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ABSTRACT

This paper surveys the family of Waveform Relaxation (WR) methods for solving large
systems of ordinary nonlinear differential equations. The basic WR algorithm will be reviewed,
and many of the derivative algorithms will be presented, along with new convergence proofs,
In addition, examples will be analyzed that illustrate several of the implementation techniques
used to improve the efficiency of the basic WR algorithm, along with theoretical results that
indicate the strengths or limitations of these techniques.

1. INTRODUCTION

The tremendous increase in complexity of engineering design and availability
of computing resources has made computer simulation an important and heavily
used tool for both research and engineering design. Since many simulation problems
are formulated as large systems of nonlinear ordinary differential equations (ODEs),
much research work has been devoted to solving these systems efficiently.

The standard approach to solving ODE systems is based on three techniques
(Gear 1974, Nagel 1975):

1) Stiffly stable implicit integration methods, such as the Backward Difference formulas,
to convert the differential equations which describe the system into a sequence of
nonlinear algebraic equations.

2) Modified Newton methods to solve the algebraic equations by solving a sequence
of linear problems.

3) Sparse Gaussian Elimination to solve the systems of linear equations generated by
the Newton method.
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This approach can become inefficient for large systems where different state
variables are changing at very different rates. This is because the direct application
of the integration method forces every differential equation in the system to be
discretized identically, and this discretization must be fine enough so that the fastest
changing state variable in the system is accurately represented. If it were possible
to pick different discretization points, or timesteps, for each differential equation
in the system so that each could use the largest timestep that would accurately reflect
the behavior of its associated state variable, then the efficiency of the simulation
would be greatly improved.

Several modifications of the direct method have been used that allow the in-
dividual equations of the system to use different timesteps (Sakallah and Director
1980, DeMicheli et al. 1980, Chawla et al. 1975, Chen and Subramaniam 1984,
Keepin 1980, Gear 1980). The approach that will be discussed in this paper is the
family of Waveform Relaxation algorithms (Lelarasmee et al. 1982, Lelarasmee
1982, Lelarasmee and Sangiovanni-Vincentelli 1982a). WR algorithms have cap-
tured considerable attention due to their favorable numerical properties and to their
successful application to the solution of the Metal-Oxide-Semiconductor (MOS)
digital circuits.

In this paper we survey the current state of research in WR algorithms and
present new theoretical and practical results. The paper is organized in two parts.
In the first part we present the theoretical background for the basic WR algorithm
and its derivatives. We start by introducing waveform relaxation with a simple ex-
ample, and follow with the basic algorithm. Then a new proof of the convergence,
one that demonstrates that the WR algorithm is a contraction mapping in a par-
ticular norm, is presented. Extensions to the basic algorithm that allow for modified
iteration equations (including discrete approximations) are presented and it is shown
that the convergence of such extensions follows directly from the proof that the WR
algorithm is a contraction mapping. The extension of the Newton method to func-
tion spaces is then presented, and its convergence proved using lemmas from the
basic theorem. Finally, discretization approximations are considered in more detail,
by comparing relaxation and explicit integration methods for a sample stiff problem.

In the second part we analyze examples that illustrate several of the implemen-
tation techniques used to improve the efficiency of the basic WR algorithm, and
prove theorems that indicate the strengths or limitations of these techniques. We
start by considering approaches for partitioning large systems into loosely coupled
subsystems. We then examine how breaking the simulation interval into pieces, called
windows, can be used to reduce the number of relaxation iterations required to
achieve convergence. Two techniques for reducing the iteration computation are
then presented. The first is based on performing one iteration of a Newton method
with each relaxation iteration, and the second is based on exploiting piecewise linear-
ity. Because the WR algorithm has proved to be an efficient technique for simulating
MOS digital circuits, the examples used throughout this paper are drawn from this
area. In order to demonstrate more clearly both the practicality of the WR algo-
rithm, and the specific nature of its efficiencies, we conclude the paper, by
examining the detail application of the WR algorithm to the simulation of MOS
digital circuits.
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2. THE WR ALGORITHM AND ITS DERIVATIVES
2.1. The Basic WR Algorithm

We start this section with a simple, illustrative example, and then present
the general WR algorithm. Consider the first-order two-dimensional differential
equation in x(tf) € RZ on t € [0,T].

Xy = filx),x9,t) x,(0)

I

X0 (1)

Xog 2)

The basic idea of the waveform-relaxation algorithm is to fix the waveform
x,:[0,T] = IR and solve Eq. (1) as a one dimensional differential equation in x,(t).
The solution thus obtained for x,(t) can be substituted into Eq. (2) which will then
reduce to another first-order differential equation in one variable, x,(t). Eq. (1) is
then re-solved using the new solution for x,(t) and the procedure is repeated.

Alternatively, fix the waveform x,(t) in Eq. (1) and fix x,(¢) in Eq. (2) and
solve both one dimensional differential equations simultaneously. Use the solution
obtained for x, in Eq. (2) and the solution obtained for x, in Eq. (1) and re-solve
both equations.

In this fashion, iterative algorithms have been constructed. Either replaces the
problem of solving a differential equation in two variables by one of solving a se-
quence of differential equations in one variable. As described above, these two
waveform relaxation algorithms can be seen as the analogues of the Gauss-Seidel
and the Gauss-Jacobi techniques for solving nonlinear algebraic equations. Here,
however, the unknowns are waveforms (elements of a function space), rather than
real variables. In this sense, the algorithms are techniques for time-domain decou-
pling of differential equations.

The most general formulation of a system of nonlinear differential equations
is the following implicit formulation:

Xy = folx),x9,1) x,(0)

FiE®).x@)u@) =0  x0) = x ©)

where x(t) EIR"on t € [0,T]; u(t) € R’ on t € [0,T] is piecewise continuous; and
F:IR" x IR® x IR" — IR" is continuous.

In order to guarantee that WR applied to Eq. (3) will converge to the system'’s
solution, we first must guarantee that Eq. (3) has a solution. If we require that there
exists a transformation of Eq. (3) to the form § = f(y,u) where f is Lipschitz con-
tinuous with respect to y for all u, then a unique solution for the system exists (Hale
1969). Although there are many sets of broad constraints on F that guarantee the
existence of such a transformation, the conditions can be difficult to verify in prac-
tice. In addition, for the above system, it is difficult to determine how to assign
variables to equations when applying the WR algorithm. That is, when solving the
F; equation of the system in the iteration process, what x; variable should be solved
for implicitly. If a poor choice is made, the relaxation may not converge (Lelarasmee
1982).
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Rather than carefully considering the existence and assignment questions, which
will complicate the analysis that follows without lending much insight, we will con-
sider the following less general form, in which many practical problems, particularly
circuit simulation, can be described.

Clx(®),u®) 2(t) = flx(t)u(t)  2(0) = x, 4)

where x(f) € R" on t € [0,T]; u(t) E R on t € [0,T] is piecewise continuous;
C:IR" x IR" =~ R"*" is such that C(x,u)~! exists and is uniformly bounded with
respect to x,u; and f:IR" x IR" = IR" is globally Lipschitz continuous with respect
to x for all u(t) € IR".

The fact that C(x,u) has a well-behaved inverse guarantees the existence of
a normal form for Eq. (4), and that x(f) € IR" is the vector of state variables for
the system. Then as f is globally Lipschitz with respect to x for all u, Clx,u)-1is
uniformly bounded, and u(t) is piecewise continuous, there exists a unique solution
to Eq. (4).

The WR algorithm for solving the above system is as follows:

Algorithm 1
WR Gauss-Seidel Algorithm for Solving Eq. (4).

Comment: The superscript k denotes the iteration count, the subscript i denotes the
component index of a vector, and ¢ is a small positive number.

k < 0; guess waveform x%(t); t € [0,T] such that 20(0) = %
(for example, set 29(t) = xg, ¢
€[0,T])
repeat {
k<k + 1
foreach (i € {1, ..., n} {
solve

& k-1 =1 )ik

o Xp Xy - » In

LG SR 3 S S WS

i+l

ol 7 (SO . " S SRR " o 7 |

i+1° *n

for (r,f‘(t): t € [0,T]), with the initial condition =) = L

}

buntil (max; ¢ ; ¢, max, ¢ (o le(e) —xf~1(0)] < )

that is, until the iteration converges.

Note that the differential equation in Algorithm 1 has only one unknown variable
xf. The variables x|, . . ., k-1 are known from the previous iteration and the

variables 2f, . . . , 2¥_| have already been computed. Also, the Gauss-Jacobi ver-
sion of the WR Algorithm for Eq. (4) can be obtained from Algorithm 1 by
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replacing the foreach statement with the forall statement and adjusting the itera-
tion indices.

2.2. Convergence Proof for the Basic WR Algorithm

If the matrix C(x,u) is diagonally dominant and Lipschitz continuous with
respect to x for all u then both the Gauss-Seidel and the Gauss-Jacobi versions of
Algorithm 1 are guaranteed to converge. In Lelarasmee et al. (1982), it was shown
that the WR algorithm converges when applied to Eq. (4) if C(x,u) is diagonally
dominant and independent of x. As many systems that are modeled in the form
of Eq. (4) include a dependence of C on x, we will present a more general con-
vergence proof that extends the original theorem to include these systems. In addi-
tion, we will prove that the WR method is a contraction in a simpler norm than
the one used in the original theorem.

We will prove the theorem by first showing that if C(x,u) is diagonally domi-
nant, then there exists a bound on the x¥'s generated by the WR algorithm that
is independent of k. Using this bound, we will show that the assumption that C(x,u)
is Lipschitz continuous implies the existence of a norm on IR" such that for arbitrary
positive integers j and k

l£**1() — 2+
<yllEK) — @I + yllk 1) — 1] + Lyl - xi(D)]

for some y<1and !, £, <o for all ¢t €[0,T]. In the properly chosen norm =l
on C([0,T],IR"), the above equation implies that

k1 — g1, < ik - ],

and therefore the sequence {x*} converges by the contraction mapping theorem.
As 2%(0) = x, for all k, {xk} converges as well.

