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Abstract— In this paper we are concerned with developing more
reliable model reduction algorithms. We have focused on less common,
but real, examples that fail to be effectively reduced by almost all of
the currently popular model reduction methods. The failure of these
popular methods is due to the fact that they all separately examine
controllability and observability. We then present a new method based on
several modifications and extensions of the recently developed AISIAD
algorithm. The modified AISAID method is demonstrated on a wide
variety of examples, including electrical interconnnect, micromachined
devices, and heat flow to show that the method is reliable. Our modified
AISAID method is either nearly equivalent or far superior to any of the
other reduction methods suitable for large scale problems.

I. I NTRODUCTION

Model order reduction is becoming a widely used technique for
generating differential-equation based behavioral models from more
detailed ordinary and partial differential equation based descriptions.
The most mature such application is that of interconnect modeling,
but these techniques are now being used to generate models of circuit
blocks, micromachined devices, integrated circuit heat flow, photonic
devices, and even turbine engines [1], [2], [3]. The emerging general
strategy for generating low-order models is a combination approach.
First, a fast but non-optimal technique is used to reduce a large
model to a medium-sized model. Then a reduction method with an
optimality property but a higher computational cost, like Truncated
Balanced Realization (TBR) or convex optimization [4], is used to
generate a very efficient low order model from the medium-sized
model.

The above strategy breaks down when the fast reduction method is
not able to generate a medium-sized model of reasonable accuracy,
and there are some cases where this breakdown occurs for almost
all of the currently popular fast reduction methods. Although this
breakdown is not common, the widening application of these methods
suggests that it is now important to focus on reliability.

In this paper, we examine the difficulty that the most widely used
techniques for generating medium sized models, whether based on
Krylov subspaces[5] or collections of frequency domain solutions,
effectively separately obtain low-rank approximations of controllabil-
ity (P) and observability (Q) gramians [6], [7], [8], [9], [3]. Separate
controllability and observability approaches can be ineffective when
applied to problems with an innate asymmetry, such as very lightly
damped interconnect problems or micromachined devices with a
directional input-output behavior. The difficulty is that the dominant
eigenspaces ofP and Q are very different from what is needed,
the dominant spaces of thePQ product. In order to overcome this
difficulty, the AISIAD method was proposed in [10]. However, as
we shall see later (section II-F.1), the original AISIAD method has
a limited applicability and there are ways of dramatically increasing
its accuracy.

In this paper we present a modification of the AISIAD algorithm,
which overcomes the limited applicability of the original AISIAD
[10] and provides much better accuracy. In addition, we provide
generalization of this method to the descriptor systems with nonsin-
gular descriptor matrixE. Our numerical experiments show that our
modified AISIAD algorithm works much better than both the original
AISIAD and than the methods based on the separate approximations
of gramians. We show that approximating gramians separately doesn’t
necessarily lead to an accurate approximation to TBR.

The rest of the paper is structured as follows. In section II we
review TBR model reduction itself and its most widely used ap-
proximations. We present a motivating example which highlights the
problem with such approximations. We also introduce the immediate
precursor of our method, the AISIAD approximation and describe
its key algorithm - solving Sylvester equation. In section III we
propose a modification to the solution of Sylvester equation, which
expands the class of applicable models. In section IV we propose the
second improvement of the AISIAD algorithm by approximating the
terms which were neglected in the original paper. We summarize the
resulting algorithm in the algorithm 5. In section VI we generalize our
algorithm for descriptor systems with nonsingular descriptor matrix
E. In the subsequent sections we discuss applicability and accuracy
of the method, along with numerical results. In section IX we present
our conclusions.

II. BACKGROUND AND PRIOR WORK

A. MOR setup and notations used

In this paper we consider approximation of the linear time-invariant
(LTI) continuous-time(CT) stable causal dynamical systems (for
background see [11] or [6]) in two kinds of state-space forms:

{
ẋ(t) = Ax(t)+Bu(t)
y(t) = Cx(t) and

{
Eẋ(t) = Ax(t)+Bu(t)
y = Cx(t) (1)

The first kind of system description will be referred as system in
normal form (A,B,C), the second one - as a descriptor form or
(E,A,B,C). Vector x(t) ∈ Rn is a vector of states at timet, B is
an n×m input matrix,u : R→ Rm is an input signal,C is an l ×n
output matrix andy :R→Rl is the output signal,A is ann×n system
matrix, and matrixE∈Rn×n is a nonsingular descriptor matrix. As an
example, the modified nodal analysis algorithm generates descriptor
systems when applied to general RLC circuits, but generates a system
in normal form for RC circuits with only unit-valued grounded
capacitors.

