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Abstract—As very large scale integration (VLSI) circuit speeds
and density continue to increase, the need to accurately model the
effects of three-dimensional (3-D) interconnects has become essen-
tial for reliable chip and system design and verification. Since such
models are commonly used inside standard circuit simulators for
time or frequency domain computations, it is imperative that they
be kept compact without compromising accuracy, and also retain
relevant physical properties of the original system, such as pas-
sivity. In this paper, we describe an approach to generate accu-
rate, compact, and guaranteed passive models of RLC intercon-
nects and packaging structures. The procedure is based on a par-
tial element equivalent circuit (PEEC)-like approach to modeling
the impedance of interconnect structures accounting for both the
charge accumulation on the surface of conductors and the cur-
rent traveling in their interior. The resulting formulation, based on
nodal or mixed nodal and mesh analysis, enables the application
of existing model order reduction techniques. Compactness and
passivity of the model are then ensured with a two-step reduction
procedure where Krylov-subspace moment-matching methods are
followed by a recently proposed, nearly optimal, passive truncated
balanced realization-like algorithm. The proposed approach was
used for extracting passive models for several industrial examples,
whose accuracy was validated both in the frequency domain as well
as against measured time-domain data.

Index Terms—Computational electromagnetics, coupled circuit-
interconnect simulation, interconnect modeling, Krylov-subspace,
model order reduction, packaging analysis, truncated balanced re-
alization.

I. INTRODUCTION

AS VLSI circuit speeds and density continue to increase, the
need for accurately modeling the effects of three-dimen-

sional (3-D) interconnects has become essential for reliable chip
and system design and verification. While measurement has al-
ways been an approach to model interconnects, in recent years
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much effort has been devoted to the fast and accurate computa-
tion of interconnect models directly from Maxwell’s equations.
For many portions of a design, the significant interconnect may
be long and uniform enough to be modeled using a two-dimen-
sional (2-D) approximation and transmission line theory. Un-
fortunately, discontinuities in this 2-D interconnect view, such
as vias through planes, chip-to-board-connectors, and board-to-
board connectors, require full 3-D modeling. To account for
these, the designer, or CAD tool, must glue together 2-D and
3-D models which is cumbersome. Additionally, as circuit den-
sity increases, these discontinuities become more prevalent, and
full 3-D modeling is the only course. Many of these structures
are small compared to a wavelength, and therefore, retarda-
tion effects can be neglected when determining the coupling of
dense interconnects. In that situation, an electromagneto-quasi-
static (EMQS) approximation can be safely assumed. In the past
decade, much work has been directed at rapidly solving for the
inductance and capacitance of these structures [1], [2]. However,
inductance and capacitance are not necessarily decoupled quan-
tities, and for higher frequencies, a distributed model is neces-
sary.

In this paper, we describe an integral equation approach to
modeling the impedance of interconnect structures accounting
for both the charge accumulation on the surface of conductors
and the current traveling along conductors [3]–[5]. This formu-
lation is very similar to the original standard Partial Element
Equivalent Circuit (PEEC) technique that has long been used
to model three dimensional interconnect structures [6]–[9]. The
formulation can be solved with appropriate discretization re-
sulting in an equivalent circuit representation. Nodal analysis
or a mixed nodal-mesh approach are then used to formulate the
circuit equations and to produce an impedance model of the in-
terconnect structures under study. In order to simulate the inter-
action of these components with nonlinear circuit devices such
as drivers and receivers, the resulting model must be incorpo-
rated into a time domain circuit simulator, such as SPICE or
SPECTRE, in a suitable and efficient manner. When high accu-
racy is desired, however, these models can become excessively
large and difficult to solve which precludes direct inclusion into
a circuit simulator. In addition, due to full capacitive and in-
ductive coupling, the circuit relations are dense, which quickly
makes the problem computationally intractable. Compactness
becomes, therefore, a critical issue, as much as the accuracy of
the model itself.

The need for accurate, reduced-size, compact models leads
us to consider model order reduction (MOR) techniques,
which have been developed in the field of parasitic extraction
[10]–[18]. For this reason, much work has been directed toward
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generating reduced-order models automatically via moment
matching or projection-based techniques [11], [15], [16], [19].
Since the interconnect structures are passive systems, i.e., they
cannot produce energy internally, it is also necessary that the
models generated also be passive, which implies stability as
well. Otherwise, the models may cause nonphysical behavior
when used in later simulations, such as by generating energy at
high frequencies causing erratic or unstable time-domain be-
havior. Passive systems also enjoy another important property:
Interconnected passive systems are also passive, while inter-
connected stable systems do not share such closure properties.
In fact, interconnected stable systems are not even guaranteed
stable (see [16] for an example).