Before formally proving this basic WR convergence theorem we will state the
well-known contraction mapping theorem (Ortega and Rheinbolt 1970), and a few
lemmas which will be used in the course of the proof.

The Contraction Mapping Theorem: Let Y be a Banach space and F:Y = Y. If
F is such that |F(y) — F(x)|| < ylly — x| for all x,y € Y, for some y € [0,1), then
F has a unique fixed point § such that F(j) = . Furthermore, for any initial guess
y” € Y the sequence {y* € Y} generated by the fixed point algorithm yk = F(yk-1)
converges uniformly to .

Lemma 1: If C(x,u) € IR"*" is diagonally dominant uniformly over all x € IR",
u € IR" then given any collection of vectors {x!, . . ., x"}, € R", and any u € R,
the matrix Cr(x!, . . . , 2", u) € IR"*" defined by Cox', ..., 2" u) = Cylx,u)
is also diagonally dominant. In other words, let C? be the matrix constructed by
setting the i row of C? equal to the ith row of the given matrix C(x!,u). Then this
new matrix is also diagonally dominant.

Lemma 1 follows directly from the definition of diagonal dominance.
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Lemma 2: Let C € IR"*" be any diagonally dominant matrix. Let L, strictly
lower triangular, U, strictly upper triangular, and D, diagonal, be such that C =
L + D + U. Then [D-YL + U)||,<1and [(D + L)-1U|_ < 1.

Lemma 2 is a standard result in matrix theory (Varga 1962).

Lemma 3: Let x,y € C([0,T],IR"). If there exists some norm on IR" such that
IO < yllg@ll + £illx@)l + Lolly@|l (5)

for some positive numbers £,, £, < ® and y < 1 then there exists a norm [l*]l, on
C((0,T],IR") and a positive number a < 1 such that
=1, < allgll, + £;1x©O) + Lylly©)l

Proof of Lemma 3: Substituting [ #(t)dt + x(0) for x(t) in Eq. (5), perform-
ing an analogous substitution for y(t), multiplying the entire equation by e~ ¥, and
moving the norms inside the integral yields

e"ME@ < ye=Pllg@)ll + e Gli()ldr + £e-bx(0)]
(6)
+ LM folg(r)llde + Lye=y(0)]
Let |[¢[l, be defined by ||fl|, = maxg, e~ Y|If(#)||. This is a norm on C([0,T],IR")
for any finite positive number b > 0 and is equivalent to the uniform norm on
C([0,T],IR"). Then Eq. (6) implies
||’£"b < Y”yﬂb + max[g,n[!le‘b‘féedeTllfllb + fle_bt”x(o)”
+ Lge =M febidrlgll, + Loe=by(0)]]

And since e~ ¥ [eb*dr < 1/b then for b > {, we can write
o€ 1

=,
Iill, < L2261, + =0 + LIyl )
1

In this case y is less than 1, so there exists a finite B for which
(r+24,B-)/(1-£,B-1Y) = a< 1. Let the b in Eq. (7) be set equal to this B to get

€5 < ellglls + £illxO) + Llly(O)

which completes the proof.

Now we prove the following WR convergence theorem for systems of equa-
tions of the form of Eq. (4).

Theorem I: If, in addition to the assumptions of Eq. (4), C(x(f)u(f)) € Rnxn
is strictly diagonally dominant uniformly over all x(t) € IR" and u(t) € IR’, and
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Lipschitz continuous with respect to x(t) for all u(t), then the sequence of waveforms
{x*} generated by the Gauss-Seidel or Gauss-Jacobi WR algorithm will converge
uniformly to the solution of Eq. (4) for all bounded intervals [0, T].

Proof of Theorem I1: We present the proof only for the Gauss-Seidel WR
algorithm since the proof for the Gauss-Jacobi case is almost identical. The equa-
tions for one iteration of the Gauss-Seidel WR algorithm applied to Eq. (4) can be
written in matrix form as

é(xhl’xk’u)x'k+l = flak+1 2k u)

where

Cﬁ(xk+1’x?\',u) = C“(x’f+l, C ey, xf+l‘x:‘+1, i e Iﬁ,u)
and

flak+laku) = fk+t oL debafy, oo, xhu)
Let

Cr-laku) = Ly + Dy, = Uy,

where L, is strictly lower triangular, U, , , is upper triangular, and Dy, is
diagonal (note that by Lemma 1 the matrix C is diagonally dominant because C
is diagonally dominant). Rearranging the iteration equation yields

#ktl = (L, + Dy, )~ YU, g5 + flak+ Lok u)] 8)
Taking the difference between Eq. (8) at iteration k + 1 and at iterationj + 1 yields

k+1 _ il — -1 ko _ -1 i
x x! (Liyy + Dy )W % (Lisy + D;yy) U

©)
+ (Lyyy + Dy, )~ Yk Laku) — (L, + D;, )~ Yi(xi* \xi,u)
Using the Lipschitz continuity off and that [[(L;,, + D,,,) ! <K for some

K < independent of x and k (because C(x,u) is uniformly diagonally dominant
with respect to x) in Eq. (9) leads to

£ +1(#) — &+ < K[k +1(8) - dr )| + LK|ak(E) — xi(8)]]
+ ILhyy + Dy )™t = (Lyyy + Dy, )~ Ifi+ 10| (10)

+ I(Lyyy + Dy, )~ U, 25(8) — (Livy + Dy )70, i)

where 1, is the Lipschitz constant of f with respect to its first argument, and L,
is the Lipschitz constant of f with respect to its second argument. That C(x,u) is
uniformly diagonally dominant and Lipschitz continuous with respect to x for all
u implies (L, + D,)~1and (L, + D,)~!U, are also Lipschitz continuous in the
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same manner. It then follows that there exist some positive finite numbers k,, k,,
ks, k, such that
[5+3) - 21l < K[ — d+ @] + LKk — 2]
+ lgllx* X)) = 2+ Y+ kllk(e) — ()] I+ 1)) (11)

+ [kl 1) = F 1))+ kllek®) - d@I] 101 + vlike — 2|
where k, is the Lipschitz constant of (Ly + D)) ~'U; with respect to its first x argu-
ment (see definition of L,, U, and D, above), k, is the Lipschitz constant with
respect to the second x argument, k, and k, are the Lipschitz constants for
(Ly + D)~ ! with respect to its first and second x arguments, and y is such that
(L, + D)=, <y < 1 independent of k (by Lemma 2).

To establish a bound on the terms in Eq. (11) involving [|x%(¢)|| and

L + 1, ad, u)| it is necessary to show that the #¥'s and therefore the *'s and f(®)’s
are bounded a priori. We prove such a bound exists in the following lemma.

Lemma 4: If C(x,u) in Eq. (4) is strictly diagonally dominant and Lipschitz
continuous then the £X(¢)’s produced by Algorithm 1 are bounded independent of k.

Proof of Lemma 4: If |*| is the {, norm on IR", by Lemma 1
I(Lyyy + Dy,y) Ui, Il < 1. From Eq. (8)

I XON <yl + ILyyy + D)=l 10240, (12)

for some positive number y < 1. As f(x,u) is globally Lipschitz continuous with respect
to x, there exist finite positive constants £,, £, such that

Fxy.u) = fw,zull < Lllx - w] + 4,y - z] (13)

for all u, x, y, w, z € R". From Egs. (12) and (13) and using the fact that
Ly, + Dy, ) !l is bounded by some K < o for all k

<100 < vlKO1 + 4Kl D) + LK1 + KIF0,0,0)]  (14)

Eq. (14) is in the form to apply a slightly modified Lemma 3. Therefore, there ex-
ists some |[*]|, such that '

%+ 2, < all2k], + (1K + L,K)[=O)] + K|[f0,0,u)]
where @ < 1. This implies that
£ 43, < == (1K + LK) + KIF0.000) + (@45,

for all k. Then, since [9], must be bounded given a finite x(0), and [xk+1]|, =
maxg, e~ bk ()|,
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. i X 2 s
&k + 1)l < e”’[T:—;[(llK + LK)xO) + KIIf(0,0,u)l] + [£°ll,] =
which proves the lemma, R

In Lemma 4 it was proved that [[<%(#)|| is bounded a priori by some M. This
implies 2%(t) is bounded on [0,T]. Using the Lipschitz continuity property of f, a
bound, N, can be derived for |[f(x*+(t),x(t),u)|. Applying these bounds to Eq. (11)
we get

[k +1(t) — 2+ o) < yllik(e) - =0l + (¢,K + klﬁf + kaﬂf)llx*”(t) = o +1(1)|
+ (1K + Mk, + kN) [x*@) — xi(2)] (15)

where y < 1. Eq. (15) is of the form to apply Lemma 3. As x*+1(0) — «+1(0) =
0 for all k, j, Lemma 3 implies

i+t — i+, < aflst ~ £,

for some norm on C([0,T],IR") and for some e < 1. As C([0,T),IR") is complete in
any one of the B norms, by the contraction mapping theorem x* converges to some
x € C([0,T],]R") which is a fixed point of Eq. (7). Any fixed point % of Eq. (7) is
a solution to Eq. (4) if x(0) = x,. 2%(0) = x, for all k, therefore, £* converges to
the unique solution of Eq. (4). The sequence {x*} converges because integration
from 0 to T, which maps %(t) to x(t), is a bounded continuous function. H

2.3. Nonstationary WR Algorithms

Algorithm 1 is stationary in the sense that the equations that define the itera-
tion process do not change with the iterations. A straightforward generalization is
to allow these iteration equations to change, and to consider under what conditions
the relaxation still converges (Lelarasmee et al. 1982). There are two major reasons
for studying nonstationary algorithms. The solution of the ordinary differential equa-
tions in the inner loop of Algorithm 1 cannot be obtained exactly. Instead, numerical
methods compute the solution with some error which is in general controlled, but
which cannot be eliminated. However, the discrete approximation can be inter-
preted as the exact solution to a perturbed system. Since the approximation changes
with the solutions, the perturbed system changes with each iteration. Hence, prac-
tical implementations of WR that must compute the solution to the iteration equa-
tions approximately can be interpreted as nonstationary methods.