In the large-scale setting the descriptor form cannot be trivially
converted to the(A,B,C) form by multiplication onE−1, because this
computation is unacceptably expensive and sometimes numerically
ill-conditioned.



The goal of the model order reduction problem is to construct a
reduced systemhaving the orderq much less than initial ordern,
while the input-output relationship for the reduced system should be
as close as possible to that of the original system.

Throughout the paper we denote byP and Q the symmetric con-
trollability and observability gramians of the system. These gramians
satisfy the following generalized Lyapunov equations (in case of
descriptor systems):

APET +EPAT +BBT = 0
ATQE+ETQA+CTC = 0

(2)

and have interpretations in terms of energy. Assuming zero input
and initial statex0, the output energy

R ∞
0 (yTy)dt = xT

0 (ETQE)x0. The
minimal energy in the input, needed to drive a system from the zero
state att =−∞ to statex0 at t = 0 is given by

R ∞
0 (uTu)dt = xT

0 P−1x0.
In the following, we denote order of the initial (large) system byn,

and the order of a reduced system byq. By the notationorthogonal
basiswe refer to any matrixV ∈ Rn×q, such thatVTV = Iq×q. By
Λ(A) = {λi(A)} we denote a spectrum ofA. By Λdom

k (A) we shall
denotek largest eigenvalues ofA. By Kq(A,B) we denote the order-q
Krylov subspace ofA corresponding toB:

Kq(A,B) = span{B,AB, . . . ,Aq−1B} (3)

B. TBR model reduction algorithm

Truncated balanced model order reduction algorithm was originally
proposed in [12], and we provide it here as algorithm 1. The
properties of this algorithm are well described elsewhere [12] [13].

Algorithm 1: Balanced-truncation reduction algorithm (TBR)
Input: Initial system(A,B,C), desired reduced orderq
Output: Reduced-order system(Â, B̂,Ĉ)
(1) Find observability grammianP:

AP+PAT +BBT = 0;
(2) Find controllability grammianQ:

ATQ+QA+CTC = 0;
(3) Computeq left and right dominant eigenvectors ofPQ:

(PQ)Sc = ScDPQ, whereDPQ = diag(Λdom
q (PQ))

ST
o (PQ) = DPQST

o and scale columns ofSo such that
ST

o Sc = Iq×q

(4) Project the system matrices
Â = ST

o ASc, B̂ = ST
o B, Ĉ = CSc

(5) return (Â, B̂,Ĉ)

The TBR model reduction algorithm produced models which have
a bound on the worst-case frequency response error, and are typically
good wideband models.

Note that TBR reduction algorithm uses the dominant eigenspaces
of PQ, roughly the modes with the best product of controllability and
observability.

C. Approximations to the TBR algorithm

Currently the most widely used approximations to the TBR algo-
rithm are based on low-rank approximations of gramiansP̂≈ P and
Q̂≈Q. They either usêP andQ̂ instead ofP andQ in the balancing
procedure via SVD, or they merge the dominant eigenspaces ofP̂ and
Q̂ in one orthogonal projection matrix and use this orthogonal basis
for subsequent projection of system matrices (step 4 of algorithm 1).
The first method is referred aslow-rank square-root methodand the
second option is referred asdominant gramian eigenspaces method
(DGE) (for detailed description see [6], pp. 37-39).

It is well-known that such approximations produce accurate re-
duced models only if the dominant eigenspaces ofP andQ coincide
[14], as, for example, in symmetric systems (A= AT ,C = BT ). There
have been attempts to use cross-gramian approaches [14] in order
to overcome this shortcoming, however this approach can be used
only for square symmetric LTI systems. The most promising attempt
was made in the work [10] where the method called AISIAD (Ap-
proximate Implicit Subspace Iteration with Alternating Directions)
was developed. However, AISIAD method is applicable to the class
of systems with matrixA, which has the property of being Hurwitz
under orthogonal projections, which narrows the class of applicable
dynamical systems.

D. Motivating example: simple RLC line
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Fig. 1. RLC transmission line model as a motivating example.

The fact that computing dominant approximations ofP and Q
separately does not approach accuracy of TBR reduction, becomes
apparent if one performs a modified nodal analysis (MNA) of the
simple RLC transmission line depicted on figure 1 and then considers
a very lightly damped case. In the MNA formulation, the state
space consists of the voltages on the capacitors and currents through
inductors of a circuit. Let the input to the system be voltage applied
to the first node, and the output be the the current through the first
resistor in the chain. The MNA analysis results in the descriptor
system (E,A,B,C) with the positive semidefinite matricesE and
(−A) andC= BT . We used a lightly damped line, with the parameters
R= 0.05,L = 10−10,C = 10−15, the number of inductorsN = 100. If
we convert this system to the state-space model(A,B,C), the first
N dominant eigenvectors ofP and first N dominant eigenvectors
of Q span almost completely orthogonal subspaces! This gives an
approximation ofPQ being almost zero.

