Algorithms, Implementation and Applications of pFFT++: More on projection and interpolation

Zhenhai Zhu

RLE Computational prototyping group, MIT www.mit.edu/people/zhzhu/pfft.html

Outline

• **Error bound**

- **Loss of accuracy in doublelayer potential**
- **Consistent polynomials**
- **Compact stencil**
- **Selection of three stencil sizes**
- **Implementation details**

1D polynomial fit

1

3

Suppose the function is

x **Using a second-order polynomial to interpolate** around x_{θ} , the <u>relative</u> error is

=

$$
e \approx \left(\frac{h}{x_0}\right)
$$

 $f(x)$

where *h* **is the uniform grid spacing.**

See "Introduction to numerical analysis" by Stoer and Bulirsch

1D polynomial fit

Two factors in determining the error: 1. Direct stencil size

Larger size means more interactions are calculated directly and larger distance to non-neighbor elements.

2. Interpolation and projection size Higher order means lower interpolation error.

Error bound in pfft++: Truncation error

Suppose we only keep the direct interaction and ignore far field completely, i.e. let [*A***] = [***D***]. We effectively truncate the system matrix.**

Error bound in pfft++: 3D interpolation error

Given (x_l, y_l, z_l) and $f_l = f(x_l, y_l, z_l)$, use *n*-th **order polynomial to approximate** $f(x, y, z)$

$$
P_n(x, y, z) = \sum_{m=0}^{n} \sum_{i=0}^{m} \sum_{j=0}^{m-i} C_{ij} x^i y^j z^{m-i-j}
$$

Let

$$
F(x, y, z) = f(x, y, z) - P_n(x, y, z) - W_{n+1}(x, y, z)
$$

where

$$
\mathbf{W}_{n+1}(x, y, z) = \sum_{i=0}^{n+1} \sum_{j=0}^{n+1-i} k_{ij} (x - x_i)^i (y - y_i)^j (z - z_i)^{n+1-i-j}
$$

is the leading error term

Error bound in pfft++: 3D interpolation error

For 1/r kernel, the leading term in error is

$$
\frac{1}{r} \left(\frac{h}{r}\right)^{n+1} \sum_{i=0}^{n+1} \sum_{j=0}^{n+1-i} \left(\frac{\partial r}{\partial x}\right)^i \left(\frac{\partial r}{\partial y}\right)^j \left(\frac{\partial r}{\partial z}\right)^{n+1-i-j}
$$

So the relative error is $e \approx \left(\frac{h}{r_0}\right)^{n+1}$

where h is the uniform grid spacing and r_{θ} is **the distance between the source and the evaluation point.**

Derivation shown with chalk and board

Error bound in pfft++

Loss of Accuracy in double-layer potential

Reminder of Interpolation Algorithm

Compute $f(x, y)$ Given f_{g} *f*

Reminder of Interpolation Algorithm

$$
f(x, y) = \sum_{k} c_{k} f_{k}(x, y) = \overline{f}^{t}(x, y)\overline{c}
$$

 $1, x, x^2, y, xy, x^2y, y^2, xy^2, x^2y^2$ An example of $f_k(x, y)$:

Reminder of Interpolation Algorithm

If the kernel has a differential operator outside:

$$
\frac{\partial}{\partial n(\vec{r})}\int\limits_{S}dS'\overline{G}(\vec{r},\vec{r}')\boldsymbol{r}(\vec{r}')
$$

The operator works on the interpolation

$$
\frac{\partial}{\partial n(\vec{r})} \mathbf{f}(\vec{r}) = \frac{\partial}{\partial n(\vec{r})} \overline{f}^{\,t}(\vec{r}) F^{-1} \overline{f}_g
$$

Loss of Interpolation Order

$$
\frac{\partial \overline{f}^t}{\partial n} = n_x \frac{\partial \overline{f}^t}{\partial x} + n_y \frac{\partial \overline{f}^t}{\partial y}
$$

$$
\overline{f}^t = 1, x, x^2, y, xy, x^2 y, y^2, y^2 x, y^2 x^2
$$

$$
\frac{\partial \overline{f}^t}{\partial x} = 0, 1, 2x, 0, y, 2xy, 0, y^2, 2y^2 x
$$

$$
\frac{\partial \overline{f}^t}{\partial y} = 0, 0, 0, 1, x, x^2, 2y, 2yx, 2yx^2
$$

We automatically lose interpolation order. This is why double-layer is less accurate.

