Algorithms, Implementation
and Applications of pFFT++:

Direct matrix, pre-correction
and grid selection

Zhenhai Zhu
RLE Computational prototyping group, MIT
www.mit.edu/people/zhzhu/pfft.html

Qutline

e Derivation of interpolation error
bound

« How to find nearby neighbors
* Pre-correction

e Grid selection

e Implementation details

How to find nearby neighbors:
derivation of error bound

e 1D interpolation
« 3D interpolation (optional)

All shown with chalk and board

How to find nearby neighbors:
error bound for double-layer (1D)

3

2.5-

1.5¢

— errorl(1lx)3, 2rd polyfit to 1/x
— error/(1/x)?, with d/dx

0 50 100 150 200 250
x/dx

How to find nearby neighbors:
Interpolation error bound

If a panel is within the region covered by the

stencil, leading term In relative error is
+1

N
dan o
e» ~—-_-

el g
If some part of a panel hang out of the region

covered by the stencil, leading term in relative

error Is 1

N+
aa 0

e»pr—=
elo @
where a is the radius of the panel

How to find nearby neighbors:
basic strategy

 For regular panels

— Use direct stencil (sphere shape) as metric to
find nearby neighbors

 Gothrough each
point in thedirect
stencil and find the
panels mapped to the
point

 Addthesepanelsto
theregular neighbor
list

How to find nearby neighbors:
basic strategy

 For large panels
— Measure physical distance against the radius of the
panels

« Findall grid pointsa
certain distance from
stencil center

 Excludeall direct
stencil pointsand find
the panels mapped to
theremaining points

 Addthesepanelstothe
Irregular neighbor list

Pre-correction:
regular neighbors

Di,j - Di,j) [Ii]1'9[H]9’9éPJ' &'1

 Find an interpolation stencil
center around each direct
stencil point

e Fill in asmall convolution
matrix [H]

« Pick appropriaterow and

| column of [I] and [P],
calculate the pre-correction

 Pre-correct theappropriate
entry in [D]

Pre-correction:
Improvement on regular neighbors

U]19[H]3798PHM

Find the union of the
Inter polation stencil center
around each direct stencil
point (37 pointsin thisfigure)
 Fill inalong skinny
convolution matrix [H]
* Pick appropriate column of
[P], calculate[qg] = [H][P]
e Pick appropriaterow in [l]
and [g], calculate [I][g]
 Pre-correct theappropriate
entry in [D]

Pre-correction:
Improvement on regular neighbors

« Before: [H]ggépj Bgl

repeat n time, n baeing number of pointsin
direct stencil

 After H]. 8P 8,
Do it just once. Kegping track of index may
add some overhead cost.

 Key: Interpolation stencilssharegrid points

Pre-correction:
Irregular neighbors

Di,j - Di,j) [Ii]1'9[H]9’9éPJ' ELM

 Findtheinterpolation stencil

for each irregular neighbor
e Fill in asmall convolution
matrix [H]
 Pick appropriaterow and
column of [I] and [P],
_ calculate the pre-correction
 Pre-correct theappropriate
entry in [D]

Grid selection:
minimize memory usage

« Once the grid size satisfies certain
constrains with respect to the
element size, the accuracy IS
decided by the error bound.

e Larger number of grid points leads
to larger memory usage by [H], but
D], [I] and [P] would be sparser.

 There is an optimal grid size that
balance these two factors.

Grid selection:
An optimization problem

Minimize memory usage by [l], [P], [D] and [H]
Subject to

1. reasonable ratio between grid size and
element size, no extrapolation.

2. grid size is smaller than a tenth of a
wavelength if the kernel is oscillatory.

3. not too many elements associated with one
grid point.

4. Minimize size of the region occupied by grid.
5. Number of grids is 2"

Grid selection:
An optimization problem

Ultimatetest isthe memory usage
Constrainsare used to weed out a grid
option cheaply

To gauge memory usage, grid and element
map isto be set up.

Density and size of [1], [P], [D] and [H] can
ne eadl|y derived from grid element map.
Hence memory estimation itself is cheap.
Thereisnot guaranteethat alegitimate
grid can be found, particularly for long
and thin panels.

Grid selection:
starting point

Need extra layersto ensurethat the interpolation and

the projection stencil are cube

| nter polation/proj ection
stencil

Computational
domain

Stencil size=1

Stencil sIze=2

Grid selection:
typical search pattern

memory usage (Mb)

o\ ------------- o constrains not satisfied

—— Igrid size OK

6 8 10 12
log(N), N is number of grid points

Implementation:
Source codes

 See gridElement.cc for how to
find the nearby neighbors

e See directMat.h and
g2gUnion.h for pre-correction
details

e See grid.cc for grid selection

Next Lecture

 High-order element in pfft

e Application of pfft++ In
computational aerodynamics

