A more reliable reduction algorithm for behavioral model
extraction

Dmitry Vasilyev Jacob White
Department of Electrical Engineering and Computer Science, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology Massachusetts Institute of Technology
77 Massachusetts Ave., Cambridge, MA 02139 77 Massachusetts Ave., Cambridge, MA 02139
email: vasilyev@mit.edu email: white@mit.edu

Abstract—In this paper we are concerned with developing more In this paper we present a modification of the AISIAD algorithm,
reliable model reduction algorithms. We have focused on less common, which overcomes the limited applicability of the original AISIAD
but real, examples that fail to be gﬁectlvely reduced by_ almost all of [10] and provides much better accuracy. In addition, we provide
the currently popular model reduction methods. The failure of these o . . R .
popular methods is due to the fact that they all separately examine generalization of this method to the descriptor systems with nonsin-
controllability and observability. We then present a new method based on gular descriptor matriE. Our numerical experiments show that our
several modifications and extensions of the recently developed AISIAD modified AISIAD algorithm works much better than both the original
algorithm. The modified AISAID method is demonstrated on a wide  ao|g|AD and than the methods based on the separate approximations

variety of examples, including electrical interconnnect, micromachined f gramians. We sh that roximating aramian rately d 't
devices, and heat flow to show that the method is reliable. Our modified O' 9ramians. vve snow that approximating gramians separately does

AISAID method is either nearly equivalent or far superior to any of the ~necessarily lead to an accurate approximation to TBR.
other reduction methods suitable for large scale problems. The rest of the paper is structured as follows. In section Il we

review TBR model reduction itself and its most widely used ap-
proximations. We present a motivating example which highlights the

Model order reduction is becoming a widely used technique f@roblem with such approximations. We also introduce the immediate
generating differential-equation based behavioral models from magmeecursor of our method, the AISIAD approximation and describe
detailed ordinary and partial differential equation based descriptionis. key algorithm - solving Sylvester equation. In section Il we
The most mature such application is that of interconnect modelingropose a modification to the solution of Sylvester equation, which
but these techniques are now being used to generate models of cireyfiands the class of applicable models. In section IV we propose the
blocks, micromachined devices, integrated circuit heat flow, photorsecond improvement of the AISIAD algorithm by approximating the
devices, and even turbine engines [1], [2], [3]. The emerging genetaims which were neglected in the original paper. We summarize the
strategy for generating low-order models is a combination approaebsulting algorithm in the algorithm 5. In section VI we generalize our
First, a fast but non-optimal technique is used to reduce a largkjorithm for descriptor systems with nonsingular descriptor matrix
model to a medium-sized model. Then a reduction method with & In the subsequent sections we discuss applicability and accuracy
optimality property but a higher computational cost, like Truncatesf the method, along with numerical results. In section IX we present
Balanced Realization (TBR) or convex optimization [4], is used tour conclusions.
generate a very efficient low order model from the medium-sized
model.

The above strategy breaks down when the fast reduction methodisMOR setup and notations used

not able to generate a medium-sized model of reasonable accuracyh this paper we consider approximation of the linear time-invariant
and there are some cases where this breakdown occurs for alnfpst) continuous-time(CT) stable causal dynamical systems (for
all of the currently popular fast reduction methods. Although thisackground see [11] or [6]) in two kinds of state-space forms:
breakdown is not common, the widening application of these methods .
suggests that it is now important to focus on reliability. { X(t) = Ax(t) + Bu(t) and { EX(t) = Ax(t) +Bu(t) )

In this paper, we examine the difficulty that the most widely used y(t) =Cx(t) y=Cx(t)
techniques for generating medium sized models, whether basedTére first kind of system description will be referred as system in
Krylov subspaces[5] or collections of frequency domain solutionsprmal form (A,B,C), the second one - as a descriptor form or
effectively separately obtain low-rank approximations of controllabilE, A, B,C). Vector x(t) € R" is a vector of states at timg B is
ity (P) and observability @) gramians [6], [7], [8], [9], [3]. Separate an nx m input matrix,u: R — R™ is an input signalC is anl x n
controllability and observability approaches can be ineffective whemtput matrix and/: R — R! is the output signalA is ann x n system
applied to problems with an innate asymmetry, such as very lightigatrix, and matrixe € R™" is a nonsingular descriptor matrix. As an
damped interconnect problems or micromachined devices witheaample, the modified nodal analysis algorithm generates descriptor
directional input-output behavior. The difficulty is that the dominargystems when applied to general RLC circuits, but generates a system
eigenspaces oP and Q are very different from what is needed,in normal form for RC circuits with only unit-valued grounded
the dominant spaces of tHeQ product. In order to overcome this capacitors.
difficulty, the AISIAD method was proposed in [10]. However, as In the large-scale setting the descriptor form cannot be trivially
we shall see later (section II-F.1), the original AISIAD method hasonverted to théA, B,C) form by multiplication onE 1, because this
a limited applicability and there are ways of dramatically increasingpmputation is unacceptably expensive and sometimes numerically
its accuracy. ill-conditioned.

