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ABSTRACT

Computational rational drug design is the application of
computer simulation techniques to improve screening pro-
cesses for new drugs or to design them de novo. The goal is to
identify molecules that have high affinity and specificity for
a target molecule. Optimizing the electrostatic binding free
energy is tractable under certain assumptions as a quadratic
optimization problem, but computationally expensive simu-
lations have traditionally been required to determine the as-
sociated Hessian. Prior work showed that significant perfor-
mance gains could be achieved by coupling physical simu-
lation directly to the optimization process and avoiding the
calculation of the Hessian. The present paper details recent
improvements to this method and the implementation of a
practical, full-scale code. Computational results demonstrate
the code’s efficiency on large problems and accuracy solving
a realistic biomolecule optimization problem.

1 INTRODUCTION

Computational rational drug design is the application of
computer simulation techniques to the problem of identify-
ing new drug molecules that bind tightly and specifically
to a given target molecule. The binding affinity is related
to the change in free energy due to the binding of the drug
molecule, or ligand, to the target molecule, or receptor [1]–[3].
Several types of atomic and molecular interactions contribute
to this free energy change, including the hydrophobic effect,
van der Waals interactions, and electrostatic interactions (in-
cluding hydrogen bonding). Because electrostatic interac-
tions are long range and contribute a significant component
of the total binding free energy, it is important to understand
how the partial atomic charges in the ligand and receptor in-
teract with each other and with the surrounding solvent. To
design optimal ligands, drug designers need to understand
what set of ligand partial atomic charges optimize the elec-
trostatic free energy of binding.

If continuum electrostatics are used to model the biomolec-
ular interactions, then under certain assumptions [2] this set
of optimal ligand partial charges can be determined by solv-
ing a convex quadratic program. Standard optimization tech-
niques, however, typically require the expensive calculation
of an explicit Hessian matrix to efficiently solve the program.
We therefore introduced in [4] an optimization method that
avoids the Hessian calculation; initial results showed promise

that the method might significantly accelerate solving these
optimization problems. The present paper describes an im-
proved formulation and an implementation that is capable
of solving large, realistically sized optimization problems in
biomolecule design.

Section 2 introduces the optimization problem, the elec-
trostatic modeling techniques, and the Hessian-implicit primal-
dual method of [4]. Section 3 describes recent improvements
to the original method and important features of the full-scale
implementation. Section 4 presents results that demonstrate
the efficiency and accuracy of the new formulation. Section
5 summarizes the contributions of this work and suggests di-
rections for further investigation.

2 BACKGROUND

2.1 Biomolecule Electrostatic Optimization

We present first the analysis of the electrostatic energy
of the ligand alone in solution [1], [2]. A mixed discrete-
continuum model is used: the ligand partial atomic charges
are treated as point charges at discrete locations (the ligand
atom centers) but with continuous value. The electrostatic
potential in the interior satisfies the continuum Poisson equa-
tion with low dielectric constant; the potential in the solvent
satisfies the linearized Poisson-Boltzmann equation and is
characterized by a high dielectric constant and the inverse
Debye screening length κ.

Each point charge polarizes the solvent; this polarization
in turn creates a reaction potential field in the ligand. The
reaction potential is a linear function of the vector x of point
charges; since the sources are discrete points, the reaction
potential must be found only at those points to calculate the
electrostatic free energy. The mapping between x and ϕr, the
resulting vector of reaction potentials at the corresponding
point locations, can therefore be represented by a matrix Lu,
which is symmetric by reciprocity. The free energy due to x
in the unbound ligand is then 1

2 xT ϕr
� 1

2 xTLux.
When analyzing the ligand–receptor complex in solution,

the ligand charges again produce a field linear in x. The re-
ceptor charges, which are assumed to be fixed, produce an
additional field c; the total free energy of the bound system
is thus 1

2 xTLbx � xT c. Improvements in affinity correspond
to minimizing the change in free energy between the bound
and unbound states, so the objective function for the opti-



mization is the difference between these energies. Kangas
and Tidor [2] showed that L � Lb � Lu is symmetric posi-
tive semidefinite. Constraints are imposed on the charge vec-
tor x: first, sum of charge constraints on subsets of charges,
and possibly on the entire set, are defined, which gives a set
of equality constraints Ax � b. Physical and computational
considerations lead to the imposition of box inequality con-
straints, li � xi � ui � i.