Loss of Interpolation Order

- **Double-layer still has reasonable accuracy because of smoothness of far field.**
- **We can simply increase interpolation order to compensate the loss of degree in derivative**
- **But stencil size grows exponentially**

Consistent Polynomials

Suppose the highest order is *n***, using consistent polynomial, we have**

$$
f(x, y, z) = \sum_{m=0}^{n} \sum_{i=0}^{m} \sum_{j=0}^{m-i} c_{ijk} x^{i} y^{j} z^{m-i-j}
$$

total number of terms = $(n+1)(n+2)(n+3)/6$

Compact Stencil

Number of interpolation terms is much fewer than number of regular interpolation or projection stencil points. We have a least square problem

$$
\left[\,F\, \right] _{n_{s}\times n_{p}}^{-1}
$$

where n_s is number of stencil **points and** *n^p* **is number of monomials. We could pick points from regular stencil points. Many options are possible.**

Compact Stencil: 2D Example

Union of points equal distance from the origin of the interpolation stencil

 0^{10} \sim $\frac{1}{2}$ $\frac{1}{2}$ 1 Cube stencil $=$ 2 S_0 ∪ S_1 ∪ $\frac{1}{2}$ *S*

S0 : 1 solid dot S1 : 4 solid squares S2 : 8 empty diamonds

New Interpolation Scheme

- **Same order of accuracy but with much fewer monomials and stencil points.**
- **Particularly useful for high-order interpolation**

Compact stencil *S***012345 is used here.**

Selection of Three Stencil Sizes

- **Increase of direct stencil size is not cost effective**
	- \Box **accuracy improves slowly**
	- \Box density of $[D]$ increases relatively fast
- **Increase of interpolation or projection stencil size improves accuracy exponentially.** q **Consistent polynomial makes the cost low**
- **There exists a constrain on these three stencil sizes.**

Selection of Three Stencil Sizes

points shared by projection and interpolation stencil, corresponding entries in [*H***] are zero!**

- **Center of direct and projection stencil**
- **Center of interpolation stencil**

Selection of Three Stencil Sizes

To make sure interpolation and projection Stencil don't touch, enforce

directStencilSize >= projectStencilSize + interpStencilSize

Selection of Three Stencil Sizes: rule of thumb

- **Single-layer**
	- \geq 3-4 digit: **I**=P=1, **D**=2
	- ≥ 4 -5 digit: **I**=P=1, **D**=3
	- \geq 5-6 digit: I=P=2, D=4
- **Double-layer**
	- \geq 2-3 digit: **I**=P=1, **D**=3
	- ≥ 4 -5 digit: **I**=P=2, **D**=4
	- \geq 5-6 digit: I=P=2, D=5 or 6
- **pfft++ supports I=P=3, but try not to use it. It is too costly.**

Numerical Experiments

On the surface of a sphere with radius *R*

Let *x* **be a random vector** $y_1 = Ax$ $y_2 = p f f t(x)$ $1 \quad y_2 \|_2$ $1 \parallel_2$ $y_1 - y$ *error y* − = $(\vec r,\vec r')\,\bm r(\vec r')$ *S* $\int dS'K(\vec{r}, \vec{r}') \mathbf{r}(\vec{r}') \Rightarrow Ax$ \vec{r} \vec{r} \vec{r} \vec{r}

New Accuracy in double-layer potential

Implementation: Source codes

- **See stencil.cc**
- **See pfft.h**

Next Lecture

- **Direct matrix and precorrection**
- **Grid selection**