|. INTRODUCTION

Il. BACKGROUND AND PRIOR WORK



The goal of the model order reduction problem is to construct alt is well-known that such approximations produce accurate re-
reduced systenhaving the ordemy much less than initial orden, duced models only if the dominant eigenspace® aind Q coincide
while the input-output relationship for the reduced system should fils4], as, for example, in symmetric systemfs=t AT,C = BT). There
as close as possible to that of the original system. have been attempts to use cross-gramian approaches [14] in order

Throughout the paper we denote Byand Q the symmetric con- to overcome this shortcoming, however this approach can be used
trollability and observability gramians of the system. These gramiansly for square symmetric LTI systems. The most promising attempt
satisfy the following generalized Lyapunov equations (in case wfas made in the work [10] where the method called AISIAD (Ap-
descriptor systems): proximate Implicit Subspace Iteration with Alternating Directions)

APET + EPAT +BBT =0 was developed. However, AISIAD method is applicable to the class
ATQE+ETQA+CTC =0 (2) of systems with matrlle, yvhlch hqs the property of being Hurvynz
under orthogonal projections, which narrows the class of applicable
and have interpretations in ternﬁs of energy Assumlng zero inpgnamical systems.
and initial statexo, the output energyy’ o' y)dt=x, T (ETQE)xo. The
minimal energy in the input, needed to driye a system from the zdpb Motivating example: simple RLC line
state at = —oo to statexg att = 0is given by o’ (u"u)dt=xJP~1xg

In the following, we denote order of the initial (large) systemrby
and the order of a reduced system dpyBy the notationorthogonal
basiswe refer to any matriy/ € R"™*9, such thatvTV = lgxg- By

(
A(A) = {\i(A)} we denote a spectrum @ By AJ°™(A) we shall TC TC TC TC TC TC TC TC TC
denotek largest eigenvalues &. By %;(A, B) we denote the ordeg- 1
Krylov subspace oA corresponding tds: Fig. 1. RLC transmission line model as a motivating example.
%(A,B) = span{B,AB,...,A11B} (3)

The fact that computing dominant approximations Ppfand Q
B. TBR model reduction algorithm separately does not approach accuracy of TBR reduction, becomes
Truncated balanced model order reduction algorithm was originaiypparent if one performs a modified nodal analysis (MNA) of the
proposed in [12], and we provide it here as algorithm 1. Theimple RLC transmission line depicted on figure 1 and then considers
properties of this algorithm are well described elsewhere [12] [13]a very lightly damped case. In the MNA formulation, the state
space consists of the voltages on the capacitors and currents through

Algorithm 1: Balanced-truncation reduction algorithm (TBR) inductors of a circuit. Let the input to the system be voltage applied
Input: Initial system(A,B,C), desired reduced ordey to the first node, and the output be the the current through the first
Output: Reduced-order syste(h, B,C) resistor in the chain. The MNA analysis results in the descriptor
(1) Find observability grammiaPR: system (E,A,B,C) with the positive semidefinite matrice& and
AP-+PAT +BB™ =0; (~A) andC =B". We used a lightly damped line, with the parameters
2 Find controllability grammiarQ: R=0.05L =10"1° C = 10715 the number of inductorssl = 100. If
ATQ+QA+CTC=0; we convert this system to the state-space mddeB,C), the first
(3) Computeq left and right dominant eigenvectors BQ: N dominant eigenvectors oP and first N dominant eigenvectors
(PQ)S: ScDPQ, whereDpq = diag(AJ*™(PQ)) of Q span almost completely orthogonal subspaces! This gives an
SO (PQ) = DpoS} and scale columns cﬂb such that approximation ofPQ being almost zero.
g = lgxq This means that in order to get a good approximation of a product
(4) PrOJect the system matrlces PQone needs to get a low-rank approximation®@ndQ essentially
A= S)AS;, B= 9B, =C& greater tharN, and is consequently not applicable in a large-scale
5) return (A,B,C) setting.

