
Algorithms in FastImp: A Fast and Wideband Impedance
Extraction Program For Complicated 3-D Geometries ∗

Zhenhai Zhu, Ben Song and Jacob White

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, Cambridge, MA 02139

{zhzhu, bsong01, white}@mit.edu

ABSTRACT
In this paper we describe the algorithms used in FastImp, a program
for accurate analysis of wide-band electromagnetic effects in very
complicated geometries of conductors. The program is based on a
recently developed surface integral formulation and a precorrected-
FFT accelerated iterative method, but includes a new scaling and
preconditioning technique as well as a generalized grid interpola-
tion and projection strategy. Computational results are given on a
variety of integrated circuit interconnect structures to demonstrate
that FastImp is robust and can accurately analyze very complicated
geometries of conductors.

Categories and Subject Descriptors
B.7.2 [Integrating Circuits]: Design Aids-placement and routing,
simulation, verification

General Terms
Algorithms

Keywords
Impedance extraction, interconnect, fast integral equation solver,
iterative methods, preconditioning

1. INTRODUCTION
Collocating sensitive analog circuits and rapidly switching digi-

tal logic on a single integrated circuit, as is typical in mixed signal
designs, can create coupling problems that are very difficult to find
and eliminate. The difficulty is that these coupling problems are
often caused by simultaneous interactions between a large num-
ber of conductors. In order to help designers find these problems,
there has been renewed emphasis on developing electromagnetic
analysis tools capable of wide-band analysis of very complicated
geometries of conductors.

In the area of electromagnetic analysis of complicated geome-
tries of interconnect, most of the recently developed programs have
been based on combining discretized integral formulations with ac-
celerated iterative methods [1, 2, 3, 4, 5, 6, 7, 8]. Though these
programs and techniques have been very effective, there is still no

∗This work was supported by the Semiconductor Research Cor-
poration, the Marco interconnect focus center, the DARPA neocad
program, as well as the grants from the National Science Founda-
tion and Intel Corporation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003,June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

single program capable of solving full Maxwell’s equations in gen-
eral 3D structures with lossy conductors which is accurate from
zero frequency to microwave frequencies.

In this paper we describe the algorithms used in FastImp, a pro-
gram for accurate analysis of wide-band electromagnetic effects in
very complicated geometries of conductors. The program is based
on a recently developed surface integral formulation [9, 10, 11] and
a precorrected-FFT accelerated iterative method [8], but includes a
new scaling and preconditioning technique as well as a generalized
grid interpolation and projection strategy for the precorrected-FFT
method. The background for the surface formulation is described in
the next section, and then the scaling and preconditioning approach
is described in section 3. The generalized grid projection strategy
is detailed in section 4. To demonstrate that FastImp is both fast
and robust, a variety of examples are examined in section 5, and
then conclusions are given in section 6.

2. BACKGROUND
In this section, we summarize the surface formulation and review

the discretization scheme used in [10]. The improvements we made
in section 3 are closely tied with this discretization scheme.

2.1 Summary of a surface formulation
The formulation in [9] has as unknowns:~E(~r), the vector elec-

tric field at location~r; ∂~E(~r)
∂n , the normal derivative of the electric

field; φ, the scalar potential;ρ, the charge density. It consists of the
following equations

1
2
~E(~r) =

Z
Si

dS′
(

G1(~r,~r ′)
∂~E(~r ′)
∂n(~r ′)

− ∂G1(~r,~r ′)
∂n(~r ′)

~E(~r ′)

)
, ~r ∈ Si ,

(1)

−t̂(~r) · 1
2
~E(~r) = t̂(~r) ·

Z
S

dS′
(

G0(~r,~r ′)
∂~E(~r ′)
∂n(~r ′)

− ∂G0(~r,~r ′)
∂n(~r ′)

~E(~r ′)

)

+t̂(~r) ·∇φ(~r), ~r ∈ Snc. (2)

