Efficient Techniques for Wideband Impedance Extraction
of Complex 3-D Geometries
by
Zhenhai Zhu

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfilment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
August 2002
(© Zhenhai Zhu, MMII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute
publicly paper and electronic copies of this thesis document in whole or in
part.

Department of Electrical Engineering and Computer Science
August 18, 2002

Jacob K. White
Professor
Thesis Supervisor

Arthur C. Smith
Chairman, Department Committee on Graduate Students






Efficient Techniques for Wideband Impedance Extraction of Complex

3-D Geometries

by
Zhenhai Zhu

Submitted to the Department of Electrical Engineering and Computer Science
on August 18, 2002, in partial fulfillment of the
requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

This thesis describes the efficient computation of frequency-dependent impedances for
complex three-dimensional geometires of conductors from zero frequency to microwave
frequencies. Previous state-of-the-art accelarated fast solver (FastHenry) uses a formu-
lation based upon magneto-quasi-static (MQS) assumption and hence could not consider
capacitive effect. In addition, the frequency-dependent volume filaments used in FastHenry
renders the computational cost prohibitive at high frequencies due to skin-effect. In this the-
sis, a surface integral formulation combined with a pre-corrected FFT algorithm is used to
compute the impedance matrix in nearly order n time and memory, where n is the number of
surface panels. Computational results are given to demonstrate that the new algorithm can
perform MQS, electro-magneto-quasi-static and fullwave analysis of realistic integrated
circuit interconnect and packaging problems using a fixed set of surface panels across wide
frequency range.
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Chapter 1

Introduction

1.1 motivation

The layout parasitics in critical nets in high frequency analog and high speed digital inte-
grated circuits must be analyzed using methods that take into account distributed resistive,
capacitive and inductive effects, and may even require a careful treatment of radiation. To
extract such impedances requires detailed electromagnetic analysis over a wide frequency
range, usually from zero to hundreds of giga hertz [15].

It is widely agreed that the only approaches that have proven to be capable of detailed
electromagnetic analysis of complicated integrated circuit interconnects are the accelerated
integral equation methods like those used in FastCap [29] and FastHenry [19]. Even though
the integral equation method is a well studied subject [11, 47, 10], there does not exist a
fast integral equation solver that solves Maxwell’s equations in general 3D structures with

lossy conductors which is accurate from zero frequency to microwave frequencies.

1.2 Integral Formulations

Many integral formulations have been developed and can be generally categorized into four
kinds according to the state variables used in these formulations. 1) Formulations using the
field variables E and H have been used for decades to solve the radiation and scattering

problems [11, 47] as well as eddy current problems [23, 38]. The well-known formula-
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tions include the electric field integral equation (EFIE) and magnetic field integral equation
(MFIE) [4, 47], which are also known as Stratton-Chu’s formulation [42, 22]. 2) Formu-
lations using the current and charge as state variable include the mixed potential integral
equation (MPIE) formulation [11]. 3) Formulations using vector and scalar potentials as
state variable have various forms and are very commonly used for solving eddy current
problems [30]. 4) Formulations using virtual sources, such as virtual current or charge, are

also commonly used for solving eddy current problems [26, 17].

It is well-known that EFIE and MFIE formulations are not guaranteed to produce a
unique solution at interior resonant frequencies for closed structures [47, 5]. Many reme-
dies have been proposed [31]. But there still remain many unsolved problems. So far, no

wideband fullwave analysis program has been developed based upon these formulations.

The MPIE formulation has been extensively used for the analysis of microstrip struc-
tures [28, 3, 2, 24] and the arbitrary shaped conductors with only surface current [35]. It
was recognized in [27] that MPIE has accuracy problem at low frequencies. The so-called
loop/star and loop/tree basis fucntions were used to overcome this low-frequency prob-
lem [27, 50]. The MPIE formulation has also been used for the analysis of interconnects
in VLSI or analog circuits. In this case, it is also known as the PEEC model [13]. Interest-
ingly, simply becaue the PEEC model uses a different excitation term than the one used in
MPIE for scattering problems, the cause of the low-frequency problem identified in [27] is
eliminated. Results of the MQS analysis in [19] and EMQS analysis in [18] have clearly
demonstrated that the PEEC model could produce accurate results across wide frequency
range, from zero to hundreds of giga hertz. However, unlike the microstrip structures,
which are usually approximated by zero-thickness perfect or lossy conductors [28, 3, 2, 24],
typical interconnect structures are lossy conductors with finite thickness. Because of the
skin effect, analyzing them involves a frequency-dependent discretization of the interior of
conductors and the substrate ground. At high frequencies, this kind of discretization usu-
ally renders the number of piecewise costant basis functions (also called filaments) to be
prohibitively large. Recently, an entire-domain basis scheme has shown some promise to
remedy the situation [25], but we have yet to see that it will eventually lead to a wideband

fast MaxWell's equation solver for general 3D structures.
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The motivation behind this thesis is to find a numerically stable surface integral formu-
lation, as such formulations avoid a frequency-dependent discretization of the interior of
conductors and the substrate. The formulation should be capable of wideband analysis and
it should also be easily accelarated by the well-established techniques, such as fast multiple
method [8, 7] or the pre-corrected FFT algorithm [32].

One recently developed surface integral formulation has shown promise [46, 48], but
was plagued with numerical difficulties of poorly understood origin. It was shown in [52]
that one of that formulation’s difficulties was related to inaccuracy in the approach to evalu-
ate integrals over discretization panels, and a more accurate approach based on an adapted
piecewise quadrature scheme was proposed. Numerical examples in [52] have demon-
strated that the formulation is indeed valid across wide frequency range, from zero to at
least hundreds of giga hertz. It is also shown in [52] that the condition number of the
original system of integral equations can be reduced by differentiating one of the integral

eguations. With these issues being resolved, the formulation is accelaration-ready.

1.3 Fast Integral Equation Solvers

Fast Multiple Method (FMM) [8, 7] has seen its success in many applications, such as
electrostatic analysis in FastCap [29], magneto-quasi-static analysis in FastHenry [19], and
fullwave analysis in the Fast lllinois Solver Code [41]. Butit is kernel-dependent by nature.
On the other hand, the pre-corrected FFT (pFFT) algorithm [33], which has been success-
fully used in many applications [32, 49], is nearly kernel-independent. Since our surface
integral formulation has a number of different kernels, even hyper-singular ones, the pFFT
algorithm seems to suit our formulation better. In addition, as a by-product of our work,
we also want to develop a flexible and stand-alone fast integral equation solver that can
handle various kinds of integral operators, at least the ones that are most commonly used in
the boundary element method framework [10]. To the best of our knowledge, this kind of
solver has not yet been developed and made available to the public. Using this fast solver
as a powerful engine and based on the improved surface integral formulation in [52], we

have developed a fast impedance extraction program, fastimp. Experiments using several
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large examples show that fastimp could perform MQS, EMQS and fullwave analysis of
interconnect structures with hundreds thousands of unknowns from zero frequency all the

way to hundreds of giga hertz.

1.4 Thesis Outline

In chapter 2, we will derive the surface integral formulation and show its connection to
the EFIE and the MPIE and why it is widebanded. In chapter 3, we will show how the
piecewise quadrature scheme improves the acuracy of panel integration and that it solves
the low frequency problem in [48]. In chapter 4, we will explain how to accelarate the
complicated integral operators in our surface formulation with the pFFT algorithm. Several
large examples in chapter 5 are used to demonstrate the speed and the accuracy of fastimp.