This means that in order to get a good approximation of a product
PQone needs to get a low-rank approximations ofP andQ essentially
greater thanN, and is consequently not applicable in a large-scale
setting.

This example illustrates a fundamental problem: capturing domi-
nant controllable and dominant observable modes separately is not
sufficient to get a good approximation to TBR, and can lead to
arbitrarily large errors in the frequency domain. Even the PRIMA
algorithm [15], which guarantees passivity of the reduced model1

produces quite bad approximations in the lightly damped cases in
the H∞ norm, due to the fact that it approximates only dominant
controllable states (see Section VIII for numerical results).

The method below is different in the sense that it directly ap-
proximates the product ofPQ and therefore takes into account
the fact that the separately determined most controllable and most
observable modes may be different than the modes with the highest
“controllability times observability” measure.

E. Original AISIAD algorithm

It is known that the transfer function of the reduced system depends
only on the column spans of the projection matricesSo and Sc (see

1For considerations on passivity enforcement read further sections



[6], p. 23), therefore for the approximation of the TBR we need to
approximate the dominant eigenspaces ofPQ andQP.

The AISIAD algorithm roughly approximates the dominant eigen-
spaces of the productsPQ andQP using a power method, and then
constructs projection matrices using these approximations.

The AISIAD algorithm was originally proposed in [10], and we
present it here as algorithm 2. It does not use low-rank approxima-
tions of gramians at all, however as we show below, it is crucial to
use low-rank approximations ofP andQ in order to produce accurate
reduced models.

Algorithm 2: Original AISIAD algorithm
Input: System matrices(A,B,C), reduced orderq, initial orthogonal
basisV ∈ Rn×q

Output: Order-q reduced model(Â, B̂,Ĉ).
(1) repeat
(2) ApproximateXi ≈ PVi by solving

AXi +XiHT
i + M̂i = 0, where

Hi = VT
i AVi , M̂i = BBTVi

(3) Obtain orthogonal basis which spans the same subspace
asXi : [Wi ,Si ] = qr(Xi ,0)

(4) ApproximateYi ≈QWi by solving
ATYi +YiFi + N̂i = 0, where
Fi = WT

i AWi , N̂i = CTCWi

(5) Obtain orthogonal basis for the approximation ofQWi

and make it the next approximation ofV: [Vi+1,Ri+1] =
qr(Yi ,0)

(6) until convergence
(7) Obtain an oblique projection out ofVi+1 andWi :

VL ←Vi+1, WR←Wi[
Ue Σ Ve

]
= svd(VT

L WR)

So = VLULΣ−1/2, Sc = WRVLΣ−1/2

Project the initial system usingSo andSc:

Â = ST
o ASc, B̂ = ST

o B, Ĉ = CSc

(8) return (Â, B̂,Ĉ)

Consider the steps 3 and 5 of algorithm 2 in more detail. We
present derivations for approximation ofPV here, the derivations for
QW are similar. From Lyapunov equation forP:

AP+PAT +BBT = 0 (4)

Multiplying from the right-hand side byV, we get the following
equation:

A PVi︸︷︷︸
Xi

+ PVi︸︷︷︸
Xi

VT
i AVi︸ ︷︷ ︸
Hi

+P(I −ViV
T
i )ATVi +BBTVi︸ ︷︷ ︸

Mi

= 0 (5)

As we see, in the original AISIAD algorithm the termP(I −
ViVT

i )ATVi is neglected. In this paper we claim that neglecting this
term results in a very poor approximation quality, and this term
should be instead approximated, using a low-rank approximant for
the gramian.

F. Solution of a specialized Sylvester equation

The most important routine in the algorithm 2 is obtaining a
solution of the Sylvester equation

AX+XH +M = 0, A∈ Rn×n,H ∈ Rq×q,M ∈ Rn×q (6)

whereq¿ n (hence the name “specialized”).

1) Original solver of Sylvester equation:Consider the following
matrix:

S=
[
A M
0 −H

]
(7)

and assume that we have found the matricesV1 ∈ Rn×q,Z ∈ Rq×q

and nonsingularV2 ∈ Rq×q such that
[
A M
0 −H

][
V1
V2

]
=

[
V1
V2

]
Z (8)

Then one can clearly see that the matrixV1V
−1
2 satisfies (6). More-

over, for the purposes of the algorithm 2 it is sufficient to find only
V1, since we make use only of the column span ofX.