Using standard MOR techniques, it is possible to generate
guaranteed stable and passive reduced-order models for inclu-
sion in circuit simulators such as SPICE. Additionally, such al-
gorithms are ripe for acceleration techniques such as the Fast
Multipole Method [1], [20] or the Precorrected-FFT [21] ap-
proach allowing the analysis of larger, more complex 3-D ge-
ometries. However, when models that accurately capture skin
effect are needed, even these methods can generate models of
too high an order for practical purposes [4], [5], [22]. Such a dif-
ficulty still precludes the use of such models in simulations since
the model evaluation becomes too expensive. Furthermore, the
poor performance of the moment matching approaches is sur-
prising since the change in impedance due to skin effect is rela-
tively smooth in many cases and one would expect a low-order
model to capture such behavior very accurately. For this reason,
other well-known methods in the control field have been ex-
amined, such as the method of truncated balanced realization
(TBR), that is known to generate optimal or nearly optimal re-
duced-order state-space models [23]–[25]. An issue with the
TBR-type methods that has prevented its widespread acceptance
is that they cannot be relied on to preserve passivity. The tech-
niques in [26] and [27] use a passivity-preserving initial reduc-
tion, but follow this reduction with a standard TBR method, and
no means are given in either work to determine if the final model
is passive or not. Recently, it has been shown that for the case of
resistance–capacitance (RC) or resistance–inductance (RL) cir-
cuits, the TBR procedure does indeed produce provably passive
reduced-order models [28]. This property was not however ex-
tended to RLC circuits.

In this paper, we describe a MOR technique based on a
two-step procedure that combines a Krylov-subspace mo-
ment-matching method together with a recently proposed,
nearly optimal, passive truncated balanced realization-like al-
gorithm [28] to efficiently generate stable, passive and accurate,
nearly optimal, reduced-order models of circuit interconnects.
While this type of two-step procedure had previously been
shown to produce good results, from a compactness standpoint,
for inductance computations [26], as well as for RLC inter-
connects [27], our proposed method is, to our knowledge, the
first one to enable efficient generation of accurate, compact,
guaranteed passive reduced-order models of 3-D RLC inter-
connects,which is a nontrivial extension.

We begin in Section II by describing the PEEC-like integral
formulation and discretization from which we derive the large
dense linear system describing the interconnect structure. The

issue of model compactness is discussed in Section III. We first
describe a modified nodal analysis-based formulation that al-
lows the direct application of MOR techniques to directly gen-
erate passive reduced-order models. This formulation is com-
pared with a purely mesh-based counterpart, and an extension
based on a combination of nodal and mesh analysis is also pro-
posed that can be used to accelerate model construction. Then,
the method of truncated balanced realizations and the new pos-
itive-real TBR-like (PR-TBR) approach are briefly reviewed,
and its application to further compact the model is discussed.
In Section IV, we apply the proposed algorithm to several ex-
ample structures and establish a comparison in terms of com-
pactness, i.e., model order, between the unreduced (full) models
and the models obtained with the one-step reduction and the
two-step process (including positive-real truncated balanced re-
alization). The examples demonstrate that accurate and com-
pact reduced-order models can be achieved through the use of
our two-step reduction process and also exemplify the type of
problems encountered with the traditional one-step reduction
methods. Finally, conclusions are drawn in Section V.

II. MATHEMATICAL FORMULATION

A. Electromagnetic Formulation

Parasitic extraction for a set of conductors involves deter-
mining the relation between the terminal (or port) currents and
the terminal voltages. Given a structure of terminal pairs, the
admittance matrix which relates the terminal currents and the
terminal voltages is defined as such that

(1)

where sinusoidal steady-state at frequency is assumed.
and are the terminal

current and voltage vectors, respectively [29]. If it is possible to
compute the currents given the voltages at the terminals, then
by adding voltage sources to all terminals in the circuit,
can be computed one column at a time. To do this, we set entry

of to one, the others to zero, and solve for , which
will be the th column of .

To derive a relation between voltages and currents, we assume
the quasistatic approximation and resort to an integral equa-
tion approach derived directly from Maxwell’s equations and
quite similar to the Partial Element Equivalent Circuit (PEEC)
method [6]. At each point inside the conductors, we have

(2)

where

(3)

(4)

(5)

where is the electric field, and are, respectively, the scalar
and vector potentials, and are the electric permittivity and
the magnetic permeability of the medium, respectively, is
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Fig. 1. Results of discretization operation applied to a conductor showing
volume filaments (with its cross section decreasing toward the surfaces to
properly capture skin and proximity effects) and charge panels (only some
panels are shown).

the volume of all conductors, is the charge density, and is
the current density. As mentioned, in deriving (3) and (4), the
EMQS assumption was considered. So, our model will be valid
only for structures small compared to a wavelength (in practice,
one can accurately analyze structures on the order of a wave-
length, because the interaction terms where retardation time is
significant correspond to weak coupling; see [3], App. A).

To compute a model from this formulation, a discretization
operation is performed on the conductors. Following the PEEC
approach, the interior of each conductor is divided into a grid
of filaments where each filament is assumed to have a constant
current density with the direction of its length, and the surfaces
of the conductors are covered with panels, where each panel is
assumed to have a constant charge density. For conductors that
are very long and thin, we can assume that the current running
along its length is much larger than the current running along
the other two orthogonal directions. In those cases, a filament
discretization along a single direction is performed. For planar
conductors, the filament discretization must be performed along
two coordinate directions, and for volume-like conductors, fil-
aments are set along the three-coordinate directions. This dis-
cretization operation allows one to generate an equivalent elec-
trical “circuit” made up of filaments and panels. Fig. 1 shows
the discretization operation applied to a long and thin conductor
(filaments along one direction only), and Fig. 2 shows the elec-
trical circuit associated with it.