φ(~r) =
Z

S
dS′

ρ(~r ′)
ε

G0(~r,~r ′), ~r ∈ S. (3)

∇ ·~E(~r) = 0, ~r ∈ Snc (4)

n̂(~r) ·~E(~r) =
jωρ(~r)

σ
, ~r ∈ Snc (5)

~Et(~r) = t̂(~r) ·~E(~r) = 0, ~r ∈ Sc (6)

n̂(~r) · ∂~E(~r)
∂n(~r)

= 0, ~r ∈ Sc (7)

φ(~r) = constant, ~r ∈ Sc (8)

712

43.1

where

G0(~r,~r ′) =
ejk0|~r−~r ′|

4π|~r−~r ′|
, k0 = ω

√
εµ , (9)

and

G1(~r,~r ′) =
ejk1|~r−~r ′|

4π|~r−~r ′|
, k1 =−

√
ω2εµ− jωµσi , (10)

σi is the conductivity of theith conductor,Si is the surface of the
ith conductor andS is the union of all conductor surfaces, andSc
andSnc are the contact part and the non-contact part of the surface
S, respectively. Herêt(~r) is a pair of vectorŝt1 andt̂2 which repre-
sent the local two dimensional coordinate system at point~r on the
surface.

2.2 Discretization of the formulation
In order to discretize the integral equations (1), (2) and (3), a

piecewise constant centroid collocation scheme is used. The con-
ductor surface is discretized into many flat quadrilateral panels.
Seven unknowns are associated with each panel:Ex, Ey, Ez, ∂Ex

∂n ,
∂Ey
∂n , ∂Ez

∂n andρ. The scalar potentialφ is associated with the panel
vertexes, and∇φ in (2) is computed using finite-differences. With
this setting, equations (5), (6), (7), and (8) become simple algebraic
equations. But equation (4) deserves more attention.

Applying the integral form of equation (4) to the surface of an
infinitely thin small rectangular box beneath the conductor surface,
we obtainZ

C
dγ~Et(γ) · (n̂(γ)× l̂(γ))−

Z
a

dS(~r)n̂(~r) · ∂~E(~r)
∂n(~r)

= 0 (11)

wherea is the top of the box,C is the periphery ofa, n̂ is the
normal unit vector and̂l is the unit vector alongC. Equation (11) is
enforced on the so-called dual panel around each vertex, one dual
panelQ1Q2Q3Q4 is shown in figure 1.

Now we can write the system matrix as (12), where the horizon-
tal lines are used to mark the corresponding relation between row
blocks and the equations (1) to (8). For example, the three rows in
the first row block correspond to (1). MatrixI is the identity ma-
trix, S0 andS1 are respectively the dense matrices corresponding
to the single-layer integral with Green’s functionG0 in (9) andG1
in (10),D0 andD1 are respectively the dense matrices correspond-
ing to the double-layer integral with Green’s functionG0 andG1,
g1 andg2 are sparse matrices representing the finite-difference ap-
proximation of∇φ. Sparse matricesT1,α, T2,α andNα (α = x,y,z)
are the transfer matrices relating the local coordinate system (t1, t2
andn) to the global coordinate system (x,y andz). The nonzero
elements of the sparse matricesAx, Ay andAz and the nonzero el-
ements of the sparse matricesCx, Cy andCz are related to the dual
panel discretization. Andφc, the known potential on the contact, is
used as the excitation.

3. SCALING AND PRECONDITIONING
3.1 Scaling

The system in (12) will be solved iteratively, so keeping the con-
dition number small is essential. Suppose the average panel edge
length isO(u), we will first estimate the scale of each matrix block
in (12) in terms ofu.

The elements of matrixS0 in (12) are

S0(i, j) =
Z

Panelj
ds(~r ′)G(~r i ,~r

′) =
Z

Panelj
ds(~r ′)

ejk0|~r i−~r ′|

4π|~r i −~r ′| .