Evidently, Λ(S) = Λ(A)∪Λ(−H), and since−HV2 = V2Z, matrix
V2 is nonsingular if and only ifΛ(Z) = Λ(−H). Note that the matrices
A and(−H) should not have common eigenvalues, otherwise (6) does
not have a unique solution.

In the original AISIAD the use of Implicitly Restarted Arnoldi
(IRA) method [16] is proposed as the means of solving (8). This
way, one can obtain a partial Schur decomposition ofS with upper-
triangular matrixZ in (8). In order to impose the conditionΛ(Z) =
Λ(−H) using IRA, authors [16] needed to restrictH to be a Hurwitz
matrix. Therefore, original algorithm is applicable only to the
cases whereH is Hurwitz (i.e. the initial matrix A satisfies the
condition of VTAV being Hurwitz for all choices of orthogonal
basis V). This imposes a severe constraint on matrixA and
narrows the class of applicable systems for the whole original
method.

III. I MPROVEMENT I: A LGORITHM FOR SPECIALIZEDSYLVESTER

EQUATION

It is possible to solve equation (6) in the following way.
Let’s consider a complex Schur decomposition of matrixH =

USU′, whereS is upper-triangular, andU is unitary. Since matrixH
is smallq×q, this Schur decomposition is inexpensive. Multiplying
(6) from right byU yields:

A(XU)+(XU)S+MU = 0, (9)

Backsolving for each column of the matrix(X̃ = XU) starting from
the first one:

(A+sj j In)x̃ j = (MU) j −
j−1

∑
i=1

si j x̃i , (10)

Here x̃ j denotesjth column of the matrixXU, andsi j denotes(i, j)-
th element of the matrixS. The speed of theseq solutions of linear
system of equations determines the overall speed of the proposed
algorithm. We can employ a sparse solver if matrixA is sparse.
Alternatively, if fast matrix-vector products can be computed, one
can employ an iterative Krylov-subspace solver such as GMRES in
order to solve (10).

After the matrixX̃ = XU has been computed, the solutionX can
be recovered using multiplication byU ′ from the right.

We summarize our algorithm for solving (6) in algorithm 3.
It is evident that for single-input single-output (SISO) system

the proposed approximation is equivalent to rational Krylov method
[5], for the interpolation points being(−Λ(H)) (assumingH being
diagonalizable). If one performs projection of the initial system onto
dominant eigenspaces of these approximations ofP and Q, such
obtained reduced model will match the initial model ats1...q =
−Λ(VTAV). This important fact unifying Krylov-subspace model
reduction and low-rank approximation of gramians was first noted
in [17].



Algorithm 3: Solving generalized sylvester equation
Input: MatricesA,H andM
Output: SolutionX
(1) Perform a complex Schur decomposition ofH:

H = USU′
(2) M̃ ←MU
(3) for j=1 to q
(4) Solve forx̃ j :

(A+sj j In)x̃ j = M̃ j −∑ j−1
i=1 si j x̃i

(5) Assign jth column of X̃ being x̃ j .
(6) return X = X̃U′

A. Comparison of the two Sylvester solvers

For Hurwitz H both methods are equivalent assuming exact
arithmetic. The method described in the section II-F.1 ensures that

matrix

[
V1
V2

]
contains orthogonormal set of vectors. However, this fact

does not impose any constraint on the conditioning ofV1. Matrix
V1 can have a very small condition number, whereas columns of
V1 may be almost linearly dependent. On contrary, the proposed
method employs only orthogonal transformations, therefore ismore
numerically favourable.

In addition, the proposed method eliminates the above men-
tioned important applicability constraint . It can be applied to
any solvable Sylvester equation, broadening the set of applicable
problems.

IV. I MPROVEMENT II: EMPLOYING LOW-RANK GRAMIAN

APPROXIMATIONS

As another important modification, we do not discard termsP(I−
ViVT

i )ATVi in (5). We can use any well-developed method to obtain
low-rank approximations ofP andQ, such as Low-rank ADI [6] or
LR-Smith algorithms [18], or projection-based methods [14]. In our
code we use simple projection-based algorithm outlined in algorithm
4 for the example of controllability gramian approximation.

