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Abstract

Fast surface integral equation (SIE) solvers seem to be ideal approaches for simulating
3-D nanophotonic devices, as these devices generate fields both in an interior channel
and in the infinite exterior domain. However, many devices of interest, such as optical
couplers, have channels that cannot be terminated without generating reflections.
Generating absorbers for these channels is a new problem for SIE methods, as the
methods were initially developed for problems with finite surfaces.

In this thesis, we show that the obvious approach for eliminating reflections, mak-
ing the channel mildly conductive outside the domain of interest, is inaccurate. We
propose a new method in which the absorber has gradually increasing surface conduc-
tivity; such an absorber can be easily incorporated in fast integral equation solvers.
We present two types of PMCHW-based formulations to incorporate the surface con-
ductivity into the SIE method. The accuracy of the two-type formulations are exam-
ined and discussed using an example of the scattering of a Mie sphere with surface
conductivities. Moreover, we implement two different FFT-accelerated algorithms for
the periodic non-absorbing region and the non-periodic absorbing region.

In addition, we use perturbation theory and Poynting’s theorem, respectively, to
calculate the field decay rate due to the surface conductivity. We show a saturation
phenomenon when the electrical surface conductivity is large. However, we show that
the saturation is not a problem for the surface absorber since the absorber typically
operates in a small surface conductivity regime.

We demonstrate the effectiveness of the surface conductive absorber by truncating
a rectangular waveguide channel. Numerical results show that this new method is
orders of magnitude more effective than a volume absorber. We also show that the
transition reflection decreases in a power law with increasing the absorber length.

We further apply the surface conductive absorber to terminate a waveguide with
period-a sinusoidally corrugated sidewalls. We show that a surface absorber that
can perform well when the periodic waveguide system is excited with a large group-
velocity mode may fail when excited with a smaller group-velocity mode, and give an
asymptotic relation between the surface absorber length, transition reflections and
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group velocity. Numerical results are given to validate the asymptotic prediction.
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Chapter 1

Introduction

In this thesis, we describe a surface conductive absorber technique for terminating

optical channels with the boundary element method, which otherwise has difficulties

with waveguides and surfaces extending to infinity. In order to attenuate waves re-

flected from truncated waveguides, we append a region with surface absorption to the

terminations, as diagrammed in Fig. 1-1. The transition between the non-absorbing

and absorbing regions will generate reflections that can be minimized by making the

transition as smooth as possible. We show how this smoothness can be achieved

with the surface absorber by smoothly changing integral-equation boundary condi-

tions. Numerical experiments demonstrate that the reflections of our method are

orders of magnitude smaller than those of straightforward approaches, for instance,

adding a volume absorptivity to waveguide interior. In addition, We apply the sur-

face absorber to truncate periodic waveguide channels, and show that the difficulty

to eliminate transition reflections increases as the group velocity of excited modes de-

creases. To solve the difficulty, we show that the absorber length should be increased,

and provide asymptotic relations between absorber length and group velocity.

1.1 Terminating Waveguide Channels with BEM

Many nanophotonic devices have input/output waveguide channels to couple power/signal

into and out of the device system. By introducing a periodic modulation into an elec-
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tromagnetic waveguide channel, one can obtain a variety of effects useful for photonic

devices [2]: periodicity creates band gaps that can be used to confine light [2], while

near the edge of the gap there are ”slow light” modes with a group velocity → 0

which can increase light-matter interactions for nonlinear devices [3–5], tunable time

delays [6], dispersion compensation [7–12], or other applications. The periodicity can

take many forms, such as a waveguide with periodically varying width as in Fig. 1-2

(inset), waveguides with periodic holes [2], ”fiber Bragg gratings” with periodic index

variation [7, 13], and so on. In this thesis, we consider the application of boundary

element methods (BEM) [1, 14–17] to study devices incorporating waveguide chan-

nels with uniform or periodic cross section. The boundary element method is a

powerful computational technique because it handles homogeneous regions analyti-

cally and only discretizes interfaces between materials, and no artificial truncation is

needed for the infinite space surrounding a device—however, waveguide-based devices

pose a challenge because the input/output waveguide surfaces must still be truncated

with some artificial absorber in order to eliminate spurious reflections. In volume-

discretization methods like the finite-difference time-domain (FDTD) method [18,19],

one must truncate space as well as waveguides, and the traditional solution is a per-

fectly matched layer (PML) [20–23], but the PML idea is based on an analytic contin-

uation that is not applicable to periodic waveguides [24]. A fallback is an adiabatic

absorber, in which some kind of absorption is turned on gradually in order to ab-

sorb outgoing waves with minimal reflection [24]. In this thesis, we present the BEM

analogue of the adiabatic absorber idea for truncating waveguides, by a gradually in-

creasing surface conductivity that can be efficiently implemented with a surface-only

Figure 1-1: Schematic diagram of a photonic device with input and output waveguide
channels, which must be truncated in a boundary element method.
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Figure 1-2: The band diagram of a waveguide with period-a sinusoidally corrugated
sidewalls (inset), showing the frequencies of the lowest two modes for propagation
constants in a period k ∈ [0, 2π

a ]. In between the lowest two modes, there is a “band
gap”. The period of the waveguide is denoted by a, and c denotes the speed of light
in vacuum.

discretization. Moreover, we apply this technique to truncating periodic waveguides

in BEM, where in this case we show that the problem becomes much more difficult

in the limit of slow-light modes, due to a well-known phenomenon that transition

reflections are exacerbated for slow light [6, 24, 25]. More generally, the same tech-

nique could be used for low-reflection termination of any periodic medium (photonic

crystals [2]), not just waveguides.

Since many nanophotonic devices consist of piecewise homogeneous materials,

the boundary element method (BEM) [1, 14–17] is a popular full-wave numerical

method for a general photonics solver. Unlike the finite-difference or the finite-

element volume-discretization methods, boundary element methods treat infinite ho-

mogeneous regions (and some other cases) analytically via Green’s functions, and

therefore often require no artificial truncation of space. Because BEM only requires

surfaces to be discretized, they can be computationally efficient for problems involving

piecewise homogeneous media, particularly since the development of fast O(N logN)

solvers [26–29]. However, a truncation difficulty arises with unbounded surfaces of
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infinitely extended channels common in photonics. Fig. 1-1 is a general photonic

device schematic with input and output waveguide channels. In order to accurately

simulate and characterize the device, such as calculating its scattering parameters,

formally, the transmission channel must be extended to infinity, requiring infinite

computational resources. A more realistic option is to truncate the domain with an

absorber that does not generate reflections.

The key challenge is to design an absorber that both has small reflections and is

also easily incorporated into a BEM solver. The best-known absorber is a perfectly

matched layer (PML) [19–23, 30] as shown in Fig. 1-3. The idea behind the PML

is the stretched coordinate in a complex space, so the PML should be a layer with

infinitely large interface, which requires the BEM to truncate the interface. More

importantly, in order to avoid discretization error, the PML should be a continuously

varying anisotropic absorbing medium, whereas boundary element methods are de-

signed for piecewise homogeneous media. A similar problem arises if one were to

simply add some absorption within the waveguides—in order to minimize transition

reflection, the absorption would need to increase gradually from zero [24], correspond-

ing again to inhomogeneous media. One could also use a volume integral equation

(VIE) [31] or a hybrid finite-element method in the inhomogeneous absorbing region,

but then one would obtain numerical reflections from the discontinuous change in the

discretization scheme from the BEM to the VIE. Moreover, it has been proposed that

an integral-equation PML can be obtained by varying the Green’s function instead

of the media [32], but a continuously varying Green’s function greatly complicates

panel integrations and makes it difficult to implement a fast solver without the space-

invariant property.

In this thesis, we examine an alternative approach to absorbers, adding electri-

cal conductivity to the waveguide surface rather than to the volume, via a Dirac

delta function conductivity on the absorber surface. The absorber’s interior medium

remains the same as the waveguide’s, thus eliminating the need to discretize the

waveguide-absorber interface. This surface-conductivity strategy permits an efficient

surface-only discretization, but at the same time allows for a smoothly increasing

22



Figure 1-3: A perfectly matched layer for truncating a waveguide chanel in the bound-
ary element method.

surface conductivity, thereby reducing transition reflections. Specifically, surface con-

ductivity is easily implemented in boundary element methods as it corresponds to a

jump discontinuity in the field boundary conditions at the absorber surface. Since

boundary element methods explicitly discretize the surface boundary, continuously

varying the field boundary conditions is easily implemented. Numerical results show

that the reflections of the surface absorber can be made negligible by appropriate

taper designs.

The reflections of an absorber include a round-trip reflection and a transition

reflection. The round-trip reflection is caused by the wave traveling to the end of

the absorbing region and reflecting back from the end without being completely ab-

sorbed, and it can be reduced by a larger absorption or a longer waveguide. The

transition reflection is the immediate reflection at the waveguide-absorber interface

due to the transition in medium properties. An adiabatic absorber [24] gradually in-

creases the material absorption to reduce the transition reflection. It has been shown

using coupled-mode theory [24] that the transition reflection decreases as a power

law with increasing absorber length L, and the smoothness of the conductivity profile

determines the power law. Specifically, the transition reflection scales proportional

to L−(2d+2), where d is the order of the conductivity function.

Bloch’s theorem [2] states that the propagating modes of a periodic waveguide

can be written in the form E(r) = e−jkxEk(r), where x is the wave propagation
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direction, k is the propagation constant in the x direction, and Ek(r) is a periodic

function with the physical period a in x. While it may not be obvious that a periodic

structure supports guided modes, the periodicity implies a conserved k, which allows

true guided modes to be localized below the light cone in the band diagram [2]. As an

example, we consider a waveguide with sinusoidally corrugated sidewalls, described

in more detail in Sec. 5.2. The dispersion relation of such a “sine waveguide” can be

calculated using a planewave method [33], and the two lowest modes for propagation

constants k ∈ [0, 2π
a ] are shown in Fig. 1-2. The frequency range between the two

modes represents a band gap in the guided modes [2]. Note that the slope of the band

dω
dk is the group velocity Vg, the velocity at which energy, information and wavepackets

propagate [2]. It is obvious that the group velocity approaches to zero as the frequency

approaches the band-gap edge in the diagram. And it has been shown in [24] that

the transition reflection increases in a power law as the group velocity decreases.

Therefore, absorbers for the periodic waveguide will experience difficulty when the

waveguide system is excited at the band-gap edge. This thesis will provide guidance

for increasing the length of the absorber to reduce the transition reflections when the

group velocity is small.

1.2 Integral Equation Method

The integral equation method is a popular full-wave method to solve Maxwell’s equa-

tions in frequency domain. Based on discretization schemes, it could be divided into

the volume integral equation (VIE) method [31], which discretizes the whole volume

of a computational domain, and the surface integral equation (SIE) method, [1,14–17],

which only discretizes the interfaces of piecewise homogeneous regions and, in each

homogeneous region, analytical solution can be obtained via corresponding Green’s

functions. For inhomogeneous medium, the volume integration method (VIE) is gen-

erally chosen to use by discretizing the whole space domain and parameterizing the

inhomogeneous material property, since Green’s functions for inhomogeneous medium

is usually difficult to obtain. For homogeneous or piecewise-homogeneous medium,
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the surface integral equation method is appealing because one could simply use the

homogeneous-space Green’s function to make a general solver, and the surface-only

discretizing scheme turns a 3-D geometry to a 2-D like surface, could significantly

save computational costs.

The boundary element method (BEM) is a popular surface integral equation

method, and has been developed for decades for simulating a variety of applica-

tions. The boundary element method with electric-field integral equation (EFIE) or

magnetic-field integral equation (MFIE) formulations could be used to analyze mi-

croship antennas [34–36] based on the mixed-potential integration equation (MPIE),

which yields a weaker singularity in its integrands than the single potential formula-

tion. The development of the RWG functions defined on triangle panel pairs [1] offers

great flexibility with non-uniform discretizations for analyzing objects with arbitrary

surfaces, such as arbitrarily shaped microstrip patch antennas [37]. With either

Poggio-Miller-Chang-Harrington-Wu (PMCHW) formulation [14, 15] or combined-

field integral equation (CFIE) formulations, radiation and scattering problems by

3-D penetrable dielectric bodies could be modeled with the boundary element method

[14, 17, 38].

As mentioned above, the boundary element method formulations include the

EFIE, MFIE, PMCHW and CFIE [39,40]. The EFIE and MFIE are typically used to

analyze geometries involving perfectly electrical conductor (PEC) or perfectly mag-

netic conductor(PMC) bodies by enforcing electric field boundary condition (EFIE)

or magnetic field boundary condition (MFIE) on the surfaces. However, the EFIE

and MFIE could encounter singularities of the integral operators and generate spu-

rious solutions when the analyzed body is exited at its resonating frequencies [14].

Instead, the PMCHW and CFIE formulations could avoid the singularity problem by

enforcing both the electric and magnetic field boundary conditions at body surfaces,

and are typically used to analyze dielectric bodies.

In this thesis, following the PMCHW formulation, we propose two types of bound-

ary element method formulations for simulating dielectric bodies with electrical sur-

face conductivities. The surface conductivity corresponds to a Dirac delta function on
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the surface, and hence it creates a jump for tangential magnetic fields across the sur-

face. We illustrate the two types of formulations using a scattering problem [41–44]

of a Mie sphere with electrical surface conductivities. The numerical BEM results

of scattered and interior fields of the two formulations are compared with derived

analytical solutions. For small surface conductivities, the type II solution is as ac-

curate as the type I solution. For large surface conductivities, the scattered field of

type II remains the same accuracy as type I, but the interior field inside the sphere

has a larger error and shows a larger coefficient of its power-law convergence with

discretizations. The large error occurs because the interior field becomes smaller as

the surface conductivity increases. The type II formulation, therefore, has more nu-

merical cancellation errors with two sets of unknown currents. However, since the

interior fields are several orders of magnitudes smaller than the scattered fields when

the large error occurs, the error could be numerically ignored. We further show that

the cancellation error of the type II formulation will not cause numerical problem

for analyzing the surface conductive absorber. For waveguide channel, the excitation

source is located in the interior region, and power is localized in the waveguide inte-

rior. Thus, the interior field is dominant, like the scattered field in the Mie scattering

case. Also, the surface conductivity of the absorber remains small when chosen to

minimize transition reflections at the waveguide-absorber interface.

The boundary element method becomes more competent for large scale simula-

tions particularly since a few acceleration techniques was developed, like the precorrected-

FFT (PFFT) method [26–28, 45–49] and the fast multipole method [29, 50]. These

fast methods eliminate the need to fill and store a large full matrix. Instead, they only

require storing a sparse matrix, which takes much less storage (O(N)) and computa-

tional time O(N logN). The Precorrected-FFT method was first proposed in [26, 45]

to solve electrostatic problems, and it has been further developed in [27,28,46–49] to

solve dynamic electromagnetic problems. In this thesis, to take advantage of periodic-

ity of discretized channel structures, we use a straightforward and easily-implemented

FFT-based fast algorithm to accelerate the boundary element method. With this im-

plementation, the solver could nearly achieve O(N logN) computational requirement.
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1.3 Thesis Outline

This thesis is organized as follows. In Chapter 2, we provide background knowledge

in order for better understanding the thesis. The background includes the analysis

of the reflections of generated by a general absorber for truncating a guided channel;

the introduction of the PMCHW formulation, the boundary element method and

corresponding integral operators; and the derivation of Mie theory.

In Chapter 3, we describe two types of boundary element method formulations

to analyze dielectric bodies with electrical surface conductivities. We illustrate the

derivation of the BEM formulations as well as analytical solutions using a scattering

problem of a Mie sphere with surface conductivities. Error analysis is performed to

compare the two types of of formulations.

In Chapter 4, we present a surface conductive absorber technique for truncating a

dielectric waveguide with uniform cross section in the simulation using the boundary

element method. Numerical results show that the surface absorber generates several

orders of magnitudes smaller reflections than the straightforward volume absorber.

The field decay rate due to the surface conductivity is calculated using two methods.

The asymptotic attenuation of the transition reflection of the surface absorber with

the absorber length is examined.

In Chapter 5, we apply the surface conductive absorber technique to truncate

periodic waveguide channels. We demonstrate the performance of the absorber using

an example of a waveguide with period-a sinusoidally corrugated sidewalls. We show

the difficulty to terminate the periodic waveguide when excited with a small group-

velocity mode, and show the relation between the absorber length and group velocity

to achieve fixed transition reflection.

Chapter 6 concludes the thesis and describes future work.

In Appendix A, we describe a Gaussian beam generated by a dipole in a complex

space, which is used as an excitation throughout the thesis.
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Chapter 2

Background

This chapter presents background knowledge for better understanding this thesis.

