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ABSTRACT single program capable of solving full Maxwell's equations in gen-

In this paper we describe the algorithms used in Fastimp, a program&'al ?D Str“CtuieS with Iossyf conductors which is accurate from
for accurate analysis of wide-band electromagnetic effects in very zelr 0 trr]_equency 0 nalcrovysveihreqluen%es. din Eastl
complicated geometries of conductors. The program is based ona_ " f's paper vtve esicrl_ e ; e_g gg“ dmsi usie in ast_ mpf'r a Fr(.)'
recently developed surface integral formulation and a precorrected-9ram Tor accurate analysis ofwide-band electromagnetic eliects in
FFT accelerated iterative method, but includes a new scaling and V€'Y complicated geometries of conductors. The program is based
preconditioning technique as well as a generalized grid interpola- ©N @ recently developed surface integral formulation [9, 10, 11] and
tion and projection strategy. Computational results are given on a & Precorrected-FFT accelerated iterative method [8], but includes a
variety of integrated circuit interconnect structures to demonstrate €W Scaling and preconditioning technique as well as a generalized

that Fastimp is r tan n ratelv analvze verv complicat grid interpolation and projection strategy for the preqorrecteq-FFT
ge%mgfries%fscgnbdujct?)rsd. can accurately analyze very complica edmethod. The background for the surface formulation is described in

the next section, and then the scaling and preconditioning approach
Categories and Subject Descriptors is described in section 3. The generalized grid projection strategy
is detailed in section 4. To demonstrate that Fastimp is both fast
and robust, a variety of examples are examined in section 5, and
then conclusions are given in section 6.

B.7.2 [Integrating Circuits ]: Design Aids-placement and routing,
simulation, verification

General Terms
Algorithms 2. BACKGROUND

Keywords In this section, we summarize the surface formulation and review
the discretization scheme used in [10]. The improvements we made
Impedance extraction, interconnect, fast integral equation solver, in section 3 are closely tied with this discretization scheme.
iterative methods, preconditioning 21 S ¢ ¢ ¢ lati
. ummary of a surrace rormulaton
1. INT_RODU_C_:TION o ] o o The formulation in [9] has as unknownE:(F), the vector elec-
Collocating sensitive analog circuits and rapidly switching digi- . L 9E(P) L .
tal logic on a single integrated circuit, as is typical in mixed signal ic field at locationr; =5.~, the normal derivative of the electric
designs, can create coupling problems that are very difficult to find fi€ld: @ the scalar potentiap, the charge density. It consists of the
and eliminate. The difficulty is that these coupling problems are following equations
often caused by simultaneous interactions between a large num-

ber of conductors. In order to help designers find these problems, 1=, L 0E() Gy (F,1) = o,
there has been renewed emphasis on developing eIectromagneticEEm o /54 ds | Gu(r,r) 6n(7) B 6n(7) E() ), T€S,
analysis tools capable of wide-band analysis of very complicated 1)

geometries of conductors.

In the area of electromagnetic analysis of complicated geome- 1. ~ o AE()  9Go(T, 1) =
tries of interconnect, most of the recently developed programs have —t(F) - 5E(F) = () -/dS Go(T,1") (ﬂ) - #E(r’)
been based on combining discretized integral formulations with ac- S on(r’)
celerated iterative methods [1, 2, 3, 4, 5, 6, 7, 8]. Though these .
programs and techniques have been very effective, there is still no +t(7)-Og(T), TE S (2)
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where

Go(F, ") ghor ! ko = WV )
,I’ = =, = W/E&| 5
° ange—1| !
and
L elkal—r]
Gi(F,1") = ———= ki = —\/wPep— jono; ,  (10)
4mr —r/|

g; is the conductivity of théth conductorS is the surface of the
ith conductor an@ is the union of all conductor surfaces, ad

P4
Qi‘l.__c_.___iQ:; P3
| 0
—qul_ A :
QT iz~
P1 P2

Figure 1: Dual panel

andS$yc are the contact part and the non-contact part of the surface the same holds true for the elements in maSix The elements of

S, respectively. Heré(T) is a pair of vector$; andf, which repre-
sent the local two dimensional coordinate system at oot the
surface.
2.2 Discretization of the formulation

In order to discretize the integral equations (1), (2) and (3), a

piecewise constant centroid collocation scheme is used. The con-

ductor surface is discretized into many flat quadrilateral panels.