Algorithm 4: Low-rank approximation of gramians
Input: MatricesA andB, desired order of approximationk
Output: Low-rank approximation ofP≈VpSpVT

p
(1) Compute orthogonal basis for the Krylov subspace as an

initial guess:
colspan(V0) = Kk(A−1,B)

(2) repeat
(3) ApproximateXi ≈ PVi by solving

AXi +XiHT
i + M̂i = 0, where

Hi = VT
i AVi , M̂i = BBTVi

(4) Perform SVD ofX:
[Vi+1,Si+1,Gi+1] = svd(X,0)

(5) until convergence
(6) return Vi+1,Si+1

V. THE MODIFIED AISIAD ALGORITHM

Combining two improvements outlined above, we now describe
the modified AISIAD method which we propose as a replacement
for the algorithm 2. We outline it as the algorithm 5

We would like to note that if full exact gramians are known,
the modified AISIAD algorithm becomes the power method for the
matricesPQ and QP and therefore is guaranteed to converge to the
exact TBR solution.

Algorithm 5: Proposed algorithm for approximation of TBR.
Input: System matrices(A,B,C), desired reduced orderq, initial
projection matrixV ∈ Rn×q

Output: Order-q reduced model(Â, B̂,Ĉ).
(1) Get a low-rank approximations of gramians

P̃≈ P and Q̃≈Q using any applicable algorithm.
(2) repeat
(3) Solve using algorithm 3

AXi +XiHT
i + M̂i = 0, where

Hi = VT
i AVi

M̂i = BBTVi + P̃(I −ViVT
i )ATVi

(4) [Wi ,Si ] = qr(Xi ,0)
(5) Solve using algorithm 3

ATYi +YiFi + N̂i = 0, where
Fi = WT

i AWi

N̂i = CTCWi + Q̃(I −WiWT
i )AWi

(6) [Vi+1,Ri+1] = qr(Yi ,0)
(7) until convergence
(8) Obtain an oblique projection out ofVi+1 andWi :

VL ←Vi+1, WR←Wi[
Ue Σ Ve

]
= svd(VT

L WR)

So = VLULΣ−1/2, Sc = WRVLΣ−1/2

Project the initial system usingSo andSc:

Â = ST
o ASc, B̂ = ST

o B, Ĉ = CSc

(9) return (Â, B̂,Ĉ)

VI. M ODIFIED AISIAD ALGORITHM FOR DESCRIPTOR SYSTEMS

We have generalized the modified AISIAD algorithm 5 for the
systems in the descriptor form with nonsingular matrixE.

The TBR algorithm 1 has been generalized for the case of
descriptor systems in [19]. For the case of nonsingularE it’s enough
to compute gramians from (2) and obtain the projection matrices
So and Sc as the dominant eigenspaces ofQEPET and PETQE
respectively. The reduced system is(ST

o ESc,ST
o ASc,ST

o B,CSc).
In the modified AISIAD algorithm for descriptor systems, we use

the approximated power iterations in order to obtain the dominant
eigenspaces ofQEPET and PETQE by approximatingPETV and
QEW. For the approximation of the first product, multiply the
generalized Lyapunov equation forP from right byV:

APETV︸ ︷︷ ︸
X

+E PETV︸ ︷︷ ︸
X

VTEATV︸ ︷︷ ︸
H

+

EP(I −ETVVT)ATV +BBTV︸ ︷︷ ︸
M

= 0 (11)

As before, we can compute a low-rank approximation for the gramian
P̂≈ P using methods, for example, described in [8], and therefore
obtain approximation of the term̂M ≈M.

The equation (11) leads to the following matrix equation:

AX+EXĤ + M̂ = 0, (12)

We can solve (12) analogously to solving (6) by performing a Schur
decomposition ofH = USU′ and then solving for the columns of
matrix XU. In this case instead of (10) we will have to solve the



following system of equations:

(A+sj j E)x̃ j = (MU) j −
j−1

∑
i=1

si j x̃i (13)

Again, this system can be solved fast if matricesA and E are
sparse, or if the fast solver is available.

The calculations for approximation ofQEW are analogous.
We outlined the resulting algorithm as algorithm 6.