To generate the constitutive relations for these elements, we
apply the Galerkin method to (2) after discretizing the equation
(see [6] for details). A constitutive relation for the filaments is
obtained in the form of

(6)

where is the vector of filament currents, is the
diagonal matrix of filament dc resistances, is the

dense, symmetric positive semidefinite matrix of partial induc-
tances, and is the vector of voltages given as
the difference between the node potential at the two ends of
the filament. For explicit expressions for and , see [4] and
[6]. The derivation outlined is essentially the original PEEC for-

mulation [6]. However, in the following, we make a minor con-
ceptual change that will enable us to generate a model with the
right properties for the ensuing reduction steps. In the original
PEEC method, the coefficients of potential matrix
are defined relating node potentials (at the extremities of fila-
ments) with surface cell charges ( being the number
of nodes, the number of surface cells, and being the
charge on each of the panels). Then, using , (3) is enforced
on interior nodes. Note, however, that imposing the potential on
internal nodes as an explicit function of the surface charges is
equivalent to putting a voltage source on the nodes, which al-
lows for fictitious current flow out of the node, which violates
current conservation. In other words, even though an exact solu-
tion of the integral equation can be found that satisfies the Cur-
rent Conservation Law (5) inside the conductors, the discretized
system does not enforce this condition. In our formulation, we
choose instead to enforce (5) explicitly. To that end, we write an
equation involving , which relates the panel charges
with the node potentials, including both external nodes on con-
ductor surfaces, where charges reside, and internal nodes. See
[4] for the expression of . Note also that we allow multiple
panels on each node—as is the case for nodes on edges or con-
ductor corners. Furthermore, in our formulation, is square,
allowing us, as we shall see, to establish a set of equations,
amenable to generate stable and passive reduced-order models.

Since the current flowing onto the panels is given by
, for the sinusoidal steady state, we can write

. Additionally, since the panel node volt-
ages are voltages relative to infinity, we can view the panel
branches as connecting the panel node to the zero potential
node at infinity. Then, the panel branch voltages are given
by , where are the panel potentials.
Combining, we get a relation between the panel currents and
their voltages . With this relation and (6), we
can write the constitutive relations for the elements as a single
matrix in

(7)

where is the vector of branch (filaments plus panels)
currents and is the vector of branch (filaments plus panels)
voltages. See Fig. 2 for an illustration of these quantities.

B. Model Generation

Applying voltage sources to the circuit, we can now solve it
and extract the desired terminal currents, thus, producing the
required admittance model. To that end, we will use a nodal
analysis technique. As the model is expected to be used later
for time-domain simulations, ensuring accuracy at dc is imper-
ative. Since our model assumes zero-potential at infinity and
only capacitors and sources connect to the zero-potential node,
only voltage sources can be used in the computation. Kirchoff’s
Current Law, which enforces (5) at the nodes of the discretized
system, requires that the sum of the branch currents leaving each
node in the network must be zero. This can be written as

(8)
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Fig. 2. Simplified version of the electrical circuit corresponding to the discretization shown in Fig. 1—nodal analysis quantities are described.

where is the sparse nodal incidence matrix summing
the filament and panel currents in each node,
is the sparse matrix summing the currents through the voltage
sources, is the number of nodes (excluding the one for the
point at infinity), is the number of branches (filaments plus
panels), and is the number of voltage sources in the circuit.

is the vector of currents leaving each voltage source
(always connected to ground) and entering the terminal nodes.
Note the [ ] in the right-hand side due to the absence of current
sources in the circuit.

Applying Kirchoff’s Voltage Law to the circuit, we obtain

(9)

where is the vector of voltages at each node in the network,
and are the known source voltages. Note that is ex-
actly the terminal voltage vector , from (1). Combining (9)
with (7) and (8) yields a model in the form of a system of equa-
tions in mixed node-branch form. One approach to coupling the
above models with circuits is to directly include that model di-
rectly into a circuit simulator. This approach has the drawback
that the size of such a model can easily be very large if high
accuracy is desired. Even computing the admittance matrix di-
rectly, as described at the beginning of this section is inefficient,
as it requires solutions of a system with a very large matrix.
The use of iterative methods could reduce the computational
cost of solving this system. Still, the resulting model would be
valid only at a single frequency. However, to design with this
admittance model, it is often necessary to perform coupled sim-
ulation with nonlinear devices, such as CMOS drivers and re-
ceivers. Nonlinear devices require time domain simulation, and
thus, the admittance information is necessary from dc up to the
highest frequency of interest in the circuit. Thus, it is essential
to have models valid for a continuous range of frequencies. It
is possible to perform the above computations for a number of
frequencies and then use some interpolating technique to com-
pute a model valid over that range [30]–[32]. While recent work
has indeed made it possible to compute passive, arbitrarily ac-
curate (i.e., high order) interpolants of frequency described sub-
systems [32], [33], the extremely high cost of solving for each
frequency point will, in general, preclude such a methodology.
Instead, more efficient techniques have to be sought. To that end,
we turn to MOR techniques.