Seven unknowns are associated with each paglEy, E, 9EX

on’
%’, %an andp. The scalar potentiap is associated with the panel

vertexes, andl@in (2) is computed using finite-differences. With

this setting, equations (5), (6), (7), and (8) become simple algebraic

equations. But equation (4) deserves more attention.

Applying the integral form of equation (4) to the surface of an
infinitely thin small rectangular box beneath the conductor surface,
we obtain

[ty a0 <)~ [ asonm- S50

wherea is the top of the box( is the periphery of, fi is the
normal unit vector andis the unit vector alon@. Equation (11) is

0 (11)

matrix Dg are

DO(IaJ) = {

Follow the same reasoning, we find tHag(i, j) is O(1). Again,
the same observation holds true for maiix

The dual panel discretization in (11) implies that the elements in
matriceECy, Cy andC; areO(u) and the elements in matricég Ay
andA; areO(u?). And it is easy to check that the elements in the
finite difference matriceg; andg, areO(1/u).

Now it is clear that the scale in different matrix blocks in (12)
could be different by many orders of magnitudeiifs small. The
huge difference in the scale could lead to large condition number.
For example, the condition number could be as larg&G&8 for
micron feature sizes. Large condition numbers usually leads to in-
accurate results and stagnant iterations of an iterative solver.

Fortunately, a simple scaling manipulation as the following can
be used to remedy the situation: scale the first three columns and
the last column witL/u and the seventh column with and then
scale the seventh row wittyu. It is easy to check that now most of

elkolri '

a

on(r) 4mri—r'|

i #]

- fPaney ds(?’)
1 i=].

2

enforced on the so-called dual panel around each vertex, one duakhe matrix blocks ar€@(1). Hence the new system matrix is much

panelQ1Q2,Q3Q4 is shown in figure 1.
Now we can write the system matrix as (12), where the horizon-

better conditioned.
A simple straight wire example could be used to show the impact

tal lines are used to mark the corresponding relation between row of the scaling. The size of the wire 1sx 1 x 4um its conductivity

blocks and the equations (1) to (8). For example, the three rows in
the first row block correspond to (1). Matrixis the identity ma-

trix, Sy and S; are respectively the dense matrices corresponding
to the single-layer integral with Green'’s functi@p in (9) andG;

in (10),Dg andD; are respectively the dense matrices correspond-
ing to the double-layer integral with Green’s functiGg and Gy,

g1 andgy are sparse matrices representing the finite-difference ap-
proximation ofJg. Sparse matrice®; o, Toq andNy (a0 = X,Y,2)

are the transfer matrices relating the local coordinate system (
andn) to the global coordinate system,{ andz). The nonzero
elements of the sparse matriokg Ay andA; and the nonzero el-
ements of the sparse matridgg C, andC; are related to the dual
panel discretization. Ang, the known potential on the contact, is
used as the excitation.

3. SCALING AND PRECONDITIONING
3.1 Scaling

The system in (12) will be solved iteratively, so keeping the con-

dition number small is essential. Suppose the average panel edge

length isO(u), we will first estimate the scale of each matrix block
in (12) in terms ofu.
The elements of matri% in (12) are

/ g 071G = I g 857
jkqlfi 7’|

Sincer; and™ are on the conductor surface, it is clear t R
is O(1/u) andds(F) is O(u?). HenceSy(i, j) is O(u). Obviously,

elkolfi 7
4mjr —7'|

S, )
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is 5.8 x 10°. The DC resistance of this wire should B©6896%).
However, without the scaling trick presented here, the calculated
resistance would b8.081(@. After the system matrix has been
properly scaled, the result becon®86896%).