Algorithm 6: Modified AISIAD algorithm for descriptor systems
with nonsingularE.
Input: System matrices(E,A,B,C), desired reduced orderq, initial
projection matrixV ∈ Rn×q

Output: Order-q reduced model(Ê, Â, B̂,Ĉ).
(1) Get a low-rank approximations of proper gramians

P̃≈ P and Q̃≈Q
(2) repeat
(3) SolveAXi +EXiHi + M̂i = 0, where

Hi = VT
i ATVi

M̂i = BBTVi +EP̃(I −ETViVT
i )ATVi

(4) [Wi ,Si ] = qr(Xi ,0)
(5) SolveATYi +ETYiFi + N̂i = 0, where

Fi = WT
i AWi ,

N̂i = CTCWi +ETQ̃(I −EWiWT
i )AWi

(6) [Vi+1,Ri+1] = qr(Yi ,0)
(7) until convergence
(8) Obtain an oblique projection out ofVi+1 andWi :

VL ←Vi+1, WR←Wi[
Ue Σ Ve

]
= svd(VT

L EWR)

So = VLULΣ−1/2, Sc = WRVLΣ−1/2

Project the initial system usingSo andSc:

Ê = S′oESc, Â = ST
o ASc, B̂ = ST

o B, Ĉ = CSc

(9) return (Ê, Â, B̂,Ĉ)

VII. A DVANTAGES AND LIMITATIONS OF THE PROPOSED

ALGORITHM

The proposed algorithm is applicable to any stable linear system in
a state-space form. We have extended it for descriptor systems with
nonsingular descriptor matrixE.

Advantages of the proposed method is its extended applicability
to a broad range of systems, its improved accuracy and low cost.

The major factor, which governs the accuracy of the proposed
method is the accuracy of low-rank approximations ofP andQ.

In addition, there is no benefit of applying AISIAD to the sym-
metric systems (A= AT ,B= CT ), since for such systemsP= Q, and
AISIAD cannot do better than dominant gramian eigenspace method
(DGE).

A. Complexity of the modified AISIAD algorithm

The computational cost of the modified AISIAD algorithm is
directly proportional to the cost of solvingq linear systems of
equations in (13). If we assume that the matricesA andE are sparse
enough to compute the solution in order-n time, this will correspond
to linear complexity of the whole algorithm with respect to scaling by
n! Our numerical experiments on the RLC circuit example (described
in the next section) fully support this statement: for RLC example the
time taken to reduce the system scales linearly withn. The largest
model we tried so far had the ordern = 500,000.

One can employ iterative solvers for the solution of (13) if the
matrices are dense.

If the sparse solver is employed, the cost of the algorithm with
available low-rank approximations toP andQ is approximately

2Nit q(Cf actor+Cbksolve),

whereNit is a number of modified AISIAD iterations,Cf actor is a
cost of a matrix factorization ofA+ sj j E, andCbksolve is a cost of
backward-solving for the solution.

An interesting feature of the proposed algorithm is that it uses
one backward solve per one matrix factorization, therefore for each
iteration 2q matrix factorizations and2q backward solves need to
be performed. The linear systems in (13) are essentially the same
as in the multiple-point Padé approximation via Krylov-subspaces
[9]. However, modified AISIAD algorithm usesq different shift
parameters, whereas PVL method generally uses less thanq, therefore
for PVL the number of backward solves per one matrix factorization
is usually more than one. The Arnoldi algorithm requires only one
matrix factorization andq backward solves. Therefore, both PVL and
Arnoldi are faster than the modified AISIAD algorithm by a constant
factor.

B. Passivity preservation

The modified AISIAD method does not impose any assumptions
on the physical nature of the input and output signals. In other
words, this method isgeneric. However, it is very important for many
model reduction problems to preserve some properties of the transfer
function, like positive-realness (in case where input signals are port
voltages and output signals are port currents) or bounded-reallness
(in case of S-parameter modelling).

So far, the only method which is applicable for large-scale model
reduction and which preserves passivity2 is the PRIMA algorithm
[15]. This method is based on Krylov-subspace projections, which
can be viewed as approximating dominant controllable states [17]. As
it was mentioned before, this can sometimes lead to large errors in the
frequency domain, which do not necessarily decrease with increasing
of the reduced order. This is fully consistent with the experimental
results which we present in the next section. The same can be said
about variants of PRIMA, which uses dominant eigenspaces ofP and
Q for the projection bases.

As a practical (and widely used) solution, we can obtain a passive
model by post-processing. Since modified AISIAD produces a very
accurate models in the frequency domain, we can, for example, use
the poles of the reduced model, and re-fit the reduced transfer function
using any convex optimization algorithms which ensure passivity
[20], [21], [22]. We have tested this approach on the RLC line
example and present our results in the next section.