And finally chapter 6 concludes the thesis.
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Chapter 2

Derivation of the Surface Integral

Formulation

Figure 2-1is a general description of the 3D interconnect structures embedded in an isotropic
and homogeneous medium. We assume that each condidgterl,2,....n, is piecewise

homogeneous and the homogeneous medium region is always dendfgd by

We will derive the surface integral formulation from a different viewpoint than the one
used in [48]. This way, it is very easy to see its connections to the MPIE formulation and

the EFIE formulation.

D

VO

Vn

Figure 2-1: A general description of the 3D interconnect structures embedded in homoge-
neous medium
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2.1 Governing equations

In time-harmonic form, the independent and definite forms of MaxWell's equations are
[44]

OxE =—jwpH (2.1)
OxH=J+ jweE (2.2)
0.J=—jop (2.3)
J=oE (2.4)
Equations (2.1) and (2.2) imply
Ox 0OxE—w’euE = —jopd. (2.5)

It is obvious that equations (2.1)-(2.4) are equivalent to equations (2.1) and (2.3)-(2.5).
Since the charge inside a good conductor is zero [34] and each conductor is homogeneous,

substitution (2.4) into (2.3) and setting to zero right side of (2.3) yields
0-E(F)=0, FeV. (2.6)
Hence equation (2.5) can be reduced to
(02 4+ e E(F) = jwpd(F), FeVi. (2.7)

It should be note that the combination of equation (2.6) and (2.7), not just equation (2.7)

alone, is equivalent to equation (2.5).

Equations (2.1), (2.4), (2.6) and (2.7) are the governing equations inside each conductor
Vi, and equations (2.1)-(2.4) are the governing equations in the homogeneous medium, as

well as inside the conductors whenever it is necessary.
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2.2 Boundary conditions

The surface of each conductor has two parts: contact surface and non-contact surface, as
shown in figure 2-2. Contact is the artificially exposed surface. It is created primarily
because we want to use the divide-and-conquer strategy to seperate a block of 3D intercon-
nect from other parts within a large chip. Since contacts are acctually in the interior of a
conductor, it is reasonable to assume that the charge on the contacts is zero. So equation

(2.6) also holds true on the contacts.

Becasue of the nature of commonly used strategy to decompose a large chip into many
smaller blocks, the conductors connected to these contacts are usually long and thin signal
lines. Hence it is reasonable to assume that the current goes into these contacts does not
have the transversal components, £eJ = 0, wheref is the unit tangential vector on the

contacts. Substituting (2.4) into it yields
t(r)-E(F) =0, if Fis on a contact. (2.8)

Equations (2.6) and (2.8) imply

0En(T)
an(r)

=0, if Tis on a contact. (2.9)

On the other hand, since charge on a non-contact surface is not necessarily zero, in view of

(2.3), the boundary condition becomes [44]

En(r) =

jop(f) .. .
J 2( >, if ¥is on non-contact surface. (2.10)

It shoule be noted tha&t and% in this section are defined only on the inner side of conduc-
tor surface. In fact, in this paper we try to avoid using the matching boundary conditions
commonly used in solving scattering and radiation problems. The reason will be made

clear in section 2.4.
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non-contact

non—contact

Figure 2-2: The surface of a 3D interconnect conductor

2.3 Surface integral representation

Thanks to Green’s second identity, the surface integral representation of the solution to

equation (2.7) inside conductuyis [4]

- OE(r") aeo(r M) o s
= [ dS(Go(F,r")—= 2 E(r dV/Go(F,r")J(r") (2.11
/. O (1) + jo || dVGo(r7)3(F) - (2.12)
where

Go(T, ") = gholr ' ko = oo/El (2.12)

r) = .

0(7 4ﬂ|?— | U,
1 ifreV

T=< 1/2 ifre§ (2.13)

0 otherwise

and§ is the surface of conductd. Whenr € S the surface integral in (2.11) should be
the principal value integral. If we write equation (2.11) for each conductor separately but

letT be fixed on the surface of a particular condudatgrand then sum up these equations,

we obtain
r Y oL
/dS(GO r,i 2E0) 0G0 g iy jwu/ dV/Go(F, I (2.14)
S n(r’ on(r’) \



whereSis the union of all conductor surfaces avids the union of all conductor regions,
andre S,k=1,2,....n.

Substituting (2.4) into (2.7) yields,
O2E(F) + (wPep— jwuci ) E(F) =0, F eV, (2.15)

whereg; is the conductivity of the conduct®f. Again, thanks to Green’s second identity,

the surface integral representation of the solution to equation (2.15) is

1- Lo 0E(r)  0Gy(F.r) - -
—Er:/dSGr,/ D _%beenyy e 216
HE(N) = [[9S(Gur.7) T - S SR ), e (2.16)
where -
5 elka[r—r'|
Gi(F,r') = ———, k1 = —/ WP — jopo; . (2.17)
41ir —r/|

Since (2.14) and (2.16) are the formal solutions to the same equation in slightly different
forms, they are obviously equivalent. We use both of them instead of just one merely for

the derivation purpose.

So far, only the formal solutions to equation (2.7) inside each conductor has been found.
To find the formal solution to the governing equations in regignthe homogeneous
medium, we turn to the MPIE. The reason we still want to use the MPIE will be made
clear shortly. Now each conductor is treated as a volume current source. Same as the stan-
dard MPIE formulation [11], the electric field everywhere, including the interior of every

conductor, is
E(F) = — jwA— Og(F) = jou /V dV/Go(F, 1)J(1") — Dg(F) (2.18)
where B
@(r) =/SdS¥Go(F’,F’). (2.19)

Unlike standard MPIE, the lorentz gaufie A+ jwepp = 0 is not explicitly enforced be-
cause it is equivalent to equation (2.6), which is explicitly enforced in our formulation.

Now it is clear that had equation (2.5) instead of equations (2.6) and (2.7) been used as the

21



governing equations, we would have to enforce lorentz gauge, which would introduce the
vector potentiaﬁ\ or ultimately the volume integral term into our formulation.

Letr € & in equation (2.18) and subtract it from equation (2.14), we obtain

1o 5, OE(r")  0Go(T, 1’
—EE(?)_/SdS(GO(?,r) T

on(r’)
wherek = 1,2 ... n. It should be noted that the integral representation (2.20) is no longer

>I§(F’))+Dcp(f’), resS (2.20)

~

the formal solution to equation (2.7), hence it is not equivalent to (2.16) any more. Now
we have found the surface integral representation of the formal solutions to the governing
equations inside conductors and homogeneous medium. It should be noted that the surface

integrals in (2.14), (2.16) and (2.20) are all principal value ones.

2.4 Connections to EFIE and MPIE

There are two somewhat unconventional ingredients in our formulation: 1) there is no
matching boundary conditions; 2) the mixture of EFIE and MPIE is used. Each ingredient
has its own ramifications.

Because a contact is the virtual boundary between two pieces of conductors, as shown
in figure 2-2, and we do not have any infomation about the one that is not included in the
3D interconnect structure, we want to avoid matching bounbary conditions on the contact.
To be consistent, we have to avoid matching bounbary conditions on all surface.

The MPIE has the volume integral term but does not need matching boundary condi-
tions. On the other hand, the EFIE needs matching boundary conditons but does not have
the volume integral term if currents inside conductors are not treated as sources. Inciden-
tally, the volume integral term in equation (2.18) is the same as the one in equation (2.14).
And we have used this fact to cancel out this undesirable volume integral term. So EFIE and
MPIE complement each other well and their combination results in a true surface integral
representation.