Since~r i and~r ′ are on the conductor surface, it is clear thatejk0|~ri−~r′ |
|~r i−~r ′|

is O(1/u) andds(~r ′) is O(u2). HenceS0(i, j) is O(u). Obviously,

Figure 1: Dual panel

the same holds true for the elements in matrixS1. The elements of
matrix D0 are

D0(i, j) =

{
−RPanelj ds(~r ′) ∂

∂n(~r ′)
ejk0|~ri−~r′ |
4π|~r i−~r ′| i 6= j

− 1
2 i = j.

Follow the same reasoning, we find thatD0(i, j) is O(1). Again,
the same observation holds true for matrixD1.

The dual panel discretization in (11) implies that the elements in
matricesCx, Cy andCz areO(u) and the elements in matricesAx Ay

andAz areO(u2). And it is easy to check that the elements in the
finite difference matricesg1 andg2 areO(1/u).

Now it is clear that the scale in different matrix blocks in (12)
could be different by many orders of magnitude ifu is small. The
huge difference in the scale could lead to large condition number.
For example, the condition number could be as large as1020 for
micron feature sizes. Large condition numbers usually leads to in-
accurate results and stagnant iterations of an iterative solver.

Fortunately, a simple scaling manipulation as the following can
be used to remedy the situation: scale the first three columns and
the last column with1/u and the seventh column withu, and then
scale the seventh row with1/u. It is easy to check that now most of
the matrix blocks areO(1). Hence the new system matrix is much
better conditioned.

A simple straight wire example could be used to show the impact
of the scaling. The size of the wire is1×1×4um, its conductivity
is 5.8×107. The DC resistance of this wire should be0.068965Ω.
However, without the scaling trick presented here, the calculated
resistance would be0.0810Ω. After the system matrix has been
properly scaled, the result becomes0.068965Ω.

3.2 Preconditioning
A straightforward way of constructing a preconditioner for the

system matrix like the one in (12) is to simply replace the matrix
blocks corresponding to the integral operators with their diagonal
elements and keep all other sparse matrix blocks. This method was
used in [9] to construct a preconditioner from the system matrix
in (12). Extensive numerical experiments have shown that this pre-
conditioner could significantly reduce the number of iterations. But
for some structures the number of nonzeros in the preconditioner
after the sparse LU factorization is still rather large. This is par-
tially because some rows in the preconditioner before the LU fac-
torization are not sparse enough.

Among the unknowns of the surface formulation,~E and ∂~E
∂n are

vector variables. They could be defined either in the global coordi-
nate system (̂x, ŷ, ẑ) or in the local coordinate system (t̂1, t̂2, n̂). On
the other hand, vector equation (1) could also be enforced either in
the global or the local coordinate system. These different options
result in different system matrices. But they are in fact different
by just a similarity transformation. Hence they all have the same
condition number and lead to the same convergence behavior if an
iterative solver is used. But the preconditioners constructed from
these different system matrices are significantly different, particu-
larly in the matrix sparsity.

713




S1 0 0 D1 0 0 0 0
0 S1 0 0 D1 0 0 0
0 0 S1 0 0 D1 0 0

T1,xS0 T1,yS0 T1,zS0 T1,xD0 T1,yD0 T1,zD0 g1 0
T2,xS0 T2,yS0 T2,zS0 T2,xD0 T2,yD0 T2,zD0 g2 0

0 0 0 0 0 0 −I S0
−Ax −Ay −Az Cx Cy Cz 0 0

0 0 0 Nx Ny Nz 0 − jω
σ I

0 0 0 T1,x T1,y T1,z 0 0
0 0 0 T2,x T2,y T2,z 0 0
Nx Ny Nz 0 0 0 0 0
0 0 0 0 0 0 I 0







∂Ex
∂n
∂Ey

∂n
∂Ez
∂n
Ex
Ey
Ez
φ
ρ




=




0
0
0
0
0
0
0
0
0
0
0
φc




(12)

Table 1: Performance of preconditioners in the global and the
local coordinate system

local global
number of nonzeros before LU 320376 547636
number of nonzeros after LU 1097973 1318222

number of fill-in’s 777597 770586
number of GMRES iterations 15 15

A sparser precondioner can be derived by defining~E and ∂~E
∂n as

well as enforcing equation (1) in the local coordinate system. The
structure of the system matrix constructed under such condition is
shown in (13).