3.2 Preconditioning

A straightforward way of constructing a preconditioner for the
system matrix like the one in (12) is to simply replace the matrix
blocks corresponding to the integral operators with their diagonal
elements and keep all other sparse matrix blocks. This method was
used in [9] to construct a preconditioner from the system matrix
in (12). Extensive numerical experiments have shown that this pre-
conditioner could significantly reduce the number of iterations. But
for some structures the number of nonzeros in the preconditioner
after the sparse LU factorization is still rather large. This is par-
tially because some rows in the preconditioner before the LU fac-
torization are not sparse enough.

Among the unknowns of the surface formula’[icﬁrland"—'f1 are
vector variables. They could be defined either in the glo%al coordi-
nate systemy( ¥, 2) or in the local coordinate systerfi (f>, fi). On

the other hand, vector equation (1) could also be enforced either in
the global or the local coordinate system. These different options
result in different system matrices. But they are in fact different
by just a similarity transformation. Hence they all have the same
condition number and lead to the same convergence behavior if an
iterative solver is used. But the preconditioners constructed from
these different system matrices are significantly different, particu-
larly in the matrix sparsity.



Table 1: Performance of preconditioners in the global and the
local coordinate system

local global
number of nonzeros before LU 320376 | 547636
number of nonzeros after LU 1097973| 1318222
number of fill-in's 777597 | 770586
number of GMRES iterations 15 15

. . . OE
A sparser precondioner can be derived by deflrﬁm‘mdﬁ as

well as enforcing equation (1) in the local coordinate system. The
structure of the system matrix constructed under such condition is
shown in (13).

[ TS TS
TaS TS
TS TS
T1S TS
T2(1)So T22S

T13S
T3S
T3S
T13S
T3S
0
—A

T11D1
T21D1
T31D1
T11D0
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T12Do
T22Do
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T13Do

T23Do
0
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—|oooo|al |[RRlcooco
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)
Matrices Tmn(m,n = 1,2,3)) are defined a3i1(i,j) = fl') Afij),
Tag(i, j) =t -8, Taai, ) =€ -A0), and etc, wherd” £ a())

is the local coordinate system on thb panel. Extracting the di-
agonal part of the matrix blocks that correspond to the integral op-

erators and keeping the remaining sparse matrices yields a sparser

preconditioner. The density of all rows below the third block row
have been reduced by about one half.

To verify the effectiveness of the sparser preconditioner, we used
it in the analysis of a four-turn spiral over a lossy substrate ground
plane. The total number of unknowns is 72531. The performance
of the preconditioners in the global and the local coordinate system
is compared in table 1. As it is expected, the preconditioner in
the local coordinate system before the LU factorization is indeed
much sparser. But this advantage is somewhat offset by the fill-
in's generated by LU factorization. Hence the number of nonzeros
in both precondioners after LU factorization is different by about
20% This directly translates into 20% saving in memory usage.

In addition, both preconditioners lead to the same iteration count.

4. PRE-CORRECTED FFT ALGORITHM

After discretization, the algebraic equations (5), (6), (7), (8) and
(11) become sparse matrix equations. But integral equations (1),
(2) and (3) become dense matrix equations. So solving the whole
system matrix using iterative methods still tak&@N?) operations,
whereN is the number of unknowns. In this paper, we use the

714

TS 0 0 D1 0 0 0 0 7 r o0
0o s 0 0 D 0 (0|0 | 0
0 0 S 0 0 Dy 0 0 o 0
TixS TiyS T12% | TaxDo TiyDo TizDo| g1 | O LY 0
ToxS ToyS TozS | ToxDo ToyDo TozDo | g2 | O ﬁ 0
0 0 0 0 0 0 -1 S N o
A A, A | G G G 0] 0 =0 12
0 0 0 Nx Ny N, | 0] Eﬁ 0
0 0 0 T1.x Ty T12 0 0 ) 0
0 0 0 Tax TZA,y T2z 0 0 T L
N N, N, | 0 0 o Tol o |-P- |0
L O 0 0 0 0 0 | 0 L ¢ |

pre-corrected FFT algorithm to accelerate the dense matrix vector
product corresponding to the operation of those integral operators
in (1), (2) and (3).