The second reason for studying nonstationary methods is that they can be used
to improve the computational efficiency of the basic WR algorithm. An approach
would be to improve the accuracy of the computation of the iteration equations
as the relaxation approaches convergence. In this way, accurate solutions to the
original system would still be obtained, but unnecessarily accurate computation of
the early iteration waveforms, which are usually far from the final solution, is
avoided.

In this section we show that nonstationary WR algorithms converge as a direct
consequence of the contraction mapping property of the original WR algorithm.
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That is, given mild assumptions about the relationship between a general stationary
contraction map and a nonstationary map, the nonstationary map will produce a
sequence that will converge to within some tolerance. And if in the limit as
k — oo the nonstationary map approaches the stationary map, then the sequence
generated by the nonstationary map will converge to the fixed point of the original
map. In later sections we will lean on these results to guarantee the convergence
of implementations of WR-based algorithms.

Theorem 2: Let Y be a Banach space and F, F&:Y = Y. Define yk+! = F(y)
and g**1 = FK@k). If F is a contraction mapping with contraction factor Y (see
Section 2.2), [[F(y) - Fy)| <k for all y € Y, and z € Y, is such that z = F(z),
then for any ¢ > 0 there exists a 6 < 1 such that if dk < & for all k then
llul']: li* — #*- || <e and ii.nl lz = *| <d/(1 —y). Furthermore, if }‘qu 6% = 0 then

i gk — 3k=-1|| - i — k|| -
lim [lg* - g*~1] = 0 and lim Jz - g4 - 0.

Proof of Theorem 2: Taking the norm of the difference between the kth and
(k +1)* iteration of the nonstationary algorithm we get

lg st — Ml < |IF*+ 1% — FRg -1

Given that |[F¥y) — F(y)|| < é* for all y € Y

54 = §4 < IFGY - FG-)I + ¢ + g+
Using the contraction property of F,

I441 = G4 <plg = G- + 6k + gkt

Unfolding the iteration equation into direct sum form,

41 ~ My < 6+ + 6k + Syhoigi + gin) (16)
If ¢k < 4 for all k then from Eq. (16)

im 471~ 1 < 2601 + 1)

Asy <1, Eim l#**1 — #*|| can be made as small as desired by reducing d, which

proves the first part of Theorem 2.
Let y be the fixed point of F. The difference between the computed and the
exact solution at the (k + 1)t iteration is

lg**' = yll = IFGY - F)l
Again using the contractive property of F and that |[F(y) — Fky)|| < ok,

55+ = yll = yllgk - yll + o
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Summing and taking the limit

; d
i Ly Lt el
lim [l yly < 7
which completes the proof of the first statement of Theorem 2. The second state-
ment of the theorem follows from almost identical arguments. W

In Section 2.2 we proved the WR iteration was a contraction mapping in the
appropriate norm |[[*|[, on C([0,T],IR") where B depended on the problem. To
repeat the result from that section, it was shown that

Ik +1 — i+, < aflik - ], (17

This WR convergence result and Theorem 2 imply that using any “reasonable” ap-
proximation method to solve the WR iteration equations will not affect the con-
vergence provided the errors in the approximation are driven to zero. In addition,
Theorem 2 indicates that it will be difficult to determine a priori how accurately
the iteration equations must be solved to guarantee convergence to within a given
tolerance, because an estimate of the contraction factor of the WR algorithm is
required.

As can be seen from Eq. (17), the WR algorithm is a contraction mapping with
respect to %(t) in a B norm. Theorem 2 implies that the WR iteration equations
must be solved accurately with respect to £(¢) in this B norm if the iterations are
to converge. There is a more cumbersome proof of the WR convergence theorem
in which it is shown that the WR algorithm is a contraction in x(f), but in a larger
B norm than the one used in the proof of Theorem 1, and the size of this B is a
function of the magnitude of the off-diagonal terms of C(x,u). With such a result,
Theorem 2 implies that it is only necessary to control errors in the computation of
x(f) to guarantee iteration convergence. However, convergence in a larger B norm
is in some sense a weaker type of convergence. So, in the case where C(x,u) has
non-zero off-diagonal terms, it is expected that more rapid convergence would be
achieved if the x%(t)’s are computed in a way that also guarantees that the x*()’s
are globally accurate. '

2.4. Waveform Newton Methods

The WR algorithm is an extension to function spaces of the popular relaxation
methods used to solve nonlinear algebraic problems. Another popular method for
solving nonlinear algebraic problems is the Newton-Raphson method, and its func-
tion space extension also has practical applications. In this section we will derive
the function-space Newton method applied to systems of the form of Eq. (4) and
prove that the method has global convergence properties, which is not true in general
for the Newton-Raphson algorithms (Hale 1969).

In order to derive a function-space extension to the Newton-Raphson algorithm,
let F(x) (from Eq. (4)) be defined as

F@) = Coou)i ~ fixu) =0 x(0) = %, (18)
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where x:(0,T] = IR",u:[0,T] = IR” and is piecewise continuous; C:IR" x IR* = IRnxn
is such that C(x,u)~! exists and is uniformly bounded with respect to x,u; and
f:R" x IR’ = IR~ is globally Lipschitz continuous with respect to x for all u. Ap-
plying the Newton-Raphson algorithm to find an x such that F(x) = 0 given some
initial guess 20 we get

k1 = ok — JoU K F(xY) (19)

where J(x) is the Frechet derivative of F(x) with respect to x. Note that in this case
Jp(x) is a matrix-valued function on [0,T]. That is, J(x) is a matrix of waveforms.
Using the definition of the Frechet derivative, we can compute J(x),

lim (VIRDIF@+h) — Fx) = Jp@)(R)l = 0 (20)

Evaluating this limit for the F(x) given in Eq. (18) we get
F(x+h) = F(x) = Cx+hu)@ +h) - Clx,u)f — flx+hu) + f(x,u)
and approximating to order ||h2

F(x+h) — F(x) = C(x,u)h + M‘;i’—“)(h)ﬁ - a—fg"—”)h + O(IAl?) (21)

x

As Eq. (20) applies only in the limit as [|h]| = 0, Eq. (21) implies
Tibhw Cloulh + Mca?—”l(h)f ” ?-J%’;—"‘)h

Substituting the computed derivative into Eq. (19) and rearranging we get

C(x"‘,u)fk” =y %}(xhl = xk)x'k = f(r“,u) R Qﬂg:_u)(xkn - x")
29
xk+1(0) = x, i

We will refer to Eq. (22) as the Waveform-Newton (WN) algorithm for solving
Eq. (4). It is, however, just the function-space extension of the classical Newton-
Raphson algorithm.

Newton-Raphson algorithms converge quadratically when the iterated value
is close to the correct solution, but they do not in general have global convergence
properties. However, the WN algorithm represented by Eq. (22) does converge for
any initial guess, given mild assumptions on the behavior of 8 C(x,u)/ 3z, as in the
following theorem.

Theorem 3: For any system of the form of Eq. (4) in which 8 C(x,u)/dx is
Lipschitz continuous with respect to x for all u, and f is continuously differentiable,
the sequence {x*} generated by the WN algorithm converges uniformly to the solu-

~ tion of Eq. (18).
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Proof of Theorem 3: For this proof of the convergence of the Waveform-Newton
method we will assume that C(x,u) is the identity, as the proof for the general case
is much more involved, and does not provide much further insight into the nature
of the convergence. For the case C(x,u) = I Eq. (22) can be simplified to

-k

Taking the difference between Eq. (23) at iteration k + 1 and the exact solution
and substituting (x*+! — x) + (x — x¥) for ¥*+1 — x* yields

2kl 3w k) — fu) + Qf%i‘—)[(xkﬂ -2 + & - )

As f is continuously differentiable on [0,T] and Lipschitz continuous, 8 f(x,u)/dx
is bounded by the Lipschitz constant £,. Using this bound,

Ikt — 2 < gyllak = aff + £yflk et = x4y fxF - x| (24)

Lemma 3 can be applied to Eq. (24) (with y = 0). Therefore, there exists some
b < o and y < 1 such that

¥+t — 2], < alldk - 2],

Therefore, {x*} converges to z, the fixed point of Eq. (18). Given x%(0) = x, for
all k, {x*} converges to the solution of Eq. (18) on any bounded interval. B

2.5. Discretized WR Algorithms

To compute the iteration waveforms for the WR algorithm it is usually necessary
to solve systems of nonlinear ordinary differential equations. The most popular
techniques for solving these systems are the multistep integration formulas (such
as the Backward Difference or Trapezoidal formulas) (Gear 1974). These methods
approximate the original differential equation by a sequence of algebraic equations
corresponding to a collection of discrete points in time. The error in this discretiza-
tion approximation is a function of the timesteps, which are usually chosen small
enough so that the waveforms are computed to some a priori accuracy.

The convergence theorem presented in Section 2.2 is not immediately applicable
to the convergence of this discretized WR algorithm because the differential equa-
tions that describe the decomposed systems are not solved exactly. However, one
can view the discretized WR algorithm as a nonstationary method. The theorems
presented in Section 2.3 can then be applied to guarantee WR convergence to the
solution of the given system of ODEs when the global discretization error, a func-
tion of the timesteps, is driven to zero with the WR iterations.