T11S1 T12S1 T13S1 T11D1 T12D1 T13D1 0 0
T21S1 T22S1 T23S1 T21D1 T22D1 T13D1 0 0
T31S1 T32S1 T33S1 T31D1 T32D1 T33D1 0 0
T11S0 T12S0 T13S0 T11D0 T12D0 T13D0 g1 0
T21S0 T22S0 T23S0 T21D0 T22D0 T23D0 g2 0

0 0 0 0 0 0 −I S0
0 0 −A Ct1 Ct2 0 0 0
0 0 0 0 0 I 0 − jω

σ I
0 0 0 I 0 0 0 0
0 0 0 0 I 0 0 0
0 0 I 0 0 0 0 0
0 0 0 0 0 0 I 0




(13)

MatricesTmn(m,n = 1,2,3)) are defined asT11(i, j) = t̂(i)1 · t̂(j)
1 ,

T12(i, j)= t̂(i)1 · t̂(j)
2 , T13(i, j)= t̂(i)1 ·n̂(j), and etc, where(t̂(i)1 , t̂(i)2 , n̂(i))

is the local coordinate system on theith panel. Extracting the di-
agonal part of the matrix blocks that correspond to the integral op-
erators and keeping the remaining sparse matrices yields a sparser
preconditioner. The density of all rows below the third block row
have been reduced by about one half.

To verify the effectiveness of the sparser preconditioner, we used
it in the analysis of a four-turn spiral over a lossy substrate ground
plane. The total number of unknowns is 72531. The performance
of the preconditioners in the global and the local coordinate system
is compared in table 1. As it is expected, the preconditioner in
the local coordinate system before the LU factorization is indeed
much sparser. But this advantage is somewhat offset by the fill-
in’s generated by LU factorization. Hence the number of nonzeros
in both precondioners after LU factorization is different by about
20%. This directly translates into a20%saving in memory usage.
In addition, both preconditioners lead to the same iteration count.

4. PRE-CORRECTED FFT ALGORITHM
After discretization, the algebraic equations (5), (6), (7), (8) and

(11) become sparse matrix equations. But integral equations (1),
(2) and (3) become dense matrix equations. So solving the whole
system matrix using iterative methods still takesO(N2) operations,
whereN is the number of unknowns. In this paper, we use the

pre-corrected FFT algorithm to accelerate the dense matrix vector
product corresponding to the operation of those integral operators
in (1), (2) and (3).

An abstract form of the kernels in (1), (2) and (3) is

K(~r ′,~r) = F1(F2(G(~r ′,~r))) (14)

whereG(~r ′,~r) is the Green’s function, and the most commonly used

forms of the operatorF1(·) andF2(·) areF1(·) =U(·), d(·)
dx(~r) , d(·)

dy(~r) ,
d(·)
dz(~r) , d(·)

dn(~r) andF2(·) = U(·), d(·)
dx(~r ′)

, d(·)
dy(~r ′)

, d(·)
dz(~r ′)

, d(·)
dn(~r ′)

, andU(·)
is the identity operator. For the sake of clarity, we use a simple
single-kernel integral equationZ

S
dS′K(~r ′,~r)ρ(~r ′) = f (~r), ~r ∈ S (15)

to illustrate how the pFFT algorithm can be used to accelerate the
operation of an integral operator. Functionf (~r) is the known right
hand side term. The procedure extends easily to the integral equa-
tions with multiple kernels, such as (1) and (2).