This example illustrates a fundamental problem: capturing domi-
nant controllable and dominant observable modes separately is not
The TBR model reduction algorithm produced models which hawifficient to get a good approximation to TBR, and can lead to
a bound on the worst-case frequency response error, and are typicatbitrarily large errors in the frequency domain. Even the PRIMA
good wideband models. algorithm [15], which guarantees passivity of the reduced rlodel
Note that TBR reduction algorithm uses the dominant eigenspaggeduces quite bad approximations in the lightly damped cases in
of PQ, roughly the modes with the best product of controllability anthe H., norm, due to the fact that it approximates only dominant
observability. controllable states (see Section VIII for numerical results).
The method below is different in the sense that it directly ap-
proximates the product oPQ and therefore takes into account
Currently the most widely used approximations to the TBR alggne fact that the separately determined most controllable and most
rithm are based on low-rank approximations of gramigns P and  opservable modes may be different than the modes with the highest

0~Q. They either usé® andQ instead ofP andQ in the balancing “controllability times observability” measure.
procedure via SVD, or they merge the dominant eigenspadésotl

O in one orthogonal projection matrix and use this orthogonal badts Original AISIAD algorithm

for subsequent projection of system matrices (step 4 of algorithm 1).it is known that the transfer function of the reduced system depends

The first method is referred dsw-rank square-root methodnd the On|y on the column spans of the projection ma’[ri@sandsc (see
second option is referred aominant gramian eigenspaces method
(DGE) (for detailed description see [6], pp. 37-39). For considerations on passivity enforcement read further sections

C. Approximations to the TBR algorithm



[6], p. 23), therefore for the approximation of the TBR we need to 1) Original solver of Sylvester equatiorConsider the following
approximate the dominant eigenspace$&f and QP. matrix:

The AISIAD algorithm roughly approximates the dominant eigen- S— [A M } @)
spaces of the producQ and QP using a power method, and then 0 -H
constructs projection matrices using these approximations. and assume that we have found the matrides R"*9,Z ¢ RA¥d

The AISIAD algorithm was originally proposed in [10], and weangd nonsingula¥, € R9%9 such that
present it here as algorithm 2. It does not use low-rank approxima-

tions of gramians at all, however as we show below, it is crucial to {A M {Vl} = {Vl} Z (8)
use low-rank approximations & andQ in order to produce accurate 0 —HJ[V2 A
reduced models. Then one can clearly see that the matxfpvz’l satisfies (6). More-
Algorithm 2: Original AISIAD algorithm over, for the purposes of the algorithm 2 it is sufficient to find only
Input: System matrice$A, B,C), reduced ordeg, initial orthogonal V1. Since we make use only of the column sparXof ,
basisV € RN*d Evidently, A(S) = A(A) UA(—H), and since—HV, =V,Z, matrix
Output: Orderq reduced mode{A, B,C). Vs, is nonsingular if and only if\(Z) = A(—H). Note that the matrices
(1) repeat Aand(—H) should not have common eigenvalues, otherwise (6) does
) ApproximateX; ~ P\i by solving not have a unique solution. N _

AX +XHT +M; = 0, where In the original AISIAD the use of Implicitly Restarted Arnoldi

Hi :ViTA\I/I Mi = BBTV; (IRA) method [16] is proposed as the means of solving (8). This
) Obtain orthogonal basis which spans the same subspd&. One can obtain a partial Schur decompositiors efith upper-

asX: W,S] = qr(X,0) triangular matrixZ in (8). In order to impose the conditioh(Z) =
(4 ApproximateY; ~ QW by solving NA(—H) using IRA, authors [16] needed to restridtto be a Hurwitz

ATY, +Y.F +K = 0, where matrix. Therefore, original algorithm is applicable only to the

F=WTAW, K =cTcw cases whereH is Hurwitz (i.e. the initial matrix A satisfies the
(5) Obtair; orthbgonal basis for the approximation@H condition of VTAV being Hurwitz for all choices of orthogonal

and make it the next approximation ¢f Vi1, Ri41] = basis V). This imposes a severe constraint on matrixA and

ar(Y;,0) narrows the class of applicable systems for the whole original
(6) until convergence method.
(7) Obtain an oblique projection out & 1 andW: [1l. | MPROVEMENT|: ALGORITHM FOR SPECIALIZEDSYLVESTER

VL «—Vir, Wr«—W EQUATION
_ It is possible to solve equation (6) in the following way.
Ue 2 Vo] =svdV
[ 9_1/2 e} d Ly\ll?; Let's consider a complex Schur decomposition of matix=
S =ViUL2 ;o T=WRVLZ USU, whereSis upper-triangular, and is unitary. Since matrixd

is smallq x g, this Schur decomposition is inexpensive. Multiplying
(6) from right byU yields:

A(XU) + (XU)S+MU =0, 9)

Project the initial system using, and &:
A=dAs, B=9B C=cs

(8) return (A,B,C) . . .
Backsolving for each column of the matriX = XU) starting from

the first one:

Consider the steps 3 and 5 of algorithm 2 in more detail. We
present derivations for approximation BY here, the derivations for
QW are similar. From Lyapunov equation féx

j-1
(A+sjjln)X; :(MU)J'—_Zijfq7 (10)

HereX; denotesj" column of the matrixXU, ands; denotes(i, j)-

T T
AP+PA +BB' =0 (4)  th element of the matris. The speed of thesg solutions of linear
Multiplying from the right-hand side by, we get the following System of equations determines the overall speed of the proposed
equation: algorithm. We can employ a sparse solver if mathixis sparse.

- ToT T Alternatively, if fast matrix-vector products can be computed, one
A\PYJ'E\//;Vi AV +P(1 ViV )A'Vi +BB'Vi =0 ®)  can employ an iterative Krylov-subspace solver such as GMRES in
Xi X H Mi order to solve (10).
After the matrixX = XU has been computed, the soluti¥ncan
fe recovered using multiplication by’ from the right.

As we see, in the original AISIAD algorithm the teri(l —

ViVT)ATV; is neglected. In this paper we claim that neglecting thi ; orithm f v i alorith
term results in a very poor approximation quality, and this term W? summarize our ago_rlt m for soving (6) in algorithm 3.
rIt is evident that for single-input single-output (SISO) system

should be instead approximated, using a low-rank approximant f% e i "
the proposed approximation is equivalent to rational Krylov method

the gramian. [5], for the interpolation points being—A(H)) (assumingH being

F. Solution of a specialized Sylvester equation diagonalizable). If one performs projection of the initial system onto
The most important routine in the algorithm 2 is obtaining @ominant eigenspaces of these approximation®adnd Q, such

solution of the Sylvester equation obtained reduced model will match the initial model |t q =

—A(VTAV). This important fact unifying Krylov-subspace model
reduction and low-rank approximation of gramians was first noted
whereq < n (hence the name “specialized”). in [17].

AX+XH+M =0, AcR™"HcR™IMcR™ (6)



Algorithm 3: Solving generalized sylvester equation Algorithm 5: Proposed algorithm for approximation of TBR.

Input: MatricesA,H andM Input: System matricegA,B,C), desired reduced ordeg, initial
Output: Solution X projection matrixV € R4
(1) Perform a complex Schur decompositiontbf Output: Orderq reduced mode(A,B,C).
H= usy (1) Get a low-rank approximations of gramians

2 M — MU P~ P andQ ~ Q using any applicable algorithm.
?3) for j=1to q 2 repeat
4) Solve forg;: _ 3 Solve using algorithm 3

(A+Sjj|n))?j:|\7|j—zl{:_3_13j)?i AXi-i-XjHiT-l—Mi:O, where
(5) Assign jt" column of X being;. Hi = VT A
(6) return X = XU’ M; = BBV, + P(1 —VT)ATV;

4 W, S] = ar(X,0)
(5) Solve using algorithm 3

_ ATY; +YiF +N; = 0, where

A. Comparison of the two Sylvester solvers E—WTAW
For Hurwitz H both methods are equivalent assuming exact N; :CITCV\H—Q(I _VVIVViT)AW
arlthmeil/c. The method described in the section II-F.1 ensures thg} Vii1,R 1] = qr(Y;,0)
matrix |, *| contains orthogonormal set of vectors. However, this fa€t) until convergence
V2 : T ; (8) Obtain an oblique projection out &1 andW:

does not impose any constraint on the conditioningvaf Matrix +1
Vi can have a very small condition number, whereas columns of VL« Vip1, Wk« W

Vi may be almost linearly dependent. On pontrary, the proposed [Ue = Ve — svd VT WR)

method employs only orthogonal transformations, thereforadse

numerically favourable. S=VUEZ T s=wRy 2
In addition, the proposed method eliminates the above men-

tioned important applicability constraint. It can be applied to ~ . .

any solvable Sylvester equation, broadening the set of applicable A=gAs, B=gB, C=Cg

problems. 9) return (A,B,C)

Project the initial system using, and &:

IV. IMPROVEMENT |I: EMPLOYING LOW-RANK GRAMIAN
APPROXIMATIONS

As another important modification, we do not discard teRis—
ViViT)ATVi in (5). We can use any well-developed method to obtaiY!. MODIFIED AISIAD ALGORITHM FOR DESCRIPTOR SYSTEMS
low-rank approximations oP andQ, such as Low-rank ADI [6] or
LR-Smith algorithms [18], or projection-based methods [14]. In our We have generalized the modified AISIAD algorithm 5 for the
code we use simple projection-based algorithm outlined in algorith#¥Stems in the descriptor form with nonsingular matix

4 for the example of controllability gramian approximation. The TBR algorithm 1 has been generalized for the case of

descriptor systems in [19]. For the case of nonsingHlé's enough

Algorithm 4: Low-rank approximation of gramians to compute gramians from (2) and obtain the projection matrices

Input: MatricesA and B, desired order of approximatidn S and & as the dominant eigenspaces QEPE’ and PE'QE

Output: Low-rank approximation oP ~ VpSpV] respectively. The reduced system(& ES, §AS, S B,CS).

@ Compute orthogonal basis for the Krylov subspace as ani, the modified AISIAD algorithm for descriptor systems, we use
initial guess: the approximated power iterations in order to obtain the dominant
colspariVp) = Xi(A™1,B) eigenspaces oDEPE" and PETQE by approximatingPETV and

() repeat QEW. For the approximation of the first product, multiply the

?3) ApproximateX; ~ P\ by solving

A generalized Lyapunov equation fBrfrom right by V:
AX +XH +M; =0, where

T % _ RrRTV
Hi =Vi'Al, Mi=BBW APE'V+EPE'VVTEATV +
N—— N ——

4) Perform SVD ofX:

[\/i+las+l7Gi+l] = Svdxvo) % X H T T\ AT T
5) until convergence EP(I-E'VV))A'V+BB'V =0 (11)
(6) return Viy1,S41 M

As before, we can compute a low-rank approximation for the gramian
P ~ P using methods, for example, described in [8], and therefore
obtain approximation of the termil ~ M.

Combining two improvements outlined above, we now describe The equation (11) leads to the following matrix equation:
the modified AISIAD method which we propose as a replacement
for the algorithm 2. We outline it as the algorithm 5 AX+EXH +M =0, (12)

We would like to note that if full exact gramians are known,
the modified AISIAD algorithm becomes the power method for thé/e can solve (12) analogously to solving (6) by performing a Schur
matricesPQ and QP and therefore is guaranteed to converge to thdecomposition ofH = USU and then solving for the columns of
exact TBR solution. matrix XU. In this case instead of (10) we will have to solve the

V. THE MODIFIED AISIAD ALGORITHM



following system of equations: One can employ iterative solvers for the solution of (13) if the
-1 matrices are dense.
(A+sjE)%j = (MU)j — Zsqu (13) If the sparse solver is employed, the cost of the algorithm with
i= available low-rank approximations #® and Q is approximately

Again, thls system can pe solyed fast if matricksand E are 2Nt G(Ciactor + Coksolve)s

sparse, or if the fast solver is available.
The calculations for approximation @EW are analogous. whereNi is a number of modified AISIAD iterationEactor iS @
We outlined the resulting algorithm as algorithm 6. cost of a matrix factorization oA+ sjjE, andCpysolve iS @ cost of

_ - _ ) backward-solving for the solution.
Algorithm 6: Modified AISIAD algorithm for descriptor systems  An interesting feature of the proposed algorithm is that it uses

with nonsingulare. one backward solve per one matrix factorization, therefore for each
Input: System matricesE, A, B,C), desired reduced ordey, initial  iteration 2q matrix factorizations an@q backward solves need to
projection matrixy € R"™4 o be performed. The linear systems in (13) are essentially the same
Output: Orderq reduced mode(E,A,B,C). as in the multiple-point Pad approximation via Krylov-subspaces
(6)) Get a low-rank approximations of proper gramians [9]. However, modified AISIAD algorithm uses different shift
P~PandQ~Q parameters, whereas PVL method generally uses lesgjthiaarefore
2) repeat R for PVL the number of backward solves per one matrix factorization
(3 Solve AX +EXH; +M; =0, where is usually more than one. The Arnoldi algorithm requires only one
Hi=VTATV matrix factorization andj backward solves. Therefore, both PVL and
M; = BBV, +EP(1 —ETViVT ATV, Arnoldi are faster than the modified AISIAD algorithm by a constant
(4) W, S] = ar(X,0) factor.
(5) SolveATY; +ETY;F; + N =0, where - .
= :\MTAW: B. Passivity preservation
Ni =CTCW +ETQ(I — EWWT)AW The modified AISIAD method does not impose any assumptions
(6) Vi1, Rip1] = ar(Y;,0) on the physical nature of the input and output signals. In other
() until convergence words, this method igeneric However, it is very important for many
(8) Obtain an oblique projection out & 1 andW: model reduction problems to preserve some properties of the transfer