An abstract form of the kernels in (1), (2) and (3) is

K(F",F) = Fi(F2(G(1,T)))

WhereG(F’, r) is the Green'’s function, and the most commonly used

(14)

forms of the operatof1 (-) and > (-) are /(1) =U(+), %, %,
da¢)  di) Noy(y 40 d)  d()  d@) .
g ann Ad720) =V 0) G G g angy 29U )

is the identity operator. For the sake of clarity, we use a simple
single-kernel integral equation

/SdSK(F/,r)p(F/) —f(r), FES

to illustrate how the pFFT algorithm can be used to accelerate the
operation of an integral operator. Functib(r) is the known right
hand side term. The procedure extends easily to the integral equa-
tions with multiple kernels, such as (1) and (2).

The standard procedure for solving equation (15) numerically is
to discretize by means of projection [7] and solve the resulting lin-
ear system with an iterative method, such as GMRES [12]. For
example, ifp(F) is approximated as a weighted combinatiorNof
basis functionsp(r) = 5 ajb;(r), andaj are determined by collo-
cation method, then we arrive at

M=,

(15)

(16)
where

A= [, dSK T (), a”

rj is theith collocation point, and&']? is the support of the basis

functionsb; (7). The commonly used basis functions are low-order
polynomials with local support [7].

The key idea of the pFFT algorithm is to replace (16) with its
sparse representation

[Alar = ([B]+[1[H][P]a, (18)

wherel, P, D andH are the interpolation, projection, direct and
convolution matrix, respectively. Algorithms used in this paper to
compute matrice® andH are similar to the ones in [8]. Hence we
shall not give details here. The contribution of this paper is to use a
different way than the one in [8] to set up matridesndP so that

it could easily handle the general kernels in (14).

4.1 Projection and interpolation

Figure 2 shows a 2D pictorial representation of the projection
step, where a triangle is used to represent the support of the basis
function. A 3 x 3 projection grid is assumed here and obviously
more points could be used if the accuracy requirement is higher.



We start with a point charge, at pointS on the triangle, shown
in figure 2. The potential at poirit due to this point charge is

&) = PpG(Ts.Te). (19)

The purpose of the projection is to find a set of grid chagggsn

the projection grid points such that they generate the same potential

at pointE, i.e.,

o =S pgiG(Fi.Te) = (Pg) @y = &
I

(0 (20)
where@yj = G(Tj,Tg). We could use a set of polynomials to expand
the Green'’s function

G(F,Te) = Z fi(F)e = fL(P)C. (21)

A simple set of polynomial functions for this purposefigr) =
fik(x,y) =Xyl i, j = 0,1,2,k = 2i + j. Matching both sides at each
grid pointf; yields a linear systerf]c = ¢y, where thd-th row of
the matrix[F] is the set of polynomial$ (r') evaluated at point;.

Substituting the solution = F*lcpg into (21) and evaluating it at
point Syields

G(fsTe) = f'(Fs)F qy. (22)
In light of (19) and (20) we have
(o) = ppf'(F)F ™, (23)

the projection charges for a point charge.

A charge distributiorb; (T) on the jth basis function support
could be regarded as a linear combination of an infinite humber
of point charges. Equation (23) implies that the projection charges
are linearly proportional to the point charge, hence it easily follows
that the projection charges for the charge distribubip(r) is

o) - ( /A_bdsrnr)f“(r)) F,

If there are more than one basis function in the approximate solu-
tion, then the total grid charge&dy on each grid point is the accu-
mulation of the grid charge due to each basis function. It could be
written as

(24)

Ny .
Q=Y ;py’ =[PId,

=1
where[P] is anNg x Np matrix, Ny is the number of basis functions,
Ny is the number of grid points, and the magnitude of basis func-
tionsa is defined in (16). Due to the locality of the basis support,
the projection grid for each basis function has only a small number
of points. Hence each column of the projection maffikis rather
sparse. The non-zero elements in fhé@ column of matrixP] are

the elements of the column vec@j> in equation (24).
If the kernel has a differential operator inside the integral, the
potential at poinE due to a point charge is

1y _ 0
% = oy
where[3 stands forx, y or n. We again want to find a set of grid

chargeﬁs on the projection grid points such that they generate the
same potential at poir, i.e.,

o = 3 0p;iG(Fi.Te) = (Gp)' 0y =
I

(25)

[PpG(Fe.Pe)] = %mpf_‘ (r)F1gy.  (26)

(1)

(0 (27)

Equations (26) and (27) imply that the projection charges are

(0p)' = (ppf_f(?s)':71> :

3B(7s) (28)
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Figure 2: 2-D pictorial representation of the projection step

Similar to the single-layer operator case, the projection charges for
a charge distributiob; (F) on thejth basis function support is

a

—(j),!
(0 3B

0y - ( [, d455() (29

f_f(?)> [F]~2.