The standard procedure for solving equation (15) numerically is
to discretize by means of projection [7] and solve the resulting lin-
ear system with an iterative method, such as GMRES [12]. For
example, ifρ(~r) is approximated as a weighted combination ofN
basis functions,ρ(~r) = ∑α jb j (~r), andα j are determined by collo-
cation method, then we arrive at

[A]ᾱ = f̄ , (16)

where

Ai, j =
Z

∆b
j

dS′K(~r ′,~r i)b j (~r ′), (17)

~r i is the ith collocation point, and∆b
j is the support of the basis

functionsb j (~r). The commonly used basis functions are low-order
polynomials with local support [7].

The key idea of the pFFT algorithm is to replace (16) with its
sparse representation

[A]ᾱ = ([D]+ [I][H][P])ᾱ, (18)

whereI , P, D andH are the interpolation, projection, direct and
convolution matrix, respectively. Algorithms used in this paper to
compute matricesD andH are similar to the ones in [8]. Hence we
shall not give details here. The contribution of this paper is to use a
different way than the one in [8] to set up matricesI andP so that
it could easily handle the general kernels in (14).

4.1 Projection and interpolation
Figure 2 shows a 2D pictorial representation of the projection

step, where a triangle is used to represent the support of the basis
function. A 3× 3 projection grid is assumed here and obviously
more points could be used if the accuracy requirement is higher.

714

We start with a point chargeρp at pointSon the triangle, shown
in figure 2. The potential at pointE due to this point charge is

φ(1)
E = ρpG(~rs,~rE). (19)

The purpose of the projection is to find a set of grid chargesρ̄g on
the projection grid points such that they generate the same potential
at pointE, i.e.,

φ(2)
E = ∑

i
ρg,iG(~r i ,~rE) = (ρ̄g)t φ̄g = φ(1)

E (20)

whereφg,i = G(~r i ,~rE). We could use a set of polynomials to expand
the Green’s function

G(~r,~rE) = ∑
k

fk(~r)ck = f̄ t(~r)c̄. (21)

A simple set of polynomial functions for this purpose isfk(~r) =
fk(x,y) = xiy j , i, j = 0,1,2,k = 2i + j. Matching both sides at each
grid point~r i yields a linear system[F]c̄ = φ̄g, where thei-th row of
the matrix[F] is the set of polynomials̄f (~r) evaluated at pointr i .
Substituting the solution̄c = F−1φ̄g into (21) and evaluating it at
pointS yields

G(~rs,~rE) = f̄ t(~rs)F−1φ̄g. (22)

In light of (19) and (20) we have

(ρ̄g)t = ρp f̄ t(~rs)F−1, (23)

the projection charges for a point charge.
A charge distributionb j (~r) on the jth basis function support

could be regarded as a linear combination of an infinite number
of point charges. Equation (23) implies that the projection charges
are linearly proportional to the point charge, hence it easily follows
that the projection charges for the charge distributionb j (~r) is

(ρ̄(j)
g)

t
=

(Z
∆b

j

dSbj (~r) f̄ t(~r)

)
[F]−1. (24)

If there are more than one basis function in the approximate solu-
tion, then the total grid charges̄Qg on each grid point is the accu-
mulation of the grid charge due to each basis function. It could be
written as

Q̄g =
Nb

∑
j=1

α j ρ̄
(j)
g = [P]ᾱ, (25)

where[P] is anNg×Nb matrix,Nb is the number of basis functions,
Ng is the number of grid points, and the magnitude of basis func-
tions ᾱ is defined in (16). Due to the locality of the basis support,
the projection grid for each basis function has only a small number
of points. Hence each column of the projection matrix[P] is rather
sparse. The non-zero elements in thej-th column of matrix[P] are

the elements of the column vectorρ̄(j)
g in equation (24).

