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Abstract

Detailed electromagnetic analysis of three-dimensional structures in multi-
layered dielectric media is critical for automatic generation of equivalent
circuit models for the interconnects and packages in RF or mixed signal
integrated circuits. In this paper we present a new wideband surface inte-
gral formulation that can be readily combined with the well-established
layered Green’s function techniques. In discretizing the formulation, we
have used the well-known RWG linear basis function to reduce the num-
ber of unknowns. Using a so-called loop-star basis transformation and
the frequency normalization, the accuracy at low frequencies has been
improved substantially. Several numerical examples are used to validate
the accuracy and robustness of this new formulation.

1. Introduction

RF and mixed-signal systems are extremely sensitive to high-frequency
electromagnetic coupling effects associated with the interconnect, but
accurately determining those effects often requires analyzing hundreds
of simultaneously interacting conductors. Accelerated integral equation
based methods have demonstrated an ability to perform detailed electro-
magnetic analysis of complicated 3-D structures [1, 2, 3, 4], and efforts
continue to improve computational efficiency by reducing the number of
discretization unknowns. For example, frequency dependent global basis
functions have been used to reduce the number of unknowns in volume
integral equation methods [5], and surface integral formulations have
been employed to avoid generating frequency-dependent discretizations
of conductor and substrate interiors [6, 7, 8].

One of the persistent challenges in developing methods based on surface
integral formulations is finding an approach that is truly wideband, and
there has been much recent progress. One example is a surface inte-
gral formulation described in [6, 9], which was combined with the pre-
corrected FFT acceleration algorithm to produce the program FastImp [10,
11]. Although Fastlmp is a useful tool, the surface integral formula-
tion on which the program is based has two problems that limit the
program’s generality. First, the integral formulation was derived from

scalar Helmholtz equations and uses E and %—5 as its unknowns. This
makes it very difficult to use the well-established multilayered media
Green'’s functions [12, 13] for the analysis of 3D structures embedded
into multi-layered dielectric media. Second, the formulation uses two
different methods to calculate external port current at low frequencies
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and high frequencies. This inconsistency can cause continuity difficul-
ties and interferes with using model order reduction [14].

To address the difficulties listed above, we developed a new surface inte-
gral formulation derived from vector Helmholtz wave equations, and de-
scribe the derivation in Section 2. As briefly described in Section 3, this
approach generates a formulation for which it is immediately possible
to use the well-established techniques for multilayered media, port cur-
rent computation, and surface discretization. In section 4, results from
numerical experiments are used to show that the new formulation is ac-
curate and robust across wide frequency range. Conclusions are given in
Section 5.

2. Derivation of the Surface Integral Formulation
For the following derivation, assume the 3D structure consists of N con-
ductors, denoted as V;,i = 1,2,--- | N and let the free space be denoted
as V.

2.1 Governing equations
In free space, the independent Maxwell’s equations in time-harmonic
form are [15]

V xE = — jouoH 1)
Vxﬁ=f+jwsoﬁ 2)
V.J=—jop 3)

where E ,FI ,f,p,ﬂo and gg denote the electric field, magnetic field, current
density, charge density, permeability and permittivity, respectively. The
constitutive equation for the current density J inside each conductor is

J(7) = GE(P), T € Vi, @
where o; is the conductivity of the i-th conductor. Equations (1) and (2)
imply
V x V x E — o*eouoE = — jougl. 6)
And equations (1), (2) and (4) imply
V xV x H — (0?eouo — jouc;)H = 0. (6)

Since 6; > we( for good conductors (such as copper and aluminum) up
to the terahertz range [16], we could simplify equation (6) as

V x V x H+ jouyo;H = 0. @)

Equations (5) and (7) are the governing equations inside each conductor
Vi, and the equations (1- 3) are the governing equations in the surround-
ing free space V.