The projection matrix for the kernel with a differential operator is
structurally identical to the matrifP] in equation (25). The non-
zero elements in th@th column of the matrix are the elements of

the column vectoc_xéj) in equation (29).

It is shown in [13] that the interpolation matrixhas a dual re-
lationship to the projection matrix. Hence the algorithm to form
matrix | is very similar to the one shown in this section. Please
refer to [14] for details.

4.2 Summary

Since polynomials are used in both the interpolation and the pro-
jection, the interpolation matrik and the projection matril are
only related to the operatafy, and %», respectively, not to the
Green’s functiorG(F,r’). This makes it much easier to handle the

complicated kerneIK(F’,?) in (14). In addition, we could exploit
the fact that matriceb andP are not related to Green'’s function,
hence frequency-independent [5]. For example, we could form
these two matrices just once and use them for Helmholtz kernel
at various frequencies.

5. NUMERICAL RESULTS

Base upon the algorithm described in section 4, we have devel-
oped a C++ program called pfft++. Combining pfft++ with the
surface formulation, we have developed Fastimp, a fast impedance
extraction program. In this section, we first use small examples to
demonstrate Fastimp’s accuracy. We then use a few large examples
to demonstrate Fastimp’s speed and capacity.

5.1 Validation of Fastimp

Magneto-Quasi-Static (MQS) analysisring example is
used to verify the accuracy of the MQS analysis by Fastimp. We
also intend to use this relatively small example to conduct the con-
vergence test of Fastimp. Because of limited space, we only show
inductance results here. The resistance results are essentially the
same as those shown in [11]. The ringl@nmmin radius, with a
square cross section of the sz&mmby 0.5mm The conductivity

is that of the copper, which is 5.8e7. The low frequency induc-
tance calculated using the formula in [15] is 48.89 nH. The number
of filaments used by FastHenry is 960, 3840 and 15360, respec-
tively. And the number of panels used by Fastimp is 992 and 2048,
respectively. With refinement of panel discretization, Fastimp’s re-
sults converges very well, as shown in figure 4.
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Figure 3: Impedance of a shorted transmission line
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Figure 5: Multiple conductor bus

Table 2: Comparison of CPU time and memory usage for var-

55 ious practical structures. The calculations were carried out on
a desk top computer with a pentium Il micro-processor and
1Gb memory.

I - - -
= bus circular spirals| rectangle spirald
g40r 1 #panels 18,540 15,194 18,520
§35, i #unknowns 148,380 121,558 148,166
2 + FastHenry 960 Fastimp 9min,340Mb | 68min,642Mb | 54min,749Mb
E30)] j; Egg;:ggg s ] *iterative | 160min,19Gb| 750min,72Gb| 590min,83Gb
-~ Fastimp 992 *standard | 136days,19Gh 100days,19Gh 168days,22Gb
25/ Fastimp 2048 7 *obtained by estimation or extrapolation.
2 (@) Analy‘tical formula‘ ‘
10° 10 10° 10° 10%

usage for the analysis of these two examples is shown in table 3, 4
Figure 4: Inductance of a ring and 5, respectively. The computation was carried out on a server

) ] ] with 32Gb memory and one 64-bit Itanium micro-processor. This
Electro-Magneto-Quasi-Static (EMQS) analysig have  server is about 3 times slower than the desktop computer used for
used Fastimp to carry out the EMQS analysis of a shorted trans- the previous examples.
mission line. The length of the transmission linddsn The cross- ; ;
section of each condSctorwx 50um And the space between two Computational complexity of Fastimple have used Fastimp

: : : to analyze a series of similar structures with increasingly larger
conductors iS0um The first three resonance frequencies should _: Th 1x1. 2x2. x4 and 8x8 spiral All
be 7.5GHz, 22.5GHz and 37.5GHz. Figure 3 shows the magnitudeS'Ze' ese structures are 1x1, 2x2, 4x4 and 8x spiral arrays.