Since this thesis focuses on developing a new surface conductive absorber for termi-

nating waveguide channels with generating minimal reflections, this chapter begins

with an introduction of a general absorber, and the round-trip reflection and the tran-

sition reflections generated by the absorber. We describe formulations to evaluate the

round-trip reflection and the key elements to determine the transition reflection. We

briefly describe the PMCHW formulation with the boundary element method, based

on which two types of formulations will be presented to incorporate surface conduc-

tivities in Chapter 3. In order to benchmark the new formulations, Chapter 3 will

also provide an analytical solution of the scattering by a dielectric sphere with surface

conductivities, and thus in this chapter, we describe the derivation of Mie theory.

2.1 Absorbers and Reflections

A waveguide channel with a general absorber attached is illustrated in Fig. 2-1. The

absorber truncates the waveguide channel by absorbing propagating waves as if the

wave propagates along an infinitely long channel without any reflection. The advan-

tage to attach an absorber is that an infinitely long channel can then be numerically

analyzed in a finite domain using finite computational resources. An absorber is an

artificial part in the whole computational domain to aid the analysis of primary appli-
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Figure 2-1: Illustration of a waveguide channel truncated by an absorber.

cations with infinitely extended channels, therefore, a good absorber should be small

in size, and thus requiring reasonable computational power. And more importantly,

it should generate small reflections within the tolerance of applications. In this sec-

tion, we introduce the reflections generated by an absorber, and generally discuss the

relations between the reflections and the property of the absorber including length,

absorptivity and absorption profile.

As shown in Fig. 2-1, the reflections generated by an absorber can be divided into

a round-trip reflection, Rr, and a transition reflection, Rt. The round-trip reflection is

generated by waves entering into the absorber, propagating to the end without being

completely absorbed, reflected off the end of the absorber, and eventually propagating

back into the waveguide. As shown in Fig. 2-1, the length of the absorber is denoted

by L, wave propagates in the +x̂ direction, and the waveguide-absorber interface is

located at x = x0. The round-trip reflection coefficient is proportional to

Rr ∼ e−4
R

L α(x)dx, (2.1)

where α(x) is the field decay rate due to the absorptivity of the absorber, a factor of

2 in the exponent of (2.1) represents the effect of the round trip, and another factor

of 2 indicates that the power is considered.

Consider a dth-order monomial function s(u) defined in u ∈ [0, 1]

s(u) =







ud 0 ≤ u ≤ 1

0 else
, (2.2)
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and a conductivity function of the absorber is defined with s(u)

σ(x) = σ0s(
x − x0

L
), (2.3)

where σ0 is the coefficient of the conductivity function. From the perturbation analysis

in Sec. 4.4.1, the decay rate α(x) in (2.1) is proportional to σ(x)
Vg

in the limit of small σ0,

where Vg is the group velocity of the propagating mode. Therefore, after integrating

the exponent in (2.1), the round-trip reflection asymptotically attenuates with

Rr ∼ e
−

4Lσ0
(d+1)Vg . (2.4)

The round-trip reflection exponentially decays with the conductivity coefficient σ0

and absorber length L, so that it can be reduced by increasing σ0 or the absorber

length. However, large σ0 will increase the transition reflection, which will be dis-

cussed below. In general, the round-trip reflection is fixed with a very small value

when discussing the transition reflections, and the conductivity coefficient is therefore

made proportional to

σ0 ∼
(d + 1)Vg

L
. (2.5)

The transition reflection Rt is the reflection generated by the transition in material

properties at the waveguide-absorber interface. It can be analyzed using coupled-

mode theory [51, 52] in a slowly varying medium along propagation direction. Here

we skip the analysis process, and directly provide the conclusion. In the limit of large

L, the magnitude of a reflected mode cr(L) in an asymptotic form is given [24]

cr(L) = s(d)(0+)
M(0+)

∆β(0+)
[−jL∆β]−d + O(L−(d+1)), (2.6)

where ∆β = βi−βr is the difference between the propagation constants of the incident

and reflected modes, s(d)(0+) is the dth-order derivative of s(u) evaluated at u = 0+,

and M is a coupling coefficient between the incident and reflected modes, depends

on the spatial field pattern but is a smooth function of u [24, 52], and M(0+) is
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asymptotically proportional to

M(0+) ∼
σ0

∆β
. (2.7)

Therefore, the transition reflection is proportional to

Rt ∼
(

σ0 ·
1

Ld
·

1

∆β(d+2)

)2

. (2.8)

As we know, the group velocity Vg is proportional to ∆β in the limit of small Vg [24],

so ∆β can be replaced with Vg in (2.8).

For a single-mode excitation, the round-trip reflection could be fixed by following

(2.5) as σ0 ∼ Vg

L for a same-order conductivity profile (same d). Therefore, the

transition reflection should be expected to be proportional to

Rt ∼
1

L2d+2
·

1

V 2d+2
g

. (2.9)

For a multiple-mode excitation, the group velocity for each mode is generally

different, therefore, we are unable to strictly fix the round-trip reflection. Instead, we

could conservatively fix the round-trip reflection by picking the initial σ0 working well

for the large Vg mode (achieving small round-trip reflection for the large Vg mode)

and making σ0 inversely proportional to the absorber length as σ0 ∼ 1
L . With this

choice of σ0, the asymptotic form of the transition reflection is

Rt ∼
1

L2d+2
·

1

V 2d+4
g

. (2.10)

For the two choices of the conductivity coefficient σ0, the transition reflection

attenuates asymptotically in a power law with the absorber length as Rt ∼ 1
L2d+2 .

The power-law behavior indicates that, with a higher-order conductivity function,

the transition reflection decreases faster with increasing the absorber length. It does

not follow that d should be made arbitrarily large, however, there is a tradeoff in

which increasing d eventually delays the onset L of the asymptotic regime in which
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Figure 2-2: An illustration of Mie scattering using the boundary element method.

(2.9) and (2.10) are valid [24]. This will be further discussed in Chapter 5 with

numerical results.

2.2 PMCHW formulation and Boundary Element

Method

In this section, we briefly describe the PMCHW formulation [14,15] and the boundary

element method [1,14–17] by numerically solving a Mie scattering problem, which will

be analytically solved via a boundary value problem in Sec. 2.3.

2.2.1 Formulations

Fig. 2-2 shows a dielectric sphere embedded in an exterior medium. The radius of the

sphere is denoted by a. The permittivities and permeabilities of the sphere medium

and the exterior medium are denoted by εi, µi, and εe, µe, respectively. An x-polarized

plane-wave propagating in the z direction shines on the sphere, and thereby generates

scattered fields in the exterior region and interior fields in the sphere. The unknowns
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of the BEM are equivalent electrical and magnetic currents Je, Me on the exterior

side of the sphere surface, and Ji, Mi lying on the interior side of the surface, with

the subscripts e and i denoting the exterior and interior side, respectively.

The scattered fields are treated as if being excited by the currents Je, Me in a

homogeneous space of εe and µe (exterior problem), and the interior fields are treated

as if being excited by the currents Ji, Mi in a homogeneous space of εi and µi

(interior problem). According to the equivalence principle [53, 54], in order to treat

the exterior or interior problem as in a homogeneous space, the following boundary

conditions should be satisfied [39]

−n̂ × [Einc + Es(Je,Me)] = Me, (2.11)

n̂ × [Hinc + Hs(Je,Me)] = Je, (2.12)

n̂ × Ei(Ji,Mi) = Mi, (2.13)

−n̂ ×Hi(Ji,Mi) = Ji. (2.14)

where Einc and Hinc are the incident electric and magnetic fields, respectively. Es(·),

Hs(·) are the integral operators of the electric and magnetic fields evaluated in a

homogeneous space whose material property is the same as that of the exterior region,

and Ei(·), Hi(·) are the integral operators evaluated in a homogeneous space whose

material property is the same as that of the interior region. n̂ is the normal exterior-

pointing unit vector.

The boundary conditions are then enforced to couple the exterior and interior

problems. Specifically, the continuity of the tangential components of the electric

and magnetic fields on the sphere surface yields the PMCHW formulation

n̂ × [Einc + Es(Je,Me)] = n̂ ×Ei(Ji,Mi), (2.15)

n̂ × [Hinc + Hs(Je,Me)] = n̂ ×Hi(Ji,Mi). (2.16)

The field-continuity boundary condition provides two independent equations (2.15)-

(2.16) with four unknown currents Je, Me, Ji, Mi, leaving two degrees of freedom.
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Substituting the field-current relations (2.11)-(2.14) into (2.15) and (2.16) yields the

relations between the currents on the exterior and interior sides. It turns out that

the current on the two sides have the same magnitude and sign flipped. Therefore,

the four sets of unknown currents can be reduced to two sets, J and M, by

Je = −Ji = J, (2.17)

Me = −Mi = M. (2.18)

Substituting (2.17), (2.18) into (2.15), (2.16) yields the final version of the PMCHW

formulation

n̂ × [Es(J,M) −Ei(−J,−M)] = −n̂ ×Einc, (2.19)

n̂ × [Hs(J,M) −Hi(−J,−M)] = −n̂ ×Hinc. (2.20)

The fields can be substituted by the integral operators introduced in the next section,

the integral equations can then be discretized to construct a linear matrix system using

the Galerkin method [55], and the unknown currents J and M can be determined by

solving the linear system.

2.2.2 Integral Operators

From Sec. 2.2.1, the two equivalent currents J and M on the sphere surface are to

be determined by solving the PMCHW formulations (2.19)–(2.20). First of all, the

sphere surface is discretized with triangle panels as show in Fig. 2-3, and the currents

are approximated with the RWG basis function [1] on triangular-meshed surfaces as

shown in Fig. 2-4, and the approximated currents become

J =
∑

m

JmXm(r′), (2.21)

M =
∑

m

MmXm(r′), (2.22)
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Figure 2-3: A dielectric sphere discretized using triangle panels.

where Xm(r′) is the RWG function on the mth triangle pair, and Jm, Mm are the

corresponding coefficients for the electric and magnetic currents, respectively.

Electric and magnetic fields are represented using the mixed-potential integral

equation (MPIE) [16] for a low-order singularity, with integral operators L and K as

in [17]

El(J,M) = −ZlLl(J) + Kl(M), (2.23)

Hl(J,M) = −Kl(J) −
1

Zl
Ll(M), (2.24)

where Zl =
√

µl/εl is the intrinsic impedance, and the subscript l = e or i denotes

the exterior or interior region. The integral operators due to the mth RWG function

are given by

Ll(r,Xm(r′)) = jklAl(r,Xm(r′)) +
j

kl
∇Φl(r,Xm(r′)), (2.25)

Kl(r,Xm(r′)) = −∇×Al(r,Xm(r′)), (2.26)

where r and r′ are, respectively, the target and source positions and kl = ω
√

µlεl is

the wavenumber. The vector and scalar potentials A, Φ due to the RWG function
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Figure 2-4: The nth RWG basis function [1] on a pair of triangle panels. The two
triangle panels are denoted by T+

n and T−
n , respectively. The length of the common

edge is denoted by ln. p+
n and p−n are the local vectors of the point on each triangle.

Xm(r′) are

A(r,Xm(r′)) =

∫

S′
m

Gl(r, r
′)Xm(r′)dS ′, (2.27)

Φ(r,Xm(r′)) =

∫

S′
m

Gl(r, r
′)∇′ · Xm(r′)dS ′, (2.28)

where S ′
m is the surface of the mth triangle pair, and Gl(r, r′) is the Green’s function

in a homogeneous space whose material property is the same as region l, and it is

Gl(r, r
′) =

e−jkl|r−r′|

4π|r− r′|
. (2.29)

When target points are far away from the source panel, the integral of (2.27) and

(2.28) can be numerically calculated using Gauss quadrature [56]. For near-fields, the

panel integration can be evaluated using a variety of methods [57–60].

We employ Galerkin method [55] by using the RWG function as the testing func-

tion on target triangle pairs. The tested L, K operators on the nth target triangle
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pair due to the mth source triangle pair become

Ll,nm(Xm) =

∫

Sn

Xn(r) · Ll(Xm)dS, (2.30)

Kl,nm(Xm) =

∫

Sn

Xn(r) · Kl(Xm)dS, (2.31)

where Sn is the surface of the nth target triangle pair. Substituting the tested field op-

erators into equations (2.19)-(2.20) yields a matrix with unknown vectors of the RWG

coefficients. The linear equation system can be solved either directly or iteratively.

One may notice that in (2.19), the scattered field operator Es(J,M) and the

interior field operator Ei(−J,−M) take the flipped-direction input currents, but their

difference should be equal to Einc rather than just a sign flipped. On physical grounds,

it is clear that Ei and Es can have very different magnitudes. Consider the case of

identical interior and exterior media, so that there will be zero scattered field Es and

the interior field Ei will be the same as the incident field. However, it may not be

immediately obvious how such different field magnitudes can arise in this formulation,

especially for identical media, given that Es(J,M) and Ei(−J,−M) are generated

by equal and opposite currents. (Note, however, that Ei is not a merely a mirror flip

of Es even for identical media: due to the pseudovector nature of magnetic fields and

currents [61], a mirror flip across the interface would correspond to +J, −M currents,

or vice versa for an antimirror flip. So, flipping the sign of both currents changes E

in a nonsymmetrical manner.)

Here, we briefly explain how this phenomenon arises in terms of the nature of the

integral operators. In particular, this phenomenon is determined by the gradient and

curl operators in the integral operators L and K in (2.25)-(2.26) for the self term

(target and source triangles overlap, m = n in (2.30)–(2.31)) of the system matrix.

Consider a source triangle panel S ′ lies on the xy plane where z = 0, as shown

in Fig. 2-5. Two observation lines l1 and l2 are perpendicular to the triangle panel,

and line l1 intersects with the panel but l2 doesn’t. The x and y components of the

vector potential A and scalar potential Φ along line l1 due to the currents and charges

(represented by RWG functions) on the source triangle panel is shown in Fig. 2-6.
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Figure 2-5: A triangle panel lying on the xy plane. Observation lines l1 and l2 are
parallel to the z axis with l1 penetrating the panel and l2 far away from the panel.
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Figure 2-6: Components of the vector potential A and scalar potential Φ along line
l1 penetrating the source triangle panel in Fig. 2-5.

The potentials are symmetric with z = 0, and the real parts of the potentials A and

Φ are non-differentiable with respect to z at z = 0. Therefore, the real part of ∂A

∂z

and ∂Φ
∂z has a sign difference for z = 0+ and z = 0−. This is shown in Fig. 2-7 that
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Figure 2-7: Components of ∇×A and ∇Φ along along line l1 penetrating the source
triangle panel in Fig. 2-5.

the real parts of the x and y components of ∇× A and the z components of ∇Φ are

discontinuous and flip signs across z = 0. This jump at z = 0 is responsible for the
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Figure 2-8: Components of the vector potential A and scalar potential Φ along a line
l2 away from the source triangle panel in Fig. 2-5.

difference of L and K in (2.25) and (2.26) in the self term at the exterior and interior

sides of the surface. The imaginary part of the self-term potentials corresponds to a

sinc function, so the derivative with respect to z is the same for both the exterior and

interior sides.

Figure 2-8 shows the potentials along line l2 which is away from the source triangle

panels. The potentials are symmetric with z = 0 and are differentiable at z = 0.

Therefore, ∂A

∂z and ∂Φ
∂z are equal to zeros at z = 0, the same for both exterior and

interior sides of the surface. Fig. 2-9 shows all the components of ∇ × A and ∇Φ

along l2 and they are continuous at z = 0. Therefore, the difference of Es(J,M) and

Ei(−J,−M) comes from the real parts of the L and K operators in the self term.

2.3 Mie Theory

The Mie theory [41–44, 53] provides an analytical solution of scattered field by a

dielectric sphere shown in Fig. 2-10. The sphere is illuminated by an incident x-

polarized plane wave, propagating in the z direction.
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Figure 2-9: Components of ∇×A and ∇Φ along line l2 away from the source triangle
panel in Fig. 2-5.

In this section, we briefly derive the analytical solution in accordance with [43].

The derivation is basically solving a boundary value problem with governing Maxwell’s
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Figure 2-10: The scattering of a Mie sphere.

equations. First of all, The incident field, the scattered field and the interior field

in the sphere are expanded in terms of vector harmonics M and N with unknown

coefficients. The cooefficients are then obtained by matching boundary conditions on

the surface of the sphere.