2.2 Surface integral representations

It is shown in [17] that the second vector Green’s identity can be used
to derive the surface integral representation for E field and H field from
equations (5) and (7), respectively. The representation for His

T(HHF

+V [ as#)61 (.7 la-H)F)

~Vx [ as(?)G1(7.7)lax H)(7)
®

~(jozo+0)) [ dS()G1(7.7)[Ax E)(),

where
elki[F=7|

G(AF)= o, k
1( ) 47'C|?—?/‘7 1

=\ JOuoGi, ®

1 if7evV;
1/2 ifFes;
0 otherwise

T(F) = (10)

S; is the surface of V;. And the representation for E is

T(HE —Vx/dS

—|—V/Sv dS(7)Go(7. 7 E)(7)
’ (11)

where

€040- (12)
When 7 € §;, the integrals in (8) and (11) should be the principle value
integrals.

If we write equation (11) for each conductor separately but let 7 be fixed
on the surface of a particular conductor V, and then sum up these equa-
tions, we obtain

%E‘(?) — .V« / dS(F)Go(F,7) it x E|(7)

+V [ dS)Go7)li-E)(7) -

— (joouo) / dS(¥)Go(7, ) [ x H](¥)

~ (jouo) / av (7 )Go(7,7)J (),

where k =1,2,...,N, S is the union of all conductor surfaces and V is the
union of all conductor volumes.

All integrals in (8) and (13) except the last term in (13) are surface in-
tegrals. As pointed out in [10], we could use the well-known mixed
potential integral equation (MPIE) to eliminate the undesirable volume
integral term. The E field everywhere can be represented in terms of the
scalar electric potential and the vector magnetic potential [18]

E(7) = —jod(7) - Vo(7) "
:—Jo)m)/dV F)Go(#,7)J ( ") = Vo(7) o
where
7P
o) = [ as)Go(:7) P as)
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Figure 1: The surface of a 3D interconnect conductor

Subtract (14) from (13), we obtain

-

WE(r) Vo(7) V></dS Go(%7)[A x E](7)
+V [ dS()Go(7.7) i E1(7)

— (jouo) /S AS(#)Go (7,7 [ x H](7), F € 5.

16)

Equations (8), (15) and (16) are the main integral equations in our for-
mulation. Similar to the surface formulation in Fastlmp, using MPIE
not only eliminates the volume integral term but also takes into account
the coupling among conductors. In addition, the introduction of scalar
potential ¢ into our formulation makes it very convenient to add voltage
excitation into our system, just like PEEC models [19].

2.3 Boundary Conditions

The surface of each conductor could be divided into two non-overlapping
parts: contact surfaces and non-contact surfaces, as shown in figure 1.
The contact is an artificially exposed surface. It is created primarily to
separate a block of 3-D interconnect from other parts within a large chip.
Eventually a contact will correspond to a terminal in an equivalent circuit
model. Since we choose to use voltage as the excitation to our system,
the boundary condition on a contact is

o(7)

where S, ; denotes the contact part of the i-th conductor surface and ¢, ;
is the excitation potential on the i-th conductor.

=0, TESe, (17)

Since the conductors connected to contacts are generally not included
into the computational domain, we actually do not have any information
about the material property of these conductors. It is because of this
reason that we want to avoid using matching boundary conditions on the
conductor surfaces in our formulation.

Non-contact surfaces are the portion of surfaces actually exposed to the
surrounding medium. So we expect to see charge accumulating on the
surfaces. In view of (3) and (4), this suggests that the boundary condition
on the non-contact surfaces should be

#(R)- B = 1220

o; re Sncﬁi:

18

where S, ; is the non-contact part of the i-th conductor surface.

2.4 Complete Formulation
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From basic vector identity, we have

Vs-[aixH =V- [ﬁ x H]
19)
H-Vxhi—-in-VxH
V- [AxE]=V-[AxE]
(20)

=E-V><ﬁfﬁ-V><Ea

where Vg =V - a . Since we are only considering flat conductor sur-
faces in this paper, 7 can be considered a constant vector. Then using (1)
and (2), equations (19) and (20) can be simplified to

V- [ x H](7) = —(joeo +6;)Eq(F), FE S; @1

V- [ x E](7) = (jowo)Ha (), 7 € Si. (22)
Substituting (21) in (16) and (18) and (22) in (8) eliminates Hj, in (8) and
E, in (16) and (18).