If the kernel has a differential operator inside the integral, the
potential at pointE due to a point charge is

φ(1)
E =

∂
∂β(~rs)

[ρpG(~rs,~rE)] =
∂

∂β(~rs)
[ρp f̄ t(~rs)F−1φ̄g]. (26)

whereβ stands forx, y or n. We again want to find a set of grid
charges̄σβ on the projection grid points such that they generate the
same potential at pointE, i.e.,

φ(2)
E = ∑

i
σβ,iG(~r i ,~rE) = (σ̄β)t φ̄g = φ(1)

E . (27)

Equations (26) and (27) imply that the projection charges are

(σ̄β)t =
∂

∂β(~rs)

(
ρp f̄ t(~rs)F−1

)
. (28)

��

���� ��

��

	�	
�
����
�
���

��

��

���� E

S

Figure 2: 2-D pictorial representation of the projection step

Similar to the single-layer operator case, the projection charges for
a charge distributionb j (~r) on the jth basis function support is

(σ̄(j)
β)

t
=

(Z
∆b

j

dSbj (~r)
∂

∂β(~r)
f̄ t(~r)

)
[F]−1. (29)

The projection matrix for the kernel with a differential operator is
structurally identical to the matrix[P] in equation (25). The non-
zero elements in thej-th column of the matrix are the elements of

the column vector̄σ(j)
β in equation (29).

It is shown in [13] that the interpolation matrixI has a dual re-
lationship to the projection matrix. Hence the algorithm to form
matrix I is very similar to the one shown in this section. Please
refer to [14] for details.

4.2 Summary
Since polynomials are used in both the interpolation and the pro-

jection, the interpolation matrixI and the projection matrixP are
only related to the operatorF1 and F2, respectively, not to the
Green’s functionG(~r,~r ′). This makes it much easier to handle the
complicated kernelsK(~r ′,~r) in (14). In addition, we could exploit
the fact that matricesI andP are not related to Green’s function,
hence frequency-independent [5]. For example, we could form
these two matrices just once and use them for Helmholtz kernel
at various frequencies.

5. NUMERICAL RESULTS
Base upon the algorithm described in section 4, we have devel-

oped a C++ program called pfft++. Combining pfft++ with the
surface formulation, we have developed FastImp, a fast impedance
extraction program. In this section, we first use small examples to
demonstrate FastImp’s accuracy. We then use a few large examples
to demonstrate FastImp’s speed and capacity.

5.1 Validation of FastImp
Magneto-Quasi-Static (MQS) analysis.A ring example is
used to verify the accuracy of the MQS analysis by FastImp. We
also intend to use this relatively small example to conduct the con-
vergence test of FastImp. Because of limited space, we only show
inductance results here. The resistance results are essentially the
same as those shown in [11]. The ring is10mm in radius, with a
square cross section of the size0.5mmby 0.5mm. The conductivity
is that of the copper, which is 5.8e7. The low frequency induc-
tance calculated using the formula in [15] is 48.89 nH. The number
of filaments used by FastHenry is 960, 3840 and 15360, respec-
tively. And the number of panels used by FastImp is 992 and 2048,
respectively. With refinement of panel discretization, FastImp’s re-
sults converges very well, as shown in figure 4.

715

5 10 15 20 25 30 35 40
10

1

10
2

10
3

10
4

10
5

10
6

frequency (GHz)

M
ag

ni
tu

de
 o

f I
m

pe
da

nc
e

(O
hm

)

Figure 3: Impedance of a shorted transmission line

10
2

10
4

10
6

10
8

10
10

20

25

30

35

40

45

50

55

frequency (Hz)

In
du

ct
an

ce
 (

 n
H

)

FastHenry 960
FastHenry 3840
FastHenry 15360
FastImp 992
FastImp 2048
Analytical formula

Figure 4: Inductance of a ring

Electro-Magneto-Quasi-Static (EMQS) analysis.We have
used FastImp to carry out the EMQS analysis of a shorted trans-
mission line. The length of the transmission line is1cm. The cross-
section of each conductor is50×50um. And the space between two
conductors is50um. The first three resonance frequencies should
be 7.5GHz, 22.5GHz and 37.5GHz. Figure 3 shows the magnitude
of its impedance at different frequency points, the expected reso-
nance frequencies are clearly shown in the plot. This suggests that
FastImp could accurately capture both the inductive and the capac-
itive effects. This shorted transmission line example validates the
EMQS analysis of FastImp.