function, like positive-realness (in case where input signals are port
T voltages and output signals are port currents) or bounded-reallness
[Ue I Ve =svdV EVg) (in case of S-parameter modelling).
S=VU T2 g =wgy\s 2 So far, the only method which is applicable for large-scale model
reduction and which preserves passiiig the PRIMA algorithm
[15]. This method is based on Krylov-subspace projections, which
E— %E&,A - SEAQ, B= 3137 c=Cs can be viewed as approximating dominant controllable states [17]. As
A noa o it was mentioned before, this can sometimes lead to large errors in the
©) return (E,AB,C) frequency domain, which do not necessarily decrease with increasing
of the reduced order. This is fully consistent with the experimental
results which we present in the next section. The same can be said
about variants of PRIMA, which uses dominant eigenspacésanfd
The proposed algorithm is applicable to any stable linear systemdnfor the projection bases.
a state-space form. We have extended it for descriptor systems witlng g practical (and widely used) solution, we can obtain a passive
nonsingular descriptor matrik. model by post-processing. Since modified AISIAD produces a very
Advantages of the proposed method is its extended applicabilg¥¢curate models in the frequency domain, we can, for example, use
to a broad range of systems, its improved accuracy and low costthe poles of the reduced model, and re-fit the reduced transfer function
The major factor, which governs the accuracy of the proposgding any convex optimization algorithms which ensure passivity
method is the accuracy of low-rank approximationsPoind Q. [20], [21], [22]. We have tested this approach on the RLC line
In addition, there is no benefit of applying AISIAD to the sym-example and present our results in the next section.
metric systemsA = AT,B=CT), since for such systend= Q, and
AISIAD cannot do better than dominant gramian eigenspace method VIIl. COMPUTATIONAL RESULTS

(DGE). For the test cases we used four benchmark systems, which we
A. Complexity of the modified AISIAD algorithm describe beloyy. For each of the.se system; we pompared the original
) - ] _AISIAD, modified AISIAD, dominant gramian eigenspaces (DGE),
_The computa_tlonal cost of the modlfl(_ed A_ISIAD algorithm  i§g\-rank square root (LRSQRT), Amoldi [5], [15] and Radia
directly proportional to the cost of solving linear systems of | 5ncz0s (PVL) [9] reduction algorithms. As an error metric, we used
equations in (13). If we assume that the matriéesndE are sparse the H,, norm of the difference between sufficiently accurate reduced
enqugh to compqte the solution in orc.tetrme: this will correqund model? (in the examples it was the TBR model of order 100-150)
to linear complexity of the whole algorithm with respect to scaling by,g 41 above mentioned approximations. Note that our error metric

n! Our numerical experiments on the RLC circuit example (describgd essentially the maximum of the difference between the original
in the next section) fully support this statement: for RLC example the

time taken to reduce the system scales linearly witfThe largest  2with assumptionA being positive semidefinite arll=CT
model we tried so far had the order= 500 000 3Using non-reduced model for computiitg, norm is very expensive

VL —=Vir, We—W

Project the initial system using, and &:

VII. ADVANTAGES AND LIMITATIONS OF THE PROPOSED
ALGORITHM



and reduced system'’s transfer functions over the entirexis. We 1) RLC line - MNA formulation:We have used modified nodal

assumed an error to be infinity if the reduced model was unstalalealysis (MNA) formulation for the transmission line depicted on

(these cases correspond to discontinuities of the lines on our erigure 4. The inputs were the voltage sources either at a single end

plots). or both ends, and the outputs were either currents through the end
Our results showed that the modified AISIAD always outperformsistors or (in the case of a single input) voltage at the other end of

all of the above mentioned methods, with the exception of LRSQRA.line.

For example of the rail cooling and some RLC circuits, modified

AISIAD performed much better than LRSQRT. However, for other
cases it showed almost identical performance. For several RLCv1) A CL CR CL CR CL C'” CR CL PN
examples modified AISIAD turned out to be slightly inferior to T 17 1T T 1T 1 1T 1 I

LRSQRT method.