If the global discretization error is not driven to zero, one may expect that the
WR algorithm will still converge to an approximate solution of the given system
of ODEs. In this section we show that unless the timesteps used in the numerical
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108
method are kept below some problem-dependent bound, the WR algorithm may
not converge. We will start by analyzing a simple example that demonstrates a possi-
ble breakdown of the WR method under discretizations. Subsequently we will prove

that the discretized WR algorithm converges if the timesteps used are “small enough.”
Finally, we will end this section by comparing explicit and implicit integration

methods for WR.
node can be written by inspection, and are
Cx, + gx; + golx;—%x9) =0

Consider the two node inverter circuit in Fig. 1. The current equations at each
xl) + irul(xl’a‘:?) + inlE(IZ) =

Cxy + golx,
x,(0) = x,(0) = 0
Voo
9> T Im2
A A
T IIr|'1‘l
|
|
* +
X1 7=<C 3¢, %7 6
A\
Figure 1. Inverter with feedback.

In order to generate a simple linear example, i,,,,i,, were linearized about the
point where the input and output voltages were equal to half the supply voltage

Time is normalized to seconds to get the following 2 X 2 example:
2, = —x; + 0.1x,

Xy = —Ax; + —x,

1(0) = x%,(0) = 0
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Note that the initial conditions given for the above example identify a stable
equilibrium point.
The Gauss-Seidel WR iteration equations for the linear system example are:

xhtl = —xk+1 4 0.1xf
A= —del - e )
H10) = #§(0) = «§+1(0) = x§(0) = 0
Applying the Implicit-Euler numerical integration method with a fixed timestep
h, (x(nh) = -’l—l[x(nh) —x ((n — 1)h)]) to solve the decomposed equations yields the fol-

lowing recursion equation for xf(n):

1 .
xk+1i(n) = l+hx’§+1(n - 1)

(26)
AR x,(0)
1+ h)ﬂ[(l + h)n

+ 0.1h %1 (1 + h)i-nxk(i)]
j-

As an example, let A = 200, h = 0.5 and as an initial guess use xJ(nh) = nh,
which is far from the exact solution x3(nh) = 0. The computed sequences for the
initial guess and first, second and third iterations of Eq. (26) are presented in Table 1.

Table 1
Values for x, for Several Implicit-Euler Computed WR Iterations.

Step Time Initial Iter. #1 Iter. 42 Iter. #3
0 0 0 0 0 0
1 0.5 0.5 -1.111 2.469 —-5.487
2 1.0 1.0 - 3.704 11.52 -32.92
3 1.5 1.5 -7.778 31.55 —-111.6
4 2.0 2.0 -13.17 66.21 -281.3
5 2.5 2.5 - 19.66 117.9 ~587.5
6 3.0 3.0 -27.02 187.9 - 1075
7 3.5 3.5 —-35.07 276.0 - 1786
8 4.0 4.0 —43.64 381.5 - 2751
9 4.5 4.5 —52.60 502.9 - 3992

10 5.0 5.0 —-61.85 638.4 - 5519

As Table 1 indicates, the WR algorithm diverges for this example. In fact,
Eq. (26) indicates that the WR algorithm will converge only if

h 1
T+h) < 0.1" @7
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To understand this nonconvergence phenomenon consider the Gauss-Seidel WR
algorithm applied to Eq. (4) with C(x,u) = C. The WR iteration equation (iden-
tical to Eq. (10)) is

£+ = (L +D)-WUsk + flak+1 xk y)

Applying Implicit-Euler yields

xk+lin+1) — x*+ln) = (L +D)-WU@akn + 1) ~ x%(n))

+ h fk+ n + 1),2Kn + 1), u) (28)

In the limit as h — o, Eq. (28) becomes equivalent to solving fak+(n + 1),
xf(n +1), u) = 0. Since little is assumed about f other than Lipschitz continuity,
it is unlikely that this problem can be solved, in general, with a simple Gauss-Seidel
relaxation. However, in the limit as the timestep becomes small, Eq. (28) becomes

xk+ln+1) — xk+Yn) = (L +D)-W(xk(n + 1) —xk(n))

and from Lemma 2 in Section 2.2, the norm of ||(L + D)~ U] < 1 so the relaxa-
tion is certain to converge. The timestep h can be viewed as a parameterization
of this algebraic problem. As the timestep decreases, the problem is continuously
deformed from one that may not be solvable by relaxation to one that is guaranteed
to be solvable. We formalize this observation in the following theorem.

Theorem 4: If, in addition to the assumptions of Theorem 1, the WR iteration
equations are solved using a stable and consistent multistep method with a fixed
timestep h, for a finite number of points, then there exists an h* > 0 such that the
sequences {x%(n)} generated by the Gauss-Seidel or Gauss-Jacobi discretized WR
algorithm will converge for all 0 < h < k",

The proof of this theorem can be found in Odeh et al. (1983).
Now consider solving Eq. (25) using the computationally simpler Explicit-Euler

integration formula (x(nh) = %[x((n + 1)h) = x(nh)]). The recursion equation for the
x’ﬁ(")'s is

gt n+1) = (1-h)xk+(n)
o (29)
~ 0LARA[(1 - h)a}(0)] + = (1-h)r=1-iz()]

The computed sequences {x5+!}’s for the initial guess and first, second and third
iterations of Eq. (29) are given in Table 2, for the case of A = 200, h = 0.5 and
xJ(nh) = nh.

As the table indicates, the Explicit-Euler discretized WR algorithm converges
for this example. In general, if explicit integration methods are used in the WR
algorithm, the iterations will converge for any fixed timestep.
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Table 2
Values for x, for Several Explicit-Euler Computed WR Iterations.

Step Time Initial Iter. #1 Iter. #2 Iter. #3

0 0 0 0 0 0

1 0.5 0.5 0 0 0

2 1.0 1.0 0 0 0

3 1.5 1.5 -0.625 0 0

4 2.0 2.0 - 1.875 0 0

5 2.5 2.5 —-3.594 0.7813 0

6 3.0 3.0 —-5.625 3.125 0

7 3.5 3.5 —7.852 7.422 -0.977

8 4.0 4.0 -10.19 13.67 —4.883

9 4.5 4.5 -12.61 21.63 -13.92
10 5.0 5.0 —-15.06 30.96 -29.79

Theorem 5: If, in addition to the assumptions of Theorem 1, the WR iteration
equations are solved using an explicit multistep method with a fixed timestep h,
for a finite number of timesteps, then the sequences {x(n)} generated by the Gauss-
Seidel or Gauss-Jacobi discretized WR algorithm will converge for all A > 0.

Proof of Theorem 5: The proof of this theorem follows from a simple inductive
argument (Guardabassi 1982). Let x(n) be the exact solution to the system discretized
using an explicit method. Assume xK(m) = x(m) for all m < n. Since the integra-
tion method is explicit, x*(n) and x(n) are the same function of u and x*(m),
m < n. Therefore, x*(n) = x(n). x%(0) = x(0) for all k by assumption, which com-
pletes the proof. Note that this proof guarantees that the discretized WR algorithm
converges precisely to x(n), the exact solution to the original discretized system, in
n iterations. l

It should be noted that the above proof does not show the explicit discretized
WR algorithm is a contraction, nor does it show convergence on a fixed time inter-
val independent of h. A more general proof can be found in (Odeh and Zein 1983).

Insuring relaxation convergence puts no constraints on the timesteps for the
Explicit-Euler method, or for explicit methods in general. But since these methods
have small regions of absolute stability, the timestep may be limited not by accuracy
considerations but to insure stability. For example, consider the differential equa-
tion of Eq. (25), but with a perturbed initial condition, x§(0) = x5(0) = 0.1. The
exact solution will decay asymptotically to zero, but the numerical solution pro-
duced by the Explicit-Euler algorithm will decay asymptotically to zero only if

2

h<1 + 0.1A

(30)

Of course, if it is really reasonable to solve a system using an explicit integra-
tion method with fixed timesteps, WR is not a good algorithm to use. As the
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convergence proof indicates, the WR algorithm will converge for at least one addi-
tional timestep, and probably no more, with each relaxation iteration. For that
reason, it is inefficient to compute more than one additional timestep with each
WR iteration. Given that, it follows that there is no reason to recompute the old
timepoints because the relaxation will have converged for sure. The WR algorithm
is then reduced to an explicit integration algorithm applied to the entire system
directly.

Still, it is interesting to examine the case when the timestep necessary to insure
convergence of the Implicit-Euler discretized WR algorithm is as small as the
timestep necessary for stability of the Explicit-Euler. Because, if implicit methods
do not allow use of much larger timesteps, the extra computations required to use
them is not worthwhile. From Egs. (27) and (30), if A = 10 then the Implicit-Euler
timesteps are unconstrained and the Explicit-Euler timestep must be less than 1.0.
IfA = 100 then the Implicit-Euler timesteps must be less than 0.37, and the Explicit-
Euler timesteps must be less than 0.18. In addition, Implicit-Euler will continue
to allow larger timesteps than Explicit-Euler for very large 4, because its timestep
constraint decreases as 1/A12, whereas the Explicit-Euler timestep constraint
decreases as 1/A.

One can infer from the above example that the WR algorithm allows the use
of larger timesteps than a direct explicit method in most cases, but constrains the
timesteps more than a direct implicit method. The difference between the direct
implicit method timestep constraint and that for the WR algorithm is smallest if
the system to be solved is very loosely coupled. Digital integrated circuits, for which
the WR algorithm was originally developed, are not always loosely coupled. The
coupling can be quite strong, but is usually so only for short intervals. The WR
algorithm is efficient for these problems because small timesteps are required (to
insure WR convergence) only during those intervals when the coupling is strong,
and, because implicit integration is used, the timestep can safely be made much
larger for the rest of the interval (Chua et al. 1984).