In addition, we want to use PEEC idea to compute the impedance since it natually fits

in the circuit simulation environment. So we impose voltage on the contacts and compute
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the current goes into the contacts and then use the voltage-current defthition/I to
compute impedance. This is another reason we want to use the MPIE because one of its
state variablepis natually related to voltage. From our experience it is rather cubersome to
introduce excitation by merely using electric and/or magnetic fields as state variables.

It is worth noting that the EFIE formulation in this paper is slightly different from the
standard one. There are a few equivalent forms of EFIE, the one closest to equation (2.16)

is [47]

— — — -

DE[) +AF)Gi(F, )T -E(F))], FeS.
(2.21)

And the one closest to equation (2.11) is equation (2.21) with the addition of a volume

1= 5 OE(r) r
25N = /s AS[Ga(Tr Von®) ~on()

integral term exactly same as the one in equation (2.11). The starndard EFIE is derived
from vector Helmholtz equation (2.5) using Green’s second identity in vector form. And

equation (2.6) is not explicitly enforced. However, as discussed before, equation (2.6) must
be enforced in our formulation. This is why we choose equation (2.16) rather than equation

(2.21) in standard EFIE.

2.5 Surface formulation

In light of the observation made in section 2.4, we introduce one last equation, equa-
tion (2.29), into our formulation. We follow the convention in the PEEC model, using
the difference betweeg on two contacts of the same conductor as the voltage excitation
term [19, 18].

In summary, the formulation for fullwave analysis consists of the following equations

1- i N e
EE(F’):/SdS(Gl(f’,r) 7 o) E(), TeS, (2.22)
e le oo L OE(")  0Go(T,r") 2 oy | oo
f(r) SE(M =€ /SdS(Go(r,r)an(j) oy SN Delm), TS
) (2.23)
cp(r):/sds@cao(r,ﬁ), res (2.24)



e =120 res, (2.25)

t(r)-E(r)=0, TeX (2.26)
OEn(T) _
()~ 0, Te (2.27)
0-E(f)=0, 7€ S (2.28)
@f) =constant e & (2.29)

where S and & are the non-contact part and contact part of the conductor suBace
respectively.

The formulation has eight scalar state variabigsEy, E,, aa%‘, %’ Gaan, @andp. Since

there is no matching boundary condition, all componen& ahd%—ﬁ are on the inner side
of conductor surface. Because equation (2.20) along the normal direction is not enforced,

the total number of scalar equations is also eight.

For EMQS analysisko in equation (2.12) becomes zero and the texsu in equation
(2.17) should be dropped [12]. But the number of state variables is unchanged. For MQS
analysis, on top of above simplification, the chapge equation (2.25) becomes zero [12].
Hence it becomes redundant and is not used as a state variable and equation (2.24) is not

used either. Hence the total number of scalar unknowns and equations becomes seven.

2.6 Why this surface formulation is widebanded

Numerical results in [52] have clearly shown that our formulation is valid from zero fre-
guency to microwave frequencies. Since we have established in section 2.4 that our formu-
lation is a combination of EFIE and MPIE, we are ready to explain why it is widebanded.
The reason turns out to be rather simple: both EFIE and MPIE are widebanded themselves

for the analysis of interconects. The following is our reasoning.

When the MPIE is used to solve scattering and radiation problems, the kn@&Arthe

incidence field for scattering problems or the excitation field for antenna problems. The
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governing equations are [28, 3, 2]

—ES= jwA+Op=FE' (2.30)
Os-J = —jwps (2.31)

oF) = /S dSGo(T, 1")ps(F) (2.32)
AT) = /V dV/Go(F, ) J(F) (2.33)

wherells is the surface divergence. It was pointed out in [27] that when the frequency is
sufficiently low, the vector potential contributions to the elements of system matrix are in-
significant compared with the scalar potential contributions. As a result, the vector potential
contributions are lost. The remaining scalar potential contributions depend ofly-dn
Knowledge ofis- J'is not sufficient to determin& Therefore, the solutions are inaccurate

at low frequencies. A loop/tree or loop/star basis function pair can be used to separate the
contributions from vector potenti@d and scalar potentiap to the system matrix element,

and hence solves the low-frequency problem [50].

However, when the same MPIE or the PEEC model is used for the analysis of intercon-

nects, the first governing equation is slightly modefied. It becomes
(2.34)

and the excitation is the user-specified scalar potential or voltage on the contacts. When

the frequency is identically zero, equation (2.34) becomes

(2.35)

which is the equivalence & = Rl in circuit [34]. This is exactly the kind of low-frequency
behavior we expect! Hence we do not see any low-frequency problem at all. We could use
similar reasoning to verify that the MPIE does not have high-frequency prolems either. So

it is a wideband formulation by itself.
As for EFIE, it only has nonuniqueness problem at resonance frequencies of closed
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perfect conductors. Since interconnects are usually lossy open structures, we should not
have this problem. Hence the EFIE is also a wideband formualtion by itself when it is used
for the analysis of interconnects.

Since our formulation is a combination of these two widebanded formulations, it should
not be a surprise that our formulation turns out to be widebanded too.

For the MPIE, independent of the accuracy of the system matrix element at low re-
guencies, there is a condition number issue. In [51], on top of the loop/star and loop/tree
basis functions, a preconditioner was proposed to reduce the number of iterations of an
iterative matrix solver for the analysis of the scattering and radiation problems. For the
analysis of interconnects, a mesh current idea, which enfdfices= 0 implicitly, was
used to make the system matrix better conditioned in [19, 18]. In our formulation, we use
a sparse pre-conditioner matrix to reduce the iterations of the matrix solver GMRES [40].
It is constructed by ignoring the interaction between panels in integral equations (2.22),
(2.23) and (2.24), and using equations (2.25), (2.26), (2.27), (2.28) and (2.29) directly. Itis
shown in [52] that the condition number of the system can be further improved by replacing
equation (2.22) with its normal derivative, i.e.,

OE(r")  9Gy(F,1) = -

E(r):%m[/aolsml(rﬁ) _

o r
an(r’y  an(r)

on(r)

1
2

2.7 Discretization of the formulation

Applying the integral form of equation (2.28)
jqfé(r')dsz 0 (2.37)

to the surface of an infinitely thin small rectangular box beneath the conductor surface, we

/det / ds(r) aE“ - (2.38)

whereQ is the top of the box[ is the periphery of2. It is easy to see that equations

obtain

(2.26) and (2.27) are sufficient conditions for equation (2.38) to hold true. Since these two
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Figure 2-3: An infintely thin small rectangular box benneath the conductor surface

Figure 2-4: Panel discretization

equations are much simpler, we use them for contact surface and use equation (2.38) only
for non-contact surface.