According to [43], the vector harmonics M and N both satisfy Helmholtz equations

as

∇2M + k2M = 0 (2.32)

∇2N + k2N = 0, (2.33)

where k is the wavenumber. The two vectors are coupled in the way of

N =
∇× M

k
, (2.34)

and can be obtained through solving a scalar wave equation in spherical coordinates

with spherical harmonics [43]. The solutions are denoted by Memn, Momn, Nemn,

and Nomn, where subscripts e and o indicate even and odd modes in terms of ϕ,

respectively; m and n are non-negative integers and satisfy n ≥ m. The four vector
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harmonics are

Memn =
−m

sin θ
sin mϕP m

n (cos θ)zn(ρ)θ̂ − cos mϕ
dP m

n (cos θ)

dθ
zn(ρ)ϕ̂, (2.35)

Momn =
m

sin θ
cos mϕP m

n (cos θ)zn(ρ)θ̂ − sin mϕ
dP m

n (cos θ)

dθ
zn(ρ)ϕ̂, (2.36)

Nemn =
zn(ρ)

ρ
cos mϕ n(n + 1)P m

n (cos θ)r̂

+ cos mϕ
dP m

n (cos θ)

dθ

1

ρ

d

dρ
[ρzn(ρ)]θ̂

−m sin mϕ
P m

n (cos θ)

sin θ

1

ρ

d

dρ
[ρzn(ρ)]ϕ̂, (2.37)

Nomn =
zn(ρ)

ρ
sin mϕ n(n + 1)P m

n (cos θ)r̂

+ sin mϕ
dP m

n (cos θ)

dθ

1

ρ

d

dρ
[ρzn(ρ)]θ̂

+m cos mϕ
P m

n (cos θ)

sin θ

1

ρ

d

dρ
[ρzn(ρ)]ϕ̂, (2.38)

where ρ = kr, and P m
n (·) is the associated Legendre function of the first kind of degree

n and order m, as defined

P n
m(x) = (1 − x2)m/2 dmPn(x)

dxm
. (2.39)

One may notice that this definition of P m
n (·) may differ from some other literatures

with a factor of (−1)m, commonly known as the Condon-Shortley phase [62]. zn(ρ) is

the spherical Bessel function, and it can be the first kind, the second kind and the third

kind (spherical Hankel function), denoted as jn(ρ), yn(ρ), and hn(ρ), respectively. The

spherical Hankel function is the linear combinations of the first two kinds as

h(1)
n (ρ) = jn(ρ) + jyn(ρ), (2.40)

h(2)
n (ρ) = jn(ρ) − jyn(ρ). (2.41)

The vector harmonics Memn, Momn, Nemn, and Nomn are mutually orthogonal to

each other [43], and can form a basis for expanding the electric and magnetic fields.

The incident fields are expanded with the vector harmonics. Unlike the convention
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used in [43], we use the conventional time harmonic term ejωt. The electric and

magnetic fields of the incident wave are

Einc = E0e
−jkezx̂ = E0e

−jker cos θx̂, (2.42)

Hinc =
ke

ωµ
E0e

−jkez ŷ =
ke

ωµ
E0e

−jker cos θŷ, (2.43)

where ke = ω
√

µeεe is the wavenumber of the exterior medium. By orthogonality, the

coefficients of the vector harmonic expansions of the incident fields can be obtained,

and the expansions are

Einc = E0

∞
∑

n=1

(−j)n 2n + 1

n(n + 1)
(M(1)

o1n + jN(1)
e1n), (2.44)

Hinc = −
ke

ωµe
E0

∞
∑

n=1

(−j)n 2n + 1

n(n + 1)
(M(1)

e1n − jN(1)
o1n), (2.45)

where the superscript (1) indicates using the first-kind spherical Bessel function jn(ρ)

in the vector harmonics, because of the finite incident fields at the origin. Note that

all terms with m += 1 vanished.

The scattered electric and magnetic fields are denoted by Es, Hs and the interior

fields in the sphere are denoted by Ei, Hi. In order to obtain the expansions of the

scattered and interior fields, the boundary conditions, that the total tangential fields

are continuous across the sphere surface, are enforced

n̂ × (Einc + Es) = n̂ × Ei, at r = a, (2.46)

n̂ × (Hinc + Hs) = n̂ × Hi, at r = a (2.47)

where n̂ is an exterior-pointed normal unit vector. The continuity boundary con-

ditions and the orthogonality of vector harmonics determine that the scattered and

interior fields can be expanded with the same set of vector harmonics as the incident
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fields. Therefore, the expansions of the interior fields are

Ei =
∞

∑

n=1

En(cnM
(1)
o1n + jdnN

(1)
e1n), (2.48)

Hi = −
ki

ωµi

∞
∑

n=1

En(dnM
(1)
e1n − jcnN

(1)
o1n), (2.49)

where cn, dn are the unknown coefficients, En = (−j)nE0
2n+1

n(n+1) , µi is the permeability

of the interior medium, and ki is the wavenumber in the sphere region. Note that En

attenuates at a power-law O( 1
n) with n. Similarly, the expansions of the scattered

fields are

Es =
∞

∑

n=1

En(−janN
(3)
e1n − bnM

(3)
o1n), (2.50)

Hs =
ke

ωµe

∞
∑

n=1

En(−jbnN
(3)
o1n + anM

(3)
e1n), (2.51)

where an, bn are the other two sets of the unknown coefficients. The superscript (3)

indicates using the third-kind spherical Bessel function h(2)(ρ) in the vector harmonics

for outgoing spherical waves to satisfy the boundary condition at the infinity.

The field expansions (2.44), (2.45), (2.48)-(2.51) are then substituted into the

boundary conditions (2.46) and (2.47). Specifically, enforcing the continuity of the θ

and ϕ components of the electric and magnetic fields at the spherical surface r = a,

yields four linearly independent equations, and they are

bnh(2)
n (u) + cnjn(v) = jn(u), (2.52)

an
ki

ke
[u h(2)

n (u)]′ + dn[v jn(v)]′ =
ki

ke
[u jn(u)]′, (2.53)

anµih
(2)
n (u) + dn

ki

ke
µejn(v) = µijn(u), (2.54)

bnµi[u h(2)
n (u)]′ + cnµe[v jn(v)]′ = µi[u jn(u)]′, (2.55)
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where

u = kea, v = kia. (2.56)

The derivative of ρzn(ρ), where zn(·) is a spherical Bessel function jn(·) or h(2)
n (·), can

be calculated using an identity

[ρzn(ρ)]′ = ρzn−1(ρ) − nzn(ρ). (2.57)

Solving the four equations (2.52)-(2.55) yields the coefficients in closed form

an =
(ki/ke)2jn(v)[u jn(u)]′ − jn(u)[v jn(v)]′

(ki/ke)2jn(v)[u h(2)
n (u)]′ − h(2)

n (u)[v jn(v)]′
, (2.58)

bn =
jn(v)[u jn(u)]′ − jn(u)[v jn(v)]′

jn(v)[u h(2)
n (u)]′ − h(2)

n (u)[v jn(v)]′
, (2.59)

cn =
jn(u)[u h(2)

n (u)]′ − h(2)
n (u)[u jn(u)]′

jn(v)[u h(2)
n (u)]′ − h(2)

n (u)[v jn(v)]′
, (2.60)

dn =
(ki/ke)jn(u)[u h(2)

n (u)]′ − (ki/ke)h
(2)
n (u)[u jn(u)]′

(ki/ke)2jn(v)[u h(2)
n (u)]′ − h(2)

n (u)[v jn(v)]′
. (2.61)

In general, for a Mie scattering problem, the exterior and interior material are

different, and the coefficients (2.58)-(2.61) attenuate exponentially with n. Fig. 2-

11(a) shows the four coefficients attenuating with n in a semilog plot for an example

of a large medium contrast with ki/ke = 4. The attenuation of cn, dn are slower

than an, bn, but the 20th terms of cn, dn are already smaller than 10−10, where the

truncation of the series can be made numerically.

However, the exponential attenuation rates of the coefficients cn, dn decrease with

the medium contrast. Given an identical exterior and interior material, the curves of

cn and dn with n are flat, equal to 1′s, and coefficients an, bn vanished, as shown in

Fig. 2-11(b). This is as expected, because the space is homogeneous when the the

exterior and and interior materials are identical, therefore, the scattered field vanishes,

and the interior field is equal to the incident field. As a result, in this same-medium

case, the expansions in (2.48) and (2.49) converge at a first-order power-law O( 1
n),
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due to the attenuation of the coefficient En.
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Figure 2-11: The attenuation of the coefficients (2.58)-(2.61) with n of the Mie theory.
The radius of the sphere is 1λi, where λi is the wavelength in the interior medium.

49



50



Chapter 3

BEM Formulations for Surface

Conductivities

This thesis will present a surface conductive absorber with the boundary element

method (BEM) for truncating infinitely extended dielectric channels in Chapter 4 and

Chapter 5. The absorber requires the BEM formulation to incorporate the varying

surface conductivities. In this chapter, we propose two types of BEM formulations

(type I and type II). We illustrate the formulations using the scattering of a dielectric

sphere with surface conductivities, and benchmark the BEM results with analytical

solutions. Our comparison shows that even though the type II formulation uses fewer

unknowns, it is as accurate as the type I formulation for calculating exterior scattered

fields for a whole range of surface conductivities. The type II formulation shows a

large coefficient in a power-law convergence when calculating interior fields with large

surface conductivities, for which the interior fields are several orders of magnitude

smaller than the scattered field and thus are numerically negligible. To model the

surface absorber, we will demonstrate in Chapter 4 that the type II formulation

provides the same accuracy as type I, as power is localized and the interior fields of

the dielectric waveguide dominate.
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Figure 3-1: The scattering of a Mie sphere with electrical surface conductivity σE .

3.1 Analytical Solutions of the Scattering by a Sphere

with Surface Conductivities

Mie theory [41–44, 53] provides an analytical solution for the scattered and interior

fields by a Mie sphere that is illuminated by an incident x-polarized z-propagating

plane wave. Its derivation has been shown in Sec. 2.3. The Mie sphere is in general

either a dielectric sphere or a PEC sphere. However, in this chapter, we analyze the

scattering by a dielectric sphere with a sheet of electrical surface conductivity. The

electrical surface conductivity is denoted by σEδ(r − a), where δ(r − a) is a Dirac

delta function on the sphere surface, and a is the radius of the sphere. Therefore, it

is worth including a brief analytical derivation of the scattering by this sphere with

surface conductivity, as shown in Fig. 3-1.

The derivation is solving a boundary value problem governed by Maxwell’s equa-

tions. The incident field, the scattered field and the interior field in the sphere are

expanded in terms of vector harmonics M and N (see Sec. 2.3) with unknown coeffi-

cients. The coefficients are then determined by enforcing boundary conditions on the

surface of the sphere. The time-harmonic convention ejωt is adopted.
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For the electric field boundary condition, the electrical surface conductivity does

not affect the continuity of tangential electric field on the sphere surface, therefore,

the boundary condition is

n̂ × (Einc + Es) = n̂ × Ei, at r = a. (3.1)

where n̂ is the exterior-pointed normal unit vector.

Due to the electrical surface conductivity, an electrical current Jind = σEEtan is

induced on the sphere surface, and therefore, the continuity boundary condition of

the magnetic field in (2.47) is no longer valid. Instead, the tangential magnetic field

has a jump across the sphere surface as

n̂ × (Hinc + Hs − Hi) = σEEtan, at r = a, (3.2)

where Etan = −n̂ × n̂ × E is the tangential electric field on the sphere surface. The

tangential electric field on the surface can be the tangential components of either Ei

or (Einc + Es) according to the continuity in (3.1). For simplicity, we use Ei later in

this section.

As the same in section 2.3, the incident fields are expanded with the vector har-

monics in the same way as in (2.44) and (2.45). With the same electric field bound-

ary condition (3.1) and the modified magnetic field boundary condition (3.2), the

scattered field and the interior field can be expanded with the same sets of vector

harmonics in the same manner as in (2.48)-(2.51). Substituting these expansions

into the boundary conditions (3.1) and (3.2) yields another four linearly independent

equations with unknown coefficients an, bn, cn, dn

bnh(2)
n (u) + cnjn(v) = jn(u), (3.3)

anK[u h(2)
n (u)]′ + dn[v jn(v)]′ = K[u jn(u)]′, (3.4)

anµih
(2)
n (u) + dnKµejn(v) − j dnW1[vjn(v)]′ = µijn(u), (3.5)

bnµi[u h(2)
n (u)]′ + cnµe[v jn(v)]′ + jcnW2jn(v) = µi[u jn(u)]′, (3.6)
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where

K = ki/ke, (3.7)

W1 =
σEωµeµi

kekia
, W2 = σEωµeµia, (3.8)

u = kea, v = kia, (3.9)

in which ki and ke are the wavenumbers of the interior and exterior regions, respec-

tively; µi and µe are the permeabilities of the interior and exterior regions, respec-

tively; and ω is the angular frequency.

Solving the above four equations (3.3)-(3.6) yields the coefficients in close form

an =
K2µejn(v)[u jn(u)]′ − µijn(u)[v jn(v)]′ − jKW1[u jn(u)]′[v jn(v)]′

K2µejn(v)[u h(2)
n (u)]′ − µih

(2)
n (u)[v jn(v)]′ − jKW1[u h(2)

n (u)]′[v jn(v)]′
,

(3.10)

bn =
µejn(u)[v jn(v)]′ − µijn(v)[u jn(u)]′ + jW2jn(u)jn(v)

µeh
(2)
n (u)[v jn(v)]′ − µijn(v)[u h(2)

n (u)]′ + jW2h
(2)
n (u)jn(v)

, (3.11)

cn =
µih

(2)
n (u)[u jn(u)]′ − µijn(u)[u h(2)

n (u)]′

µeh
(2)
n (u)[v jn(v)]′ − µijn(v)[u h(2)

n (u)]′ + jW2h
(2)
n (u)jn(v)

, (3.12)

dn =
µiKjn(u)[u h(2)

n (u)]′ − µiKh(2)
n (u)[u jn(u)]′

µeK2jn(v)[u h(2)
n (u)]′ − µih

(2)
n (u)[v jn(v)]′ − jKW1[u h(2)

n (u)]′[v jn(v)]′
.

(3.13)

With these coefficients, the analytical solutions of the scattered and interior fields

can be calculated with the expansions (2.48)-(2.51).

Similarly as discussed in section 2.3, the coefficients (3.10)-(3.13) attenuate expo-

nentially fast with n for a geometry of different exterior and interior media. Fig. 3-2(a)

shows the exponential attenuations of the coefficients for a geometry with medium

contrast ki/ke = 4. As the difference of the two media decreases, the attenuation of

the coefficients cn and dn becomes slower while an and bn remain the same attenu-

ation rate. Fig. 3-2(b) shows the coefficients of a geometry of identical exterior and
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interior media. The curves of the coefficients cn and dn are close to flat with the

magnitudes being several orders of magnitude smaller than 1, while the coefficients

an, bn attenuate exponentially fast. This implies that, for this identical-media case,

the interior field converges at a power law thanks to the attenuation of the coefficient

En, while the scattered field can still converge exponentially fast.

3.2 Boundary Element Method Formulations with

Surface Conductivities

In this section, we numerically solve the scattering by a dielectric sphere with elec-

trical surface conductivity using the boundary element method (BEM), as opposed

to the analytical solution in Sec. 3.1. A dielectric sphere with an electrical surface

conductivity is embedded in an exterior medium, as shown in Fig. 3-3. The surface

conductivity is a Dirac delta function across the sphere surface, denoted as σEδ(r−a),

where a is the radius of the sphere and σE is the magnitude of the surface conductivity,

with the subscript E indicating that the electrical surface conductivity is considered.

The permittivities and permeabilities of the sphere medium and the exterior medium

are εi, µi, and εe, µe, respectively. An x-polarized plane-wave propagating in z direc-

tion shines on the sphere, and thereby generates scattered fields in the exterior region

and fields in the interior. In the following sections, we describe two types of BEM

formulations.

3.2.1 Formulation Type I based on Equivalence Principle

The type I formulation is derived based on the equivalence principle [53]. The un-

knowns are equivalent electrical and magnetic currents lying on the sphere surface,

specifically, Je and Me on the exterior side; and Ji and Mi on the interior side. The

scattered electric and magnetic fields Es and Hs are treated equivalently as if being

excited by the currents Je and Me in a homogeneous space whose material property

is equal to that of the exterior region (denoted as an exterior problem). Similarly,
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Figure 3-2: The convergence of the coefficients (3.10)-(3.13) of the Mie scattering
with surface conductivity σE = 0.01S/m. The radius of the sphere is 1λi.
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Figure 3-3: An illustration of Mie scattering with electrical surface conductivity σE

using the boundary element method.

the interior electric and magnetic fields Ei and Hi are treated as if being excited

by the currents Ji and Mi in a homogeneous space whose material property is the

same as that of the interior region (denoted as an interior problem). According to

the equivalence principle [53], in order to treat the exterior or interior problem as in a

homogeneous space, the boundary conditions in (2.11)-(2.14) should be satisfied [39],

and we rewrite them here

−n̂ × [Einc + Es(Je,Me)] = Me, (3.14)

n̂ × [Hinc + Hs(Je,Me)] = Je, (3.15)

n̂ ×Ei(Ji,Mi) = Mi, (3.16)

−n̂ × Hi(Ji,Mi) = Ji, (3.17)

where Einc and Hinc are the incident electric and magnetic fields, respectively. Es(·)

and Hs(·) are, respectively, the integral operators of the electric and magnetic fields

evaluated in the homogeneous space of the exterior problem. Ei(·) and Hi(·) are

the field operators evaluated in the homogeneous space of the interior problem. The
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details of these integral operators can be found in Sec. 2.2.2. The exterior-directed

normal unit-vector is n̂.

