polynomial fit

Error bound in pfft++:

Two factors in determining the error:

- 1. Direct stencil size

 Larger size means more interactions are calculated directly and larger distance to non-neighbor elements.
- 2. Interpolation and projection size Higher order means lower interpolation error.

Error bound in pfft++: Truncation error

Suppose we only keep the direct interaction and ignore far field completely, i.e. let [A] = [D]. We effectively truncate the system matrix.

Error bound in pfft++: 3D interpolation error

Given (x_l, y_l, z_l) and $f_l = f(x_l, y_l, z_l)$, use n-th order polynomial to approximate f(x,y,z)

$$P_n(x, y, z) = \sum_{m=0}^{n} \sum_{i=0}^{m} \sum_{j=0}^{m-i} C_{ij} x^i y^j z^{m-i-j}$$

Let

$$F(x, y, z) = f(x, y, z) - P_n(x, y, z) - \mathbf{w}_{n+1}(x, y, z)$$

where

$$\mathbf{W}_{n+1}(x, y, z) = \sum_{i=0}^{n+1} \sum_{j=0}^{n+1-i} k_{ij} (x - x_l)^i (y - y_l)^j (z - z_l)^{n+1-i-j}$$

is the leading error term

Error bound in pfft++: 3D interpolation error

For 1/r kernel, the leading term in error is

$$\frac{1}{r} \left(\frac{h}{r} \right)^{n+1} \sum_{i=0}^{n+1} \sum_{j=0}^{n+1-i} \left(\frac{\partial r}{\partial x} \right)^{i} \left(\frac{\partial r}{\partial y} \right)^{j} \left(\frac{\partial r}{\partial z} \right)^{n+1-i-j}$$

So the relative error is $e \approx \left(\frac{h}{r_0}\right)^{n+1}$

where h is the uniform grid spacing and r_0 is the distance between the source and the evaluation point.

Derivation shown with chalk and board

Error bound in pfft++

Loss of Accuracy in double-layer potential

	P = 3	<i>P</i> = 5	<i>P</i> = 7
1/r	8.4e-5	1.3e-6	4.3e-9
$\frac{\partial}{\partial n} \frac{1}{r}$	8.5e-3	1.1e-4	8.4e-7
e^{ikr}/r kR = 1.1e-9	8.3e-5	1.3e-6	1.7e-9
$\frac{\partial}{\partial n} e^{ikr} / kR = 1.1e-9$	6.0e-3	7.5e-5	5.9e-7
e^{ikr}/r $kR = 11.1$	4.9e-4	1.1e-5	4.0e-7
$\frac{\partial}{\partial n} e^{ikr} / kR = 11.1$	1.4e-2	2.8e-4	6.5e-6

Reminder of Interpolation Algorithm

Given \overline{f}_g

Compute f(x, y)

Reminder of Interpolation Algorithm

$$\mathbf{f}(x,y) = \sum_{k} c_{k} f_{k}(x,y) = \overline{f}^{t}(x,y) \overline{c}$$

An example of $f_k(x, y)$:

$$1, x, x^2, y, xy, x^2y, y^2, xy^2, x^2y^2$$

Reminder of Interpolation Algorithm

If the kernel has a differential operator outside:

$$\frac{\partial}{\partial n(\vec{r})} \int_{S} dS' G(\vec{r}, \vec{r}') \mathbf{r}(\vec{r}')$$

The operator works on the interpolation

$$\frac{\partial}{\partial n(\vec{r})} \mathbf{f}(\vec{r}) = \frac{\partial}{\partial n(\vec{r})} \overline{f}^{t}(\vec{r}) F^{-1} \overline{\mathbf{f}}_{g}$$

Loss of Interpolation Order

$$\frac{\partial \overline{f}^{t}}{\partial n} = n_{x} \frac{\partial \overline{f}^{t}}{\partial x} + n_{y} \frac{\partial \overline{f}^{t}}{\partial y}$$

$$\overline{f}^{t} = 1, x, x^{2}, y, xy, x^{2}y, y^{2}, y^{2}x, y^{2}x^{2}$$

$$\frac{\partial \overline{f}^{t}}{\partial x} = 0, 1, 2x, 0, y, 2xy, 0, y^{2}, 2y^{2}x$$

$$\frac{\partial \overline{f}^{t}}{\partial y} = 0, 0, 0, 1, x, x^{2}, 2y, 2yx, 2yx^{2}$$

We automatically lose interpolation order. This is why double-layer is less accurate.