In order to discretize the integral equations (2.22), (2.23) and (2.24), a piecewise con-
stant centroid collocation scheme is used in this paper. The conductor surface is discretized
into N flat quadrilateral panels as shown in figure 2-4. Seven unknowns are associated with
each panelky, Ey, E, %‘, %’, "ainz andp. The scalar potentiap is associated with the
panel vertices. With this setting, equations (2.25), (2.26), (2.27), (2.38) and (2.29) become

simple algebraic equations. Please refer to [48] for more details on discretization.
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Chapter 3

Improving the accuracy of panel

Integration

3.1 Definition

After discretization, the integrals over conductor surf8ae S are replaced by the sum-

mation of integrals over panels. These integrals are

_ /P dSG(r, 1) (3.1)
oG(F.r) _ . o
/d o) — A P.)-/ dS0,G(F, ) (3.2)
I3(F) = / dSG(T, /1) = D?/ dSG(F, ) (3.3)

whereP is thei-th panel,A(R) is the unit normal vector on the flat par@) andG(¥,r’)
is eitherGo(T, r’) or Gl(F’,r ) defined in (2.12) and (2.17). From the symmetry property of

the Green’s function, it follows that
/ dS0,G(F, ) = O / dSG(T, 1) = —Opla(7). (3.4)
R R

Therefore, to compute the integrals in equation (3.1) (4.43) and (3.3), all we need is to

computel4 () and agg) , whereD stands forx, y or z
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Figure 3-1: Decomposition of an integration over a polygon into several integrations over
traingels

3.2 Decomposition

It is shown in [14] that any integration over a polygon is equal to the signed summation of
the integration over a chosen set of triangles. The vertices of these triangles are those of the
polygon and the projection of the evaluation point onto the plane where the polygon lies,
as shown in figure 3-1. To be more precise,flgt) be a general integrand, its integration

over a polygon in figure 3-1 could be written as

N
/S anm=73s /P g OTED (3.5)

whereN is the number of vertice¥1 = Vi, ands = —1if ViVi,1 is clockwise looking

from the evaluation point E argl= 1 if otherwise. This idea was used in [48] to compute

the integrald,(r') and a'alg).

3.3 Desingularization and Reduction to 1-D integration

In a polar coordinate system, a triangle after the decomposition is shown in figure 3-2.
Using the relatiorR = v/r2+h? andRdR= rdr, the integrald; and§ a'l over this triangle

could be rewritten in polar coordinates as

6s ri(e) kR

|1 - / de/ rdrTR
Ry ( kR

_ / d6 / 0 dRel—
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) KRy (6) _ jkh
= [Tae ko (3.6)

X A7ik
08 Rl(e)—h
or = /GA de—t " k=0 (3.7)

oy % RO HR(B) kN oh
b Jo ® " "> ~amad (3.8)

% has been eliminated and the 2-D

integrations have been reduced to 1-D integrations. The quadrature rule is used to compute

Now the singularity of the original kernels inand

the two 1-D integrations in equation (3.6) and (3.8). The shared rapid changing kernel in
these two integrals i$(8) = &<R®) whereRy(8) = \/d?se@(0) + h2. Whend << AB,
Ba~ = andBg ~ 7, and f(8) changes rapidly over the interval. Many quadrature points

must be used to achieve reasonable accuracy.

3.4 piecewise Quadrature Scheme

A simple variable transformation and a piecewise quadrature scheme can be used to solve
the above-mentioned problem. bet dtan(6), it easily follows that%( = r%, wherer? =
al

1 could be rewritten as

d? +x2. The rapidly changing part ¢f and D

0 ) X .
" doeR — / ® dxg(x), where gx) — rd—zékvh"*fz (3.9)
X

6a A

The distribution of the integranglx) is shown in the top figure of the figure 3-3. Many
guadrature points must still be used to get accurate evaluation because of the rapid varia-
tion aboutx = 0. However if we divide the integration domain into two sub-domains, as
shown in the middle and the bottom figure of the figure 3-3, and use a piecewise integration
scheme, the number of quadrature points needed will be dramatically reduced. The conver-
gence behavior of the integration over the whole domain and over the two sub-domains is
shown in figure 3-4. It is clear that the piecewise scheme uses fewer quadrature points, or
has higher accuracy if only a small number of quadrature points are used. Unfortunately,
this is not appreciated in [48] and a small number (24) of quadrature points are used for the

integration over the whole domain. Since the lower the frequency, the smaller the damp-
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Figure 3-2: Triangle in polar coordinate system, d is the distance between point P and edge
AB

ing factor in complex wave numbé&r hence the higher the peak of the integra(x), the

formulation in [48] has a low frequency problem.

3.5 Testing examples

We will use two simple examples to validate the propsed piecewise quadrature scheme.
The first example is a simple ring structure since the analytical formulas exist for the low-
frequency inductance of aring [9]. The second example is a spiral structure. We compare
our results to those of the public domain program FastHenry [19]. In order to compare with
the magnetoquasistatic analysis program FastHenry, these two examples were analyzed

magnetoquasistaticly.

3.5.1 Ring

The ring is10mmin radius, with a square cross section of the giZemm by 0.5mm

The conductivity is that of the copper, which is 5.8e7. The low frequency inductance
calculated using the formula in [9] is 48.89 nH. The results obtained by using FastHenry
and the formulation derived in secti@? enhanced with the piecewise quadrature scheme
proposed in sectiofd? are shown in figure 3-5 and 3-6. The two results agree well. The
number of filaments used by FastHenry is 960, 3840 and 15360, respectively. The surface

formualtion only uses 992 panels across the entire frequency range. It should be noted
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Figure 3-3: Distribution of the integrand, the top figure is the distribution of the original
integrand, the middle and the bottom figure are the left and right part of the top figure
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Figure 3-4: convergence behavior of different schemes

10°

+ FastHenry 960

* FastHenry 3840 7
— — FastHenry 15360 7
—— surface 992 7,

Resistance ( Ohm )

Figure 3-5: Resistance of a ring

that the inductance obtained with the surface formulation is very close to 48.89nH in the
low frequency range. This suggests that the low frequency problem reported in [48] has
been eliminated without using the linearization technique proposed therein. Also, at high
frequency, the resistance scales to the square root of frequency and the inductance drops a
little. This suggests that the skin-effect has been well captured. So this ring example does

validate our panel integration scheme.

3.5.2 Spiral inductor

The inner radius of the spiral is 20mm. Its cross section is a square of the size 0.5mm by

0.5mm, and the spacing between two succesive revolutions is 0.5mm. The spiral has two
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Figure 3-7: Resistance of a spiral

revolutions. At low frequencies, the computed resistance and inductance agree well with
those obtained with FastHenry, as shown in figure 3-7 and 3-8. This again validates our
panel integration scheme. It is worth mentioning that FastHenry does not capture the skin-
effect at high frequencies due to the fixed number of filaments. On the other hand, with a
fixed number of panels, the surface integral formualtion has well captured the skin-effect.
This example clearly demonstrates the advantage of the surface integral formulation over

the volume integral formulation.
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Chapter 4

Pre-corrected FFT algorithm

After discretization, the algebraic equations (2.25), (2.26), (2.27), (2.38) and (2.29) become
sparse matrix equations. But integral equations (2.22), (2.23), (2.24) and (2.36) become
dense matrix equations. So solving the whole system matrix using iterative methods still
takesO(N?) operations, wher&l is the number of unknowns. In this thesis, we use the
pre-corrected FFT algorithm to accelarate the dense matrix vector product corrresponding
to the operation of those integral operators in (2.22), (2.23), (2.24) and (2.36).

Even though numerous fast algorithms already exist for efficiently solving the integral
equations, such as Fast Multipole Method (FMM) [8, 7, 36, 37], hirarchical SVD [20],
panel clustering method [10] and the pre-corrected FFT (pFFT) algorithm [32], the practi-
cal implementation of such methods may still seem daunting to researchers and engineers,
who are most oftern not specialists in fast integral equation solvers. As a result many exist-
ing codes still use the traditional dense matrix approaches, which®@&J memory and
at leastO(N?) CPU time. One of the objects of this work is to provide a flexible and ex-
tensible code to the public domain so that the researchers can easily accelarate their codes.
Hence we want to use an algorithm that is flexible enough to handle the integral kernels
commonly used in the above mentioned engineering applications.

Though not as good as FMM’s more than ten digit accuracy, pFFT’s four to five digit
accuracy is good enough for most engineering applications, where the accuracy require-
ment is usually modest. More importantly, the pFFT method is almost kernel-independent.