III. MODEL ORDER REDUCTION

MOR methods are well known in the control theory and
linear algebra areas. They have more recently been applied with
success to linear systems in computer-aided design, specifically
intertconnect modeling, and have seen considerable and steady
progress in the past few years [10], [11], [15], [16]. Moment
matching and the more general projection-based techniques
[11], [15], [16], [19], have been applied in order to auto-
matically generate reduced-order models of electromagnetic
couplings in interconnect and packaging structures [12], [15].
Algorithms, such as passive reduced-order interconnect macro-
modeling algorithm (PRIMA) [16], have been presented that
produce guaranteed stable and passive reduced-order models.
Such methods, which rely on simple algebraic operations, are
extremely efficient and able to accurately capture the relevant
behavior of the underlying systems. PRIMA-type algorithms or
their multipoint variants [17] have thus become the method of
choice for MOR and an essential component of any intercon-
nect and packaging modeling strategy.

The basic idea behind MOR techniques is to reduce the size of
the system described by the circuit equations to a much smaller
one that still captures the dominant behavior of the original
system. If the circuit equations are written in the state-space
form

(10)

where is the state
vector, the output, the input, the size of the
original model, and the number of terminals considered, then
MOR aims at obtaining a reduced model

(11)

where is the reduced-order
state vector, and is the order of the reduced model and
such that (11) is a good approximate to (10) in some appropriate
norm.

Since the interconnect structures are passive systems, it is de-
sired that the reduced models produced also be passive. Other-
wise, the models may cause nonphysical behavior when used



MARQUES et al.: GENERATING COMPACT, GUARANTEED PASSIVE REDUCED-ORDER MODELS 573

in later simulations, such as by generating energy at high fre-
quencies that causes erratic or unstable time-domain behavior.
It is known [16] that a sufficient condition for generating stable
and passive reduced-order models is that both and

be positive semidefinite.
However, when models are needed which accurately capture

skin effect, even these methods can generate models of too high
order for practical purposes [4], [5], [22]. In such cases, reduc-
tion algorithms such as PRIMA generate models with a large
number of small real poles. These poles are selected during the
reduction due to their closeness to the expansion point (zero
or infinity). As we shall see in Section IV, examination of the
residues associated with such poles shows that they have a
negligible effect on the system behavior and should in fact be
discarded. This high order precludes the use of such models
in circuit simulation since the model evaluation steps becomes
too expensive. For this reason, other well-known methods in
the control field, such as the method of TBR, that are known to
generate optimal or nearly optimal reduced-order state-space
models [23]–[25] have gained renewed interest. Historically,
two issues have prevented the widespread use of TBR-type
methods for parasitic extraction: their high computational cost
and the lack of guarantees of passivity for the resulting models.
In fact, computation of the TBR model requires a full sym-
metric eigendecomposition of the system matrix and therefore
has a cost that is cubic in the size of the system. As such, it
cannot be used as a reduction algorithm for large systems.
However, the initial application of an algorithm such as PRIMA
can reduce a large model with tens of thousands of unknowns to
a reduced model on the order of a few hundreds to a thousand.
Application of a TBR-like method to such a reduced model is
thus acceptable from a computational standpoint. Furthermore,
recently, a positive-real TBR-like algorithm was proposed that
is shown to generate nearly optimal, passive, and accurate,
reduced-order models of circuit interconnects [28]. Like TBR,
this method is computationally too expensive to be applied
directly to our original model but is acceptable if applied after
some initial reduction is performed.

Therefore, our proposed model reduction approach is a
hybrid, two-step, procedure that combines a Krylov-sub-
space moment-matching method followed by the positive-real
balanced truncation algorithm. The rationale behind this pro-
cedure is to take advantage of the computational efficiency of
the Krylov-type methods to reduce the original system down
to a size for which application of the balancing transformation
is amenable. In the next section, we describe the formulation
of the circuit equations enabling the application of the PRIMA
algorithm for an initial reduction, and in Section III-B, we
describe the application of the positive-real balanced truncation
procedure. Since these techniques are fairly standard and have
been well described elsewhere, we only summarize their main
features.

A. Krylov-Subspace-Based Passive Model Order Reduction

To derive a state space admittance model the powers of the
Laplace variable must all be to the first power only.
However, the constitutive relation in (7) contains terms with
both and . To separate the power, the branch currents

can be separated into two types: , where rep-
resents the currents in filaments, and represents the currents
onto panels. Also, the nodal incidence matrix, is split into

, where sums filament currents and sums panel cur-
rents. Moreover, each of these matrices is further split consid-
ering separately external nodes (subscript ) and internal nodes
(subscript ). An internal node is a node to which no panels
are connected. Consequently, , where corre-
sponds to the external nodes and corresponds to the
internal nodes. A similar procedure can be applied to . Equa-
tion (9) can also be rewritten, separating the branch voltages
in . and correspond to, respectively, the
voltage in external and internal nodes. Putting it all together, the
desired state-space form is obtained (see [4] for the full deriva-
tion)

(12)

which can readily be written as (10). It was shown in [4] that this
system satisfies the necessary requirements for generation of
guaranteed passive reduced-order models. MOR techniques can
thus be applied directly to this formulation. Note that, as detailed
in [5], this formulation has advantages in terms of model sizes
over the one developed in [34] using mesh analysis, for similar
accuracy. In fact, the number of states in the nodal case is

, while for the mesh formulation, it is (
being the number of filaments, the number of nodes, the
number of sources, and the number of panels). Thus, the nodal
formulation is more efficient where , which is always the
case for discretizations along one or two directions.