The boundary conditions are enforced to couple the exterior and interior problems.

The tangential electric fields on the sphere surface are continuous; that is

n̂ × [Einc + Es(Je,Me)] = n̂ × Ei(Ji,Mi). (3.18)

The electrical surface conductivity induces an electrical current in the way of Jind =

σEEtan; the induced current causes a jump of tangential magnetic fields across the

sphere surface. As a result, the boundary condition of the tangential magnetic field

becomes

n̂ × [Hinc + Hs(Je,Me) − Hi(Ji,Mi)] = σEEtan, (3.19)

where Etan = −n̂ × (n̂ × E) is the tangential component of the electrical field on

the surface and could choose the fields on either side of the surface according to the

equality of (3.18).

The boundary conditions (3.18) and (3.19) provide two linearly independent equa-

tions for four unknowns, Je, Me, Ji, and Mi; thus, it is necessary to find another two

equations. Combining (3.14), (3.16) and (3.18) yields the relation of the two magnetic

currents; the currents have the same magnitude with the direction flipped:

Me = −Mi = M. (3.20)

Therefore, the two unknown magnetic currents Me and Mi can be simply reduced to

one variable M. Similarly, combining (3.15), (3.17) and (3.19) yields the relation of

the electrical currents on the two sides of the surface

Je + Ji = σEEtan. (3.21)

Unlike the equivalent magnetic currents, the two electrical currents cannot be simply
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reduced to one, because Etan in the right-hand-side of (3.21) is an integral operator

of the currents. Therefore, it is necessary to use this equation together with (3.18)

and (3.19) to solve for the three unknown currents Je, Ji and M.

Substituting (3.20) into (3.18) and (3.19), and replacing Etan in (3.19) and (3.21)

with the tangential electric field on the interior and exterior side of the sphere surface,

respectively, yields the complete formulation of type I

n̂ × [Es(Je,M) − Ei(Ji,−M)] = −n̂ ×Einc, (3.22)

n̂ × [Hs(Je,M) − Hi(Ji,−M) + σEn̂ × Ei(Ji,−M)] = −n̂ × Hinc, (3.23)

Je + Ji + σEn̂ × [n̂ × Es(Je,M)] = −σEn̂ × (n̂ ×Einc). (3.24)

Note that one can obtain other forms of the type I formulation by replacing the Etan

with any linear combinations of the tangential electric fields on the exterior side and

the interior side of the sphere surface.

The surface conductivity σE scales the field operators in (3.23) and (3.24), so

variations in σE do not affect the field operators.

Given the number of discretized basis functions N on the sphere surface, the type

I formulation yields a system of 3N equations with 3N unknowns, three currents for

each basis function.

3.2.2 Formulation Type II based on BVP

Unlike the equivalence principle based derivation of the type I formulation, the type

II formulation is derived by solving a two-domain boundary value problem (BVP)

governed by Maxwell’s equations (similar to the source formulations in [14]). In this

derivation, we first obtain the electric and magnetic fields due to equivalent currents,

and these fields must satisfy Maxwell’s equations in the exterior and interior region, as

well as satisfy the boundary conditions at the interface between the two regions. Note

that the type II derivation does not require the field-current relations (3.14)-(3.17)

associated with the homogeneity in the whole space for each sub-problem.

The unknowns are the same as type I: surface electrical and magnetic currents Je
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and Me on the exterior side, and Ji and Mi on the interior side of the sphere surface.

In the exterior region, the total electric and magnetic fields satisfying Maxwell’s equa-

tions are Einc+Es(Je,Me) and Hinc+Hs(Je,Me), respectively. In the interior region,

the total electric and magnetic fields are Ei(Ji,Mi) and Hi(Ji,Mi) respectively. The

integral operators Es(·) and Hs(·) relate the scattered electric and magnetic fields

to Je,Me, and the integral operators Ei(·) and Hi(·) relate the interior electric and

magnetic fields to Ji and Mi. The four field operators are identical to the Es, Hs, Ei

and Hi operators for the type I formulation used in (3.14)-(3.17).

In the derivation of the type I formulation Me, Je, Mi and Ji were assumed to be

equal to the surface electric and magnetic fields just outside and just inside the sphere.

In the derivation for this alternative formulation, these surface currents Je, Me, Ji

and Mi are fictitious quantities used to generate fields that both satisfy Maxwell’s

equations and match the boundary conditions. Following the approach in [14], one

has freedom to define the relations between the currents on the two sides to reduce the

four sets of the currents to two sets. By convention and for simplicity, we constrain

the exterior and interior currents to match in magnitudes but have flipped directions

Je = −Ji = J, (3.25)

Me = −Mi = M. (3.26)

The four current are thus reduced to J and M. Substituting (3.25) and (3.26) into

the boundary conditions (3.18) and (3.19) yields the type II formulation

n̂ × [Es(J,M) − Ei(−J,−M)] = −n̂ ×Einc, (3.27)

n̂ × [Hs(J,M) − Hi(−J,−M) + σEn̂ × Ei(−J,−M)] = −n̂ × Hinc. (3.28)

Compared with the Type I formulation, the type II formulation reduces the number

of unknowns by one third, requiring a size of 2N × 2N matrix system.
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Figure 3-4: A discretized Mie sphere with surface conductivity σE .

3.3 Numerical Results and Error Analysis

In this section, the scattered and interior fields by the Mie sphere with surface con-

ductivity are computed by solving discretized versions of the type I and type II BEM

formulations, and the numerical results are compared to analytical solutions. The

sphere is discretized with triangle panels as shown in Fig. 3-4. The radius of the

sphere is 1λi, where λi is the wavelength in the sphere medium. The center of the

sphere is at the origin. The relative permittivities of the sphere and exterior medium

are 11.9 and 1. respectively. The relative permeability of both the media is 1.

The first example is a scattering case by a sphere with a small surface conductivity

σE = 0.01S. The scattered electric and magnetic fields with respect to θ in a polar

coordinate are shown in Fig. 3-5. The fields calculated by the two types of the BEM

formulations are completely aligned and perfectly match analytical solutions. To

further look into each component of the electric fields, we show the real and imaginary

parts of each component of the scattered fields in Fig. 3-6(a) and the interior fields

in Fig. 3-6(b). The figure shows excellent agreement of the fields calculated by the

two types of BEM formulations with analytical solutions.
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(a) Electric scattered field
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Figure 3-5: Comparisons of the analytical Mie solution and the two types of the
BEM formulations for calculating the magnitude of the scattered fields by a Mie
sphere with surface conductivity in a polar coordinate with respect to θ. The radius
of the sphere is 1λi, and the electrical surface conductivity is 0.01 S. The observation
circle is located at r = 2λi, ϕ = π/6.
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(a) The components of the scattered electric field observed
at r = 2λi and ϕ = π/6.
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(b) The components of the interior electric field inside the
Mie sphere observed at r = 0.6λi and ϕ = π/6.

Figure 3-6: Comparisons of the analytical Mie solution and the two types of the BEM
formulations for calculating each component of the scattered and interior fields by a
Mie sphere with surface conductivity with respect to θ. The radius of the sphere is
1λi, and the electrical surface conductivity is 0.01 S.

63



10−4 10−3 10−2 10−1 100 101

10−7

10−6

10−5

10−4

10−3

σE (S)

D
is

si
pa

ed
 p

ow
er

 (W
)

 

 

integrated normal poynting vector
dissipated power on sphere surface

Figure 3-7: The examination of the agreement in the equation (3.29) of the dissipated
power on sphere surface versus surface conductivity, calculated by type I formulation.

Applying Poynting’s theorem to the sphere with surface conductivity yields

−Re

∫

S+

n̂ · (E × H∗)dS =

∫

S

σE|Etan|2dS, (3.29)

where S denotes the sphere surface, S+ denotes the surface of a larger sphere contain-

ing the Mie sphere, and n̂ is the exterior-directed normal unit vector. The equation

basically states that the power dissipation by the surface conductivity should be equal

to the real part of the integrated normal-directed Poynting’s vector over a closed sur-

face containing the sphere. Fig. 3-7 shows the magnitude of the left side and the right

side of (3.29) and examines the agreement in a range of surface conductivity calcu-

lated by the type I formulation. Note that the power dissipation does not increase

monotonically with the surface conductivity. The reason is that as the electrical sur-

face conductivity grows, more fields are reflected back to the exterior rather than

penetrating the sphere surface and being dissipated. In the limit as the surface con-

ductivity approaches to infinity, the sphere will become completely reflective, like a

perfectly electrically conductive sphere, and no power will be dissipated.
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The accuracy of the two types of BEM as increasing the surface conductivity is

investigated. Fig. 3-8(a) shows the magnitudes of the scattered fields at an observation

point (r = 2λi, θ = 0), when the electrical surface conductivity increases from 0.001

S to 10 S. The scattered fields using the two types of the BEM formulations are both

aligned with analytical solutions in the entire range of the surface conductivity. The

relative errors of the two types of formulations for calculating the scattered fields are

shown in Fig. 3-9(a). The errors are in the range of 1% − 2% for this discretization

of 2000 triangle panels.

The magnitudes of the interior fields at an observation point (r = 0.6λi, θ = 0)

versus surface conductivity are shown in Fig. 3-8(b). As noted above, the sphere be-

comes more reflective with increasing the surface conductivity, so less waves penetrate

into the sphere as σE increases. Hence, the magnitude of the interior field decreases

with increasing the surface conductivity. As shown in Fig. 3-8(b), the fields calcu-

lated using the type I formulation closely follow the analytical solution. However, the

type II formulation generates relatively significant numerical error when the surface

conductivity increases and the interior field is 100 times smaller than the incident

field. Fig. 3-9(b) shows the relative errors versus surface conductivity.

The discrepancy of the BEM calculated interior fields are primarily determined

by the type II formulation. With large electrical surface conductivity, the consequent

small interior fields require accurate numerical cancellations. However the type II

formulation uses the same set of electrical and magnetic currents to calculate both

the exterior and interior fields, and thus the smaller interior field is unable to gain

the same accuracy as the scattered fields. Table 3.1 shows the average magnitudes of

the coefficients of the RWG functions, which are used to approximate the unknown

currents, for the two types of formulations. As expected, for the small surface con-

ductivity (σE = 0.001S) example, the magnitudes of the currents of the two types

are comparable. For the large surface conductivity (σE = 10S), the currents of the

type II formulation remain the same order of magnitude as the corresponding ones

for the small conductivity, but those currents are used to generate several orders of

magnitudes smaller interior fields. The interior currents of the type I formulation be-
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(a) The magnitude of the scattered field observed at r = 2λi, θ = 0.

10−3 10−2 10−1 100 101
10−3

10−2

10−1

100

101

σE (S)

|E
| (

V/
m

)

 

 
BEM type I
BEM type II
Mie Analytical

(b) The magnitude of the interior field observed at r = 0.6λi,
θ = 0.

Figure 3-8: Comparisons of the analytical Mie solution and the two types of the
BEM for calculating the scattered and interior fields of a Mie sphere with surface
conductivity, versus electrical surface conductivity σE . The radius of the sphere is
1λi

comes several orders smaller than the corresponding ones for the small conductivity,

and thus the type I formulation is able to approximate the small interior fields more
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Figure 3-9: The relative error of scattered and interior fields calculated by the two
types of the BEM, versus electrical surface conductivity σE .

accurately.

We have demonstrated that the type II formulation is not as accurate as the type

I formulation for calculating the interior fields for large surface conductivities, but the

calculated interior fields by the type II formulation still converges with discretizations.
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Table 3.1: The average magnitudes of the RWG-function coefficients of the unknown
currents for the two types of formulations

σE = 0.001S σE = 10S

Type I Type II Type I Type II

Je 0.0019 0.0019 0.0023 0.0023

Ji 0.0019 N.A. 1.439 × 10−5 N.A.

M 0.3393 0.3037 9.554 × 10−4 0.2435

Fig. 3-10 shows the interior field at an observation point along with the surface con-

ductivities for different discretizations, and it’s clear that the numerically calculated

field converges to the analytical solution as the mesh becomes finer. The difficulty

for the type II formulation to accurately approximate the small interior fields for

large surface conductivities results in a large coefficient of the power law convergence

with respect to discretizations. The convergence rate of the interior fields calculated

using the two formulations are examined in Fig. 3-11 by showing numerical errors

versus the number of triangle panels N in discretizations, for four different surface

conductivities σE = 0.001S, 0.01S, 1S, 10S. Fig. 3-11(a) shows the error of the interior

fields calculated using the type I formulation converges at an identical 1
N rate for all

the four surface conductivities, and the coefficients for the large conductivities (σE =

1S, 10S) are about the same order. However, in Fig. 3-11(b), the error calculated

using the type II formulation still converges at the 1
N rate, but the coefficient of the

1
N rate increases dramatically with the surface conductivity. Therefore, it requires a

much finer discretization when using the type II formulation for large conductivities

to achieve a small error.

The phenomenon of the large coefficient in the power-law convergence of the type

II formulation for calculating the interior field when surface conductivity is large, is

often not problematic. Because for most scattering cases, one is mostly interested

in the scattered fields. Moreover, the convergence with a large power-law coefficient

only occurs when the interior field is several orders of magnitude smaller compared

with the scattered fields, and thus in general the error can be numerically ignored.
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Figure 3-10: The convergence of the magnitude of the interior field calculated by
the type II formulation, versus electrical surface conductivity σE . The radius of the
sphere is 1λi. The observation point is at r = 0.6λi, θ = 0.

The two types of the BEM formulations will be further used to analyze surface

conductive absorbers in the following chapters. For the type II formulation, the

convergence with a large power-law coefficient for calculating the interior field of a Mie

sphere with a large surface conductivity will not occur when the type II formulation is

used to analyze a surface absorber to truncate a waveguide channel. For the waveguide

channel, the excitation source is located in the interior region, and power is localized in

the waveguide interior. Thus, the interior field is dominant, like the scattered field in

the Mie scattering case. Also, the surface conductivity of the absorber remains small

when chosen to minimize transition reflections at the waveguide-absorber interface,

which will be discussed in Sec. 4.5. We will compare the numerical results calculated

by the two BEM formulations in the next chapter.
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Figure 3-11: The convergence of the relative errors of BEM calculated interior fields
with the number of discretized triangle panels for different surface conductivities.
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Chapter 4

Surface Conductive Absorber

In this chapter, we describe an absorber technique for terminating optical waveguides

with the boundary element method, which otherwise has difficulties with waveguides

and surfaces extending to infinity. In order to attenuate waves reflected from trun-

cated waveguides, we append a region with surface conductivities to the terminations.

The transition between the non-absorbing and absorbing regions will generate reflec-

tions that can be minimized by making the transition as smooth as possible. We show

how this smoothness can be achieved with the surface absorber by smoothly changing

integral-equation boundary conditions. Numerical experiments demonstrate that the

reflections of our method are orders of magnitude smaller than those of a volume

absorber. we show the asymptotic power-law behavior of transition reflections as a

function of the length of the surface absorber and demonstrate that the power law is

determined by the smoothness of the transition. In addition, we calculate the field

decay rate due to the surface conductivity and show a saturation phenomenon of the

electrical surface conductivity.
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Figure 4-1: A discretized dielectric waveguide with an absorber attached.

4.1 BEM formulations for the Surface Conductive

Absorber

In this section, we describe the 3-D BEM formulation for a waveguide truncated with

a surface conductive absorber shown in Fig. 4-1. The xz plane cross-section of the

x-directed truncated rectangular waveguide is shown in Fig. 4-2, where the surface

conductive absorber region is to the right of the dashed line. The permittivity and

permeability of the waveguide interior and the exterior media are denoted as εe, µe and

εi, µi, where the subscripts e and i denote the exterior and the interior, respectively.