For example, it could easily handle both Helmholtz kernel and Laplace kernel and their
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close relatives in a unified framework. This makes it a particularly good algorithm for our
fast solver.

On the other hand, FMM could not handle Helmholtz kernel and Laplace kernel in a
unified framework. And it has numerical difficulty in dealing with large variation of the

wave number in Helmholtz kernel [36, 37].

4.1 Mathematical Preliminaries

An abstract form of the kernels in (2.22), (2.23), (2.24) and (2.36) is
K(r,7) = F(F2(G(1, 7)) (4.1)

whereG(r’,F) is the Green’s function, and the possible options for opergi6) and 7 (-)

are

de) (4.2)

and

) do do s

andU (-) is the identity operator.

For the sake of clarity, we use a simple single-kernel integral equation
/dSK(Ff,r)p(F/) —(F), TES (4.4)
S

to illustrate how the pFFT algorithm can be used to accelarate the operation of an integral
operator. Functiori (') is the known right hand side term. The procedure extends easily to
the integral equations with multiple kernels, such as (2.22), (2.23), and (2.36).

The standard procedure to solve equation (4.4) numerically is to discretize it by means
of projection [10] and solve the resultant linear system with an iterative method [39, 45],
such as GMRES [40]. Lex be the infinite-dimensional functional space in which the exact
solution of equation (4.4) lies, and assume BatC X andT, C X are its subspaces with

spans{bj(r),j = 1,2,...,n} and {tj("),i = 1,2,...,n}, wheren is the dimension of both
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subspaces. In general, the solution of the equation (4.4) is not in suli3patkerefore,
the approximate solution
n
r) = Z a;jbj(r) € By (4.5)

generates an error
= [ASK (e — (1) = @7) — (7). TS (4.6)

and the unknown expansion coefficientscould be computed by enforcing the projection

of the error intoT, to vanish, i.e.,
<t(F),en(r) >=<t(F), o) > — < (), f(r) >=0, i=1,2,....n 4.7)

or
Z /dSt /dSK (7. F)b /dSt 2..n  (48)

whereA! andAE’ are the support of the basis fucntipfr) andb; (7'), respectively. In matrix,
equation (4.8) becomes

Al = f (4.9)

where

A= /A}dSt(F’) /A?dSK(F’,?)bj(F') (4.10)

The commonly used basis functionsBp or T, are low-order polynomials with local sup-
port [10]. Figure 4-1 shows a piece-wise constant basis function whose support is a panel.
Figure 4-2 shows a vertex-based piece-wise linear basis function whose support is the union

of a cluster of panels sharing the vertex with which the basis function is associated.

When theth testing function i$; (1) = &(F' —r¢;), wherer; is the collocation point, the
discretization method is called the collocation method. And wBes T,, the discretiza-

tion method is called the Galerkin’s method.
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Figure 4-1: A piece-wise constant basis function, shaded area is its support

Figure 4-2: A piece-wise linear basis function associated with the vertex V, where the
shaded area is its support
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4.2 Philosophical Preliminaries

Since forming matriA and computing the matrix vector product in (4.9) all req@@?)
arithmetic operations, it is obvious that using an iterative method to solve equation (4.9)
needs at leagd(N?) time, whereN is the size of the matriA. This could be very expensive

for large N. Many fast algorithms avoid forming matri&k explicitly and compute the
matrix vector product approximately, which only ne€aidN) or O(Nlog(N)) operations

[7, 1, 33].

The Pre-corrected FFT (pFFT) algorithm was originally proposed in [32, 33], where
the detailed steps to accelarate a single-layer integral operator were shown. The basic idea
of pFFT is to separate the potential computation into far-field part and near-field part. The
far-field potential is computed by using the grid charges on a uniform 3D grid to represent
charges on the panels. The near-field potential is compued directly. The algorithm has four
steps: Projection, Convolution, Interpolation and Nearby interaction. The effect of this
algorithm is to replace the matrix vector prodéat in equation (4.9) with D + IHP)aq,
whereD is the direct matrix that represents the nearby interactiog,the interpolation
matrix, H is the convolution matrix, an@ is the projection matrix. MatriceB, | andP
are sparse, hence their memory usag@(islp), whereNp is the number of panels, and
their product with a vector needs or®(N,) work. The matrixH is a multilevel Toeplitz
matrix. Hence its memory usage@Ny) and its product with a vector could be computed
by using FFT inO(Nglog(Ng)) operations [6], wherdy is the number of grid points.
Therefore, the overall computational complexity(Bf+- IHP)a is O(Np) + O(Nglog(Ny)).

For some problems, usually small or medium sized oNgsnight be larger. Hence the
computational complexity i©(Nglog(Ng)). For other problems, usually large-sized ones,

the computational complexity is neai®(Np).

Unlike [32, 33], we use polynomials in both interpolation and projection steps. Hence
the interpolation matrik and projection matri® are completely independent of the Green’s
functionG(T, F’) in equation (4.1). This makes it much easier to handle the complicated ker-
neIsK(F/,T’) in (4.1). It also makes it straight forward to treat piecewise constant basis and

high-order basis in either collocation or Galerkin’s method in a unified framework. This is
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particularly important from implementation point of view.

4.3 Pre-corrected FFT algorithm

In this section, we will use a simple 2D example to show how to generate the four matrices,
[1], [P], [H] and[D]. Generalization of the procedure to the 3D cases is straight forward.
The algorithm presented here is general enough such that the general integral operator in
equation (4.4) discretized either by the collocation method or by the Galerkin’s method
using either piece-wise const element or high-order element could be handled in a unified

framework.

4.3.1 Interpolation matrix

We start with the interpolation, the third and easiest step in the four-step pFFT algorithm.
Suppose the potential on the uniform grids has been computed through the first two
steps, namely projection and convolution, we could use a simple polynomial interpolation
scheme to compute the potential at any point within the region covered by the grids. Fig-
ure 4-3 shows a 23 x 3 uniform grid, more points could be used to get more accurate
results. The triangle inside the grid represents the local suppantequation (4.8). The
simplest set of polynomial functions for the interpolatioriéx,y) = x'yJ,i, j = 0,1,2, k=
2i + j. The potential at any point can be written as a linear combination of these polynomi-

als,

Qx,y) = chfk(x, y) = fl(x,y)c (4.11)

wherec is a column vector antistands for transpose. Matchiggx,y) in (4.11) with the

given potential at each grid point results in a set of linear equations. In matrix form, it is

[Flc= @y (4.12)

where thej-th row of the matriXF] is the set of polynomial§(x,y) evaluated at th¢th grid
point (X;j,Yy;j), andgy j is the given potential at poirfk;,y;). Solving forc and substituting
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it back into (4.11) yields

O(F) = @(x.y) = F1(x,y)[F] " g = Dh(F g (4.13)

It should be noted that matri¥| in (4.12) is only related to the distance between points in
the uniform grid and the specific set of interpolation polynomials chosen in the algorithm.
So the inverse of matri}] is done only once. And since the size of the matrix is rather
small @ x 9in this simple 2D case), computing its inverse is inexpensive. Itis possible that
the number of polynomials is not equal to the number of points in the interpolation grid. In
this case the inverse becomes psuedo inverse, which is computed using the singular value
decomposition (SVD) [45].