5.2 Performance of FastImp
A few large and practical structures are analyzed in this section.

The CPU time and memory usage for different examples are com-
pared in table 2.

Multiple conductor crossover bus.Figure 5 shows a mul-
tiple conductor bus with three-layer of identical conductors. Each
layer has 10 conductors and the conductors on different layer are or-
thogonal to each other. The size of every conductor is1×1×25um.
We only extracted one column of the impedance matrix (since this
is a multiple port structure) at one frequency pointf = 1GHz using
the EMQS analysis. The CPU time and memory usage are shown
in table 2.

Stacked spirals over ground.The impedance matrix of stacked
two 9-turn circular spirals over a lossy ground plane and two stacked
8-turn rectangular spirals over a lossy ground plane are extracted at
one frequency pointf = 1GHz using the EMQS analysis. The CPU
time and memory usage are shown in table 2.

Large 3D structures.FastImp has been used to perform the
EMQS analysis of two large structures shown in figure 6 and 7.
The discretization, detailed breakdown of CPU time and memory

Figure 5: Multiple conductor bus

Table 2: Comparison of CPU time and memory usage for var-
ious practical structures. The calculations were carried out on
a desk top computer with a pentium III micro-processor and
1Gb memory.

bus circular spirals rectangle spirals
#panels 18,540 15,194 18,520
#unknowns 148,380 121,558 148,166
FastImp 9min,340Mb 68min,642Mb 54min,749Mb
*iterative 160min,19Gb 750min,72Gb 590min,83Gb
*standard 136days,19Gb 100days,19Gb 168days,22Gb

*obtained by estimation or extrapolation.

usage for the analysis of these two examples is shown in table 3, 4
and 5, respectively. The computation was carried out on a server
with 32Gb memory and one 64-bit Itanium micro-processor. This
server is about 3 times slower than the desktop computer used for
the previous examples.

Computational complexity of FastImp.We have used FastImp
to analyze a series of similar structures with increasingly larger
size. These structures are 1x1, 2x2, 4x4 and 8x8 spiral arrays. All
elements in these arrays are 3-turn rectangular spirals. The CPU
time versus number of spiral elements in the spiral arrays is shown
in figure 8. The plot clearly indicates that the CPU time grows
nearly linearly with the problem size.

6. CONCLUSIONS
We have generalized the pre-corrected FFT algorithm to allow

the acceleration of complicated integral operators. Based on this
generalization we have developed a flexible and extensible fast in-
tegral equation solver, pfft++, whose computational complexity is
nearly O(N). Using pfft++ as the engine, we have developed a
fast impedance extraction program, FastImp. Numerical exam-
ples show that FastImp can perform MQS and EMQS analysis of
3D general structures across wide frequency range, from zero fre-
quency to at least hundreds of giga hertz. It takes FastImp anywhere
between 10 minutes to about one hour to analyze realistic 3D struc-
tures with many hundred thousand of unknowns. Both pfft++ and
FastImp are now available at rleweb.mit.edu/vlsi/codes.htm.