2.2 Biomolecule Electrostatic Modeling
We use the boundary element method for electrostatic

simulation and address the free ligand; using the integral for-
mulation from [5], the mapping Lu can be represented as a
function of three integral operators M1 � M2, and M3 [4]:

Lu
� M3M 	 1

2 M1 
 (1)

The fully dense matrices M1 � M2, and M3 are too large for
direct storage or inversion; instead, a fast method such as
precorrected-FFT [6] is used to define functions that quickly
perform matrix-vector multiplication by these matrices. The
lack of explicit knowledge about M2 necessitates the use of
preconditioned Krylov iterative methods to apply the inverse
M 	 1

2 . If there are nc ligand charges, the matrix Lu can be
calculated explicitly by solving, for i ��� 1 

�
 nc � :

M2ϕi
� M1ei (2)

Lu � i � M3ϕi (3)

where ei is the ith unit vector and Lu � i is the ith column of Lu.

2.3 Hessian-Implicit Primal-Dual Method
The biomolecule electrostatic optimization problem can

easily be transformed into standard form

minimize
1
2

xTLx � xTc

subj. to Ax � b

and x � 0

(4)

by introducing slack variables on both sides of the box con-
straints.

After introducing the Lagrange multiplier vectors λ and s,
the Karush-Kuhn-Tucker optimality conditions for this prob-
lem can be written as a mildly nonlinear vector-valued func-
tion F � x � λ � s � whose zeros are optimal solutions to (4) if� x � s ��� 0: Primal-dual interior point methods [7] find an op-
timal solution to (4) by a modified Newton method: at itera-
tion k, one linearizes F around the current iterate � xk � λk � sk �
and biases the Newton step so that the pairwise products
xk � 1

i sk � 1
i are approximately equal. Define the average pair-

wise product µ � � xk � T sk � n where n is the size of x and s.
The linearized system solved at each step is given by��

L � AT � I
A 0 0
Sk 0 X k

�����
∆xk

∆λk

∆sk

�� � � F � xk � λk � sk � �
��

0
0

σµe

��
� z � xk � λk � sk � � zk � (5)

where X is the diagonal matrix with Xi � i � xi, S is similarly
defined, and e satisfies ei

� 1 � i. The second term on the
right-hand side biases the Newton step as desired, where 0 � σ � 1;
the role of σ is discussed below. The calculated Newton up-
date is then scaled by αk, 0 � αk � 1, to ensure that � xk � 1 � sk � 1 ��� 0.

If L has the form L � M3M 	 1
2 M1, one may view the Ja-

cobian in (5) as the Schur complement of the system���� 0 � AT � I M3
A 0 0 0
Sk 0 X k 0� M1 0 0 M2

�!  � ���� ∆xk

∆λk

∆sk

∆ϕk

�!  � �
����

zk

0

�!  �
(6)

where ϕ0 � M 	 1
2 M1x0. The Hessian-implicit primal-dual method

avoids direct calculation of L by solving (6) at each iteration
using a preconditioned Krylov subspace method. To form
the preconditioner we copy the expanded Jacobian from (6),
set the M1 and M3 blocks to zero, and approximate M2 by a
matrix D2 composed of the diagonals of the blocks of M2.

