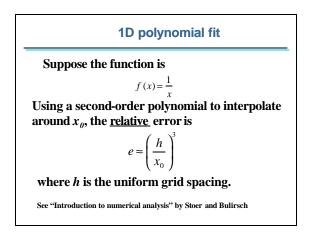
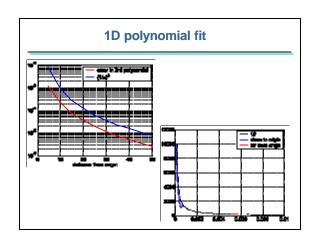
Algorithms, Implementation and Applications of pFFT++: More on projection and interpolation

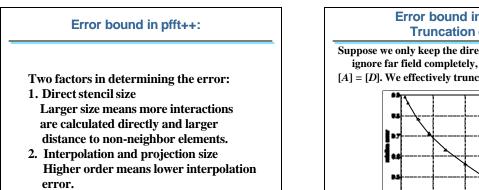
Zhenhai Zhu RLE Computational prototyping group, MIT www.mit.edu/people/zhzhu/pfft.html

Outline

- Error bound
- · Loss of accuracy in doublelayer potential
- Consistent polynomials
- Compact stencil
- Selection of three stencil sizes
- Implementation details







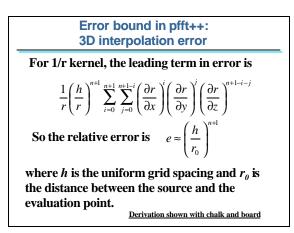
Error bound in pfft++: **Truncation error** Suppose we only keep the direct interaction and ignore far field completely, i.e. let [*A*] = [*D*]. We effectively truncate the system matrix.

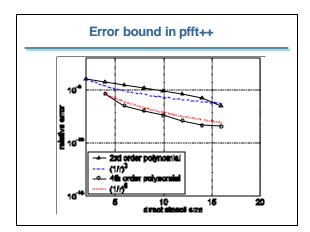
Direct

Stencil

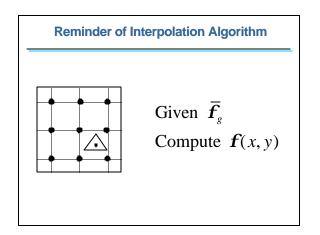
Size = 16

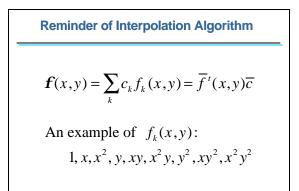
Error bound in pfft++:
3D interpolation error
Given
$$(x_{l}, y_{l}, z_{l})$$
 and $f_{l} = f(x_{l}, y_{l}, z_{l})$, use *n*-th
order polynomial to approximate $f(x,y,z)$
 $P_{n}(x, y, z) = \sum_{m=0}^{n} \sum_{j=0}^{m} C_{ij} x^{i} y^{j} z^{m-i-j}$
Let
 $F(x, y, z) = f(x, y, z) - P_{n}(x, y, z) - W_{n+1}(x, y, z)$
where
 $W_{n+1}(x, y, z) = \sum_{i=0}^{n+1} \sum_{j=0}^{n+i-i} k_{ij} (x - x_{l})^{i} (y - y_{l})^{j} \xi_{l} - z_{l})^{n+i-j}$
is the leading error term





	oss of Ac uble-laye	curacy er potentia	d
	<i>P</i> = 3	<i>P</i> = 5	<i>P</i> =7
$\frac{1}{r}$	8.4e-5	1.3e-6	4.3e-9
$\frac{\partial}{\partial n} \frac{1}{r}$	8.5e-3	1.1e-4	8.4e-7
e^{ikr}/r kR = 1.1e-9	8.3e-5	1.3e-6	1.7e-9
$\frac{\partial}{\partial n} e^{ikr} / \frac{kR}{r} = 1.1e-9$	6.0e-3	7.5e-5	5.9e-7
e^{ikr}/r kR = 11.1	4.9e-4	1.1e-5	4.0e-7
$\frac{\partial}{\partial n} e^{ikr} / \frac{kR}{r} = 11.1$	1.4e-2	2.8e-4	6.5e-6





Reminder of Interpolation Algorithm

If the kernel has a differential operator outside:

$$\frac{\partial}{\partial n(\bar{r})} \int_{r} d\, S\, G(\bar{r},\bar{r}') \mathbf{r}(\bar{r}')$$