Fig. 4. RLC transmission line model as a motivating example.
A. RLC transmission line
The MNA formulation for this line results in a dynamical system
in the form(E,A,B,C). We have observed that the modified AISIAD
method always works better than PVL, DGE and Arnoldi (which is
the PRIMA algorithm [15]f. However, low-rank square root method
C C C c sometimes gives comparable results as modified AISIAD, and for
Fig. 2. RLC tgnsmissionmne egmple 1 two-port i_mpedance model in some cases it even produ_ces inferior
T - results with respect to LRSQRT. However, the two-port impedance
) ) o ) ) model is almost irreducible, it's Hankel singular values are quite high.
The first system is an RLC transmission line depicted on figure 2,2) passjve post-processinge have used the RLC transmission
with varying values forR L andC. Input signalu(t) is the voltage |ine model with input being the voltage at the first node and the output
at the first node. The outputs are the voltage at the last node agng current through the first resistor of the line (cf. Figure 1). The
current flowing through the first inductor. The state vector consisssivity constraint implies the transfer function bejrasitive-reaj
of node voltages and inductor currents, and nodal analysis equatigfi is, in addition to being stable, it satisfies the following condition:
result in a systenfA, B,C) with non-symmetric, indefinite matriA. )
We varied the size of this system from several hundreds to hundreds Re(H(jw) >0, Vw (14)
of thousands, for different values 8L andC and different choices  The parameters of RLC line weNe=100Q R=0.1,L = 2,C = 15.
of output signals. The maximal order of the system was 500,000.For this model, the modified AISIAD reduced model of ordet 30
Our results showed that modified AISIAD method aIWayS prOdUC% not passive, Wlth the'loo norm Of error being 0.70%. We have used
more accurate results than any above mentioned reduction methggs model for the passive fitting algorithm from [22] and obtained a
in the He, error metric. positive-real reduced model of ordgr= 20, with anH. error 0.96%.
The PRIMA algorithm for this order has a tremendously higHer
error, which is 88.2%. Figure 5 shows the real parts of the above
mentioned transfer functions.

©
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3 : . . i . .
z a mAISIAD model, g=30 (not passive)
g ‘| 3l == PRIMA algorithm, =20 ]
g ¢ 2 = = =Passive fitting of the mAISIAD model, q=20|
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Fig. 3. Reduction errors for the RLC transmission line of onder 100Q « 0.5 Vo
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On the figure 3 thél, errors of the reductions for this RLC line are Frequency, rad/sec
plotted versus the reduced ordegr The initial order of the system Fig. 5. Real parts of the transfer functions for the modified AISIAD reduced

was 1000. As the figure suggests, the errors for the DGE meth®gdel (which has been used for the post-processing, solid line), PRIMA
uced model (dash-dotted line) and the model obtained after post-processing

N i )
(as well .a_s all other methqu.) IS n’1uc.h bigger than the errors fo mAISIAD model (dashed line). One can note that PRIMA algorithm poorly
the modified AISIAD algorlt.hm. We'd like to stress that here weproximates the original transfer function away from the expansion point
used exact low-rank approximant for DGE method, whereas for tiyhich is at zero frequency). The non-reduced transfer function is almost
modified AISIAD we used approximated gramians (the ones providélistinguishable from the mAISIAD model.

by algorithm 4). This way, the curve for DGE is a universal upper

bo_und for all family _Of methods that apprOXImEF_?eandQ separg’Fer. 4PRIMA algorithm has it's own advantages though, because it preserves
Evidently, AISIAD is the best method for this case, significantlyassivity of a reduced model. However, we are concerned here onlyHaith
outperforming the original AISIAD method. norm as an error measure.
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Fig. 6. Micromachined switch example
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3) RC line: In order to test the modified AISIAD algorithm on = LRSORT
a symmetric systemA(= AT,B=CT), we used a simple RC line 0 5 10 15 20 2% w0 3
(figure 2 with L = 0) with input being the voltage at the first node reduced order, q

and output being the current through the first resistor. The state vector . ) .
was the vector of node voltages. For this sys@m Q and dominant CI]—k'lg. 8. Reduction errors for the rail exampte= 1357, 7 inputs, 6 outputs
eigenspaces dPQ and QP will be the same as the ones Bfand

Q separately, therefore modified AISIAD should achieve exactly the g, this example the modified AISIAD showed superior perfor-

same accuracy as DGE method. Our numerical experiments fyly,nce with respect to any other approximations, including LRSQRT
support this statement: errors for DGE and modified AISIAD are theaihod.

same for this test case. On the figure 8 we present the error plot for this example. Here,

B. Linearization of micromachined switch again, AISIAD greately outperforms any other approximations to
TER, as well as Krylov-subspace based reductions. The reduced