An additional advantage of the nodal formulation is the ability
to perform expansions around any point in the complex plane,
including , given the added flexibility that it provides.
For expansions around , the matrix from (10) will re-
quire inversion. Unlike mesh analysis, in the nodal formulation,
as seen in (12), is nonsingular if there are no internal nodes,
which is a common situation in long and thin conductors. The
derivation of such a model is discussed in [5] and [35]. Com-
puting a reduced-order model from (10) with an algorithm such
as PRIMA, using any expansion point, corresponds to solving
a linear system with a matrix that involves and in some
form. If is considered, then the system matrix is .
In the case presented above, is required to form the
system matrix . In practice, is never inverted explicitly:
If is needed, is solved for using an iterative
algorithm such as generalized minimal residual (GMRES) [36].

The form of the matrix reveals one of the differences be-
tween the nodal and mesh formulations. In the latter, the block
matrices describing the filament constitutive relations appear to-
gether with the mesh matrix , leading to the existence of a
block such as in (see for instance [34]), while in
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the former, is used directly, as shown in (12). It is known
that under an appropriate choice of preconditioner, the condi-
tion number of a system obtained from the matrix can
be significantly smaller than that obtained from the partial in-
ductance matrix (see [37] for a proof). Thus, a faster system
solution using can be accomplished in the nodal formulation if
the block were replaced by a term like in , as in the
mesh formulation. Such a substitution implies the combination
of a mixed nodal and mesh analysis method taking advantage of
the best characteristics of each system.

This can be accomplished by replacing the filament branch
currents in (12) as unknowns by a set of mesh currents cov-
ering all filaments . For the complete formulation, see [5],
and [35]. In this mixed formulation, again, both the resulting
and matrices satisfy the conditions required for passive MOR,
and the size of the system is the same as that of the nodal for-
mulation. Also, as for nodal, and (subjected to the same
thin conductor restrictions) are nonsingular, meaning that any
expansion point can be used in the model order reduction.

B. Positive-Real Truncated Balanced Order Reduction

Applying PRIMA to an th-order system described by (12)
leads to a smaller system (11) of order , with a similar
form but involving reduced system matrices , and . This
realization can also be written in standard form as

(13)

where , and is the vector
of internal state variables. Here, we have generalized the for-
mulation by adding a direct term to the equations. Typically,

, but in the following, we will see that does play a
role in the reduction. To further reduce the system, we seek to
find an even smaller representation of size ,
which maintains the overall accuracy of the original model. An
obvious choice is spectral truncation, which is based on com-
puting an eigendecomposition of the system matrix and trun-
cating it, is unlikely to produce accurate models, as it will favor
the low-frequency content of the system. Thus, it will potentially
tend to keep the “weak” low-frequency poles that we know are
not relevant, while discarding some high-frequency poles that
are likely to be important to the system behavior. Instead, what
is required is a method that can explicitly indicate which modes
contribute the most to the system response. The methods of TBR
[23] and Hankel Norm Approximation [24] have long been used
in the control systems literature to address such a problem. The
TBR algorithm performs a coordinate transformation such that
the system states are ordered in terms of their contribution to the
system response from an input–output standpoint. In essence,
the transformation computes a measure of how controllable a
given state is from the input and how observable a state is at the
output. States which are both weakly observable (i.e., produce
free evolution outputs with small norm) and weakly controllable
(i.e., require large inputs to be reached) do not contribute to the
frequency response and can be discarded or truncated.

In order to compute a TBR reduced-order model, the system
must first be internally balanced. A coordinate transformation

is computed, and a change of state variables is per-
formed in order to obtain a “balanced” realization of (13) from
an input–output standpoint. This transformation is determined
from the controllability and observability grammians and

, which are the solutions of the Lyapunov equations

(14)

Under a similarity transformation of the state-space model

(15)

the input–output properties of state-space model, such as the
transfer function, are invariant (only the internal variables
are changed). The grammians, however, are not invariant,
but the eigenvalues of the product are easily seen to
be invariant. These eigenvalues, the Hankel singular values,
contain useful information about the input–output behavior
of the system. In particular, “small” eigenvalues of
correspond to internal subsystems that have a weak effect
on the input–output behavior of the system and are, there-
fore, close to nonobservable or noncontrollable or both. For
a full description of the algorithm, see [23] and [24]. The
similarity transformation is thus chosen such that it leaves
the state-space system dynamics unchanged but makes the
(transformed) grammians equal and diagonal. Furthermore, the
diagonal entries of these grammians , where

, are the Hankel singular values and
a measure of the controllability and observability of each state.
If the state variables are ordered such that , then
the realization can be partitioned as

(16)

where the weakly controllable and observable modes are given
by and the desired reduced-order model is represented by

[23]. Most importantly, it has been shown that
for a truncation of order , the error between the original and
reduced models satisfies

(17)

where, again assuming an admittance representation for the
system, is the th-order reduced model, and cor-
responds to the maximum norm over all . The existance
of an approximation error bound is a feature unavailable to
Krylov-subspace methods. In addition, if the original system is
stable, which we know to be the case here, so is the truncated
system. Furthermore, the guarantee of monotonicity of the
error in (17) allows us to choose a higher order model until the
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error is adequate. Note that since the Hankel singular values
are all computed in the balancing transformation, no additional
computation is necessary to raise the order of the model.