The electrical surface conductivity σE(r) is subscripted with E as a reminder that only

electrical conductivity is being considered, though the generalization of what follows

to both electrical and magnetic conductivity could be considered. As is described in

section 4.4, using only electrical conductivity can have a saturation phenomenon that

can be avoided at the cost of using a longer absorber. The system is excited by a

Gaussian beam propagating in +x̂ direction. The Gaussian beam is generated by a

dipole in a complex space [64], where the real part of the dipole position is inside the

waveguide, 1
4λi from the left end. The convention of the ejωt time-harmonic mode is

adopted.

In SIE methods, for computing time-harmonic solutions, the unknowns are surface

variables. In our case, we use surface electric and magnetic currents on both the

interior, Ji and Mi, and exterior, Je and Me, of every surface. The currents on

surfaces with σE = 0 on the left side of Fig. 4-2, satisfy a simpler set of equations than
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Figure 4-2: The 2-D longitudinal section of a waveguide with a surface conductive
absorber. The lengths of the waveguide and absorber are 20λi and 10λi, respectively,
with λi denoting the wavelength in the waveguide medium. The waveguide cross sec-
tion size is 0.7211λi × 0.7211λi. The relative permittivities of the waveguide (silicon)
and the external medium (air) are 11.9 and 1, respectively.

the currents on surfaces where σE += 0, the right side of Fig. 4-2. When appropriate,

we distinguish between the σE = 0 and σE += 0 currents with superscripts L and R,

respectively.

Invoking the equivalence principle [53] yields relations between surface currents

and fields, which are similar to (3.14)-(3.17) except for the location of the incident

fields, and they are

−n̂ ×Ee = Me, (4.1)

n̂ ×He = Je, (4.2)

n̂ × (Ei + Einc) = Mi, (4.3)

−n̂ × (Hi + Hinc) = Ji, (4.4)

where n̂ is an exterior-directed normal unit-vector, Einc, Hinc, are the electric and

magnetic fields of the Gaussian beam in a homogeneous space with material parame-

ters equal to those of the waveguide interior, and Ee, He and Ei, Hi are electric and

magnetic fields due to the equivalent currents in the exterior and interior, respectively.

On the surface of the waveguide, the continuity of the tangential components of

the electric and magnetic fields yields the well-known PMCHW formulation [14, 15],
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which has been described in Sec. 2.2.1, and the equations are

n̂ × EL
e (JL

e ,ML
e ,JR

e ,MR
e ) = n̂ × [EL

i (JL
i ,ML

i ,JR
i ,MR

i ) + EL
inc], (4.5)

n̂ × HL
e (JL

e ,ML
e ,JR

e ,MR
e ) = n̂ × [HL

i (JL
i ,ML

i ,JR
i ,MR

i ) + HL
inc], (4.6)

where EL(·) and HL(·) are integral operators described in the Appendix. From (4.1)-

(4.4) and the tangential field continuity in the surface conductivity free region, the

equivalent currents on the two sides of the waveguide surface are of the equal magni-

tude, but are opposite in direction. Specifically,

JL
e = −JL

i = JL, (4.7)

ML
e =−ML

i = ML. (4.8)

Thus, the unknown currents on the waveguide side are reduced to JL and ML.

For the surfaces where σE += 0, a modified surface formulation is needed, one that

incorporates the discontinuity due to the surface conductivity. In Sec. 3.2, two types

of the BEM formulation have been proposed and discussed. Here, we briefly describe

them in this surface absorber case. When σE += 0, the tangential electric field is still

continuous across the absorber surface, and therefore

n̂ ×ER
e (JL

e ,ML
e ,JR

e ,MR
e ) = n̂ × [ER

i (JL
i ,ML

i ,JR
i ,MR

i ) + ER
inc]. (4.9)

The tangential magnetic field is not continuous as a sheet of surface electric current

Jind = σEER
tan is induced due to the electrical surface conductivity, thus creating a

jump. Therefore,

n̂ × [HR
e (JL

e ,ML
e ,JR

e ,MR
e ) − HR

i (JL
i ,ML

i ,JR
i ,MR

i ) − HR
inc] = σEER

tan, (4.10)

where ER
tan = −n̂ × (n̂ × ER) is the tangential electric field on the absorber surface,

and could choose the field on either side of the absorber surface according to the

enforced equality in (4.9).
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As a result of (4.1), (4.3) and (4.9), the interior and exterior magnetic currents

can be represented with a single variable

MR
e = −MR

i = MR. (4.11)

For the type I formulation, the discontinuity of tangential magnetic field implies

|JR
e | += |JR

i |, and (4.2), (4.4), and (4.10) must be combined to generate a local equation

JR
e + JR

i = σEER
tan. (4.12)

Finally, using the integral operator relation between ER
tan and J and M, and substi-

tuting into (4.10), (4.12), yields

n̂ × [HR
e (JL

e ,ML
e ,JR

e ,MR
e ) − H

R
i (JL

i ,ML
i ,JR

i ,MR
i )

−H
R
inc] = σEE

R
e,tan(J

L
e ,ML

e ,JR
e ,MR

e ), (4.13)

J
R
e + J

R
i = σE [ ER

i,tan(JL
i ,ML

i ,JR
i ,MR

i ) + E
R
inc,tan]. (4.14)

Thus, the type I formulation has five sets of unknowns, the surface currents JL,

ML, JR
e , JR

i and MR, and they can be determined by solving equations (4.5), (4.6)

on the left waveguide surfaces and (4.9), (4.13), (4.14) on the right absorber surfaces.

For the type II formulation, the electrical currents on the two sides of the absorber

surface are forced to be equal in magnitude and opposite in sign, and they are

JR
e = −JR

i = JR. (4.15)

Then the electrical currents on the absorber surface are reduced to one set, the same

as the magnetic currents. Thus, the type II formulation has four sets of unknowns,

the surface currents JL, ML, JR and MR, and they can be determined by solving

equations (4.5), (4.6) on the left waveguide surfaces and (4.9), (4.10) on the right

absorber surfaces.

75



4.2 Solving A Linear System

4.2.1 Construction of A Linear System

From section 4.1, the equivalent currents on the waveguide surfaces and the absorber

surfaces, are to be determined by solving the equations (4.5), (4.6), (4.9), (4.13) and

(4.14) for the type I formulation or the equations (4.5), (4.6), (4.9) and (4.10) for the

type II formulations. The currents are approximated with the RWG basis function [1]

on triangular-meshed surfaces,

J =
∑

m

JmXm(r′), (4.16)

M =
∑

m

MmXm(r′), (4.17)

where Xm(r′) is the RWG function on the mth triangle pair, and Jm, Mm are the

corresponding coefficients for the electric and magnetic currents, respectively. These

unknown coefficients of the five equivalent currents assemble a vector x to be solved

for, specifically, for the type I formulation the vector x is

x =

[

JL ML JR
e JR

i MR

]T

, (4.18)

and for the type II formulation, the unknown vector x is

x =

[

JL ML JR MR

]T

. (4.19)

Electric and magnetic fields are represented using the mixed-potential integral

equation (MPIE) [16] for a low-order singularity, with integral operators L and K as

in (2.23) and (2.24). The details of the integral operators L and K can be found in

Sec. 2.2.2.

We employ Galerkin method [55] on the waveguide by using the RWG function as

the testing function on target triangle pairs. The tested L, K operators on the nth
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target triangle pair due to the mth source triangle pair become

Lt
l,nm(Xm) =

∫

S

Xn(r) · Lt
l(Xm)dS, (4.20)

Kt
l,nm(Xm) =

∫

S

Xn(r) · Kt
l (Xm)dS, (4.21)

where S is the surface of the nth target triangle pair, and X(r) is the RWG function.

The subscript l = e or i denotes the exterior or interior region, and the superscript

t = L or R denotes the waveguide or absorber surfaces. Substituting the tested field

operators into equations (4.5), (4.6) yields a matrix ALL due to the currents JL, ML,

and a matrix ALR due to the currents JR
e , JR

i , MR.

On the absorber surfaces, the term σE(r)ER
l,tan in (4.13) and (4.14) requires another

testing procedure in order to incorporate the surface conductivity

LRσE

l,nm(Xm) =

∫

S

σE(r)Xn(r) · LR
l (Xm)dS, (4.22)

KRσE

l,nm(Xm) =

∫

S

σE(r)Xn(r) · KR
l (Xm)dS. (4.23)

Similarly, substituting the above four tested integral operators into (4.9), (4.10),

(4.13) and (4.14) generate a matrix ARL due to the currents on the waveguide surfaces

and a matrix ARR due to the currents on the absorber surfaces.

Assembling the four matrices according to (4.5), (4.6), (4.9), (4.13) and (4.14) for

the type I formulation or (4.5), (4.6), (4.9) and (4.10) for the type II formulation

yields a dense linear system

Ax = b, (4.24)

where

A =









ALL ALR

ARL ARR









. (4.25)

The right-hand-side vector b contains tested incident electric and magnetic fields,
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and the vector b for the type I formulation is

b =

[

bL
E bL

H bR
E bR

H bR
Eσ

]T

, (4.26)

and the vector b for the type II formulation is

b =

[

bL
E bL

H bR
E bR

H

]T

, (4.27)

in which the nth entry of each subvector is given by

bt
E,n =

∫

S

Xn(r) · Et
inc(r)dS, (4.28)

bt
H,n =

∫

S

Xn(r) · Ht
inc(r)dS, (4.29)

bR
Eσ,n =

∫

S

σE(r)Xn(r) · Et
inc(r)dS. (4.30)

4.2.2 Acceleration and Preconditioning with FFT

The linear system (4.24) can be solved with iterative algorithms, for instance, GMRES

for this non-symmetrically dense system. In each iteration, the matrix-vector product

takes O(N2) time, where N is the number of unknowns. Moreover, to explicitly

store the matrix A is expensive, requiring O(N2) memory. In fact, there have been

many well-developed fast algorithms to reduce the costs of the integral equation

solvers [26–29]. Here, we use a straightforward and easily-implemented FFT-based

fast algorithm to accelerate the SIE method on periodic guided structures.

As shown in Fig. 4-3, the waveguide is discretized into a periodically repeating set

of the RWG triangle pairs. Due to the mesh periodicity and the space invariance of

the operators (4.20), (4.21), the matrices ALL and ALR are block Toeplitz, requiring

explicit calculation and storage of only a block row and a block column, reducing

memory to approximately O(N). A Toeplitz matrix can be embedded in a circulant

matrix, and the circulant matrix-vector product can be computed with the FFT [36,

65]. In this way, the computational costs are reduced approximately to O(N log N).
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Figure 4-3: A discretized waveguide with a periodic unit.

Because the surface conductivity σE must vary with distance from the waveguide-

absorber interface, the tested potential operators (4.22), (4.23) are not space invari-

ant. Therefore, accelerating the σE parameterized matrices ARL and ARR is not as

straightforward as ALL and ALR. Typically, the integral of (4.22), (4.23) is calcu-

lated numerically using Gauss quadrature [56], summing up the tested potentials at

quadrature (target) points with Gauss weights. For instance, (4.22) is numerically

calculated through

LRσE

l,nm(Xm) = An

K
∑

k=1

ωkσE(rk)Xn(rk) · LR
l,k(Xm), (4.31)

where rk is the kth quadrature point of the nth RWG triangle pair, ωk is the Gauss

weight of the kth point, An is the area of the nth triangle pair, and LR
l,k(Xm) is the

potential L evaluated at the k the quadrature point due to the currents on the mth

RWG triangle pair. The space invariance of the potential operators L in (2.25) and

K in (2.26) and periodicity of the mesh allows assembling a matrix of the potentials

LR
l,k(Xm) and KR

l,k(Xm) at target points by explicitly calculating only a block row and

block column of that matrix. Then the potentials at target points are summed after

testing and multiplications with Gauss weights and surface conductivity as in (4.31),

and eventually stamped into matrices ARL and ARR.
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Another great advantage of working with a Toeplitz or a block Toeplitz matrix

is the existence of a highly efficient preconditioner [66–68]. A circulant matrix is

approximated from the Toeplitz matrix, and then can be easily inverted with the

FFT. We use this method to calculate a preconditioner for ALL, and use the block-

diagonal preconditioner [29] for ARR.

4.3 Numerical Results of Absorbers

In this section, we will present numerical results of the surface conductive absorber us-

ing the boundary element method described in the last two sections. But before that,

we show examples of a straight-forward volume conductive absorbers with constant

electrical and magnetic volume conductivities. The constant volume conductivities

are required by the piecewise homogeneity limitation of the general boundary element

method using the homogeneous Green’s function, and therefore we are not allowed

handling varying volume conductivity. The volume absorber can effectively absorb

the propagating wave, but the large material transition at the waveguide-absorber

interface generates significant reflections. Instead, the surface conductive absorber

with quadratically increasing surface conductivity can reduce reflections by as much

as 45dB.

4.3.1 Volume Conductive Absorbers

With SIE methods, one could, in principle, implement a scalar waveguide absorption

in a piecewise homogeneous fashion as a discontinuous increase in absorption, but

this will obviously generate large reflections due to the discontinuity of the medium

and also the numerical reflection due to the discretization of the interfaces. We

demonstrate this with a finite rectangular waveguide, to which an absorber with

constant volume electrical conductivity σE and magnetic conductivity σM is attached.

The longitudinal cross-section of this arrangement is shown in Fig. 4-4. To achieve

small reflections, the intrinsic impedance of the absorber is matched to that of the

waveguide. Hence, the electrical volume conductivity σE and the magnetic volume
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Figure 4-4: The 2-D cross section of a waveguide with a volume absorber. The
lengths of the waveguide and absorber are 20λi and 10λi, respectively, with λi de-
noting the wavelength in the waveguide medium. The waveguide cross section size
is 0.7211λi × 0.7211λi. The relative permittivities of the waveguide (silicon) and the
external medium (air) are 11.9 and 1, respectively

conductivity σM should satisfy σE/σM = εi/µi, where εi and µi are the permittivity

and permeability of both the waveguide and absorber media, respectively.

We quantify the reflection by use of the standing wave ratio (SWR), the ratio of

the maximum field magnitude to the minimum field magnitude in the standing-wave

region, evaluated on the waveguide axis. From the SWR, a reflection coefficient is

then readily obtained as in a conventional transmission line. The first example is a

short volume conductive absorber with constant volume conductivities. The lengths

of the waveguide and the attached volume absorber in this example are 20λi and 10λi,

respectively, where λi is the wavelength in the interior region. We calculated the field

reflection coefficients in this way for a range of σE and σM , and the smallest field

reflection coefficient obtained was 2.5% when σE = 0.0087 S/m. Fig. 4-5 shows the

complex magnitude of the corresponding electric field along the central axis. In this

complex magnitude plot, the peak-to-peak magnitudes of ripples are an indication of

the amount of reflections. Obviously, the large ripples in the plot indicate significant

reflections. The reflection coefficient, which is listed in the first column of Table 4.1,

is unacceptable for many design applications. In particular, the design of tapers [6]

requires field reflection from terminations in the order of 10−3 or smaller.

The volume absorber is then made much longer with a smaller volume conductivity

in order to reduce the discontinuity of the material at the interface. Fig. 4-6 shows

the complex magnitudes of the electric field when the absorber length is increased
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Figure 4-5: The complex magnitude of the electric field inside a waveguide and a
volume absorber of constant electrical and magnetic conductivity. The lengths of the
waveguide and the volume absorber are 20λi and 10λi, respectively. The constant
electrical volume conductivity of the volume absorber is σE = 0.0087 S/m. The
dashed line indicates the position of the waveguide-absorber interface.

to 60λi and the electrical volume conductivity is reduced to σE = 0.0015 S/m. The

ratio of the electrical and magnetic conductivities is still fixed. In Fig. 4-6, the size

of the ripples of the complex magnitudes is reduced (clearly shown in the inset), and

the numerically measured field reflection coefficient is 1.09%, still larger than the

tolerance of most applications. Evidently, a more sophisticated way of terminating

waveguides is called for.

4.3.2 Surface Conductive Absorbers

Unlike the volume conductive absorber shown in the last section, the surface con-

ductive absorber can significantly reduce reflections by using a short absorber due to

the capability of smoothly increasing the conductivity from the waveguide-absorber

interface. As shown in Fig. 4-2, a waveguide attached with a surface absorber of the

same short length (10λi) as the volume absorber in the last section is computed using

the type I boundary element method formulation described in Sec. 4.1 and Sec. 4.2.
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Figure 4-6: The complex magnitude of the electric field inside a waveguide and a
volume absorber of constant electrical and magnetic conductivity. The lengths of the
waveguide and the volume absorber are 20λi and 60λi, respectively. The constant
electrical volume conductivity of the volume absorber is σE = 0.0015 S/m

In Fig. 4-7, we show the numerically computed complex magnitudes of the electric

field along the x direction inside a rectangular waveguide with several different sur-

face absorbers. The surface absorber is in the region where x0 < x < (x0 + L) in

which x0 is the position of the interface and L is the absorber length. The surface

electrical conductivity in this region is given by σE(x) = σ0(
x−x0

L )d, where d = 0, 1, 2

for constant, linear and quadratic profiles. The constant σ0 is chosen so that the

total attenuation over the length of the absorbing region matches that of the optimal

volume absorber above. The approach for calculating the attenuation along the ab-

sorber was explained in Sec. 2.1. As is easily seen in Fig. 4-7, there are substantial

reflections when using a constant conductivity, smaller reflections when using a lin-

early increasing conductivity, and almost no reflections for a quadratically increasing

conductivity. The magnitudes of the field reflection coefficients r are listed in Ta-

ble 4.1, and show that the reflection coefficient for the quadratically varying surface

conductivity is nearly one thousand times smaller than the reflection coefficient for

the volume absorber. The results for the constant, linearly and quadratically varying
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Table 4.1: The Standing wave ratio (SWR) and field reflection versus the conductivity
distribution of the absorber, whose length is 10λi.