The second example was the linearization of the micromachine

switch (fixed-fixed beam) shown on figure 6. Following Hung emodels of orderg = 2,3,4 are unstable, but it's even smaller than

al. [2], the dynamical behavior of this coupled electro-mechanic:% _rie ;Z:nzgﬁglgru;‘;ihﬁ expected, modified AISIAD outperforms
fluid system can be modeled with 1D Euler's beam equation and? 9 '

2D Reynolds’ squeeze film damping equation [2]. The linearizatiob. Optical filter

of this model around equilibrium leads to the nonsymmetric systemyg test case was obtained from the Oberwolfach Model Reduc-

(A,B,C) with indefinite system matri¥. The ordem = 880 tion Benchmark Collection web site [23]. The reader is referred to the
description ofTunable Optical Filterbenchmark on the mentioned
web site for descriptions. This is the model in a descriptor form

10— : . i ‘ o (E,A,B,C) with n= 1668 having 1 input and 5 outputs. The corre-
: ' sponding errors are presented on figure 9. Here the dominant gramian
= 1= eigenspace projection was computed using the same approximate
» 10 Q4m.B Il*l*l‘ll‘lwl‘l ] . . .
J v (T a gramians which were used for the modified AISIAD method. The
5 | * pEmmmmmEE LRSQRT method showed very similar errors as the modified AISIAD.
g 107 Q’:\\v.\_ 2 .
5 26000000004 . ¢
o
(':) 10° o= mAISIAD . : W i &7 ‘ N ‘ ‘ o ‘ —o-rSé:Est
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Fig. 7. Errors for the MEMS linearizatiomy = 880. ,"ﬁ "'tvn,_ ‘B.g.
£ 3 I
R A,
On the figure 7 the errors for the MEMS test case are presented. e ‘”\,M‘
Here still modified AISIAD method performs better than any other T '36 - -;5“-";10
method, but the difference is not as dramatic as for other examples. reduced order, g
The LRSQRT method showed the results similar to the modifigfy 9. Reduction errors for the optical filter exampte= 1668 1 inputs,

AISIAD. 5 outputs

C. Cooling profile of steel rail

This test case was obtained from the Oberwolfach Model Reduc- IX. CONCLUSIONS
tion Benchmark Collection web site [23]. The reader is referred to As the field of computationally efficient techniques for model
the description oHeat transfer problem for cooling of steel profilesreduction has matured, the range of applications has continued to
benchmark on the mentioned web site for descriptions. This is thgpand, and in this expanded set are cases where existing reduction
model in a descriptor fornfE, A, B,C) with n= 1357, having 7 inputs methods have proved to be unreliable, at least for wide-band appli-
and 6 outputs. cations. In this paper we demonstrated that there are examples where



separately examining controllability and observability does not yeild0] C.P. Coelho, Phillips J., and Silveira L.M. A convex programmin
reasonably-sized reduced models. Since almost all the existing meth- approach for generating guaranteed passive approximations to tabulated
ods for reducing large scale problems effectively perform this separj# frequency-datalEEE Trans. CAD 23(2):293-301, 2004.

L . B. Gustavsen and A. Semlyen. Enforcing passivity for admittance
examination, new methods are needed. We described such a reduction yatrices approximated by rational functionsIEEE Trans. power

method, based on several modifications of the recently developed systems16(1):97-104, 2001.
AISIAD algorithm. We developed a more general strategy for solving2] K.C. Sou, A. Megretski, and Daniel L. A quasi-convex optimization
the AISIAD algorithm’s Sylvester equation, we extended the method ~@PProach to parametrized model reduction.Phoceedings of the 42th

to descriptor systems (i.e. circuits with floating capacitors or coupl?gs] 8@2‘%‘0?;&%”]atlopngj%r;ferecféﬁg?igﬁ'm’@%%iihgrﬁi:f 38, 2c%(|)|5e'ction

inductors), and we dramatically improved AISAID’s accuracy by ° http://www.imtek.uni-freiburg.de/simulation/benchmark/.
employing low-rank approximations of separate gramians. Finalfg4] J.R. Li and J.K. White. Low rank solution of lyapunov equatioB8$AM
we demonstrated that our modified AISAID method is reliable using ~Review, SIGEST46(4):693-713, 2004.

a wide variety of examples. In these examples, the modified AISAID

method was either nearly equivalent or far superior to any of the other

methods suitable for large scale problems. We have demonstrated that

the passive post-processing of the modified AISIAD models gives

significantly more accurate results than PRIMA algorithm.
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