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ABSTRACT
The ability of micromachining, or MEMS, technology to
directly manipulate micron- and nanometer-sized objects
makes it an idea technology for a wide range of biologi-
cal and biomedical applications, and has led to a sub�eld
in bioMEMs design. Although BioMEMS is attracting sub-
stantial attention and research, development has been ham-
pered by the lack of computer-aided design tools. The avail-
able tools are far behind those for integrated circuit design,
and therefore successful bioMEMS designers require very so-
phisticated processing expertise. It is the purpose of this pa-
per to encourage research in this rapidly evolving computer-
aided design �eld, by providing the briefest of summaries
and an extensive set of pointers to literature.

1. INTRODUCTION
Micromachining, the core technology for MEMS, is the

ability to fabricate micro- and nanometer-sized mechanical
parts, and was initially a by-product of the enormous re-
search investment in semiconductor fabrication. Now, though,
micromachining is a thriving research enterprise that ex-
ploits techniques which are very di�erent from those used in
processing semiconductor wafers. The ability of microma-
chined to generate devices which directly manipulate micron-
and nanometer-sized objects makes it an idea technology for
a wide range of biological and biomedical applications.
The use of micromachining for biological applications can

be divided into two categories: analysis and diagnosis (in-
vitro), and internal use (in-vivo) [4, 5]. These two applica-
tions of micromachining generate very di�erent challenges.
Most of the in-vitro applications of micromachining are ones
in which the goal is to improve existing analyses by acceler-
ating processing, improving accuracy, or reducing cost. Such
micromachined devices must be carefully optimized, as the
devices will only be successful if they provide substantial
improvement over existing techniques. Currently research
on in-vitro applications of micromachining are labs-on-a-
chip [1, 2, 3], DNA sequencing [7, 8, 9, 10, 11], cell seperating
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and isolation [12, 13], and blood testing [14, 15].
Unlike in-vitro applications, which often have to compete

with existing approaches, many of the current in-vivo appli-
cations of micromachining are ones in which there is little
or no treatment alternative. Such applications of microma-
chining are inspiring, and include approaches for continuous
glocose monitoring [16], neural-stimulation [17], retinal im-
plants [18], and arti�cial livers and other tissues [19, 20].
In-vivo micromachined devices are unlikely to appear in the
near term, there are many diÆcult challenges such as the
problems of energy havesting [6] and developing biocompat-
ible processing [21, 22, 23, 24].
The typical approach to designing most bioMEMS devices

involves using a simpli�ed analytical model of a design, fol-
lowed by the creation of many di�erent design prototypes,
some of which might function to speci�cation. While this
approach leverages the ability of micromachining technol-
ogy to make many types of devices at once, such a pro-
totyping approach is not likely to succeed in any but a
research environment. As any integrated circuit designer
knows, optimization using prototypes is too expensive and
time-consuming, and does not identify failure mechanisms
leading to unreliable designs. The end result is an unrea-
sonably long time-to-market, and a reliance on extremely
conservative design practices. In the sections below, we de-
scribe the present state and future needs for design tools for
bioMEMS, and hope to encourage researchers to develop the
tools desperately needed in this emerging �eld.

2. A BRIEF HISTORY OF CAD FOR MI-
CROMACHINING

Computer-aided design systems for micro-electro- mechan-
ical systems [54, 55, 56] (the genesis for the now nearly
ubiquitous name of MEMS) began in the mid-eighties, with
the primary focus being on three-dimensional model genera-
tion [32, 33], integral-equation based algorithms for fast elec-
trostatic analysis of complicated three dimensional struc-
tures [34, 35, 36, 37, 38], and methods for solving cou-
pled partial di�erential equations [39, 40, 60, 41]. During
the mid-nineties, when surface micromachined polysilicon
looked like it would become a widely used foundary process,
the CAD for MEMS e�ort bifurcated. Specialized systems
for micromachined polysilicon devices were developed, and
these systems exploited the speci�cs of the micromachining
process to create a very eÆcient hierarchy for simulation, ex-
traction and optimization [28, 29, 30, 31]. The developers of
more general CAD for MEMS systems [25, 26, 27] attempted
to achieve the same goal by focussing on using model-order
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reduction to extract higher-level models from the coupled
partial di�erential equation descriptions of MEMS, using ei-
ther data-�tting [42, 43] or projection [44, 45, 46, 47, 48, 49,
50].

3. DIRECTIONS FOR BIOMEMS
The application of micromachining to biological appli-

cations requires complicated structures that process 
uid,
such as mixers, separators and pumps. This 
uid handling
requirement nearly eliminates the use of surface microma-
chined polysilicon, and even silicon has been pushed aside
as the material of choice. The cost of processing silicon,
at least for small numbers of devices, and its reactivity,
has ushered in a move to other materials [21, 22, 23, 24].
From the perspective of CAD development, it is clear that
tools for BioMEMS must handle 
uids, and must handle
very general three dimensional structures. For micro
u-
idic devices intended for use in molecular seperation, the
length scales are such that noncontinuum 
uid e�ects must
be considered [57, 58, 59], and therefore hybrid approaches
which combine molecular and continuum models being de-
veloped [64, 65, 66, 67]. For devices used in processing cells,
faster techniques are needed for analyzing cells in 
ow [60,
61, 62, 63]
In addition, the wide variety of structures being developed

implies that generating the models for system-level simula-
tion will depend on a combination of eÆcient 
uid simula-
tion and model extraction techniques. The required tech-
niques may include approaches similar to the robust non-
linear model order reduction strategies being developed for
nonlinear circuit model reduction [50, 51, 52, 53], but will
also involve approaches where the interaction is a surface or
region, rather than a few ports [68, 69, 70]. Finally, auto-
mated device optimization will likely require some form of
parameterized model reduction[71, 72, 73].

4. CONCLUSIONS
In this paper we attempted to brie
y survey the current

challenges to providing CAD tools for designers of bioMEMS
devices, and to provide an variety of pointers to the liter-
ature. Our main purpose was to encourage students in-
terested in this area, and to aid them in getting started
in this rapidly evolving computer-aided design �eld. This
summary was supported by the National Science Founda-
tion, and the Singapore-MIT alliance. Much of the research
described above was supported under a variety of DARPA-
sponsored programs.
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