Most of the above analysis does not extend readily to the case where different
timesteps are used for different nodes of the system. Examining the multiple timestep
case is in general a difficult problem in numerical analysis, even for standard
methods, and nothing has been published examining this case. Since the major ad-
vantage of WR is that only those variables in the system that are changing rapidly
use small timesteps, this is an important missing piece of the theory about WR
methods.

3. IMPLEMENTATION TECHNIQUES FOR WR METHODS
3.1. Partitioning Methods

In Algorithm 1, the system equations are solved as single differential equations
in one unknown, and these solutions are iterated until convergence. If this kind of
node-by-node decomposition strategy is used for systems with even just a few tight-
ly coupled nodes, the WR algorithm will converge very slowly. As an example, con-
sider the three-node circuit in Fig. 2a, a two inverter chain separated by a resistor-
capacitor network. In this case, the resistor-capacitor network is intended to model
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vdd
IH € V(o)
E % ___EXACT
' Ima 44
v "-m1 g i . +
m.
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Im2y + * 24
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e - |- = 0
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Figure 2. (a) Two inverters with delay; (b) WR iterations for inverter with delay.

wiring delays, so the resistor has a large conductance compared to the other
conductances in the circuit. The current equations for the system can be written
down by inspection and are

Cx, + i, (x,,vdd) + i,o(x,u) + glx;—x)) =0
Ciog(xg—x)) = 0
Cigi, o(xg,%,) + i,4(x5,0dd) = 0

Linearizing and normalizing time to seconds yields a 3 x 3 linear equation

i) -11 10 0]fx, 1
i = | 10 =10 0flx| + |0
£y 0 -1 -1||x, 0

%,(0) =%,(0) =0 x,(0)=1

Algorithm 1 was used to solve the original nonlinear system. The input u(t),
the exact solution for x,, and the first, fifth and tenth iteration waveforms
generated by the WR algorithm for x, are plotted in Fig. 2b. As the plot indicates,
the iteration waveforms for this example are converging very slowly. The reason
for this slow convergence can be seen by examining the linearized system. It is clear
x, and x, are tightly coupled by the small resistor modeling the wiring delay.

If Algorithm 1 is modified, so that x; and x, are lumped together and solved
directly, we get the following iteration equations:

kel =11 10 0 fxk+ 1
s+l T | 10 10 0f [+ T o
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The modified WR algorithm now converges in one iteration, because x, only
depends on the “block” of x; and x,, and that block is independent of x,.

As the example above shows, lumping together tightly coupled nodes and solving
them directly can greatly improve the efficiency of the WR algorithm. For this
reason, the first step in almost every WR-based program is to partition the system,
to scan all the nodes in the system and determine which should be lumped together
and solved directly. Partitioning “well” is difficult for several reasons. If too many
nodes are lumped together, the advantages of using relaxation will be lost, but if
any tightly coupled nodes are not lumped together then the WR algorithm will con-
verge very slowly. And since the aim of WR is to perform the simulation rapidly,
it is important that the partitioning step not be computationally burdensome.

Three approaches have been applied to solve this partitioning problem, and
all have been used successfully in programs for solving large systems. The first ap-
proach is to require the user to partition the system (Lelarasmee and Sangiovanni-
Vincentelli 1982b). This technique is reasonable for the simulation of large digital
integrated circuits because usually the large circuit has already been broken up into
small, fairly independent pieces to make the design easier to understand and manage.
However, what is a sensible partitioning from a design point of view may not be
a good partitioning for the WR algorithm. For this reason programs that require
the user to partition the system sometimes perform a “sanity check” on the parti-
tioning (Defebve et al. 1984). A warning is issued if there are tightly coupled nodes
that have not been lumped together.

A second approach to partitioning, also tailored to digital integrated circuits,
is the functional extraction method (Carlin and Vachoux 1984). In this method the
equations that describe the system are carefully examined to try to find functional
blocks (i.e., a nand gate or a flip-flop). It is then assumed that nodes of the system
that are members of the same functional block are tightly coupled, and are therefore
grouped together. This type of partitioning is difficult to perform, since the algorithm
must recognize broad classes of functional blocks, or nonstandard blocks may not
be treated properly. However, the functional extraction method can produce very
good partitions because the relative importance of the coupling of the nodes can
be accurately estimated.

The most general, and perhaps the most obvious, approach to the partitioning
problem is the “diagonal dominant loop” method (White and Sangiovanni-
Vincentelli 1984, Carlin and Vachoux 1984). In this method tightly coupled nodes
are determined by examining 2 X 2 submatrices of the Jacobian of f(x,u) and C(x,u).
If the magnitude of the product of the diagonal terms is not greater than the prod-
uct of the off-diagonal terms by some factor a (a good choice will depend on the
application), then the two nodes corresponding to the submatrix are lumped together.
See Algorithm 2.

The diagonal dominant loop method has the advantage of simplicity and
generality, but it is often too conservative in practice. Unnecessarily large subsystems
can be generated because only the worst-case coupling is considered when lumping
nodes together. There are also cases for which the method is not conservative enough.
A poor partitioning will be generated for systems that include sets of nodes that
are extremely tightly coupled to each other and are also tightly coupled to other
nodes in the system. (A somewhat complicated modification to this algorithm
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Algorithm 2
Diagonal Dominant Loop Partitioning.

Step 1: Compute matrices Lf, LC defined by
for all (i, j in N) {

Of (x,u)
T f | T— . b 2 e
LL (i # ) max | ox, |
af,(x,u
L{ = min | L2/ L |
X0 Bx‘

1

L§ (i # ) = max |Cyfx,w)

LS = min |Clx,u)]

Step 2: I}’artition the system.
for all (i, j in N) {
if (LGLE > aLCLS or LILL > oLl
x; is lumped with x;

Li){

}

eliminates this difficulty (White and Sangiovanni-Vincentelli 1985).) The functional
extraction method is much less general, and if it is to capture a wide variety of func-
tional blocks, can become a very complicated algorithm. However, the functional
extraction methods better estimate the effective coupling between nodes, and
therefore are likely to generate smaller subsystems.

In the case where a functional extraction method exists, but is too complicated
to apply to a large system directly, then a good mixed approach is to use the two
methods sequentially. First partition the system by applying the diagonal dominant
loop method. Then apply the functional extraction method only to any overly large
subsystems. In this way a reasonable partition can be generated quickly.

3.2. Windowing

The convergence theorem presented in Section 2.2 guarantees that the WR
algorithm is a contraction mapping in an exponentially weighted norm. In this sec-
tion, we will demonstrate by example the practical implications of this choice of
norm. We will then examine how to reduce the number of iterations required to
achieve convergence by breaking the simulation interval into small pieces, or “win-
dows.” First we will prove WR convergence in an unweighted norm for short in-
tervals. As this proof must take into account worst-case behavior, the estimate of
the interval the proof provides is too short to be practical. This will lead us to the
conclusion that an adaptive approach to choosing the windows will be more useful,
and is a safe alternative because the basic convergence theorem guarantees that
regardless of the interval chosen, the WR algorithm converges.
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Consider the following nonlinear ordinary differential equation in x, (1), xy(t)
€ IR with input u € IR that approximately describes the cross-coupled nor logic gate
in Fig. 3a (after normalizing time to seconds).

%, = (I-x) + 10x,(xy)® + 10x,u
g = (1 =15 + 10x,(x,)? (31)

x,(0) =0 x(0) = 1.0

44 | I _' II'I
~_><_{ 31 . mER10:
L5 3 L g dl=gal ! |

ITER 20

vl - ") j ] Exact
ol uld
v 0 T
(@) (b)

Figure 3. (a) Cross-coupled nor gate; (b) WR iterations for cross-coupled nor gate.

The Gauss-Seidel WR Algorithm given in Section 2.2 was used to solve for the
behavior of the cross-coupled nor gate circuit approximated by the small system
of equations (31). In Fig. 3b plots of the input u(t), the exact solution for x,(t), and
the relaxation iteration waveforms for x,(t) for the 5th, 10th and 20th iterations
are shown. The plots demonstrate a property typical of the WR algorithm when
applied to systems with strong coupling: the difference between the iteration
waveforms and correct solution is not reduced at every timepoint in the waveform.
Instead, each iteration lengthens the interval of time, starting from zero, for which
the waveform is close to the exact solution.

As an example of “better” convergence, consider the following normalized dif-
ferential equation in x|, x,, x, with input u that approximately describes the shift
register in Fig. 4a:

£ = (1-x) - x(u)® + (x;-xp)
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Figure 4. (a) Shift register; (b) WR iterations for shift register.

The Gauss-Seidel WR Algorithm given in Section 2.2 was used to solve the original
system approximated by the above system of equations. The input u(¢), the exact
solution for x,(t), and the waveforms for x,(f) computed from the first, second, and
third iterations of the WR algorithm are plotted in Fig. 4b. As the plots for this
example show, the difference between the iteration waveforms and the correct solu-
tion is reduced throughout the entire waveform.

Perhaps surprisingly, the behavior of the first example is consistent with the
WR convergence theorem, even though that theorem states that the iterations con-
verge uniformly. This is because it was proved that the WR method is a contrac-
tion map in the following nonuniform norm on C([0,T],IR"):

max e~ ¥ (4]

where b > 0, f(t) € IR", and ||*| is a norm on IR". Note that ||f(t)|| can increase
as ¥ without increasing the value of this function space norm. If f() grows slow-
ly, or is bounded, it is possible to reduce the function space norm by reducing ||f(¢)|
only on some small interval in [0,T], though it will be necessary to increase this
interval to decrease further the function space norm. The waveforms in the more
slowly converging example above, converge in just this way; the function space norm
is decreased after every iteration of the WR algorithm because significant errors
are reduced over larger and larger intervals of time. The examples above lead to
the following definition:

Definition 1: A differential system of the form given in Eq. (4) is said to have
the strict WR contractivity property on [0,T], if the WR algorithm applied to the
system is a contraction map in a uniform norm on [0,T], i.e.,

max[olr]llxk+l(‘) - (@) < max[o‘r]"xk(t) - xk=1@)||
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Figure 4. (a) Shift register; (b) WR iterations for shift register.