With all the boundary conditions and the simplified surface integral rep-
resentations, the proposed surface integral formulation is summarized as
the following:

- l[ﬁ x E|(7) = i(7) x VO(7) — (7)) x V x /dS(r VGo(7,7) [ x E](7)

[nXH}(r')
(/weo—l—c)

A) xV/dS(r 1Go (7, 7) 2

— (joouo)A(F) x /SdS(?')GO(’r‘,'r")[ﬁ x H|(7), €S

(23)
Lo B)(7) = —a(®) x V x / dS(#)G1 (7, 7) [ x H](7)
2 S
o o Lo Vs [Aix E](F/)
AT xv/S as(#)Gi (7. 7) =0 (24
— (joeo +6:)A(7) / dS(F )G (F,7)[f x E](7), F € S;
oF) = /dS( )Go(7,7) 2 (') Fes 25)
V, i x A7) = 22U ‘”83% oD e, 26)
(])(7) = (])eﬁ,', 7 e SCJ. (27)

Equations (24) and (23) are obtained by restricting 7 on the inner side of
the conductor surfaces and then keeping only the tangential components
of (8) and (16). Since the two equations (21) and (22) are the normal
components of the two fundamental equations (1) and (2), it would be
redundant to enforce the normal component of the integral equations
(8) and (16). This formulation has six scalar unknowns: two tangential
components of E and A, and two scalars ¢ and p. Equation (26) and (27)
complement each other, so the total number of scalar equations is also
Six.

The two tangential components 7 x E and A x H are approximated with
RWG basis functions, the edge-based linear basis function [20]. This
generally requires that the conductor surfaces should be discretized with
triangular panels. The two scalar variables p and ¢ are approximated
with piecewise constant basis functions. The Galerkin scheme is used to
test equations (24) and (23), and the collocation method is used to test
(25).

If the electro-magneto-quasi-static (EMQS) approximation is assumed,
the wave number kg in (12) can be simplified as kg = 0. If the magneto-
quasi-static (MQS) approximation is assumed, then in addition to use
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ko = 0, the charge density p is zero in equation (26) and equation (25) is
eliminated.

3. Advantages of the New Formulation
3.1 Use Dyadic Multilayered Green’s Functions

As is shown in [21], this new surface formulation can make use of the
dyadic multilayered media Green’s functions [12, 15], primarily because
the equations are derived using the vector Helmholtz wave equation.
The surface integral formulation in Fastlmp, however, is derived from
the scalar Helmholtz equation and to the best of the authors knowledge,
multilayered Green’s functions have not been derived for that case.

3.2 Consistent Port Current Calculation Method

One straight-forward way to calculate current on a contact S is

I= [ dS(¥)oE,. (28)

Se
As frequency increases, and skin effects cause current to crowd near
the corners, it is necessary to discretize more finely so as to capture the
exponential decay of the current density. Instead, a different scheme
can be used once the frequency surpasses a point where the skin-depth
is comparable to the cross-section size of the conductors. For the high
frequency case, the current is calculated from

S

I— / AS(#)V x A -

G+ joey Js,
/deEf
L

—0
/dl(aEn . OE
L

(o+ joeo)(joouo)
a1 on )
where two tangential unit vectors #; and 7y along with the normal unit
vector 71 are in the local coordinate system.

(29)

.
(o+ jweg)(jouo)

Since the formula in (28) is inaccurate at high frequencies, and the for-
mula in (29) is inaccurate at low frequencies, it is a relatively simple
matter to switch between port current formulas depending on excitation
frequency [6, 11]. However, such an approach can introduce discontinu-
ties or interfere with model order reduction. The problem of switching
formulas can be avoided in our new formulation.

The surface formulation in [6, 11] does not use the magnetic field as one
of its variables. In our new formulation, however, we have A x Hasa
variable, so its accuracy is guaranteed by the solver we use for the dis-
cretized system. Using the magnetic field, the current can be calculated
simply by

° / AS()Vs - (i< A()) (30)

1= 0/ dS(¥)E, = ———
Se G+ JWEY JS§,
Therefore, accuracy in A x H directly translates into accuracy in the cur-
rent.