It easily follows that the derivative of the potential at a paimtith respect tax is

do(f) _ d s s oo
2 = - fOIF) ey = DLy (4.14)

wherea stands for ory. Hence the gradient of the potentialras

O@(7) = (RD(F) + YDL(7)) gy (4.15)

and the normal derivative of the potential at paing

df'() . df'()

990) _ . g = (e i v gy JFlTw =Dl (416)

dn

whereny andny are the projection of the unit normal vector of the function supffpaiong
x andy direction. Using the notation in (4.2), equations (4.13), (4.14) and (4.16) could be

written as
Fa(@(F)) = Dy(N @y (4.17)

whereD}(F) stands foiD},(7}, DY(F), Dy(F) or Dy().

As described in section 4.1, we want to compute

W= [ dSR@M(), i =12, N, (4.18)
At
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wherelN; is the number of testing basis functions. Substituting (4.17) into (4.18) yields

W= [ KPP = () e 1 =12\, (4.19)

=

WhereVT/éi) stands forVT/éi), \/T&(i) andv@(i). If the collocation method is used, thkﬁéi) in

equation (4.19) could be simplified as

W[_’EI) = DB(XC7yC)7 I = 1, 2, ) Nl7 (420)

where (X, Yc) is the collocation point. When the piece-wise constant testing function is
used, the suppont! is the panel associated with it, as shown in figure 4-1. When the linear
testing function is usedy! is a cluster of panels, as shown in figure 4-2. Apparently, com-
puting elements dﬂ/éi) for higher order basis functions could be more expensive because
integrating over a cluster of panels needs more quadrature points than integrating over a
single panel.

In matrix format, equation (4.19) becomes
W = [l (4.21)

where|l] is anN; x Ng matrix, andNg is the number of grid points. To cover the local
support of a basis function, only a small number of the interpolation grid points are needed,
as shown in figure 4-3. Hence computing e&khthrough interpolation only involves
potential at a few grid points. So each row of the interoplation mditfiis rather sparse.

The non-zero elements in theh row of the matrix[l] are just the elements of the row
vector(Wj")! in (4.19) or (4.20).

4.3.2 Projection matrix

Figure 4-4 shows a 2D pictorial representation of the projection step. Similar to the previ-
ous section, a triangle is used to represent the support of a basis funcon3 projection

grid is assumed here and obviously more points could be used if the accuracy requirement

44



| .A.

Figure 4-3: 2-D pictorial representation of the interpolation step

is higher.
We start with a point charggp at pointS on the triangle, shown in figure 4-4. The

potential at pOinE due to this pOint Charge is
b — PpG(Ts, T 4,22
Q= p (r57 E)' ( . )

The purpose of the projection is to find a set of grid chapggsn the projection grid points

such that they generate the same potentail at ggine.,
o2 = S pgiG(Fi.Te) = (Py)'@y = ¢t (4.23)
|

where@y; = G(1i,Te). We could use the same set of polynomials in (4.11) to expand the

Green'’s function

G(r,Tg) = Z fi(F)ce = (7). (4.24)

Matching both sides at each grid pomields a linear system
[F]c= gy, (4.25)

whereF is same as that in (4.12). Substituting the solutioa F‘l(Eg into (4.24) and

evaluating it at poinSyields

G(Fs,Te) = f'(Fs)F L. (4.26)
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In light of (4.22) and (4.23) we have

(Pg)' = ppf'(Ts)F 1, (4.27)

the projection charges for a point charge. A charge distributigr) on the jth basis
function support could be regarded as a linear combination of an infinite number of point
charges. Equation (4.27) implies that the projection charges are linearly proportional to the
point charge, hence it easily follows that the projection charges for the charge distribution
bj(T) is

(i) = [ dsa ol (4.28)

If the piece-wise constant basis function is used, equation (4.28) becomes

@) =1/, asfriF (4.29)

We usually have to use more than one basis function, as implied by equation (4.5).
In this case, the total charge on each grid point is the accumulation of grid charge due to
each basis function. Assuming there Bigbasis functions anbly grid points, the relation

between the total grid chargé@ and the magnitude of basis functiomsn (4.5) is

Qg—zu,pg = [Pla (4.30)

where[P] is anNg x N, matrix. Due to the locality of the basis support, the projection
grid for each basis function has only a small number of points. Hence each column of the
projection matrixP] is rather sparse. The non-zero elements injtkle column of matrix

[P] are the elements of the column vecﬁéjr) in equation (4.28) or (4.29).

If the kernel has a differential operator inside the integral, the potential at Baloe

to a point charge is

m__0 _ 9 oo fi(rF 1. (4.31)




Figure 4-4: 2-D pictorial representation of the projection step

wherep stands fok, y or n. We again want to find a set of grid charggson the projection

grid points such that they generate the same potentail at Roirg.,

o =S 0piG(7.Te) = (3p)'qy = o (432)

Equations (4.31) and (4.32) imply that the projection charges are

0 5 -
5 Pef (F . (4.33)

(0p)' =

Similar to the single-layer operator case, the projection charges for a charge distribution

bj () on thejth basis function support is

@) =1/ dSh(F) = F(F)F] L (4.34)

a —
8 = w9 5m

The projection matrix for the kernel with a differential operator is structurely identical to
the matrix[P] in equation (4.30). The non-zero elements in i@ column of the matrix

are the elements of the column vecﬁép in equation (4.34).
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4.3.3 Convolution matrix and fast convolution by FFT

By definition, the relation between the grid potentj_glin (4.21) and grid chargég in
(4.30) is
@) =5 G(r,71)Qq (4.35)

In matrix form, itis

@ = [H]Qq (4.36)

where the matrid is the so-call convolution matrix. Since the Green’s function is position

invariant andpy andQ are defined on the same set of uniform grid, we have
Hi,j = G(r';,Tj) = G(T},Tj) = G(Ti —T},0). (4.37)

Matrix H is a multilevel Toeplitz matrix [6]. The number of levels is 2 and 3 for 2D cases
and 3D cases, respectively. It is well-known that the storage of a Toeplitz matrix only
need9D(N) memory and a Toeplitz matrix vector product can be comput€ Mlog(N))
operations using FFT [6], whele is the total number of grid points. It should be pointed
out that convolution matrikl being a Toeplitz matrix is hinged upon the position invariance

of the Green’s function. Fortunately most commonly used Green'’s functions, even the ones

in the layered medium, are position invariant [33].

4.3.4 Direct matrix and pre-correction
Substituting equation (4.36) and (4.30) into (4.21) yields

W = [I][H][Pl& (4.38)
In view of (4.18), (4.7) and (4.9), this implies

A= [l][H][P]. (4.39)
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As pointed out in previous three sections, the sparse representation of mair(¥.39)
reduces the memory usage and computing time for matrix vector product dramatically.
Unfortunately, the calculations of the potential on th grid using (4.39) do not accurately ap-
proximate the nearby interaction. Itis proposed in [33] that the nearby interaction should be
computed directly and the inaccurate contributions from the use of grid should be removed.
Figure 4-5 shows how the nearby neighboring basis supports are defined. The empty circle
in middle of the solid dots are the center of the so-called direct stencil and the stencil size
in figure 4-5 is 2. The shaded triangle represents the source, and the other empty triangles
represent the targets wheitein equation (4.18) is to be evaluated. Only those triangles
within the region covered by the direct stencil are considered to be nearby neighbors to
the source. And the direct interaction between this list of nearby neighbors and the source
is justA; j defined in (4.10), whereis the index of the shaded triangle representing the
source andj € A}, the nearby neighbor set for th#h source. The pre-corrected direct
matrix element is

Dij = A — (W) HURY, | e 2 (4.40)

Where(VT/éi))t is defined in equation (4.19a_>(,gj) is defined in equation (4.28) and (4.34),
and[H_] is a small convolution matrix (not to be confused wiith in (4.39)) that relates

the potential on the grid points around basis suppband the charge on the grid points
around basis suppaﬁﬁ’. It is intuitive from figure 4-5 thaf\j is a very small set. Hence the
direct matrixD is very sparse and the sparsityldis dependent upon the size of the direct
stencil. Larger stencil size means more neighboring triangles in figure 4-5 and hence more
computation in (4.40). It will be shown later in section 5.1 that the setup time of the pFFT

algorithm is directly related to the direct stencil size.