The Gauss-Seidel WR Algorithm given in Section 2.2 was used to solve the original
system approximated by the above system of equations. The input u(¢), the exact
solution for x,(t), and the waveforms for x,(¢) computed from the first, second, and
third iterations of the WR algorithm are plotted in Fig. 4b. As the plots for this
example show, the difference between the iteration waveforms and the correct solu-
tion is reduced throughout the entire waveform.

Perhaps surprisingly, the behavior of the first example is consistent with the
WR convergence theorem, even though that theorem states that the iterations con-
verge uniformly. This is because it was proved that the WR method is a contrac-
tion map in the following nonuniform norm on C([0,T],IR"):

maxyg rj e btl[f(t) I

where b > 0, f(t) € IR", and ||*| is a norm on IR". Note that |[f(f)|| can increase
as ¥* without increasing the value of this function space norm. If f(t) grows slow-
ly, or is bounded, it is possible to reduce the function space norm by reducing |f(¢)]
only on some small interval in [0,T], though it will be necessary to increase this
interval to decrease further the function space norm. The waveforms in the more
slowly converging example above, converge in just this way; the function space norm
is decreased after every iteration of the WR algorithm because significant errors
are reduced over larger and larger intervals of time. The examples above lead to
the following definition:

Definition 1: A differential system of the form given in Eq. (4) is said to have
the strict WR contractivity property on [0,T], if the WR algorithm applied to the
system is a contraction map in a uniform norm on [0,T], i.e.,

n‘ax[nlr]llxk+ l(t) - Ik(t)" < max{o_r]“xk(t) = xk_l(t) I
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where x*(t) € IR" on t € [0, T] is the k™ iterate of Algorithm 1; and ||*|| is any norm
on IR". If the WR algorithm applied to the system is a contraction in a uniform
norm on [0,T] for any T > 0 then we say that the system has the strict WR contrac-
tivity property on [0,0). l

For a system of equations to have the strict WR contractivity property on [0,90)
it must be more than just loosely coupled. In addition, the decomposed equations
solved at each iteration of the waveform relaxation must be well-damped, so that
errors due to the decomposition die off in time, instead of accumulating or grow-
ing. As the crossed nand gate example indicates, many systems of interest do not
have the strict WR contractivity property on [0,T) for all T < e, However, we will
prove that any system that satisfies the WR convergence theorem will also have the
strict WR contractivity property on some nonzero interval.

Theorem 6: For any system of the form of Eq. (4) which satisfies the assump-
tions of the WR convergence theorem (Theorem 1) there exists a T > 0 such that
the system has the strict WR contractivity property on [0,T].

Proof of Theorem 6: We will prove the theorem only for the Gauss-Scidel WR
algorithm but, as before, the theorem holds for the Gauss-Jacobi case. Starting with
Eq. (9) and substituting x* for «f,

#44e) = 2Me) = (Lyoy(t) + Dy, (0) =, (054(0)
— (Ly(t) + Dye)~ Uz -1(r)
+ (Lgyy + Dy, )~ Y(xk+ 1,2k 0)
= (L + D=k, xk-1y)
To simplify the notation, let Ay(f), By(tf) € R"*" be defined by Al =
(Ly(®) + Dy(t)) ~'U(t), By(t) = (Ly(f) + Dy(#))~*. It is important to keep in mind

that (Ly(t) + Dy(t))~'Ui(t), and (L() + D,(t)) -! are functions of x*, and by
definition, so are A,(f) and B,(t). Expanding the above equation and integrating,

Jb @) - dk@)dr = [HAg, (@)@ — £ Yn)de
+ S5 [Ara() — A+ -1(r)dv
+ S B @ (1), 24 ),u(0) — k), ) u) )
+ S8 [Biyy(r) = By(@)f (k(x) k- 1), u(x))dr
Integrating by parts and using the fact that x¥(0) — 2%-1(0) = 0,
Y — xk(t) = Ay, (M) - 2k-1(1)

d
- I{JEAkH(T) [xk(x) - *-Y1)]dr + T [Ag i () - A, (1) ]x%-1dt
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+ Jb B (MF 1) 24 n),u() - Fak),x* - ),u()de
+ S8 [Byo 1(1) = By() 1 (k(x) 2% - (1), u(x))dx

Taking norms, and using the Lipschitz continuities of f, A,(f), and B,(t), and the
uniform boundedness of B,(#) in x (see Theorem 1)

k1) =2k ()| — 4K + kM + kg [k + 1(x) - 2K(1) |

< yllak(t) == YOI + S4UK + kM + 2k, M + k N)|x5(x) — 2% - (1) || dx

where 1, 1, are the Lipschitz constants of f with respect to x*+! and x* respective-
ly; ky, ko, ky, kg are the Lipschitz constants for A, , (t), B, , 1(f) with respect to their
x;+1 and x; arguments respectively; y = max, (L, + DYU;] < 1; and M and
N are the a priori bounds on x* and f found in the proof of Theorem 1. Note that

g;Ak+l(T) = %Ah gkl 4 éAHI:E" <k,M + k,M. Moving the max (over t)

norms outside the integrals and integrating yields
maxgy e+ 1) — 2k 32)

< ¥+ TR+ kM + 2K,M + kN
1 - T(KL,+k,M +k,N)

max 1l (*(8) — 2%~ 1(B)]

y + T'(Kly+kM+2KM+kN)

= - a<l.
1 - T'(4,K+kM+k;N)

Sincey < 1, a T' > 0 exists such that

With this T', Eq. (32) becomes

max[g_,..]||x"+ L2k € @ maxg, pqllxk — xk-1|

for « < 1, which proves the theorem.

Theorem 6 guarantees that the WR algorithm will be a contraction mapping
in a uniform norm for any system, provided the interval of time over which the
waveforms are computed is made small enough. This suggests that the interval of
simulation [0,T] should be broken up into windows, [0,7,), [Ty, Tgl, . . .
[T,_,,T,], where the size of each window is small enough so that the WR algo-
rithm contracts uniformly throughout the entire window. The smaller the window
is made, the faster the convergence. However, as the window size becomes smaller,
the advantages of the waveform relaxation are lost. Scheduling overhead increases
when the windows become smaller, since each subsystem must be processed at each
iteration in every window. If the windows are made very small, timesteps chosen
to calculate the waveforms will be limited by the window size rather than by the
local truncation error, and unnecessary calculations will be performed.

The lower bound for the region over which WR contracts uniformly given in
Theorem 6 is too conservative in most cases to be of direct practical use. As men-
tioned above, in order for the WR algorithm to be efficient it is important to pick
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+ S8 By (0 (F (25 1(1), x4 (1), u(r)) — Fak(r),xk - () u(x))dx
+ S8 [By, (1) = By(n) [f (xk(r) .2k~ () ,u(r))dx

Taking norms, and using the Lipschitz continuities of f, A(f), and B,(), and the
uniform boundedness of B,(t) in x (see Theorem 1)

llk+ 1) —xk(B)]| — So(L,K + klﬁ_ﬁ" + ksmuxh— W) —x*(1)]|

< yllak(t) =2 = 1O) + SHLK + kM + 2k, M + k N)|x(x) — x* = (1) || dx

where 1, £, are the Lipschitz constants of f with respect to x%+! and x* respective-
ly; ky, ky, kg, kg are the Lipschitz constants for A, , (), B, ,(t) with respect to their
1 41 and x; arguments respectively; y = max;, y[(L; + DYU;] < 1; and M and
N are the a priori bounds on x* and f found in the proof of Theorem 1. Note that

%‘A“ (1) = ﬁ/\h gkl 4 dxi"A“ #k <k,M + k,M. Moving the max (over ¢)

norms outside the integrals and integrating yields
max, pllck+ 1(t) — k()| (32)

< ¥+ T(Kly+k M+ 2k,M +k,N)

xk — xk-1
1 — T(KL, + kM +kN) maxgg 7yfl (<() — **=1(5)]

y + T(Kly+kM+2kM+kN)

Since y < 1, a T’ > 0 exists such that 2 =
1 - T'({,K + kM +k,N)

a<1.

With this T', Eq. (32) becomes

max[u.'r']“xh l_xk| € a max[g‘T.]ka —xk=1j

for @ < 1, which proves the theorem. ll

Theorem 6 guarantees that the WR algorithm will be a contraction mapping
in a uniform norm for any system, provided the interval of time over which the
waveforms are computed is made small enough. This suggests that the interval of
simulation [0,T] should be broken up into windows, [0,T,], [T\Tg), . . .,
[T,_,T,], where the size of each window is small enough so that the WR algo-
rithm contracts uniformly throughout the entire window. The smaller the window
is made, the faster the convergence. However, as the window size becomes smaller,
the advantages of the waveform relaxation are lost. Scheduling overhead increases
when the windows become smaller, since each subsystem must be processed at each
iteration in every window. If the windows are made very small, timesteps chosen
to calculate the waveforms will be limited by the window size rather than by the
local truncation error, and unnecessary calculations will be performed.

The lower bound for the region over which WR contracts uniformly given in
Theorem 6 is too conservative in most cases to be of direct practical use. As men-
tioned above, in order for the WR algorithm to be efficient it is important to pick
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the largest windows over which the iterations actually contract uniformly, but the
theorem only provides a worst-case estimate. Since it is difficult to determine a priori
a reasonable window size to use for a given nonlinear problem, window sizes are
usually determined dynamically, by monitoring the computed iterations (White and
Sangiovanni-Vincentelli 1984). Since Theorem 1 guarantees the convergence of WR
over any finite interval, a dynamic scheme does not have to pick the window sizes
very accurately. The only cost of a bad choice of window is loss of efficiencey, the
relaxation will still converge.