' elements in these arrays are 3-turn rectangular spirals. The CPU

of its impedance at different frequency points, the expected reso- time versus number of spiral elements in the spiral arrays is shown
nance frequencies are clearly shown in the plot. This suggests that, P P Y

Fastimp could accurately capture both the inductive and the capac-'nnegﬁur”engérlﬂ\]ﬁtﬁ ltohtedergglyemi'iiites that the CPU time grows
itive effects. This shorted transmission line example validates the y y P :

EMQS analysis of Fastimp. 6. CONCLUSIONS
5.2 Performance of Fastimp We have generalized the pre-corrected FFT algorithm to allow

A few large and practical structures are analyzed in this section. the acceleration of complicated integral operators. Based on this

The CPU time and memory usage for different examples are com- 9eneralization we have developed a flexible and extensible fast in-
pared in table 2. tegral equation solver, pfft++, whose computational complexity is

. ) nearly O(N). Using pfft++ as the engine, we have developed a
Multiple conductor crossover busigure 5 shows a mul-  fast impedance extraction program, Fastimp. Numerical exam-
tiple conductor bus with three-layer of identical conductors. Each ples show that Fastimp can perform MQS and EMQS analysis of
|ayel‘ has 10 ConductOI‘S and the COndUCtOrS on diffelfent |ayer are Or'3D genera| structures across W|de frequency range, from Zero fre_
thogonal to each other. The size of every conductedd x 25um.  quency to at least hundreds of giga hertz. It takes Fastimp anywhere
We only extracted one column of the impedance matrix (since this petween 10 minutes to about one hour to analyze realistic 3D struc-
is a multiple port structure) at one frequency pdint 1GHz using  tyres with many hundred thousand of unknowns. Both pfft++ and
the EMQS analysis. The CPU time and memory usage are showngastimp are now available at rleweb.mit.edu/visi/codes.htm.

in table 2. . Table 3: Discretization of the MIT logo example and the 16x8
Stacked spirals over groundhe impedance matrix of stacked  spiral array example
two 9-turn circular spirals over a lossy ground plane and two stacked

freauencv ( Hz)

8-turn rectangular spirals over a lossy ground plane are extracted at MIT logo 16x8 spiral array
one frequency point = 1GHz using the EMQS analysis. The CPU number of panels 173,184 180,224
time and memory usage are shown in table 2. number of unknowns 1,385,718 1,442,048
Large 3D structuresFastimp has been used to perform the number of grids 1024x 256x 8 | 256x 128x 8
EMQS analysis of two large structures shown in figure 6 and 7. [ _9rid step size 1.89um 1.91um

The discretization, detailed breakdown of CPU time and memory
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Table 4: A detailed breakdown of the CPU time used by the
MIT logo example and the 16x8 spiral array example. Unit is

second
MIT logo 16x8 array

P andl matrices 890 849

D andH matrices 13638 14353
form the preconditionel; 54 53

LU factorization ofP; 1512 1927
GMRES (tol = 1e-3) 32424 (77 iter)| 25168 (80 iter)
total 51244 42350

Table 5: A detailed breakdown of the memory usage for the
MIT logo example and the 16x8 spiral array example. Unit is

Gb
MIT logo | 16x8 spiral array|
direct matrices 5.17 5.54
projection matrices 0.38 0.39
interpolation matrices 0.22 0.23
convolution matrices 0.68 0.13
maps between grids and panels 0.65 0.70
preconditioner 2.72 2.76
GMRES 2.03 221
total 11.85 11.96
OoOoooo oonooo
ﬂn [+] oo
o uu
o, o0
oo
oo Dooonn

Figure 6: A large MIT logo consisting of 123 3-turn square spi-

rals

Figure 7: 16x8 3-turn rectangular spiral array

20

CPU time (103 second)
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number of spirals

Figure 8: The CPU time vs. number of spirals in the spiral
arrays
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