Since matrixH_ ] in (4.40) is rather small, the FFT does not speed up the computation
much. However, there are other ways to reduce the operation count. Because the grid is
uniform and the Green’s function is position invariant, only a few matrfiesare unique.

So we could pre-compute them once and use them to pre-correct all the nearby interactions

in the direct matrixD].
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Figure 4-5: 2-D pictorial representation of the nearby interaction. Direct stencil size is 2.

Table 4.1: Relation between operator pair and the interpolation matrix and the projection
matrix

A u() o Gt
interpolation| W\ in (4.19) | W&, W in (4.19) | WA in (4.19)
% u() o o
projection | pi’ in (4.28) | i, 6\ in (4.34) | &\ in (4.34)

4.3.5 A summary of the four matrices

In view of (4.38), (4.39) and (4.40), the matrix vector product is computed efficiently using
[AJa = ([D] + [1][H][P])a. (4.41)

Sections 4.3.1 and 4.3.2 are summarized in table 4.1. It is clear by now that the inter-
polation matrix[l] and the projection matrifP] are independent of the Green’s function.
Matrix [I] is only related to the operatgF, and the testing functions. And matrjR)| is
only related to the operatgh, and the basis functions.

The direct matrix, however, is dependent upon all the above information. So we have

to set up one direct matrix for each and 7, operator pair. The convolution matrix, on
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the other hand, is only related to the Green’s function and the location of grid points. It is
not related taf; or #». So we only need to set up one convolution matrix for each unique
Green'’s function.

In addition, if the Galerkin's method is used, the basis fundtidir) in equation (4.28)
or (4.34) is identical to the testing functi&r) in equation (4.19). It is easy to check that
W = pd W = ol W = Gi) andwi” = 6. This implies a duality relation

(1] =[P\ (4.42)

4.4 Implementation

Base upon the algorithm described above, we have developed a C++ program called pfft++,
using the generic programming technique [43, 21, 16]. The whole algorithm includes two
major parts: forming the four matricés P, D andH, and computing the matrix vector
product using (4.41). Since the matrideand P are not related to the kernel, they are
formed separately so that they could be used for different kernels. This is particularly
useful when for example a Helmholtz equation is to be solved at various wave numbers or

frequencies. The following is a high level description of the implementation of the pfft++.

Algorithm 1: construct kernel Independent sparse matrices.
Input: source elements, target elements, differential operator gairs$),
projection stencil size, interpolation stencil size, direct stencil size
Output: interpolation matriXl] and projection matrixP]

(1) find the optimal grid size

(2)  setup grid and element association

(3) setup interpolation stencil

(4)  setup projection stencil

(5)  setup direct stencil

(6) form the interpolation matri}{d| for each#;

(7)  form the projection matri¥P] for each,

Using pfft++ to solve a single kernel integral equation such as (4.4) is straight forward.
We could simply treat pfft++ as a black box that could perform the matrix vector product

efficiently. After forming the four matrices by calling algorithms 1 and 2, algorithm 3 is
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Algorithm 2: construct kernel dependent sparse matrices.

Input: source elements, target elements, kernel, integration scheme, differ-
ential operator pairsfy, %2)

Output: direct matrix[D] and convolution matrix

(1) form the sparse representationidf

(2) compute the FFT gH]

(3) form the direct matriXD] for each pair of (1, 7>)

Algorithm 3: compute matrix vector product.

Input: vector x, differential operator paiffg, 72)
Output: vectory

(1) find the indexmof [I] from 71

(2) find the indexn of [P] from 7,

(3) find the indexk of [D] from operator pair f1, 2)

(4)  y1=[Pmlx
(5)  y1=fft(yr)
6) y2=[Hn
(7)  y2=ifft(y2)
(8)  yz=/[hly2

(9)  y=y3+ [Dyx

to be called repeatedly in the inner loop of an iterative solver. To solve the integral equa-
tions with multiple kernels, we could simply repeat the above procedure for each integral

operator individually.

4.5 Comparison to the original pFFT algorithm

The basic sparsification ideas in this paper are very similar to those in the original pre-
corrected FFT algorithm [32]. The difference lies primarily in the ways the interpolation
matrix and the projection matrix are generated. And this difference turns out to be impor-
tant.

In the original pFFT algorithm [32, 33], the projection matrix and the interpolation
matrix are all related to the Green’s function or kernel. If one wants to solve a Helmholtz
equation with different wave numbers or at different frequencies, these two matrices have
to be re-generated for each frequency. As explained in section 4.4, the interpolation matrix

and the projection matrix are only generated once in pfft++.
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In the original pFFT algorithm, the convolution matrix is directly related to the kernel,
which includes the effect of the operat®s. The convolution matrix in this work is directly
related to the Green'’s function, not the operager To see why this difference is important,

suppose we want to compute the double-layer integral
/d”9G (r.7) o). (4.43)

Using the original pFFT algorithm, it has to be done as the following

/dr’ oG r) nyaG((?r))—i-nzaG(?_,» Dlo(. (4.44)

This suggests that three convolution matrifteg, [Hy] and[H;] corresponding t ()f a—G
and > have to be generated and foreward FFT has to be performed for each of them.
For each operation of the double-layer integral opergithip, [Hy]p and[H,|p have to be
carried out separately. As shown in section 4.3.3, pfft++ only needs one convolution matrix
and hence only one convolution will be carried out in the matrix vector product step. This

is a significant reduction in memory usage and CPU time.
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Chapter 5

Numerical Results

5.1 Performance of pfft++

The pfft++ has been tested on random distributions on the surface of a sphere shown in
figure 5-1. After discretizing the surface, the integral operator in equation (4.4) is turned

into either the dense matrfA| in (4.9) or the sparse matrix representation in (4.41).

We assume a random vecm@nd compute the matrix vector product in (4.9) directly
asy1 = [AJa. We then compute the matrix vector product using the pfft+yas pf ft(a).

The relative error in the pFFT approximation is

S (i~ y2,i)2>1/2 (5.1)

error = ( SN 2.
i= i

For the largest simulations, with number of triangle pahebseing 50000, we have carried
out the direct calculation on a subset of only 100 panels. The CPU times are computed by

extrapolation and the errors are obtained by restricting the formulae (5.1) to this subset.

To verify that the pfft++ works well for different kernels, we have carried out the sim-
ulations for Laplace kernel and its normal direvative, and Helmholtz kernel with different
wave numbers and their normal direvative. The results of our experiments, relative error,

CPU time and memory usage, are summarized in figures 5-2 - 5-17.