3.3. Relaxation-Newton Methods

In Section 2.3 we discussed a general class of methods for improving the com-
putational efficiency of WR algorithms. The approach taken in these methods was
to approximately solve the iteration equations when the computed x¥'s were far
from convergence. We proved that if the WR iteration equations are only solved
approximately, but the accuracy of the approximation is improved with each itera-
tion, then these methods have convergence properties similar to the canonical WR
algorithm. The practical question is then what approximation should be used ini-
tially, and by how much should the accuracy be improved with each iteration. In
this section we present a modified WR algorithm that automatically adjusts
the accuracy of the computation to how close the iterations are to convergence. The
method is an extension to function spaces of relaxation-Newton algorithms used for
solving nonlinear algebraic systems (Guarini and Palusinski 1983, van Bokhoven
1983, Ortega and Rheinbolt 1970). In these algorithms the nonlinear iteration equa-
tions are not solved exactly, but are solved approximately, by performing one step
of a Newton method. Since the accuracy of the one Newton step improves as the
xF’s approach the exact solution, the iteration equations will be solved more ac-
curately with each iteration if the sequence {x*} converges.

Using the waveform-Newton method derived in Section 2.4, and performing
one step of this Newton method with each waveform relaxation iteration, yields
the Waveform-Newton-Relaxation algorithm (WNR) (Algorithm 3). Again, each
equation has only one unknown variable ¥, like Algorithm 1, but each of the
nonlinear equations has been replaced by a'simpler time-varying linear problem.

Given the global convergence properties of both the original WR and the WN
algorithms, it is not surprising that the WNR algorithm has global convergence prop-
erties. We will state the convergence theorem, but will not present the proof because
it is quite similar to the proof of the basic WR and WN convergence theorems.

Theorem 7: If, in addition to the assumptions of Eq. (4), C(x,u) € R"xn is

strictly diagonally dominant uniformly over all x € IR" and ﬁa(xﬁ) is Lipschitz
X

continuous with respect to x for all u; then the sequence {x*} generated by the
Gauss-Seidel or Gauss-Jacobi WNR algorithm will converge to the solution of
Eq. (4) for all bounded intervals [0,T].

The linear time-varying systems generated by the WNR algorithm are easier
to solve numerically than the nonlinear iteration equations of the basic WR
algorithm, but the iteration equations could be further simplified if the time-varying
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Algorithm 3
WNR Gauss-Seidel Algorithm for Solving Eq. (4).

Comment: The superscript k denotes the iteration count, the subscript
i € {1, ..., N} denotes the component index of a vector, and ¢ is a small positive
number.

k<0
guess waveform x(t); ¢ € [0,T] such that x0(0) = %
(for example, set 20(t) = %, t € [0,T));

repeat {
k+~k+1
for all (i in N){
solve
i-1
k k k-1 k-1 k
,?ICE;(’H‘ T R e R ,u)x,.
k k k-1 -1
AL D B e A "‘ﬁ »4) (xk — k= 1)k
i 1
axl. t
n
k k -1 k-1 k-1
+ ,-{ 1Ci,.(:r,‘, - ,x‘-_l,:rf PRI s .u}xf-

S A AL AL

I A e T

dx,

1

(ek-xf-1 =0

for (xX(t); ¢t € [0,T)), with the initial condition xf(O) = %

}
}

until (max, ¢, ., max, ¢ [O,T}le(t) - x{“ (1) < ¢)

Jacobian is replaced by a time-invariant approximation. Approximating the Jaco-
bian will, of course, destroy the local quadratic convergence of the WN method.
But, as an examination of the convergence proof in Section 2.4 indicates, approx-
imating the Jacobian will not destroy the global WN convergence. In addition, loss
of quadratic convergence may not be a significant consideration when the Newton
method is used in conjunction with a relaxation method, because the relaxation con-
verges linearly and will dominate the rate of convergence of the combined method.

The modified WNR method then converts the basic WR iteration equations
to much simpler linear time-invariant equations. Such systems can be solved with
a variety of efficient numerical techniques other than the standard multistep
methods. Since the problem is linear, Laplace transform techniques could be used
(see Section 3.4). Also, it is possible to use methods based on replacing the solution
of the differential equation with a series of orthogonal functions (e.g., Chebyshev
polynomials) with unknown coefficients. The problem of finding a solution to the
differential equation is then reduced to determining the coefficients (Palusinski 1984,
Palusinski and Simacek 1985).
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3.4. Techniques for Piecewise-Linear Systems

Large systems of ODEs are usually constructed by analyzing an interconnected
network of nonlinear elements. Often, to reduce computation time, the nonlinear
elements are not evaluated exactly, but approximated by a linearly interpolated table
of values. Not only does this approach reduce the computation time needed to
evaluate the nonlinear elements, but it also converts the original system into a
piecewise-linear system. Inside the “bounding box” formed by the table entries, the
system is linear.

In this section an approach is given for solving piecewise-linear systems using
the WR algorithm presented in Section 2.2, and Laplace transforms (Kaye and
Sangiovanni-Vincentelli 1982). This technique not only takes advantage of a loose-
ly coupled original system through the use of the WR algorithm, but as the itera-
tions are computed using Laplace transforms, the piecewise-linearity of the problem
is also exploited,

We start this section by deriving the iteration equations for the WR algorithm
applied to a linear differential system. Following this, the steps required to com-
pute the WR iteration waveforms using Laplace transform techniques are described.
We then extend the approach to piecewise-linear systems and introduce the
algorithm,

Consider the following autonomous linear ODE:

X = Ax x(0) = x, (33)

where x(t) € IR" on ¢t € [0,T] and A € R" x IR". The basic WR convergence
theorem guarantees that Eq. (33) can be solved using Algorithm 1.

Let A = L +D +U where L is strictly lower triangular, D is diagonal, and
U strictly upper triangular. The Gauss-Jacobi WR iteration equations applied to
Eq. (33) are

Zk+1 = Dxk+l 4 (L 4+ U)xk x(0) = x, (34)
Solving Eq. (34) by Laplace transforms,
xk+1l(s) = (sI - D)~ [(L + U)xk(s) +x,)

If x¥(s) is a rational (vector-valued) function with real poles, so is 25+ 1(s). And
by induction, if x%(s) is a rational function with real poles, then so is x%(s).
Given that x0(s) is a rational function with real poles (for example, if x0(t) =

Xgs 2%s) = slxu), it is easy to compute the x**1(s) term from x*(s). If 2* has the
following partial fraction expansion:
&

xh(s) = )‘% (s—24) ™ol

fw=1

where vf € R", A, € R, and m; and M* are positive integers, then x* can be
calculated from Eq. (34) as
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s = E‘; (s—A) " ™(sI-D) YL+ Ui+ (sI+ D)~ A

which can be expressed as another partial fraction expansion

M1 ) ;
2k + 1g) - _ZI (s=A") "™ «pi (35)

When necessary, the time domain expression for Eq. (35) can be obtained from

-
Mk , m

ak+ () = z ehit t : i

=1 = (m'-1)

As indicated above, the partial fraction expansion of z**! is computed from
the partial fraction expansion of x* in two simple steps. First, Mk multiplications
of the matrix (L + U) by the vector ' must be performed. For large systems, the
(L + U) matrix is usually sparse, so the number of scalar multiplications required
to perform the matrix-by-vector multiplication is K*n, where K is the average
number of nonzero terms in each row of the matrix. The next step is to compute
the w vectors as in Eq. (35). This involves performing the partial fraction expan-
sion of the terms of the forms (s — A) ~™(s —df)~! and s~ (s — d))~! where d, is the
j*" entry of the diagonal matrix D. The partial fraction expansion can be computed

Mk
by evaluating EI W, residues, where W, is the number of nonzero elements in
{=

(L +U)v,.

The only complication incurred by extending the above technique to a
piecewise-linear system is that the solution will cross into many different linear
regions. However, the points in time at which the solution passes from one linear
region to the next can be thought of as defining beginning and ending points of
windows in time (see Section 3.2). Inside each window the problem is linear, with
initial conditions specified by the solution’s value at the time it crosses the bound-
ary of the region. The algorithm can then proceed as above inside each window,
with only the additional difficulty of determining the boundary crossing times.

Before describing the algorithm, we will formally define a piecewise-linear dif-
ferential system so that we can precisely define the notion of boundary crossings.

Definition 2: Let Ri, j €[, . . . , r] be a collection of closed sets with disjoint
interiors, and U = ;Ufo' Let AI.E IR"*" and bj € IR". Then p:U—~IR" is such that
p(z) = Az + b, is piecewise-linear.

Consider the following differential equation:

() =p()  x(0)=x, (36)

where x(t) € IR" and p:IR" = R" is piecewise-linear. We assume that the A/ e TN
and b; € IR" of p are known, and are such that p(*) is everywhere continuous. The
WR algorithm for solving systems of the form of Eq. (36) using a region by region
application of the Laplace transform technique described above is as follows:
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Algorithm 4
Region by Region Solution of Eq. (36).

T'=0
repeat {
Find j € [1, . . . , n] such that £X(T"') € Ri
R) = 32(T)
k < 0.
repeat {

k~k + 1 i

x(s) = (s = D) = 1[(L + U)xk = 1(s) + b, + x]

Partial fraction expand x*(s) and collect like terms.
Mi+1 m =1

k+Ty= El At w’
L

(m';—1)
juntil(max, o, . ,max, ¢ [T._T}fxf(t} -zk-1(] < ¢)

i.e., until sufficient convergence is obtained.
t=inf [t > T’ | z5(¢) € R].