VIII. C OMPUTATIONAL RESULTS

For the test cases we used four benchmark systems, which we
describe below. For each of these systems we compared the original
AISIAD, modified AISIAD, dominant gramian eigenspaces (DGE),
low-rank square root (LRSQRT), Arnoldi [5], [15] and Padé via
Lanczos (PVL) [9] reduction algorithms. As an error metric, we used
the H∞ norm of the difference between sufficiently accurate reduced
model 3 (in the examples it was the TBR model of order 100-150)
and all above mentioned approximations. Note that our error metric
is essentially the maximum of the difference between the original

2with assumptionA being positive semidefinite andB = CT

3Using non-reduced model for computingH∞ norm is very expensive



and reduced system’s transfer functions over the entirejω axis. We
assumed an error to be infinity if the reduced model was unstable
(these cases correspond to discontinuities of the lines on our error
plots).

Our results showed that the modified AISIAD always outperforms
all of the above mentioned methods, with the exception of LRSQRT.
For example of the rail cooling and some RLC circuits, modified
AISIAD performed much better than LRSQRT. However, for other
cases it showed almost identical performance. For several RLC
examples modified AISIAD turned out to be slightly inferior to
LRSQRT method.

A. RLC transmission line

...

C C C C C

R R R LLLL

V(t)
+

-

R

Fig. 2. RLC transmission line example

The first system is an RLC transmission line depicted on figure 2,
with varying values forR,L andC. Input signalu(t) is the voltage
at the first node. The outputs are the voltage at the last node and
current flowing through the first inductor. The state vector consists
of node voltages and inductor currents, and nodal analysis equations
result in a system(A,B,C) with non-symmetric, indefinite matrixA.
We varied the size of this system from several hundreds to hundreds
of thousands, for different values ofR,L andC and different choices
of output signals. The maximal order of the system was 500,000.

Our results showed that modified AISIAD method always produces
more accurate results than any above mentioned reduction methods
in the H∞ error metric.
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Fig. 3. Reduction errors for the RLC transmission line of ordern = 1000,
R= 1,L = 2,C = 3

On the figure 3 theH∞ errors of the reductions for this RLC line are
plotted versus the reduced orderq. The initial order of the system
was 1000. As the figure suggests, the errors for the DGE method
(as well as all other methods!) is much bigger than the errors for
the modified AISIAD algorithm. We’d like to stress that here we
used exact low-rank approximant for DGE method, whereas for the
modified AISIAD we used approximated gramians (the ones provided
by algorithm 4). This way, the curve for DGE is a universal upper
bound for all family of methods that approximateP andQ separately.
Evidently, AISIAD is the best method for this case, significantly
outperforming the original AISIAD method.

1) RLC line - MNA formulation:We have used modified nodal
analysis (MNA) formulation for the transmission line depicted on
figure 4. The inputs were the voltage sources either at a single end
or both ends, and the outputs were either currents through the end
resistors or (in the case of a single input) voltage at the other end of
a line.
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Fig. 4. RLC transmission line model as a motivating example.

The MNA formulation for this line results in a dynamical system
in the form(E,A,B,C). We have observed that the modified AISIAD
method always works better than PVL, DGE and Arnoldi (which is
the PRIMA algorithm [15])4. However, low-rank square root method
sometimes gives comparable results as modified AISIAD, and for
two-port impedance model in some cases it even produces inferior
results with respect to LRSQRT. However, the two-port impedance
model is almost irreducible, it’s Hankel singular values are quite high.

2) Passive post-processing:We have used the RLC transmission
line model with input being the voltage at the first node and the output
being current through the first resistor of the line (cf. Figure 1). The
passivity constraint implies the transfer function beingpositive-real,
that is, in addition to being stable, it satisfies the following condition:

Re(H( jω)) > 0, ∀ω (14)

The parameters of RLC line wereN = 1000, R= 0.1,L = 2,C= 15.
For this model, the modified AISIAD reduced model of orderq= 30
is not passive, with theH∞ norm of error being 0.70%. We have used
this model for the passive fitting algorithm from [22] and obtained a
positive-real reduced model of orderq= 20, with anH∞ error 0.96%.
The PRIMA algorithm for this order has a tremendously higherH∞
error, which is 88.2%. Figure 5 shows the real parts of the above
mentioned transfer functions.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

2

2.5

3

Frequency, rad/sec

R
ea

l p
ar

t o
f f

re
qu

en
cy

 r
es

po
ns

e

mAISIAD model, q=30 (not passive)
PRIMA algorithm, q=20
Passive fitting of the mAISIAD model, q=20

Fig. 5. Real parts of the transfer functions for the modified AISIAD reduced
model (which has been used for the post-processing, solid line), PRIMA
reduced model (dash-dotted line) and the model obtained after post-processing
of mAISIAD model (dashed line). One can note that PRIMA algorithm poorly
approximates the original transfer function away from the expansion point
(which is at zero frequency). The non-reduced transfer function is almost
indistinguishable from the mAISIAD model.