55



—¥— pFFT (direct stenci

| =8 pFFT (direct stenci

10%°

Figure 5-2: relative error in matrix vector product fofr kernel

relative error in matrix vector product fog<"/r kernel, k

1888495532 or 0.1885

Figure 5-3:

56



relative error
)

10"° — pFFT (direct stencil = 3)
—+— pFFT (direct stencil = 4)
—¥— pFFT (direct stencil = 5)
e | - F?FFT (direct “stencil =6)

10’ 10° 10° 10" 10°

niimher nf nanals

Figure 5-4: relative error in matrix vector product F§11/r kernel

10°

10°

relative error
)

10" — pFFT (direct stencil = 3) |

—+— pFFT (direct stencil = 4)

—¥— pFFT (direct stencil = 5)

-20 —8- pFFT (direct stencil = 6)
o 7 3 v 5
" 10 10 10 10

niimher nf nanals

Figure 5-5: relative error in matrix vector product e’ /r kernel,k = 0.1885

relative error
S

pFFT (direct stencil =

10 — ( 3) 4
—+— pFFT (direct stencil = 4)
—¥— pFFT (direct stencil = 5)

10 8- QFFT (direct §tenci| =6)

10’ 10° 10° 10" 10°

niimher nf nanals

Figure 5-6: relative error in matrix vector product fﬁ{e““/r kernel,k = 1888495532

57



set up time for1/r kernel

10°

— explicitly forming matrix
------ pFFT (direct stencil =

3)
—+— pFFT (direct stencil = 4)

| =% pFFT (direct stencil = 5) / |
—&— pFFT (direct stencil = 6)

—
2
S

—_
o

set up time (seconds)

niimher nf nanals

Figure 5-7: set up time fat/r kernel

—_
o
N

— explicitly forming matrix
------ pFFT (direct stencil = 3)
pFFT (direct stencil = 4)
pFFT (direct stencil = 5) 3
pFFT (direct stencil = 6)

b4t

©
T

54
o.

matrix vector product time (seconds)
o

)

—_
o

10 10° 10

niimher nf nanals

Figure 5-8: matrix vector product time fayr kernel

set up time ford/dn 1/r kernel

10° : ‘
— explicitly forming matrix
---= pFFT (direct stencil = 3)
4+ || = PFFT (direct stencil = 4)
10" | —— pFFT (direct stencil = 5) 1
-8 pFFT (direct stencil = 6)

—_
(@}

set up time (seconds)

niimher nf nanals

Figure 5-9: set up time fofl.1/r kernel

58



—_
o
(]

— explicitly formiﬁg matrix
------ pFFT (direct stencil = 3)
)

3
—+— pFFT (direct stencil = 4
—*— pFFT (direct stencil = 5)
il a0 ]

ol
OA

©
T

5
o‘

matrix vector product time (seconds)
o

)

_
o

10° 10° 10

niimher nf nanals

Figure 5-10: matrix vector product time f@ﬁl/r kernel

. set up time for exp"™//r kernel, k = 18849555.9215

10 ‘ ‘
— explicitly forming matrix
---= pFFT (direct stencil = 3) /
—+— pFFT (direct stencil = 4)
4
10" /| = pFFT (direct stencil = 5) / 1
-8 pFFT (direct stencil = 6) =

—_
(@}

set up time (seconds)

10’ 10° 10° 10" 10°

niimher nf nanals

Figure 5-11: set up time fa@' /r kernel,k = 1888495532 or 0.1885

explicitly forming matrix
pFFT (direct stencil = 3)
pFFT (direct stencil = 4)
pFFT (direct stencil = 5)
pFFT (direct stencil = 6)

bhti]

matrix vector product time (seconds)
o

10-‘...4 .......3 A
10 10 10

niimher of naneals

Figure 5-12: matrix vector product time fek" /r kernel,k = 1888495532 or 0.1885

59



sgt up time for d/dn exp'"™’/r kernel, k = 18849555.9215

i — explicitly forming matrix

---= pFFT (direct stencil = 3)

4+ || = PFFT (direct stencil = 4)
10" [| = pFFT (direct stencil = 5) 1

—8- pFFT (direct stencil = 6)

—_
o

set up time (seconds)

i
1 2 3 4 5

10 10 10 10 10

niimher nf nanals

Figure 5-13: set up time fofl-¢*" /r kernel,k = 1888495592 or 0.1885

— explicitly forming matrix
-=-= pFFT (direct stencil = 3)
—+— pFFT (direct stencil = 4)
10" || — pFFT (direct stencil = 5)
—&- pFFT (direct stencil = 6)

matrix vector product time (seconds)
o

10’

.

10° 10° 10

niimher nf nanals

Figure 5-14: matrix vector product time fg%eikr/r kernel,k = 1888495532 or 0.1885

10° : :
— explicitly forming matrix
---= pFFT (direct stencil = 3)
—+— pFFT (direct stencil = 4)
510 | = pFFT (direct stencil = 5) 1
3 -8 pFFT (direct stencil = 6)
[0}
g -
B10° [ e 1
> ,
<] =
E | ¢ oiiiieh 1A
[0}
€10°
-2
10 ;
10' 10° 10° 10* 10°

niimher nf nanals

Figure 5-15: memory usage fay'r

60



explicitly forming matrix
pFFT (direct stencil = 3
pFFT (direct stencil = 4
pFFT (direct stencil = 5
pFFT (direct stencil = 6

bt

eidtad s

memory usage (Mb)
o

-
o

niimher nf nanals

Figure 5-16: memory usage ngﬁl/r

i — explicitly forming matrix
-=== pFFT (direct stencil = 3)
+ || = PFFT (direct stencil = 4)
510 || = pFFT (direct stencil = 5) / il
=3 -8 pFFT (direct stencil = 6)
[0}
&
81071 Z Z
2 | i S e
o
§
E10° 1
10° : :
10' 10° 10° 10* 10°

niimher of naneals

Figure 5-17: memory usage fek’ /r and Lk’ /r, k = 1888495532 or 0.1885

61



S

Figure 5-18: Shorted transmission line with and without substrate ground
5.2 Testing of fastimp

In this section, we first use a small example to demonstrate fastimp’s accuracy. We then

use a few large practical examples to demonstarte fastimp’s speed and capacity.

5.2.1 Shorted transmission line with and without substrate ground

The behavior of a shorted transmission line is well understood. The expected resonance

frequencies are clearly shown in the plot.

5.2.2 A four-turn spiral over ground

In total, we used 15162 panels to discretize the whole structure. For MQS analysis, the
number of unknowns is 106k. The CPU time is 69 minutes and the memory usage is 348
Mb. For EMQS analysis, the number of unknowns is 121k. The CPU time is 93 minutes

and memory usage is 379 Mb.

5.2.3 Multiple conductor crossover bus

There are three-layer of conductors, each layer has 10 conductors and the conductors on
different layer are orthogonal to each other. In total, we used 12540 panels to discretize the

whole structure. For MQS analysis, the number of unknowns is 87.5k. The CPU time is 41
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Figure 5-19: A four-turn spiral over ground

Figure 5-20: Multiple conductor bus

minutes and the memory usage is 165 Mb. For EMQS analysis, the number of unknowns

63

is 100k. The CPU time is 61 minutes and memory usage is 218 Mb.
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Chapter 6

Conclusions

We have derived a recently developed surface integral formulation from a different per-
spective. And we have shown the connections between this formulation and the classical
EFIE formulation and MPIE formulation. These connections help us better understand
why this formulation is widebanded. Using a piecewise quadrature scheme to improve the
accuracy of panel integration, we have fixed the low-frequency problem in the original for-
mulation. We have also generalized the pre-coorected FFT algorithm to the accelaration
of complicated integral operators. Based on this generalization we have developed a flex-
ible and extensible fast integral equation solver, pfft++. This solver could be applied to a
wide range of problems. Using pfft++ as the engine, we have developed a fast impedance
extraction program, fastimp. Numerical examples show that fastimp can perform MQS,
EMQS and fullwave analysis of 3D general structures across wide frequency range, from
zero frequency to at least hundreds of giga hertz. It only takes fastimp a few hours to solve

problems with hundreds thousands of unknowns.
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