3.3 Apply RWG and Loop-Star Basis Functions

As pointed out in [22], direct application of the conventional RWG basis
in the Electric Field Integral Equations (EFIE) formulation [23] results
in a low frequency accuracy problem. Since the first two equations in
our formulation are very similar to EFIE, the formulation also has this
low-frequency problem. The key observation in [22] is that E field and
H field have a divergence-free and a curl-free part that scale very differ-
ently with frequency. This leads to large numerical error when one part
dominates. The loop-star basis function naturally decomposes the fields
into the two parts, the loop basis approximates the divergence-free part
and star basis approximates the curl-free part, so that each part can be
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Figure 2: Resistance of a straight wire

scaled separately [24, 25]. Although the derivation is lengthy, it is pos-
sible to show that the new formulation can be used in conjunction with
loop-star basis functions [21].

4. Numerical Results

In this section we present some computational results using the new sur-
face formulation. The formulation was implemented using Matlab, and
the implementation includes the loop-star basis and frequency normal-
ization. To test the formulation, we used simple wire and ring structures
to compare results from the MQS analysis program FastHenry to results
generated using our implementation of the new formulation simplified
to perform MQS analysis. The numerical experiments demonstrate that
the new surface integral formulation is accurate and robust across a wide
frequency range. The numerical experiments also show we can indeed
accurately compute port current at both low and high frequencies with
the single method in (30).

4.1 A straight wire

For the wire example, we used a wire with a cross-section of 1mm by
1mm, a length was 4mm, and the conductivity of copper, 5.8¢7. The
conductor surface was discretized into 132 triangular panels, and both
our new formulation and FastHenry were used to calculate the wire resis-
tance and inductance. The comparison with FastHenry is shown in figure
2 and 3. Note that the number of filaments used with FastHenry was in-
creased from 128, to 692, and finally to 2048 to demonstrate the need
for fine discretization to capture skin effects. The plots clearly show that
our new formulation uses a single discretization yet is accurate across a
wide frequency range.

4.2 Aring

For the ring example, we used a ring with a 10mm radius, a 0.5mm by
0.5mm square cross section, and a conductivity 5.8e7 (copper). The con-
ductor surface was discretized into 272 triangular panels, and both our
new formulation and FastHenry were used to calculate the wire resis-
tance and inductance. Note that the number of filaments used with Fas-
tHenry was increased from 960, to 3840, and finally to 15360 to demon-
strate the need for fine discretization to capture skin effects. Note also
that at low frequency, the relative error of both resistance and induc-
tance is about 5 percent. This error is primarily due to the 272 panel
discretization’s inability to accurately represent the geometry, as there
are only 16 panels along the circular direction of ring. Finally, the error
is larger at high frequencies mainly because the coarse discretization of
the surface is insufficient to capture crowding of current near corners at
high frequencies. Clearly, even the surface formulation requires some
discretization adjustments to handle high frequencies.

1.7
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Figure 3: Inductance of a straight wire
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Figure 4: Resistance of a ring
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5. Conclusions

We have proposed a new surface integral formulation for the Magneto-
Quasi-Static, Electro-Magneto-Quasi-Static and fullwave analysis of com-
plicated 3D structures embedded in multilayered media. This formula-
tion is closely linked with the well-known Stratton-Chu formulation or
EFIE and MFIE formulation. Hence the well-established techniques like
RWG linear basis function, loop-star basis transformation and frequency
normalization can be used to reduce the number of unknowns and to im-
prove the accuracy at low frequencies. Numerical experiments show that
the formulation is accurate and robust across wide frequency range.

The main advantages of this new formulation are its capability to handle
multilayered Green’s function and its compatibility with the standard
model order reduction techniques. Since the prototype implementation
was written in matlab, we have not presented CPU times. In addition,
the code can only handle structures discretized into no more than a few
hundred triangles. Our future work will be to combine this new integral
formulation with: acceleration techniques to improve the efficiency, and
model reduction to extract circuit models.
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