The main drawback of the TBR method is that passivity of the
resulting model cannot be guaranteed. In making assessments
about passivity, we require a tool that can assess the positive-
realness of a state-space model in a global manner. One such
tool is the positive-real lemma [38], which states that a system in
the form of (13) is positive-real if and only if there exist matrices

such that the Lur’e equations

(18)

(19)

(20)

are satisfied, and (i.e., is positive semi-def-
inite). is analogous to the controllability grammian

discussed above. In fact, it is the controllability gram-
mian for a system with the input-to-state mapping given
by the matrix . It should not be surprising that there is
a dual set of Lur’e equations for
that are obtained from (18)–(20) by the substitutions

and , and which is natu-
rally related to the observability grammian . It is easy to
verify that behave, under similarity transformation,
just as , that their eigenvalues are invariant, and in fact
in most respects they behave as the grammians .

A passivity-preserving reduction procedure follows readily
by noting that the Lur’e equations can be solved for the quan-
tities which may then be used as the basis for a TBR
procedure, i.e., to determine . We may thus find a coordinate
system in which and are equal and diagonal. In this co-
ordinate system, the system matrices may be partitioned and
truncated, just as for the standard TBR procedure, to give the
reduced-model defined by . Such a reduced-order
system is easily proven to be guaranteed passive. For details,
see [28]. Similarly to the TBR-like methods, the procedure de-
scribed also has computable error bounds, albeit their interpreta-
tion is not as simple as that of (17). Furthermore, the bound and
the reduction algorithm are slightly more complicated if .
In this case, one solution that seems to work well is to perturb
the system slightly by adding a small direct term , perform the
reduction, and then extract the perturbation, since it is a direct
term. If the perturbation is kept small, the error incurred is min-
imal and can generally be discarded. For a presentation of the
error bound, again, see [28].

While the error bound is not so easily understood, the physical
interpretations is actually fairly simple. According to [28], the
positive-real TBR algorithm balances the importance of past en-
ergy inputs and future energy outputs. This is achieved by trans-
forming to a coordinate system in which and are equal
and diagonal and in which the invariant quantities that are the
eigenvalues of the product of and are easily calculated.
The algorithm will keep in the final reduced-model only modes
that are either energy-wise, easily controllable, or observable,

Fig. 3. Two-conductor example.

Fig. 4. Results obtained for a simple geometry without appropriately
modeling skin effect (case A). Comparisons are made between the full model
and a 24th-order model computed using PRIMA.

that is, they do not need much energy input to be reached, or it
is possible to extract a lot of energy from them. This was exactly
our goal for this reduction step, namely, to keep all modes which
have relevant energy content from an input–output standpoint.

IV. RESULTS

A. Simple Two-Conductor Example

For our first example, we consider a very simple geometry
made up of two long and thin conductors, as shown in Fig. 3.
It is easy to see that, for this structure, the dominant behavior is
similar to a transmission line. In our example, both conductors
are 1 cm long, 37 m wide, 13 m in height, and separated by
17 m. A simple discretization (let us call it “case A”) is first ap-
plied to this geometry dividing each conductor in ten segments,
where each segment is filled with only one filament. Four hun-
dred sixteen panels cover all surfaces. Using our nodal formu-
lation, this results in a system with 43 states. Fig. 4 shows the
frequency response of the input impedance, for the full system
and for a 24th-order reduced model, computed using the PRIMA
algorithm around . Note that since the structure is 1 cm
long, and considering the quasistatic assumption, the model is
valid for frequencies up to 30 GHz (for which the wavelength is
1 cm). It is usually considered that the valid range of frequen-
cies is up to one tenth of this value, but in practice this value
can be assumed (see [3], App. A). A larger band is shown on
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Fig. 5. Impedance frequency response results obtained for a simple geometry
when skin effect is modeled (case B). Comparisons are made between the full
model and a 62nd-order reduced model computed using PRIMA.

the figure to clearly show the frequency behavior of the approx-
imated model with the MOR technique. From the figure, one
can see that the reduced model is extremely accurate in the fre-
quency range for which the approximation is valid.

Consider now a different discretization of the same structure
(“case B”) where each segment of each conductor is now filled
with 15 filaments, while the number of panels remains the same.
Filaments are chosen to be smaller near the edges so that its
width is equal to the skin depth. The full system in this case has
now 323 states. Fig. 5 presents results similar to those of the pre-
vious case and shows that a 62nd-order reduced model is neces-
sary in order to accurately match the same three first resonances.
Note that the differences in the amplitudes of the peaks in the
full system frequency responses are due to the skin effect, which
was not modeled in case A. One would expect that the similar
dominant behavior of both cases would be similarly captured
using a reduced-order of approximately the same order. How-
ever, that does not seem to be the case as had previously been
reported [4], [5], [22]. This example illustrates the difficulties
that Krylov-subspace algorithms have in compacting models re-
sulting from PEEC-like discretizations, namely those involving
volume discretizations.