4PRIMA algorithm has it’s own advantages though, because it preserves
passivity of a reduced model. However, we are concerned here only withH∞
norm as an error measure.
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Fig. 6. Micromachined switch example

3) RC line: In order to test the modified AISIAD algorithm on
a symmetric system (A = AT ,B = CT ), we used a simple RC line
(figure 2 with L = 0) with input being the voltage at the first node
and output being the current through the first resistor. The state vector
was the vector of node voltages. For this systemP= Q and dominant
eigenspaces ofPQ and QP will be the same as the ones ofP and
Q separately, therefore modified AISIAD should achieve exactly the
same accuracy as DGE method. Our numerical experiments fully
support this statement: errors for DGE and modified AISIAD are the
same for this test case.

B. Linearization of micromachined switch

The second example was the linearization of the micromachined
switch (fixed-fixed beam) shown on figure 6. Following Hung et
al. [2], the dynamical behavior of this coupled electro-mechanical-
fluid system can be modeled with 1D Euler’s beam equation and
2D Reynolds’ squeeze film damping equation [2]. The linearization
of this model around equilibrium leads to the nonsymmetric system
(A,B,C) with indefinite system matrixA. The ordern = 880.
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Fig. 7. Errors for the MEMS linearization,N = 880.

On the figure 7 the errors for the MEMS test case are presented.
Here still modified AISIAD method performs better than any other
method, but the difference is not as dramatic as for other examples.
The LRSQRT method showed the results similar to the modified
AISIAD.

C. Cooling profile of steel rail

This test case was obtained from the Oberwolfach Model Reduc-
tion Benchmark Collection web site [23]. The reader is referred to
the description ofHeat transfer problem for cooling of steel profiles
benchmark on the mentioned web site for descriptions. This is the
model in a descriptor form(E,A,B,C) with n= 1357, having 7 inputs
and 6 outputs.
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Fig. 8. Reduction errors for the rail example,n = 1357, 7 inputs, 6 outputs

For this example the modified AISIAD showed superior perfor-
mance with respect to any other approximations, including LRSQRT
method.

On the figure 8 we present the error plot for this example. Here,
again, AISIAD greately outperforms any other approximations to
TBR, as well as Krylov-subspace based reductions. The reduced
models of orderq = 2,3,4 are unstable, but it’s even smaller than
the number of inputs. As expected, modified AISIAD outperforms
original AISIAD algorithm.

D. Optical filter

This test case was obtained from the Oberwolfach Model Reduc-
tion Benchmark Collection web site [23]. The reader is referred to the
description ofTunable Optical Filterbenchmark on the mentioned
web site for descriptions. This is the model in a descriptor form
(E,A,B,C) with n = 1668, having 1 input and 5 outputs. The corre-
sponding errors are presented on figure 9. Here the dominant gramian
eigenspace projection was computed using the same approximate
gramians which were used for the modified AISIAD method. The
LRSQRT method showed very similar errors as the modified AISIAD.

5 10 15 20 25 30 35 40

10
−5

10
0

||G
15

0
tb

r
(s

) 
−

 G
D

G
E

, A
IS

IA
D

, P
V

L (s
)|

| ∞

reduced order, q

mAISIAD
DGE
original AISIAD
Pade via Lanczos
Arnoldi
LRSQRT

Fig. 9. Reduction errors for the optical filter example,n = 1668, 1 inputs,
5 outputs

IX. CONCLUSIONS

As the field of computationally efficient techniques for model
reduction has matured, the range of applications has continued to
expand, and in this expanded set are cases where existing reduction
methods have proved to be unreliable, at least for wide-band appli-
cations. In this paper we demonstrated that there are examples where



separately examining controllability and observability does not yeild
reasonably-sized reduced models. Since almost all the existing meth-
ods for reducing large scale problems effectively perform this separate
examination, new methods are needed. We described such a reduction
method, based on several modifications of the recently developed
AISIAD algorithm. We developed a more general strategy for solving
the AISIAD algorithm’s Sylvester equation, we extended the method
to descriptor systems (i.e. circuits with floating capacitors or coupled
inductors), and we dramatically improved AISAID’s accuracy by
employing low-rank approximations of separate gramians. Finally,
we demonstrated that our modified AISAID method is reliable using
a wide variety of examples. In these examples, the modified AISAID
method was either nearly equivalent or far superior to any of the other
methods suitable for large scale problems. We have demonstrated that
the passive post-processing of the modified AISIAD models gives
significantly more accurate results than PRIMA algorithm.
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