Absorber type Volume Surface

Conductivity profile Constant Constant Linear Quadratic

SWR 1.0503 1.0509 1.0022 1.0002

Reflection R(dB) −32.2 −32.1 −59.2 −79.7

surface absorber verify the results in [24], that the smoothness of any transition in

the waveguide largely determines the resulting reflection.

We further compare the fields calculated using the two types of the BEM for-

mulations. We use a quadratic conductivity function σE(x) = 0.01(x−x0
L )2 S, where

x0 is the position of the waveguide absorber interface and L is the absorber length.

Fig. 4-8 shows the magnitude of the electric field along the center of the waveguide

and absorber. As expected, the two types of the BEM generate the same results,

while the type II BEM reduces the unknowns of on the absorber surface by one third.

4.4 The Field Decay Rate Due to the Electrical

Surface Conductivity

In this section, the exponential decay rate of waves propagating through the surface

absorber region is analyzed. We demonstrate the relation between the decay rate

and the surface conductivity using an example of a single dielectric waveguide with

uniformly distributed surface conductivity. The longitudinal cross-section is shown

in Fig. 4-9. The behavior of the interior fields generated by a Gaussian beam source

were computed using a BEM method based on solving (4.9), (4.13) and (4.14).

The plot in Fig. 4-10 shows the complex magnitudes of the electric fields along

the x axis inside the waveguide for two cases, σE = 0.001 S and σE = 0.002 S. As

expected, the complex magnitude decays exponentially with distance from the source

with a surface-conductivity dependent rate. Also, as can be seen, waves reflect back
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(a) constant surface conductivity

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

x (λi)

E 
(V

/m
)

 

 

complex magnitude

16 17 18 19
6600

6700

6800

6900

7000

 

 

(b) linear surface conductivity along x direction
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(c) quadratic surface conductivity along x direction

Figure 4-7: The complex magnitude of the electric field inside a waveguide and a
surface absorber. The dashed line indicates the position of the waveguide-absorber
interface.
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Figure 4-8: The complex magnitude of the electric field inside a waveguide and a
surface absorber. The dashed line indicates the position of the absorber interface

from the right end and presumably these reflections decay as they travel to the left.

An approximation to the rate of exponential decay can be determined by fitting

the field plots. The fitted decay rates for a range of σE are shown in Fig. 4-11 and

denoted with a dashed star curve. The decay rate does not monotonically increase

with the surface conductivity. The curve shape can be explained as follows. When

σE is small, the propagating wave is able to penetrate the lossy surface and is ab-

sorbed, with the absorption increasing with σE as expected. However, for large σE ,

Figure 4-9: The 2-D longitudinal section of a waveguide with uniform surface con-
ductivity. The waveguide length is 10λi and cross section size is 0.7211λi × 0.7211λi.
The relative permittivity of the waveguide and external medium are 11.9 and 1, re-
spectively.
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Figure 4-10: The complex magnitude of the electric field along x inside the waveguide
in Fig. 4-9 with uniform surface conductivity.

the surface conductor itself becomes reflecting, forming essentially an enclosed metal-

lic waveguide; as σE → ∞ the tangential electric field vanishes at the surface and

therefore there is no absorption. The practical implications of this upper bound on

effective values for σE are limited, and are described in section 4.5.

The following sections introduce two alternative approaches to calculate the de-

cay rate from surface conductivities, to confirm and further illustrate the numerical

observations above.

4.4.1 Decay rate calculation by perturbation theory

In this section, a first-order closed-form decay rate formula, valid for low surface

conductivity, is derived using perturbation theory.

Assume the electric field E(0)(r) of the fundamental mode of a lossless rectangular

waveguide is given, and the superscript (0) denotes the unperturbed quantity. When

electrical surface conductivity σE is put on the waveguide surface, it is equivalent to
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Figure 4-11: A comparison of three methods for computing the rate of field exponen-
tial decay along the propagation direction versus surface conductivity.

a perturbation of permittivity, denoted as

∆ε(r) = −
jσE

ω
δS(r), (4.32)

where δS(r) is the Dirac delta function across the waveguide surface. According

to [53], [2], the first-order variance of angular frequency due to the perturbation of

permittivity ∆ε(r) is

∆ω(1) = −
ω

2

∫

V ∆ε(r)|E(0)(r)|2dV
∫

V ε|E(0)(r)|2dV
, (4.33)

where V is the whole volume domain and the superscript (1) denotes a first-order

approximation. Apply the triple product rule to the three interdependent variables

ω, k, σE . The total derivative dω can be written as

dω =
∂ω

∂σE

∣

∣

∣

∣

k

dσE +
∂ω

∂k

∣

∣

∣

∣

σE

dk, (4.34)

where the variable in the subscript on the right of | is held constant when the derivative
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on the left of | is taken. Holding ω constant yields dω = 0 and dk = ∂k
∂σE

∣

∣

∣

∣

ω

dσE .

Substituting these two equations into (4.34) yields

∂ω

∂σE

∣

∣

∣

∣

k

+
∂ω

∂k

∣

∣

∣

∣

σE

∂k

∂σE

∣

∣

∣

∣

ω

= 0. (4.35)

From (4.35), we obtain

∂ω

∂k

∣

∣

∣

∣

σE

= −
∂ω

∂σE

∣

∣

∣

∣

k

∂σE

∂k

∣

∣

∣

∣

ω

= −
∂ω

∂k
. (4.36)

As we know, the group velocity is Vg = ∂ω
∂k |σE

. Therefore, the left side of (4.36)

can be replaced with Vg, and it becomes Vg = −∂ω
∂k . Then we obtain a first-order

change in propagation constant k due to the frequency change in (4.33), denoted as

∆k(1) = −∆ω
Vg

. Combining (4.32), (4.33) and the ∆k(1) equation above, the integral in

the numerator of (4.33) is reduced to a surface integral of the tangential components

of the electric field, therefore

∆k(1) = −
jσE

2Vg

∫

S |E
(0)
tan(r)|2dS

∫

V ε|E(0)(r)|2dV
, (4.37)

where S is the surface of the waveguide. As expected, the perturbation in the propaga-

tion constant is imaginary, which in turn represents the decay rate α(1) = −Im{∆k(1)}.

With a uniform cross section, the volume and surface integrals in (4.37) can be further

reduced to surface and line integrals on the cross section, respectively. The electric

field before the perturbation E(0)(r), along with Vg, can be obtained numerically, for

example, with a planewave method [33].

The decay rate calculated using the perturbation is plotted in Fig. 4-11 with a

dashed diamond curve. Note that the curve overlaps with decay rates computed

with other methods when the surface conductivity is small, and deviates for larger

conductivity as should be expected given the first-order approximation.
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Figure 4-12: Illustration of the approach using Poynting’s theorem to calculate the de-
cay rate of a waveguide with surface conductivity. The plot of the surface conductivity
distribution σE(x) along the longitudinal direction is aligned with the waveguide.

4.4.2 Decay rate calculation using Poynting’s theorem

The perturbation method above predicts the decay rate when the surface conductivity

is small. An alternative approach, based on Poynting’s theorem, can be used to

calculate the decay rate for the entire σE range.

Figure 4-12 shows a waveguide with surface conductivity as well as a plot of

the conductivity function σE(x) with x-axis aligned with the x-axis of the waveguide.

Since this approach requires integrating the fields of source-excited propagating modes

in the exterior region, some inevitably excited modes, such as radiation modes that

will be discussed in section 4.6, must be suppressed. For this reason, the surface

conductivity starts with a large constant value (5 S). The large surface conductivity

leads to the saturation as seen in Fig. 4-11, and therefore, the Gaussian-beam source

excites metallic waveguide modes at the beginning, propagating in +x̂ direction in

the closed interior region. The surface conductivity is then smoothly reduced to a

smaller value, with which the decay rate is to be calculated. In this way, the metallic

waveguide modes can smoothly change to the desired decaying dielectric waveguide
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modes with minimal radiation modes excited.

The decaying propagating mode in the domain of interest, shown in Fig. 4-12, is

assumed in the form

E(r) ∼ E0(y, z)e−αx−jβx, (4.38)

H(r) ∼ H0(y, z)e−αx−jβx, (4.39)

where β is the real propagation constant, and α is the unknown decay rate. The

Poynting vector in frequency domain is given by S = 1
2E × H∗, and together with

the assumed forms of E in (4.38) and H in (4.39), the derivative with respect to x is

given by
dS

dx
= −2αS. (4.40)

As illustrated in Fig. 4-12, apply Poynting’s theorem in the closed volume V

Re

∫

S

S · n̂dS = −
1

2

∫

S′

σE|Etan|2dS ′, (4.41)

where S is the surface of the volume V , n̂ is an exterior-directed normal unit-vector,

and S ′ is the waveguide surface within V . In the limit as ∆x → 0, the closed

integration surface S becomes a surface A, and one component of the integrand of

the left side of (4.41) becomes dS
dx · x̂. Combining (4.40) and this ∆x → 0 limit of

(4.41) yields a closed-form representation of the decay rate α

α =

∫

L′
σE|Etan|2dl′ + Re

∫

L(E ×H∗) · n̂dl

2Re
∫

A(E ×H∗) · x̂dS
, (4.42)

where L denotes the boundary of the surface A, and L′ denotes the integral line on

the waveguide surface within the surface A.

The decay rate calculated using (4.42) is plotted in Fig. 4-11 with a dashed circle

curve. It shows good agreement with the decay rate computed using fitting for the

entire σE range, verifying that the surface conductivity is handled correctly by the

BEM in accordance with Maxwell’s equations.
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4.5 Asymptotic Convergence of Transition Reflec-

tions

In section 4.3, we showed that a smoothly varying surface conductive absorber easily

implemented in the SIE method is orders of magnitude more effective at eliminating

reflections than a volume absorber of comparable length. And, since computational

cost increases with the length of the absorber, it is worth examining the relationship

between reflections and the absorber length. In order to do this, we first require a

more sensitive numerical measure of reflections than the standing wave ratio method.

In the following subsections, we will present a measure of the power-law asymptotic

convergence of transition reflections.

In Sec. 2.1, reflections in a domain of interest can be divided into a round-trip

reflection, Rr, and a transition reflection, Rt. Here, the surface conductivity function

is a dth order monomial function as defined in (2.3). The round-trip reflection Rr

can be fixed by making the conductivity coefficient inversely proportional to the

absorber length L. Therefore, using a longer absorber implies a smaller transition

reflection. It was further shown in Sec. 2.1 that, given a fixed round-trip reflection,

the transition reflection decreased as a power law with increasing absorber length

L. The power-law exponent is determined by the order of the differentiability of the

medium (conductivity) function. Moreover, with the surface conductivity function

σE(x) as defined in (2.3) and a fixed round-trip reflection, the asymptotic behavior

of the transition reflection in terms of the length of the absorber is

Rt(L) ∼
1

L2d+2
. (4.43)

We present numerical results to verify the asymptotic power-law convergence of

the transition reflection of the surface absorber. Because it is hard to explicitly

measure the transition reflection in the integral equation method, instead, we measure

alternative electric field expressions as in [24].

First, we define E(L) as the electric field at a fixed position in the waveguide
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when the length of the absorber is L, with unit λi. Thus E(L) includes the incident

field, the round-trip reflection and the transition reflection. With a small fixed round-

trip reflection, the difference of E(L + 1) and E(L) is the difference of the transition

reflections, which in the limit of large L approaches to zero, so E(L+1)−E(L) → 0.

Therefore, |E(L + 1) − E(L)|, and similarly |E(2L) − E(L)|, can be a measure of

transition reflection, and specifically, derived from (4.43), they are subject to the

following asymptotic behavior

|E(L + 1) − E(L)|2

|E(L)|2
∼

1

L2d+4
, (4.44)

|E(2L) − E(L)|2

|E(L)|2
∼

1

L2d+2
. (4.45)

In the example of a rectangular waveguide attached with a surface absorber, the

asymptotic convergence of (4.44) is shown in Fig. 4-13(a) in a log-log scale for con-

stant, linear, quadratic, and cubic surface conductivity profiles (d = 0, 1, 2, 3). The

curve for d = 0 slowly approaches to the L−4 curve. The other three curves align

with the expected L−6, L−8, L−10 curves respectively. The curves would eventually

converge to a small quantity, which is the difference of the small round-trip reflec-

tions due to a phase difference. Fig. 4-13(b) shows the asymptotic convergence of

(4.45) with the same waveguide example for constant, linear, quadratic, and cubic

profile surface conductivities. Again, the curve for the constant conductivity profile

converges slowly, and is expected to be aligned with the L−2 curve. The other three

power-law convergence are the same as the predicted L−4, L−6, L−8. The agreement

of the figures verifies the power-law behavior of the transition reflection of the surface

absorber and further illustrates that a higher-order conductivity function leads to

smaller transition reflections.

4.6 Radiation in the surface absorber

A surface absorber with a conductivity that rises smoothly with distance from the

waveguide-absorber interface would be expected to have interior fields whose mag-
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Figure 4-13: Asymptotic power-law convergence of the transition reflection with the
length of the surface absorber. The length of the waveguide is 10λi, with λi denot-
ing the wavelength in the waveguide medium. The waveguide cross section size is
0.7211λi × 0.7211λi. The relative permittivities of the waveguide (silicon) and the
external medium (air) are 11.9 and 1, respectively.
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Figure 4-14: The complex magnitude of the electric field inside a waveguide and a
long surface absorber excited by a dipole source and a Gaussian beam, respectively.
The lengths of the waveguide and the absorber are 10λi and 30λi, respectively. The
surface conductivity on the absorber increases quadratically.

nitude decays with distance at an accelerating exponential rate. Instead, the field

magnitudes decay exponentially near the interface, but then switch to an 1
r decay, as

shown in Fig. 4-14. The cause of this switch in decay rate is due to coupled radia-

tion. The radiation is generated by the inevitable mismatch between the excitation

source and waveguide modes. The situation is similar to a source radiating in a lossy

half-space, in which the dominant field contribution is due to a lateral wave that

decays algebraically [69, 70]. Fig. 4-14 shows the complex magnitude of the interior

electric field in a waveguide attached with a long quadratic-profile surface absorber.

The waveguide system is excited by a dipole source and a Gaussian beam, respec-

tively, located inside the waveguide. In the semilog plot, the dominant waveguide

mode decays at an accelerating exponential rate, and then because the guided mode

decays faster than the 1
r radiation, the radiation dominates at a certain distance from

the waveguide-absorber interface. The coupled radiation results in an 1
r floor, as is

clearly shown in the inset with a log-log scale. Note that using a Gaussian beam
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source results in a lower floor than using a dipole source, because the Gaussian beam

is more directional, and generates less radiation.

The coupled 1
r radiation does not affect the performance of the surface absorber,

because the coupled radiation itself is several orders of magnitude smaller than the

propagating modes in the waveguide, and little will be reflected. The asymptotic

convergence of the transition reflections in section 4.5 and the −79.7dB reflection

coefficient in section 4.3 consistently showed the excellent performance of surface

absorbers, obviously unhampered by the effects of radiation.

4.7 Electrical and Magnetic Surface Conductivi-

ties

Up to now, we have investigated the surface absorber with electrical surface conduc-

tivity both theoretically and experimentally. In Sec. 4.4, we have shown that large

electrical surface conductivity leads to a saturation phenomenon as the large surface

conductivity turns the dielectric waveguide into a metallic waveguide, making propa-

gating waves stop attenuating. But this phenomenon does not cause problems for the

surface absorber because Sec. 4.5 has shown that the surface absorber in general oper-

ates at the small surface conductivity regime to reduce transition reflectons. However,

it would be nice if we could figure out ways to eliminate the saturation phenomenon,

and leave the large surface conductivity an option in future to apply to surface ab-

sorbers. Another way to consider the saturation phenomenon is the impedance match

between the interior region and the surface conductivity region (though the thickness

of the surface conductivity region is in the limit to 0) in the cross section plane (yz

plane in Fig. 4-12).