To understand this, we considered the pole distributions in
both cases. In case B, as depicted in Fig. 6(a), there is a large
number of purely real poles, something that does not happen in
case A. By noting the scale of the plot, many of these real poles
are closer to the origin than the vertically aligned poles that are
common to both figures. It is known that Krylov-subspace type
algorithms behave in a manner such that when the order of the
approximation is increased, they proceed by matching poles or
clusters of poles as determined by their closeness to the ex-
pansion point [39]. This explains why a 62nd-order model is
obtained, despite the fact that almost all of the poles matched
are not very relevant. This fact can be verified by inspection
of Fig. 6(b), which shows the residues resulting from a pole-
residue decomposition performed on the full system (case B).
The poles with higher residues correspond to those poles also

Fig. 6. Pole-residue decomposition of the 323rd-order full system obtained
for the simple geometry by applying the nodal formulation, when skin effect is
modeled (case B). (a) Poles distribution and (b) its corresponding residues. Note
that the abscissa axis is the same in both figures.

present in the system not modeling skin effect (case A). These
nondominant poles, which appear in clusters in the real axis, are
responsible for the large orders required for the reduced models
shown, since the MOR algorithm has to capture all or part of
these clustered poles before reaching an acceptable number of
dominant poles. The distribution of these nondominant poles
and this particular behavior of the MOR algorithm is common
to all the PEEC-like circuits we have tried when skin effect is
captured.

Consider now applying the two-step reduction procedure for
case B. Applying the second reduction step (the PR-TBR algo-
rithm) we were able to extract a model with 24 poles that is in-
distinguishable from the PRIMA-generated 62nd-order model
and is therefore a very accurate approximation to the original
system. Close examination of the approximation obtained with
PRIMA PR-TBR indicates a very good approximation to
the majority of the relevant system poles using a significantly
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Fig. 7. Results obtained for a simple geometry when skin effect is modeled
(case B). Plot shows the errors incurred by the two reduction steps.

Fig. 8. Three-dimensional connector (courtesy of M. Tsuk, Hewlett-Packard).

smaller order. In Fig. 7, we plot the errors of the various reduc-
tion steps as compared to the original full system, as well as the
error incurred by the second reduction step alone (with respect
to the PRIMA model). Note that the error of the second reduc-
tion step, using PR-TBR, is easily controllable. Here, we have
chosen to make it less than 1% when compared to the PRIMA
model (the phase error is not shown and is also below 1%). This
plot proves that the two-step reduction is able to prune the un-
necessary model information without significant loss of accu-
racy. The additional model size reduction is therefore not being
obtained at the cost of accuracy degradation. Furthermore, the
reduction ratio obtained with the two-step procedure advocated
is now close to the reduction obtained with PRIMA in case A
without modeling skin effect (for that case, the second step still
provided some reduction, albeit very small).

B. Connector Example

For our next example, consider the connector structure in
Fig. 8, which consists of 18 pins. The cross section of each
pin is 0.25 0.4 mm. Each pin is composed of several straight
segments, together reaching a height of 18.5 mm. The pins are

enclosed in a box of metallic plates measuring 14.5 8 mm
and 11 mm in height and for the dielectric used .
For this experiment, we will limit ourselves to discretizing a
subset of the conductor structure consisting of only six adja-
cent pins. A discretization operation is performed dividing each
pin in eight segments along its length, and using a 12-filament
(3 4) bundle on each segment, in order to capture skin and
proximity effects. Including ground shields, the final PEEC-like
circuit has 582 filaments and 864 panels. Using our nodal formu-
lation, we obtain a system with 652 states. To this system we first
applied the PRIMA-model reduction algorithm as described in
Section III-A, that is only one step of the proposed order re-
duction approach. For this example, and since one wavelength
correponds to around 8.7 GHz, we attempted to obtain models
which were accurate up to a few gigahertz. We computed, using
an expansion at , two approximation models with orders
182 and 420 which were found to be accurate up to 2 GHz and
almost 7 GHz, respectively. This is the range of frequencies of
interest for this modeling procedure, and for this range of fre-
quencies the EMQS approximation is valid.

However, considering in each case, the frequency range for
which the approximation is accurate, it appears that the model
sizes required to attain such accuracy are larger than expected.
Confirming what was stated for the two-connector case (first
example), a pole-residue decomposition operation on both re-
duced-order models shows that by using only a much smaller
set of carefully chosen poles for each model, the frequency re-
sponses would be indistinguishable from those presented in the
figure. Indeed, after applying our second step of reduction, that
is, the PR-TBR algorithm, to the 420 states reduced model pre-
sented before, we get a system with 118 states whose frequency
response is similar up to the frequency where it was still valid
(around 7 GHz). Using the less accurate PRIMA approxima-
tion with size 182, and applying the PR-TBR procedure to it,
we notice that, in fact, it is possible to obtain an equally accu-
rate approximation using only 67 states. In both cases, the final
model order is chosen such that the maximum error between the
PRIMA and PRIMA PR-TBR models is, as we stated, below
2%, which in essence makes the resulting frequency plot undis-
tinguishable.

In Fig. 9, we show the results obtained for the self-impedance
of one of these pins. As before, the range of frequencies shown
is greater than that valid for the model under the quasistatic ap-
proximation (again, one wavelength corresponds to around 8.7
GHz). This range was chosen only for the purpose of illustration
from a numerical standpoint. Confirming our expectations, the
plot also shows that increasing model size leads to approxima-
tions that accurately match the full model response in a larger
range of frequencies, starting from the expansion point.