Table 3: Discretization of the MIT logo example and the 16x8
spiral array example

MIT logo 16x8 spiral array
number of panels 173,184 180,224
number of unknowns 1,385,718 1,442,048
number of grids 1024×256×8 256×128×8
grid step size 1.89um 1.91um

716

Table 4: A detailed breakdown of the CPU time used by the
MIT logo example and the 16x8 spiral array example. Unit is
second

MIT logo 16x8 array
P andI matrices 890 849
D andH matrices 13638 14353
form the preconditionerPr 54 53
LU factorization ofPr 1512 1927
GMRES (tol = 1e-3) 32424 (77 iter) 25168 (80 iter)
total 51244 42350

Table 5: A detailed breakdown of the memory usage for the
MIT logo example and the 16x8 spiral array example. Unit is
Gb

MIT logo 16x8 spiral array
direct matrices 5.17 5.54
projection matrices 0.38 0.39
interpolation matrices 0.22 0.23
convolution matrices 0.68 0.13
maps between grids and panels 0.65 0.70
preconditioner 2.72 2.76
GMRES 2.03 2.21
total 11.85 11.96

Figure 6: A large MIT logo consisting of 123 3-turn square spi-
rals

Figure 7: 16x8 3-turn rectangular spiral array

0 20 40 60 80
0

5

10

15

20

C
P

U
 ti

m
e

(1
03 s

ec
on

d)

number of spirals

Figure 8: The CPU time vs. number of spirals in the spiral
arrays

7. REFERENCES
[1] K. Nabors and J. White, “FASTCAP: A multipole-accelerated 3-D

capacitance extraction program,”IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 10,
pp. 1447–1459, November 1991.

[2] M. Kamon, M. J. Tsuk, and J.K. White, “FastHenry: A
multipole-accelerated 3-D inductance extraction program,”IEEE
Transactions on Microwave Theory and Techniques, vol. 42, no. 9,
pp. 1750–1758, September 1994.

[3] S. Kapur and D.E. Long, “IES3: A fast integral equation solver for
efficient 3-dimensional extraction,”International Conference on
Computer Aided-Design, pp. 448–455, 1997.

[4] M. Bachtold, M. Spasojevic, C. Lage, and P.B. Ljung, “A system for
full-chip and critical net parasitic extraction for ulsi interconnects
using a fast 3-d field solver,”IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 19, no. 3, pp.
325–338, 2000.

[5] Joel R. Phillips, Eli Chiprout, and David D. Ling, “Efficient full-wave
electromagnetic analysis via model-order reduction of fast integral
transformations,”ACM/IEEE Design Automation Conference, 1995.

[6] L. Greengard and V. Rohklin, “A fast algorithm for particle
simulations,”Journal of Computational Physics, vol. 73, no. 2, pp.
325–348, December 1987.

[7] Wolfgang Hackbush,Integral Equations, Theory and Numerial
Treatment, Birkhauser Verlag, Basel, Switzerland, 1989.

[8] Joel R. Phillips and J. K. White, “A precorrected-FFT method for
electrostatic analysis of complicated 3D structures,”IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, pp. 1059–1072, 1997.

[9] J. Wang and J. K. White, “A wide frequency range surface integral
formualtion for 3D RLC extraction,”International Conference on
Computer Aided-Design, 1999.

[10] Junfeng Wang,A new surface integral formulation of EMQS
impedance extraction for 3-D structures, Ph.D. thesis MIT EECS
Department, 1999.

[11] Zhenhai Zhu, Jingfang Huang, Ben Song, and J. K. White,
“Improving the robustness of a surface integral formulation for
wideband impendance extraction of 3D structures,”International
Conference on Computer Aided-Design, pp. 592–597, 2001.

[12] Youcef Saad and Martin Schultz, “GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems,”SIAM
J. Sci. Statist. Comput., vol. 7, no. 3, pp. 856–869, July 1986.

[13] Joel R. Phillips,Rapid solution of potential integral equations in
complicated 3-dimensional geometries, Ph.D. thesis MIT EECS
Department, 1997.

[14] Zhenhai Zhu,Efficient Techniques for Wideband Impedance
Extraction of Complex 3-dimensional Geometries, Master thesis MIT
EECS Department, 2002.

[15] Frederick Warren Grover,Inductance calculations, working formulas
and tables, Govt. Print. Off., New York, NY, 1946.

717