Consider the normal-incident wave from the interior region to the surface con-

ductivity region in the yz plane, whose reflection is determined by the mismatch of

the intrinsic impedance of the two regions. The intrinsic impedance of the interior

region is Zi =
√

µi

εi
, where εi and µi are the permittivity and permeability of the
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interior material, respectively. The impedance of the surface conductivity region is

Zsurf =
√

µi

εi−j
σE
ω

. When σE increases from zero, the impedances of the two regions

start to mismatch, making some of the incident waves reflected back to the interior

region without being dissipated in the conductivity region. When σE goes to infinity,

the impedance completely mismatches and all waves are reflected. With the elec-

trical surface conductivity only, it is difficult to match the impedance when σE is

nonzero. Therefore, in this section, we propose use both the electrical and magnetic

surface conductivities σE and σM , and the impedance of the surface conductivity

region becomes

Zsurf =

√

µi − j σM

ω

εi − j σE

ω

. (4.46)

Given a fixed ratio of the surface conductivities σM

σE
= µi

εi
, the impedances of the inte-

rior region and the conductivity region are matched with increasing the conductivities,

and the normal incidence could completely penetrate into the surface conductivity

region and be dissipated. For this reason, even if the surface conductivities σE and σM

are large, there are at least the normal incidence (probably some obliquely incidence)

which could be eliminated as the wave propagates down the waveguide, and the decay

rate should increase with the conductivities. In this way, we expect to eliminate the

saturation phenomenon.

However, the next sections will describe the difficulties to generate accurate BEM

formulations to incorporate both the electrical and magnetic surface conductivities.

Instead, we use an alternative approximate formulation to model a waveguide with

both the surface conductivities. The numerical experiments will show that the ap-

proximation leads to another saturation phenomenon. The difference is that the decay

rate does not decrease to zero as the conductivities approach to infinity, but converges

to a constant small value. This demonstrates that the idea of the impedance match

partially works with the approximated formulation.
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Figure 4-15: The 2-D longitudinal section of a waveguide with uniform electrical and
magnetic surface conductivities σE and σM . The surface conductivities satisfy σM =
√

µi

εi
σE . The waveguide length is 8λi and the cross section size is 0.7211λi×0.7211λi.

The relative permittivities of the waveguide and external medium are 11.9 and 1,
respectively.

4.7.1 BEM Formulations

In this section, we use the boundary element method to analyze a waveguide with

both electrical and magnetic surface conductivities. Fig. 4-15 shows the longitudinal

cross section of the waveguide in xz plane, and +x is the propagation direction. The

permittivity and permeability of the exterior region and interior region are denoted

by, εe, µe and εi, µi, respectively. The electrical and magnetic surface conductivities

are denoted by σE and σM , respectively, and their ratio is fixed by σM

σE
= µi

εi
.

Similarly as in Sec. 4.1, the unknowns of the boundary element method are the

equivalent electrical and magnetic currents Je, Me on the exterior side of the surface

and Ji, Mi on the interior side of the surface. However, the existence of both σE and

σM induces both electrical and magnetic currents on the surface as Jind = σEEtan and

Mind = σMHtan, and leads to a different boundary condiction, specifically,

−n̂ × [Ee(Je,Me) − Ei(Ji,Mi) − Einc] = σMHtan, (4.47)

n̂ × [He(Je,Me) − Hi(Ji,Mi) − Hinc] = σEEtan, (4.48)

where Einc and Einc are the incident electric and magnetic fields of the Gaussian

beam generated by a dipole in a complex space [64], Etan and Htan are the tangential

electric and magnetic fields on the surface, and n̂ denotes the exterior-pointed normal
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unit vector. In the boundary conditions in (4.9)–(4.10) in Sec. 4.1, only the magnetic

field has a jump and the tangential electric field is continuous across the boundary.

Therefore, Etan in (4.10) is well defined on the surface and can be represented by

the exterior tangential electric field operator or the interior tangential field operator

or any linear combination of the two operators. In the boundary conditions (4.47)–

(4.48) here, both the tangential electric and magnetic fields have a jump across the

surface. The jump in the tangential fields makes a discontinuity at the surface and

raises difficulty to exactly represent Etan and Htan using integral operators due to

the equivalent currents. A straightforward compromise is taking an average of the

tangential fields on the two side of the boundary, and they are

Etan = −
1

2
n̂ × n̂ × [Ee(Je,Me) + Ei(Ji,Mi) + Einc], (4.49)

Htan = −
1

2
n̂ × n̂ × [He(Je,Me) + Hi(Ji,Mi) + Hinc]. (4.50)

The validity of this approximation for Etan and Htan will be discussed in the next

section. Substituting (4.49)–(4.50) into (4.47)–(4.48) yields

n̂ ×
[

−Ee(Je,Me) + Ei(Ji,Mi) +
1

2
σM n̂ × [He(Je,Me) + Hi(Ji,Mi)]

]

= −n̂ × [Einc +
1

2
σM n̂ × Hinc], (4.51)

n̂ ×
[

He(Je,Me) −Hi(Ji,Mi) +
1

2
σEn̂ × [Ee(Je,Me) + Ei(Ji,Mi)]

]

= n̂ × [Hinc −
1

2
σEn̂ ×Einc]. (4.52)

To reduce computational costs, the type II formulation is employed for fewer un-

knowns. The equivalent currents are therefore reduced to J and M in the way of

Je = −Ji = J, (4.53)

Me = −Mi = M. (4.54)

Substituting (4.53)–(4.54) into (4.51–4.52) yields the final version of the type II BEM
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formulations with two sets of unknown currents J and M for the waveguide (or

absorber) with both electrical and magnetic surface conductivities. In order to solve

the equations, the unknown currents are approximated using the RWG basis functions

on discretized triangle panels of the surface [1]. The equations are then discretized,

and a system matrix is constructed and solved using an iterative method as discussed

in Sec. 4.2.

4.7.2 Numerical Results and Analysis

A waveguide with uniform electrical and magnetic surface conductivities is analyzed

using the boundary element method described in Sec. 4.7.1. The xz–plane cross

section of the waveguide is shown in Fig. 4-15. The relative permittivities of the

waveguide (silicon) and the external medium (air) are 11.9 and 1, respectively. The

relative permeability of both the media are 1. The electrical and magnetic surface

conductivities are fixed with the ratio σM

σE
= µi

εi
. The waveguide cross-section size is

0.7211λi × 0.7211λi, where λi is the wavelength in the interior region. The length of

the waveguide is 8λi.

The complex magnitudes of the electric fields along the central axis of the waveg-

uide are plotted in Fig. 4-16, when σE is equal to 0.001S, 0.005S and 0.5S. The field

exponentially decays at a fixed rate for each σE along the waveguide, reflects back

at the end of the waveguide, and continues being dissipated on the way propagating

backwards. On the field curve for σE = 0.005S, the radiation wave as described in

Sec. 4.6 shows up because the propagating wave decays fast and becomes smaller

than the inevitably excited radiation wave. Note that the decay rate increases from

σE = 0.001S to σE = 0.001S, but it decreases for σE = 0.5S. This implies that

the decay rate does not monotonically increase with the surface conductivities as we

expected by the impedance match with the fixed-ratio pair of σE and σM .

We further show the decay rate versus the electrical surface conductivity σE in

Fig. 4-17. Obviously, it still has the saturation phenomenon. But the decay-rate curve

is different from the one with the electrical surface conductivity only in Fig. 4-11. In

Fig. 4-11, the decay rate increases to a maximum value and then monotonically de-
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Figure 4-16: The complex magnitude of the electric field along the central axis inside a
waveguide with electrical and magnetic surface conductivities σE and σM , respectively.
The surface conductivities satisfies σM = µi

εi
σE . The length of the waveguide is 8λi.

creases with increasing σE . However, in Fig. 4-17, after reaching the maximum decay

rate, the decay rate decreases and then converges to a constant value. This partially

demonstrates that the match of impedance does dissipate power for large σE and

σM . Nevertheless, it does not increase with the surface conductivities monotonically,

which suggests that the approximation of the tangential fields using the average of

the fields at the two side of the boundary in (4.49)–(4.50) becomes inaccurate for

large surface conductivities.

We demonstrate the inaccuracy by deriving the boundary condition using a 1-D

example in the z direction shown in Fig. 4-18. For simplicity, the permittivities and

permeabilities are the same for the three regions, denoted by ε and µ in Fig. 4-18.

Region 2 is the region with electrical and magnetic conductivities, and the width

of region 2 is denoted by ∆z. We denote the homogeneous electrical conductivity

by σE,∆z = σE/∆z, parameterized by the width of region 2, and the ratio of the

conductivities is always fixed by σM,∆z

σE,∆z
= µ

ε . Taking a limit of ∆z → 0, region 2

becomes the boundary of region 1 and region 3, the electrical conductivity becomes
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Figure 4-17: The numerically measured decay rate due to the electrical and magnetic
surface conductivities versus the electrical surface conductivity. The magnetic surface
conductivity scales proportional to the electrical surface conductivity, specifically,
σM = µi

εi
σE .

σE,∆z = σEδ(z), known as the surface conductivity, and the relation of the fields at

the two sides of region 1 becomes the boundary conditions of region 1 and region 3.

Consider a TM mode plane wave with normal incidence in the z direction in region

1. Because the intrinsic impedance are matched at the interface of the three regions,

the normal-incident fields can completely penetrate the interfaces without reflections.

We denote the incident electric and magnetic fields at the left boundary of region

2 as E1 = E0ŷ and H1 = −H0x̂, and E0 =
√

µ
ε H0. The effective permittivity

and permeability of region 2 are complex, and are denoted by εeff = ε − j σE,∆z

ω and

µeff = µ − j σM,∆z

ω . Therefore, the propagation constant in region 2 is

k = ω
√

µeffεeff = ω
√

µε − j

√

µ

ε
σE,∆z = β − jα, (4.55)

where the real part is the real propagation constant, and the negative imaginary part

is the decay constant α =
√

µ
ε σE,∆z =

√

µ
ε

σE

∆z due to the electrical and magnetic

conductivities. With the complex propagation constant k in region 2, the electric
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Figure 4-18: The geometry of a 1-D layered media in the z direction. The permit-
tivities and permeabilities of the three region are identical, and denoted by ε and µ.
The width of region 2 is denoted by ∆z.

field at the right boundary of region 2 can be calculated by

E2 = E0e
−α∆ze−jβ∆zŷ = E0e

−
√

µ
ε
σEe−jβ∆zŷ. (4.56)

Take a limit of ∆z → 0 as region 2 shrinks to be a surface, the electric field in (4.56)

becomes E2 = E0e
−
√

µ
ε
σE ŷ. The boundary condition of the electrical field between

region 1 and region 3 is

−ẑ × (E2 −E1) = E0(e
−
√

µ
ε
σE − 1)x̂. (4.57)

This is the boundary condition for the whole range of conductivities for the normal

incident TM wave, and different with the boundary condition in (4.51) in the BEM

formulation. However, for small σE , the first-order approximation of (4.57) is

−ẑ × (E2 − E1) = −σE

√

µ

ε
E0x̂ = σMH1. (4.58)

This electrical field boundary condition in (4.58) is same as the boundary condition

(4.51) used in the BEM, since H1 ∼ (H1 + H2)/2 in the limit of small σE and

σM . Similarly, the magnetic field boundary condition for small conductivities can be
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derived, and it is

ẑ × (H2 −H1) = σEE1, (4.59)

which is same as (4.52) in the BEM formulation.

As shown above, the BEM formulation in Sec. 4.7.1 is accurate only for small

surface conductivities. The accurate representation of the jump in the tangential

fields for large conductivities in the limit of ∆z → 0 is complicated, and (4.57) only

shows the boundary condition for a simplified case (normal incidence in the identical

exterior and interior regions). The derivation for the exact boundary conditions is out

of the scope of this thesis. This section describes one approximate BEM formulation

and it improves the saturation phenomenon by having the decay rate converging to

a small value for large conductivities rather than converging to zero.
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Chapter 5

Terminating Periodic Channels

with Surface Absorbers

Truncating dielectric channels with a surface conductive absorber has been demon-

strated to be an effective technique for simulating uniform cross-section waveguides

with the boundary element method in Chapter 4. In this chapter, we examine the

properties of a surface conductive absorber used to terminate infinitely long periodic

channels, common in photonic applications. Unlike uniform channels, the periodic

channel can be excited at a band-gap edge, where the group velocity is close to zero,

resulting in a large transition reflection at the waveguide-absorber interface. We show

that a surface absorber that can perform well when the waveguide system is excited

with a large group-velocity mode may fail when excited with a smaller group-velocity

mode, and give an asymptotic relation between the surface absorber length, transition

reflections and group velocity. Numerical results are given to validate the asymptotic

prediction.

5.1 Terminating A Sinusoidal-Shape Waveguide

Figure. 5-1 shows a 3-D waveguide with period-a sinusoidally corrugated sidewalls

(sine waveguide) terminated by a surface conductive absorber of the same shape.

The longitudinal cross section in the x–y-plane of the truncated sine waveguide is
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Figure 5-1: A 3-D discretized sine waveguide with a surface absorber attached. The
period of the waveguide is denoted by a, the length of the absorber is denoted by
L, and t denotes the thickness in the z direction. The relative permittivities of the
waveguide and the exterior media are 11.9 and 1, respectively.

Figure 5-2: The 2-D longitudinal section of a sine waveguide with a surface absorber
attached. The period of the sine waveguide and absorber is a. The maximum and
minimum sizes in the y direction are denoted by hM and hm, respectively. The dashed
line indicates the interface of the waveguide and absorber. The surface conductivity
on the absorber is denoted by σE(r).

shown in Fig. 5-2, where the dashed line indicates the position of the waveguide-

absorber interface. The surface absorber remains the same sinusoidal shape as the

waveguide in order that the gradual change in the absorptivity be the only violation

of discrete translational symmetry.

The permittivity and permeability of the sine waveguide interior and the exterior

are, respectively, denoted by εe, µe and εi, µi, where the subscripts e and i denote the

exterior and the interior. The period of the sine waveguide is a. The thickness in the

z direction is t. The maximum and minimum widths in the y direction are denoted by

hM and hm, respectively, so that the width is (hM +hm)/2+sin(2πx/a) ·(hM −hm)/2.

The length of the absorber is L. The electrical surface conductivity is a Dirac delta

function across the absorber surface, and its magnitude is denoted as σE(r), with the
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subscript E as a reminder that only electrical conductivity is being considered. The

system is excited by a Gaussian beam propagating in +x̂ direction. The Gaussian

beam is generated by a dipole in a complex space (see Appendix A), and the real

part of the dipole position is inside the waveguide, 1
4λi from the left end.

The sine waveguide and its surface absorber can be analyzed using the boundary

element method with either type I or type II formulations in Sec.4.1. The unknowns of

the BEM are the equivalent electrical and magnetic currents JL
e , ML

e , JL
i , and ML

i on

the exterior and interior sides of the waveguide surface and JR
e , MR

e , JR
i , and MR

i on

the exterior and interior sides of the absorber surface. The subscripts e and i indicate

the exterior and interior sides of the surface where the currents are lying, and the

superscripts L and R are a reminder of the region to the left of waveguide-absorber

interface and the region to the right of the interface, respectively. The unknowns

are approximated with the RWG function on discretized triangle pairs [1], and the

RWG coefficients are determined by solving a linear system with boundary conditions

enforced on the surfaces as shown in Sec. sec:appendix..

In this chapter, we use a dth-order monomial function for the surface conductivity

σE(r) along the x-axis of the absorber, specifically,

σE(r) = σ0(
x − x0

L
)d, (5.1)

where x0 denotes the position of the waveguide-absorber interface. According to

Sec.2.1, to fix the round-trip reflection for a single-mode excitation with absorbers of

different properties, the conductivity coefficient σ0 should be set to satisfy

σ0 ∼
Vg

L
(d + 1) (5.2)

with a proportionality constant determined in part by the mode profile and loga-

rithmic in the desired round-trip reflection. In this chapter, we fix the round-trip

reflection to be very small (< −60 dB), so that we can focus on the transition re-

flections. This is a practical strategy because the transition reflections scale only

logarithmically with the round-trip reflection parameter [24].
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5.2 Numerical Results

5.2.1 A sine waveguide with a surface absorber attached

In this section, we discuss the numerical results of the sinusoidal-shape waveguide with

a surface conductive absorber attached (Fig. 5-1) using the boundary element method.