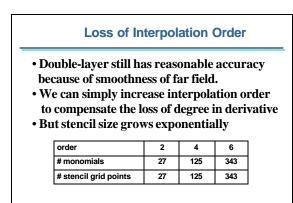
The operator works on the interpolation

$$\frac{\partial}{\partial n(\bar{r})} \boldsymbol{f}(\bar{r}) = \frac{\partial}{\partial n(\bar{r})} \overline{f}^{t}(\bar{r}) F^{-1} \overline{f}_{g}$$

Loss of Interpolation Order

$$\begin{split} \frac{\partial \overline{f}^{i}}{\partial n} &= n_{x} \frac{\partial \overline{f}^{r}}{\partial x} + n_{y} \frac{\partial \overline{f}^{r}}{\partial y} \\ \overline{f}^{t} &= 1, x, x^{2}, y, x, y, x^{2}, y, y^{2}, y^{2}, x, y^{2}x^{2} \\ \frac{\partial \overline{f}^{i}}{\partial x} &= 0, 1, 2x, 0, y, 2xy, 0, y^{2}, 2y^{2}x \\ \frac{\partial \overline{f}^{r}}{\partial y} &= 0, 0, 0, 1, x, x^{2}, 2y, 2yx, 2yx^{2} \end{split}$$

We automatically lose interpolation order. This is why double-layer is less accurate.



Consistent Polynomials

Suppose the highest order is *n*, using consistent polynomial, we have

$$f(x,y,z) = \sum_{m=0}^{n} \sum_{i=0}^{m} \sum_{j=0}^{m-i} c_{ijk} x^{i} y^{j} z^{m-i-j}$$

total number of terms = (n+1)(n+2)(n+3)/6

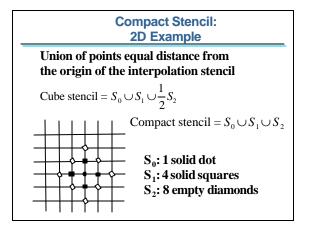
n	2	4	6
# monomials	10	35	84

Compact Stencil

Number of interpolation terms is much fewer than number of regular interpolation or projection stencil points. We have a least square problem

$$\left[F\right]_{n_s \times n_l}^{-1}$$

where n_s is number of stencil points and n_p is number of monomials. We could pick points from regular stencil points. Many options are possible.



New Interpolation Scheme

- Same order of accuracy but with much fewer monomials and stencil points.
- Particularly useful for high-order interpolation

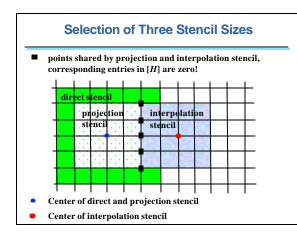
1		
order	2	4
# monomials	27	35 (consistent)
# stencil grid points	27	57

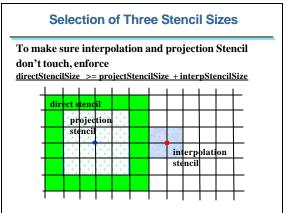
Compact stencil S_{012345} is used here.

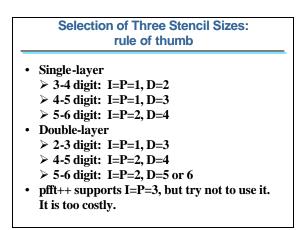
Selection of Three Stencil Sizes

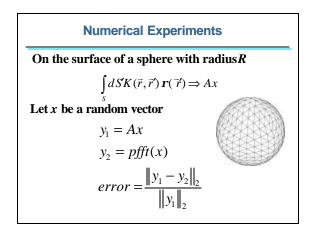
- Increase of direct stencil size is not cost effective

 accuracy improves slowly
 - □ density of [*D*] increases relatively fast Increase of interpolation or projection
- Increase of interpolation or projection stencil size improves accuracy exponentially.
 Consistent polynomial makes the cost low
- There exists a constrain on these three stencil sizes.









New Accuracy in double-layer potential			
	<i>I=P</i> = 1,	<i>I=P</i> =2, D=4	
	D=3	(Consistent poly)	
$\frac{1}{r}$	8.4e-5	1.3e-6	
$\frac{\partial}{\partial n} \frac{1}{r}$	8.5e-3	3e-4	
e^{ikr}/r kR = 11.1	4.9e-4	1.1e-5	
$\frac{\partial}{\partial n} e^{ikr} / \frac{kR}{r} = 11.1$	1.4e-2	6.2e-4	

Implementation: Source codes

- See stencil.cc
- See pfft.h

Next Lecture

- Direct matrix and precorrection
- Grid selection