This industrial example again shows that the standard order-
reduction schemes (first step of the proposed methodology) are
not able to sufficiently compact the models, but the two-step
procedure does produce accurate and compact reduced-order
models.

C. Multiconductor Structure

Consider now a third structure, a printed circuit board
from Teradyne, Inc, shown in Fig. 10. It is made of four thin
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Fig. 9. Various reduced-order models for the connector structure. Original full
model and reduced models obtained with PRIMA PR-TBR of orders 118
and 67. These are indistinguishable from those obtained using only PRIMA
reduction of orders 420 and 182 (not shown).

Fig. 10. Printed circuit board connector.

conductors placed along a central conductor which assumes
a planar geometry in the middle part. Fifty-ohm resistances
connect each pin to the middle one on one side. At the other
end, the impedance is computed between one pin and the
central one. This structure was previously studied in [35] to
show the importance of 3-D effects, comparing a 2-D analysis
based on transmission line theory with our 3-D formulation.
A discretization in 330 filaments and 1326 panels is now
performed on this structure, which models skin effect, resulting
in a system with 475 states. Applying the PRIMA algorithm,
again with an expansion point of , we obtain a reduced
model which still has 252 states. By applying the PR-TBR
algorithm to this reduced PRIMA model, we achieve the same
precision, up to the same frequency, using a model with only
58 states (the error between the two reduced-order models is
below 1%). As can be seen in Fig. 11, these reduced models are
valid up to around 14 GHz. Since one wavelength corresponds
to 15 GHz, assuming the speed of light, this is clearly a model
for which the EMQS approximation is valid. Again, significant

Fig. 11. Results obtained for the Teradyne multiconductor structure using
the nodal formulation. Comparisons are made between the full model and a
252nd-order model computed using an expansion point at . The figure
also shows the impedance frequency response.

TABLE I
COMPARISON OF EFFICIENCY OF PROPOSED MODELING TECHNIQUES.
RELEVANT FEATURES FOR THE VARIOUS EXAMPLES AS WELL AS THE

ORDER OF THE VARIOUS MODELS OBTAINED

reductions are possible with the proposed two-step algorithm
without any loss of accuracy.

D. Summary and Time-Domain Results

Table I presents a summary of the examples discussed in
this paper. Included are the relevant features of each geometry,
the sizes of the full models, the model obtained after reduc-
tion by PRIMA alone, and the reduced model obtained by the
two-step procedure proposed in this paper. Each pair of reduc-
tions for each model is computed for the same precision. It can
be seen that while PRIMA alone is sometimes not as effective
as one would want or expect, the two-step combination of using
PRIMA followed by PR-TBR is able to obtain an additional 60
to 75% improvement without incurring any significant accuracy
penalty.

Finally, in Fig. 12, we present a comparison between results
of a time-domain simulation obtained with a reduced model
generated with our formulation and experimental measure-
ments. For this experiment, we used the subset of the connector
presented previously in Section IV-B with all pins connected
to ground through resistors. Then a noisy input is connected
in series with one of these resistors and a step with a 500-ps
rise-time is imposed on it. Typically, the EMQS model is valid
if the signal’s rise time is greater than twice (two way trip)
the propagation time (time for the signal to reach the end
of the connector). In this case, the rise time is 5 ps, and the
propagation time is ps, and so, the EMQS
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Fig. 12. Comparison between measured time-domain waveforms and
simulated results obtained using a reduced-order model of the connector
example.

approximation is acceptable. Applying the input waveform
to the resulting model and collecting the voltage waveform
at an adjacent pin results in the plot shown. As can be seen
from the plot, the waveforms are qualitatively similar and
acceptable accuracy is obtained. If higher accuracy is required,
a finer discretization can be used. The plot shown here was
obtained using the approximation computed with the two-step
approach. Similar results for the PRIMA reduced model alone
were presented previously in [4]. The waveforms in both cases
are indistinguishable (as expected since the only difference
between the two model is due to the existance in the PRIMA
approximation of poles with negligible residues which have no
relevance for the time response). The example shows therefore
that both models, computed either with PRIMA solely or with
PRIMA PR-TBR are time-domain accurate and guaranteed
passive. The two step-method proposed in this paper, however,
besides accurate and passive, is also more efficient as it results
in a more compact model.

V. CONCLUSION

The main contribution of this paper is the presentation of
a new modeling approach for efficiently generating accurate,
compact, guaranteed passive reduced-order models of cir-
cuit and packaging interconnects. The approach relies on a
nodal or mixed nodal-mesh PEEC-like formulation which is
then combined with a two-step model order reduction pro-
cedure. The nodal and mixed nodal-mesh formulations have
advantages over previously published formulations since they
produce models with fewer states, provide for increased flex-
ibility in the order-reduction techniques, and lead in general
to better conditioned systems. The order reduction procedure
presented is a two-step method consisting of a Krylov-sub-
space moment-matching process followed by a nearly optimal
positive-real truncated balanced realization algorithm. The

proposed approach allows for the efficient generation of re-
duced-order models of 3-D interconnect structures and was
shown to improve the efficiency of parasitic extraction and cou-
pled simulation of circuits and interconnects. The formulation
and model-order reduction method were used to demonstrate,
for several industrial examples, extraction of parasitics models
whose accuracy was validated against measured time-domain
data.
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