3 IMPLEMENTATION

3.1 Designing an Aggressive Optimization
Strategy

The parameter σ in (5) is called the centering parame-
ter; it dictates how strongly the algorithm attempts to keep
the pairwise products xk

i sk
i equal. If σ is set close to unity,

the algorithm makes slow progress towards an optimal so-
lution but is robust and rarely stagnates. If instead σ is set
very small, progress can be rapid but the optimization may
stagnate; an iterate may approach the boundary of the fea-
sible region � x � s �"� 0, in which case the algorithm makes
unacceptably slow progress. The original Hessian-implicit
formulation set σ � 0 
 4 for all iterations, as suggested in [7],
which balances robustness against the rate of convergence.
The new formulation uses a simple rule to pick each σk in-
dependently, using the step multiplier αk 	 1 as the primary
criterion:

Algorithm 1 Choosing centering parameter σk

σk � 0 
 4
if αk 	 1 � 0 
 7

σk � 0 
 1
if αk 	 1 � 0 
 95 and k � 8

σk � 0 
 01

This schedule was determined by practical experience with
different model problems. The heuristic assumes that signif-
icant progress on the previous iteration has left the current
iterate in a position to make good progress again. This as-
sumption is generally good after a few iterations, and the two
cases in which σk � 0 
 4 address its shortcomings.



3.2 Solving Equality Constrained Problems
The Hessian-implicit method was developed to solve quadratic

programs with both equality and inequality constraints. The
optimality conditions for an equality constrained program are
linear, so only one linear system must be solved to find an op-
timal solution. The Hessian-implicit optimality conditions��

0 AT M3
A 0 0� M1 0 M2

��#��
x $
λ $
ϕ $

�� � �� � c
b
0

��
(7)

can be solved quickly by using the preconditioner

Peq
� ��

M3D 	 1
2 M1 AT 0
A 0 0
0 0 D2

��

 (8)

Peq is effective because M3D 	 1
2 M1 is an approximation to L;

factoring Peq is inexpensive because it is block diagonal as
shown, and although the upper left block is dense, it is ex-
tremely small. In contrast to the preconditioner for (6), we
include the M3D 	 1

2 M1 block to prevent singularity of the pre-
conditioner.

3.3 Full-scale Implementation
To implement the Hessian-implicit primal-dual method,

we coupled the pFFT++ fast boundary element method code [6],
[8] with the PETSc scientific library [9]. The pFFT++ code
allows black-box multiplication by the integral operator ma-
trices M1 � M2, and M3 to be done in O � n logn � time and
space, where n is the number of panels used to discretize the
surface. The PETSc library offers a variety of iterative lin-
ear solvers and preconditioners; each modified Newton up-
date (6) is solved using GMRES and the LU factorized pre-
conditioner. The preconditioner nonzero structure is fixed,
so ordering need be performed only once.

4 RESULTS

4.1 Performance Comparisons
The calculations of M2 matrix-vector (MV) products dom-

inate the cost of the optimization process, so to assess the
performance of different algorithms, the number of calcu-
lated M2 MV products is used as the cost metric. Figure 1
illustrates the performance of the new and old formulations.

To compare the Hessian-implicit method’s performance
to standard algorithms, KNITRO, which implements a primal-
dual interior-point nonlinear optimization algorithm [10], was
used as a reference. KNITRO uses CG to calculate each
Newton update; each CG iteration therefore performs one
calculation of Lx if the system (5) is solved. Each Lx product
requires one iterative solve to find M 	 1

2 M1x. We therefore
estimate KNITRO’s cost to solve (5) by multiplying the to-
tal number of CG iterations by the average number of M2
MV products required to find a column of L. Figure 2 shows
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Figure 1: Performance of previous and new algorithms

that this alternative implicit scheme performs more poorly
than the traditional explicit-Hessian method and much more
poorly than the Hessian-implicit primal-dual method; we be-
lieve that the irregular behavior of KNITRO in Figure 2 re-
sults from particularly poor conditioning of one or more of
the random test problems. When solving optimization prob-
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Figure 2: Performance of new and alternative methods

lems with only equality constraints, the computational ad-
vantage of using the Hessian-implicit method is even more
pronounced, as illustrated in Figure 3.