Loss of Interpolation Order

- Double-layer still has reasonable accuracy because of smoothness of far field.
- We can simply increase interpolation order to compensate the loss of degree in derivative
- But stencil size grows exponentially

order	2	4	6
# monomials	27	125	343
# stencil grid points	27	125	343

Consistent Polynomials

Suppose the highest order is n, using consistent polynomial, we have

$$\mathbf{f}(x, y, z) = \sum_{m=0}^{n} \sum_{i=0}^{m} \sum_{j=0}^{m-i} c_{ijk} x^{i} y^{j} z^{m-i-j}$$

total number of terms = (n+1)(n+2)(n+3)/6

n	2	4	6
# monomials	10	35	84

Compact Stencil

Number of interpolation terms is much fewer than number of regular interpolation or projection stencil points. We have a least square problem

$$[F]_{n_s \times n_p}^{-1}$$

where n_s is number of stencil points and n_p is number of monomials. We could pick points from regular stencil points. Many options are possible.

Compact Stencil: 2D Example

Union of points equal distance from the origin of the interpolation stencil

Cube stencil =
$$S_0 \cup S_1 \cup \frac{1}{2} S_2$$

Compact stencil = $S_0 \cup S_1 \cup S_2$

 S_0 : 1 solid dot

 S_1 : 4 solid squares

S₂: 8 empty diamonds

New Interpolation Scheme

- Same order of accuracy but with much fewer monomials and stencil points.
- Particularly useful for high-order interpolation

order	2	4
# monomials	27	35 (consistent)
# stencil grid points	27	57

Compact stencil S_{012345} is used here.

Selection of Three Stencil Sizes

- Increase of direct stencil size is not cost effective
 - □ accuracy improves slowly
 - \square density of [D] increases relatively fast
- Increase of interpolation or projection stencil size improves accuracy exponentially.
 - ☐ Consistent polynomial makes the cost low
- There exists a constrain on these three stencil sizes.

Selection of Three Stencil Sizes

points shared by projection and interpolation stencil, corresponding entries in [H] are zero!

- Center of direct and projection stencil
- Center of interpolation stencil

Selection of Three Stencil Sizes

To make sure interpolation and projection Stencil don't touch, enforce

<u>directStencilSize >= projectStencilSize + interpStencilSize</u>

Selection of Three Stencil Sizes: rule of thumb

Single-layer

- \gt 3-4 digit: I=P=1, D=2
- > 4-5 digit: I=P=1, D=3
- > 5-6 digit: I=P=2, D=4
- Double-layer
 - > 2-3 digit: I=P=1, D=3
 - > 4-5 digit: I=P=2, D=4
 - \gt 5-6 digit: I=P=2, D=5 or 6
- pfft++ supports I=P=3, but try not to use it. It is too costly.

Numerical Experiments

On the surface of a sphere with radius R

$$\int_{S} dS' K(\vec{r}, \vec{r}') \, \mathbf{r}(\vec{r}') \Rightarrow Ax$$

Let x be a random vector

$$y_1 = Ax$$
 $y_2 = pfft(x)$
 $error = \frac{\|y_1 - y_2\|_2}{\|y_1\|_2}$

New Accuracy in double-layer potential

	<i>I=P</i> = 1,	<i>I=P</i> =2, D=4
	D=3	(Consistent poly)
$\frac{1}{r}$	8.4e-5	1.3e-6
$\frac{\partial}{\partial n} \frac{1}{r}$	8.5e-3	3e-4
$e^{ikr}/r kR = 11.1$	4.9e-4	1.1e-5
$\frac{\partial}{\partial n} e^{ikr} / kR = 11.1$	1.4e-2	6.2e-4

Implementation: Source codes

- See stencil.cc
- See pfft.h

Next Lecture

- Direct matrix and precorrection
- Grid selection