The sizes of the sine waveguide are hM = a, hm = 0.5a and t = 0.4a, where a is the

period of the sine waveguide. The relative permittivities of the waveguide and the

exterior medium are 11.9 (silicon) and 1 (air), respectively. The relative permeabilities

of both the media are 1. The lengths of the waveguide and the absorber are 20a and

15a, respectively. We use a second-order surface conductivity function, specifically,

d = 2 and σ0 = 0.006S in (5.1). We examine the performance of this surface absorber

by exciting at two different frequencies (or, equivalently, two different k values) of the

lowest band.

First, the waveguide system is excited at k = 0.3042π
a , far away from the band gap

edge, and thus the group velocity Vg = 0.36c is relatively large (compared to the light

speed in silicon c/
√

11.9 ≈ 0.29c). The complex magnitude of the electric field along

the center axis of the sine waveguide and absorber is shown in Fig. 5.2.1. The dashed

line indicates the position of the waveguide-absorber interface. Note that, close to the

excitation source, the propagating mode interacts with inevitably excited radiation

and evanescent modes to produce a transient field for x ≤ 10a. At a greater distance

from the source, the waveform becomes periodic with period a, which is consistent

with Bloch’s theorem for infinitely long periodic structures without reflections. The

total reflection can be obtained using a harmonic inversion method to decompose the

field into different k components [71, 72], and it is −54.4dB.

Then we excite the sine waveguide and the same surface absorber closer to the

band edge, specifically, k = 0.4362π
a and Vg = 0.12c. Fig. 5-4(a) shows the complex

magnitude of the electric field along the waveguide and absorber. The waveform is

far from periodic with period a, which implies a large total reflection. By numerical

measurement, the total reflection for this excitation is −15.1dB. Note that Fig. 5-4(a)

shows a greater absorption, and in turn a smaller round-trip reflection for this small
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Figure 5-3: The complex magnitude of the electric field along the x-axis of a sine
waveguide and a surface absorber, when the waveguide system is excited with k =
0.3042π

a . The conductivity-function coefficient σ0 = 0.006S. The dashed line indicates
the position of the waveguide-absorber interface.

group-velocity excitation. This is consistent with the prediction that absorption is

proportional to σ0
Vg

, as mentioned in the last section. The small round-trip reflec-

tion indicates that the transition reflection is the dominate contribution to the total

reflection.

However, in order for a fair comparison between the two excitations with the

same-length absorber, the round-trip reflection should be fixed by reducing σ0 for the

small group-velocity excitation, as in (5.2). The smaller σ0 will make the material

transition at the waveguide-absorber interface smaller and lead to a smaller transition

reflection. Fig. 5-4(b) shows the complex magnitude of the electric field when σ0

is reduced to 0.002S. The numerically measured total reflection is −22.5dB. The

transition reflection decreases when σ0 is reduced, but it is still much larger than

the transition reflection of the large group-velocity excitation. This is because the

transition reflection increases as a power law in Vg, specifically, as ∼ V −(2d+4)
g , while

it decreases only quadratically with σ0 [24]. One should make the absorber longer to

reduce the transition reflection when excited close to the band gap edge, and this is
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(b) σ0 = 0.002S

Figure 5-4: The complex magnitude of the electric field along the x-axis of a sine
waveguide and a surface absorber, when the waveguide system is excited with k =
0.4362π

a . The conductivity-function coefficient is different for each plot.

analyzed in the next section.

110



5.2.2 The absorber length versus group velocity

As a practical matter, one could repeatedly increase the absorber length L until the

reflection decreases to a given tolerance. However, one would like some understanding

of how this required L increases with decreasing Vg. In this section, we discuss that

question both theoretically and experimentally for two choices of σ0.

For a single-mode excitation, the round-trip reflection can be fixed by making σ0

be proportional to Vg

L for different excitations, according to (5.2). In this choice of σ0,

the transition reflection increases as a power law with decreasing absorber length and

group velocity, as Rt ∼ L−(2d+2)V −(2d+2)
g (Sec. 2.1). In order to obtain same small

transition reflection for small group-velocity excitations, the absorber length should

be increased as the group velocity decreases, and asymptotically

L ∼ V −1
g ∼ (

π

a
− k)−1, (5.3)

where we use ∆k = (π
a − k) to replace Vg because Vg is proportional to ∆k [24] close

to the band-gap edge and k is easier to obtain numerically. This asymptotic power

law is independent of the order d of the conductivity function for this choice of σ0.

In this example, we increase the absorber length L with V −1
g for three conductivity

profiles (d = 1, 2, 3) starting from L = 8 when ∆k = 0.182π
a as shown in Fig. 5-5(a).

The conductivity function coefficient σ0 is chosen to be proportional to Vg

L (d + 1).

Fig. 5-5(b) shows the total reflections for the three profiles as the group velocity

decreases. The total reflections are roughly constant for each profile as predicted.

The quadratic-profile absorber’s reflection is about 10dB smaller than the linear one,

while the cubic-profile absorber works no better than the quadratic-profile absorber.

Since increasing d increases the asymptotic rate at which the reflection decreases

with L, one might initially conclude that d should be made very large—why not

choose d = 1000? However, increasing d worsens the coefficient of the asymptotic

reflection and also delays the onset of the regime in which the asymptotic 1/L2d+2

power law becomes valid, so for any given L there is some optimal choice of d. This

tradeoff can be understood by re-examining the transition reflection coefficient derived
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(b) The total reflections generated using the absorber length L in
(a) for different group velocities.

Figure 5-5: The required surface absorber lengths and the corresponding total reflec-
tions for linear, quadratic and cubic conductivity profiles, as the conductivity linear
factor σ0 is proportional to Vg

L (d + 1). The group velocity is substituted with ∆k.

using coupled-wave theory in (2.6). Note that in (2.6), s(d)(0+) = d! if s(u) = ud

defined in u ∈ [0, 1] and hence the coefficient of the reflection scales as (d!)2, rapidly
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worsening the reflection at a fixed L as d increases. Furthermore, because the coupled-

wave expression itself was only a first-order expansion valid for small reflections [24],

increasing d delays the onset of the validity of this asymptotic analysis, since L must

be large enough for a term proportional to d!σ0/Ld to be small. This phenomenon is

apparent in Fig. 5-6(b), where for this choice of L a cubic profile (d = 3) is no better

than a quadratic profile (d = 2), although for a larger L one would expect the cubic

profile to become superior. The effect of different conductivity profiles was studied

in more detail in our previous papers [24].

For multiple-mode excitations, the round-trip reflection is different for each mode

because of different group velocity. The group velocities of the fastest and slow-

est mode are denoted by VgF and VgS, respectively. With the fact that a smaller

group-velocity mode generates smaller round-trip reflection, the conductivity func-

tion coefficient σ0 should be conservatively chosen for generating small round-trip

reflection for the fastest mode and be roughly fixed by making σ0 be proportional

to VgF

L . On the other hand, the transition reflection should be determined by the

lowest mode, and be proportional to a different power law, Rt ∼ V 2
gF L−(2d+2)V −(2d+4)

gS

(Sec. 2.1). In order to gain same transition reflection, the absorber length would be

proportional to

L ∼ (
VgF

VgS
)

1
d+1

1

VgS
. (5.4)

The equation suggests that a higher-order (larger d) conductivity profile asymptot-

ically requires a shorter absorber to obtain the same transition reflection when the

group velocity decreases. When VgF = VgS, it returns to the asymptotic relation (5.3)

for the single-mode excitation.

For simplicity, we demonstrate the relation in (5.4) with a single-mode excitation

by making VgF = 1, and the conductivity coefficient σ0 scales to d+1
L . Then the

required absorber length asymptotically scales to L ∼ V
− d+2

d+1

gS ∼ (π
a − k)−

d+2
d+1 . Fig-

ure 5-6(a) shows the required length of the surface absorber when the group velocity

decreases for linear, quadratic and cubic conductivity profiles, respectively. Fig. 5-

6(b) shows the corresponding total reflections of the surface absorbers for the three
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(b) The total reflections generated using the absorber length L in
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Figure 5-6: The required surface absorber lengths and the corresponding total re-
flections for linear, quadratic and cubic conductivity profiles (d = 1, 2, 3), as the
conductivity linear factor σ0 is proportional to d+1

L . The group velocity is substituted
with ∆k.
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profiles. Since the round-trip reflections are conservatively fixed by the σ0 arrange-

ment, the total reflections converge to the transition reflection as the group velocity

decreases. As expected, the reflections are roughly fixed irrespective of group velocity

for each profile.

As demonstrated by the two examples above with two kinds of σ0 choices, for

small group-velocity excitations, small transition reflections can be achieved by long

surface absorbers, and the absorber length is consistent with the theoretical scalings

of (5.4) or (5.3).

In this chapter, we described and implemented a surface conductive absorber with

the boundary element method to truncate a periodic sinusoidal-shape waveguide.

The varying surface conductivity can be easily incorporated into the two types of

formulations. We showed that small reflections can be obtained with a short surface

absorber when the waveguide is excited with a large group-velocity mode. However,

the same-length absorber will generate large reflections if excited with a smaller group-

velocity mode. We showed that the length of the absorber is required to increase

according to a power law as the group velocity decreases in order to obtain the same

transition reflection. This provides guidance for choosing the absorber length with

different excitations. Numerical experiments verified our analytical predictions.
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Chapter 6

Conclusions

In this thesis, we presented a novel numerical technique, a surface conductive absorber

that is easily combined with the boundary element method, to eliminate the reflec-

tions due to the truncation of infinite channels. We illustrated this technique with

a dielectric optical waveguide and described two types of BEM formulation to allow

for varying the surface conductivity. We further discussed the non-monotonically in-

creasing decay rate with the surface conductivity and presented methods to calculate

the decay rate using perturbation theory and Poynting’s theorem. We demonstrated

that the surface conductive absorber is orders of magnitude more effective than the

volume conductive absorber, and showed an asymptotic power-law convergence of

the transition reflection with respect to the length of the absorber to verify that the

smoothness of conductivity function determines the transition reflection.

The major advantages of the surface conductive absorber are: (1) the varying

surface conductivity is easily implemented in BEM and can significantly reduce the

transition reflections; and (2) the volume properties of the absorber are the same

as the waveguide, so there is no interior cross section to discretize, eliminating a

potential source of numerical reflections.

We further implemented the surface conductive absorber for terminating a periodic

sinusoidal-shape waveguide. We showed that small reflections can be obtained with

a short surface absorber when the waveguide is excited with a large group-velocity

mode. However, the same-length absorber will generate large reflections if excited
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with a smaller group-velocity mode. We showed that the length of the absorber

is required to increase according to a power law as the group velocity decreases in

order to obtain the same transition reflection. This provides guidance for choosing

the absorber length with different excitations. Numerical experiments verified our

analytical predictions.
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Appendix A

Gaussian Beam Generated by a

Dipole in A Complex Space

In this thesis, we mainly use a Gaussian beam as an excitation for waveguide channels

in the simulation using boundary element methods to avoid large radiation waves

inevitably excited. Since we had codes of excitations from a dipole, it is easier to

implement the Gaussian beam generated by a dipole in a complex space. In this

section, we show the derivation of the Gaussian beam due to a point current source

in a complex coordinate system by following [63, 64].

For simplicity, but without loss of generality, we assume the source current is

located at the origin of a homogeneous space. The Green’s function of potentials in

the space is the same as in (2.29), and it is

G(r) ∼
e−jkr

r
, (A.1)

where r =
√

x2 + y2 + z2 = z
√

1 + (x2 + y2)/z2, and k is the wavenumber in the

homogeneous space. We discuss the fields of the Gaussian beam generated by a dipole

by splitting into far fields and near fields, due to different approximation tricks.
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A.1 Far Fields

Assume the Gaussian beam propagates in the z direction. For far field (|z| . 0),

since the fields are expected to focus in the vicinity close to the z axis, where |x| /

|z|, |y| / |z|, we are allowed to make the paraxial approximation with first-order

accuracy, and we obtain

√

1 + (x2 + y2)/z2 ≈ 1 +
1

2

x2 + y2

z2
, (A.2)

and the distance r becomes

r = z +
x2 + y2

2z
. (A.3)

We further approximate the distance r in the denominator of (A.1) with z, because

the denominator is much less sensitive than the phase term, and substitute the r in

the phase term of (A.1) with (A.3), and this yields

G(r) ∼
1

z
e−jk(z+ x2+y2

2z
) =

1

z
e−jk(x2+y2

2z
)e−jkz. (A.4)

To generate the Gaussian beam propagating in the z direction, let z = z + jb. The

Green’s function becomes

G(r) ∼
1

z + jb
e−jk x2+y2

2(z+jb) e−jkzekb, (A.5)

in which the coefficient can be written in an exponential form

1

z + jb
= AejΦ(z), (A.6)

and the real and imaginary parts of the first phase term in (A.5) can be separated as

−jk(
x2 + y2

2(z + jb)
) = −j

k

2

z

z2 + b2
(x2 + y2) −

kb

2(z2 + b2)
(x2 + y2). (A.7)
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Define z-dependent terms R(z) and w(z)

1

R(z)
=

z

z2 + b2
(A.8)

w2(z) =
2(z2 + b2)

kb
(A.9)

Then substituting R(z) and w(z) into (A.5) yields the potentials of the far fields of

the Gaussian beam

G(r) ∼ Aekbe
−x2+y2

w2(z) ejΦ(z)e
−jk(x2+y2)

2R(z) e−jkz (A.10)

As seen in (A.10), the term e
−x2+y2

w2(z) determines the waist of the Gaussian beam along

the z direction.

A.2 Near Fields

Since the equation (A.2) does not hold for the region close to the origin (source

location), we need to derive the fields in this region in another way. The distance r

is rewritten as

r =
√

x2 + y2 + (z + jb)2 =
√

x2 + y2 + z2 − b2 + 2jbz = β + jα, (A.11)

and substituting it into the Green’s function yields

G(r) ∼
e−jkβ+kα

β + jα
. (A.12)

Consider the real and imaginary parts β and α of r in (A.11), which is the square root

of a complex number. The square root of a complex function has discontinuities at

certain axis depending on the choice of the principle value region. To guarantee the

wave propagating outwards, β is required to be positive, and therefore, in (A.11), the

principle value region in the complex domain should be [−π, π] and the discontinuity

of the square root occurs at the negative real axis. Thus the discontinuity of r in
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(A.11) occurs at

x2 + y2 < b2, (A.13)

z = 0, (A.14)

which represents a circular disk lying at the xy plane perpendicular to the beam prop-

agating direction, with the center at the point source and radius b. On the two sides

of this disk (z = 0+ and z = 0+), the values of r are discontinuous. The discontinuity

of r leads to the discontinuity of the Green’s function across the disk. The disconti-

nuity of the potential implies that the point source in the complex coordinate has an

equivalent source distribution on the circular disk in the real coordinate system. The

beam is equivalently excited by this circular distributed source.

Furthermore, the sign of α in (A.11) is determined by the sign of the term bz,

and it’s obvious that they have the same sign, specifically, α > 0, when bz > 0; and

α < 0, when bz < 0. According to (A.12), in the region where z has the same sign

as b, the resulting positive α leads to large potentials, while in the region where bz is

negative, the negative α leads to an exponentially small a potential. Therefore, the

beam due to the point source in the complex coordinate is focused on one direction in

the propagating axis z, and the direction is determined by the sign of the imaginary

part b of the complex coordinate.

A.3 Numerical Illustrations

After the potentials are obtained, electric and magnetic field can be calculated from

the potentials following (2.23)–(2.24). Here, we calculate the electric fields due to a

point current source Jŷ located at the origin in a free space, while the z coordinate

is complex. The free-space wavelength λ is used as the dimension unit.

Figure A-1 shows the two non-zero components of the electrical fields at the yz

plane where x = 0, and b = 4λ. As predicted in the last section, the beam is focused

in the positive z direction. The waist of the beam gradually increases as propagating
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along the z axis. We further show the electric fields, respectively, at z = 0+ and

z = 0− along the y axis in Fig. A-2. It is clearly seen that the fields on the two sides

of z = 0 are discontinuous from y = −4λ to y = 4λ, where the equivalent circular

disk source is located. Beyond the region of −4λ < y < 4λ, the fields are continuous

across the plane z = 0.

Figure A-3 shows the electric fields in the yz plane, when b = 0.5λ. The field

diverges more in the x, y direction, and relatively more energy appears in the −z

direction. This is not surprising because when b is close to zero, the field pattern

would be close to the pattern due to a point source in the real coordinate.
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Figure A-1: Electric fields in the yz plane due to a point current source at the origin
in a complex coordinate, b = 4λ.
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Figure A-2: The electric fields at z = 0+ and z = 0− along the y axis due to a point
current source at the origin in a complex coordinate, showing the discontinuity of the
electric fields across the z = 0 plane, and b = 4λ.
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Figure A-3: Electric field in the yz plane due to a point current source at theorigin
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