4.2 Realistic Biomolecule Optimization
To assess the Hessian-implicit method’s accuracy, we stud-

ied the ligand–receptor system of enzyme E. coli chorismate
mutase (ECM) and an inhibitor transition-state analog (TSA) [3].
Plotted in Figure 4 are optimal charge distributions calcu-
lated by the Hessian-implicit method and an explicit Hes-
sian method. The results agree very well. Inaccuracies are
due largely to numerical Hessian asymmetry in the implicit
method; when an explicit Hessian is formed, it can be sym-
metrized and nonphysical singular values can be removed [3],
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Figure 3: Performance of new algorithm on equality con-
strained problems

but these operations cannot be performed in the implicit opti-
mization method. The optimization problem has 26 primary
variables and the Hessian-implicit system solved at each it-
eration has approximately 130,000 variables.
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Figure 4: Accuracy of solution on realistic problem

5 DISCUSSION

This paper described improvements to the Hessian-implicit
optimization method originally reported in [4] and a full-
scale implementation of the new method. The implemen-
tation couples the pFFT++ fast boundary element method
package and the PETSc scientific library. The recent im-
provements to the method improve performance by approx-
imately a factor of two over the original formulation; in ad-
dition, the new full-scale code is capable of solving biolog-
ically relevant optimization problems. Simpler optimization
problems with only equality constraints can be solved ex-
tremely rapidly using a newly designed preconditioner. Fu-
ture work will investigate the sources of numerical Hessian
asymmetry, and explore extending the formulation to allow

convex constraints and the rapid update of a solution if the
constraints are varied.

6 ACKNOWLEDGMENTS

This work was supported by the Singapore–MIT Alliance,
the National Science Foundation, and the National Institutes
of Health. J. Bardhan is supported by a Department of En-
ergy Computational Science Graduate Fellowship. S. Leyf-
fer and S. Benson are supported by the Mathematical, Infor-
mation, and Computational Sciences Division subprogram of
the Office of Advanced Scientific Computing Research under
Contract W-31-109-ENG-38.

REFERENCES

[1] L.-P. Lee and B. Tidor. Optimization of electrostatic
binding free energy. Journal of Chemical Physics,
106:8681–8690, 1997.

[2] E. Kangas and B. Tidor. Optimizing electrostatic affin-
ity in ligand–receptor binding: Theory, computation,
and ligand properties. Journal of Chemical Physics,
109:7522–7545, 1998.

[3] E. Kangas and B. Tidor. Electrostatic complementar-
ity at ligand binding sites: Application to chorismate
mutase. Journal of Physical Chemistry, 105:880–888,
2001.

[4] J. P. Bardhan, J. H. Lee, S. S. Kuo, M. D. Altman,
B. Tidor, and J. K. White. Fast methods for biomolecule
charge optimization. Modeling and Simulation of Mi-
crosystems (MSM), 2003.

[5] S. S. Kuo, M. D. Altman, J. P. Bardhan, B. Tidor,
and J. K. White. Fast methods for simulation of
biomolecule electrostatics. International Conference
on Computer Aided Design (ICCAD), 2002.

[6] J. R. Phillips and J. K. White. A precorrected-FFT
method for electrostatic analysis of complicated 3-D
structures. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 16:1059–1072,
1997.

[7] S. J. Wright. Primal-Dual Interior Point Methods.
SIAM, 1997.

[8] Z. Zhu, B. Song, and J. White. Algorithms in FastImp:
A fast and wideband impedance extraction program for
complicated 3D geometries. IEEE/ACM Design Au-
tomation Conference, 2003.

[9] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik,
M. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang.
PETSc home page. http://www.mcs.anl.gov/petsc,
2001.

[10] R. Byrd, M. E. Hribar, and J. Nocedal. An interior point
method for large scale nonlinear programming. SIAM
J. Optimization, 9:877–900, 1999.