Find the time 2%(t) leaves region Ri

T'=T'+t
Juntil T'> T

In order to check convergence it is necessary to compute the time domain ex-
pressions for the iterations. The computation of the time domain expression is a
relatively expensive operation, and is only required to check WR convergence. It
is possible to improve the efficiency of Algorithm 4 by checking the convergence
only every few iterations. Another method for improving the efficiency is somewhat
more subtle. Since the WR algorithm usually converges in a nonuniform manner
(see Section 3.2), insisting that the relaxation converges to the end of the interval
of interest only to then toss away the solution after the boundary crossing time, will
usually require many unnecessary WR iterations to be performed. Even though it
is impossible to know when the boundary crossings will occur without knowing the
exact solution, finding those times for the partially converged solutions can provide
good approximations to the boundary crossing times. Since in many cases evaluating
the boundary crossing time is very expensive, a fast approximation should be used
to provide some reasonable upper bound on the boundary crossing time. This ap-
proximation can then be used to shorten the interval over which WR convergence
must be assured. Hence, the number of WR iterations required to achieve satisfac-
tory convergence can be reduced at the cost of computing these approximate bound-
ary crossings.

3.5. Techniques for MOS Digital Circuits

In previous sections we presented several relatively general techniques for im-
proving the efficiency of WR along with corresponding examples related to
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simulating MOS circuits. We chose examples from this area because, as mentioned
in the introduction, WR has proved to be an efficient technique for solving the large
nonlinear ODE systems that describe MOS digital circuits. This is due, in part, to
characteristics of these ODE systems that are exploited by the general properties
of the WR algorithm mentioned above. Specifically, these problems are easily broken
up into loosely coupled subsystems across which relaxations converge rapidly, and
different state variables change at very.different rates, so the ability of the WR
algorithm to use different timesteps for different nodes is of great practical advantage.

There are also other properties of MOS circuits that can be exploited by the
WR algorithm, and they are much more specific to the circuit simulation problem.
In order to complete our presentation of the WR algorithm we will discuss some
of these techniques, and will end the section with experimental results that
demonstrate the strengths and weaknesses of the WR algorithm in this important
area of application.

3.5.1. The ODE Description of MOS Digital Subcircuits
As mentioned previously, the physical behavior of MOS digital circuits can be
represented as a system of differential equations of the following form:

Clo(®),u(®)) o(t) =f(o(®),uw)))  v(0)=v, (37)

where v(t) € IR" is a vector of time-varying voltages, u(t) € IR" is a vector of time-
varying inputs to the circuit, C:IR"xIR" = IR"*" is a matrix of nonlinear
capacitances, and f:IR" v IR" = IR" is a vector function of the voltages (the currents).
For most circuits of practical interest, C(v,u) is strictly diagonally dominant and
therefore C(v,u)~! exists and is uniformly bounded with respect to v,u; and f is
globally Lipschitz continuous with respect to x for all u(t) € IR.

3.5.2. Ordering of the Subcircuits
Consider using relaxation to solve a large system of linear algebraic equations
of the form

Ax=b

where x,b € R" and A € R"*" . Let L, D, U be strictly lower triangular,
diagonal, and strictly upper triangular matrices, respectively, such that A = L +
D + U. If the classical Gauss-Seidel relaxation algorithm is used to solve the above
system, the iteration equations can be written in matrix form as

(L+D) x*+1-Uaxk=b
Taking the difference between iteration k + 1 and k yields the following relation:
(xk+1—a%) = (L + D)~ WU (xk - xk-1)
assuming L + D is nonsingular (i.e., the entries in D are nonzero). By the contrac-

tion mapping theorem, the relaxation converges if there exists some induced norm
on IR" such that |(L + D)~ lU|| < 1.
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As an example, suppose that A is lower triangular, that is U = 0. Then the
relaxation converges in one iteration because the above norm is zero. Of course,
the order of the single equations represented by the rows of A in Eq. (37) is not
unique. One could reverse order the equations of the system, so that b, becomes
b,.,_;s Ax = b then becomes Ax = b where A is a row permutation of A. In this
case, A is upper triangular because A is lower triangular. If the Gauss-Seidel relax-
ation algorithm is used to solve this new problem, the above norm will no longer
be zero, and the relaxation will not converge in one iteration.

Although the above is an extreme example, it does indicate that if the Gauss-
Seidel relaxation algorithm is used, it is possible to reorder the system so that the
number of iterations required to achieve convergence can be significantly reduced.
In particular, a reordering should attempt to move as many of the large elements
of the matrix into the lower triangular portion as possible.

The Gauss-Seidel WR algorithm shares this property with the algebraic relax-
ation scheme. That is, the Gauss-Seidel WR algorithm will converge more rapidly
if the ODE system can be made lower triangular. In the case of MOS digital cir-
cuits the function f(v,u) that represents the currents in the circuit can be made mostly
lower triangular by a careful reordering of the equations.* This is because the MOS
transistor is a highly directional device. The transistor currents at the drain and
source terminals are a strong function of the voltage at the gate terminal, but the
gate current is almost unaffected by the drain and source voltages. Therefore, if
the differential equations of the circuit can be ordered so that the equation that
is solved to determine the voltage at the gate of a transistor can be placed before
the equation that is solved to determine the voltage at the drain and source of the
transistor, then f(v,u) will be mostly lower triangular.

It is not, in general, possible to so order the equations completely. Flip-flops
(see Fig. 3a), and many other types of digital circuits, contain loops that require
some transistor’s drain or source voltage equation to precede its gate voltage equa-
tion. In these cases, convergence is still improved if the equations are ordered so
that f(v,u) is as lower triangular as possible.

3.5.3. Truncated Relaxation Schemes

One of the practical difficulties of applying the WR algorithm to large systems
is that the entire waveform for every node in the system must be stored during the
iteration process. For systems with many nodes and long waveforms, the required
data storage may exceed a computer’s available memory. Breaking the simulation
interval into “windows” (Section 3.2) reduces the storage required for each of the
individual waveforms and allows larger systems to be simulated without exceeding
available memory, but very large systems will still require extra storage. One ap-
proach to solving this problem without changing the WR algorithm is to store the
waveforms on a mass storage medium (e.g., a magnetic disk). Then, since only a
few waveforms are used at any one time, those waveforms can be moved into a
computer’s memory, and then moved back out when no longer needed (in much
the same way as virtual memory). Another approach to reducing the memory

*When we say we wish f(v,u) to be mostly lower triangular, we mean that we would like the terms
8f/duv; that are large for any v, to be in the lower triangular portion.
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requirements of the WR algorithm is to introduce a truncation approximation, which
works well for certain classes of MOS digital circuits.

Consider the inverter chain example in Fig. 5a. The input to the first inverter
and its output for the cases of chains with two, three and four inverters are plotted
in Fig. 5b. As the plots indicate, the impact on the output of the first inverter of
additional inverters diminishes with the number of inverters. This suggests that the
output of each inverter in a long chain could be computed accurately by consider-
ing only a few inverters at a time, effectively truncating the computation. For ex-
ample, compute the output of the first inverter by solving a reduced system which
ignores all the inverters after the fifth; then compute the output of the second in-
verter, using the computed output from the first inverter, by solving a reduced system
ignoring all the inverters after the sixth; and continue in this fashion until all the
inverter outputs have been computed. The advantage of this approach is that at
any point in the procedure, only the waveforms of six inverters are needed. And,
as the above simple example indicates, the error due to this truncation will be small.

Of course, this algorithm will only produce accurate results if the systems of
equations are almost unidirectional, like the inverter chain, and the truncation
algorithm follows this direction. Combinational circuits, a large class of MOS digital
integrated circuits, do share the mostly unidirectional property of the inverter chain.
And since these circuits can be quite large (several thousand nodes), using the trun-
cation approach avoids the difficulty of storing all the waveforms.

3.5.4. Partial Waveform Convergence

If the WR algorithm is used to compute the time domain behavior for very
large circuits, it is often the case that some pieces of the circuits will converge much
more rapidly than others. The overall efficiency of the WR method can be improved
if the waveforms that have already converged are not recomputed every subsequent
iteration.
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Figure 5. (a) Inverter chain; (b) Output of inverter 1 for several chain lengths.
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To take advantage of partial waveform convergence requires a simple modifica-
tion to Algorithm 1. Before giving the exact algorithm we present the following useful
definition.

Definition 3: Let
,?,C.-,-(v(t),u(t))v,(t) = fle(,u@®))  v(0) = v,

be the it equation of the system in Eq. (37). We say v,() is an input to this
equation if there exists some a,t € R and z,y € IR" such that Z Czu(t)y;
# Z Cijlz + ae;,u(t))y; or f(z,u(t)) # fi(z + ae,u(t)), where ¢ is the }”‘ un:t vector.
Thc input set for the i*h equation is the set of j € [1, . . . , n] such that v(t) is an
input.

The WR algorithm is then modified slightly using this notion of the set of in-
puts to a given ODE,

Algorithm 5
WR Algorithm with Partial Waveform Convergence.

Comment: The superscript k denotes the iteration count, the subscript { denotes the
component index of a vector, and ¢ is a small positive number.
k< 0;
guess waveform x%(t); ¢ € [0,T] such that x0(0) = x,
(for example, set x0(t) = x,, t € [0,T));

repeat {
k<k+1
foreach (i in N){
Partial flag = TRUE
if (k=1) Partial flag = FALSE
For each (j <1, jE mput set of v;)
if (meuc0 T]] k=1 > ¢) Partial flag = FALSE
For each (j 2 i, | é mpu{ set of v))
if (maxg pylvf = ! ~vf =% > ¢) Partial flag = FALSE

if (Partial flag = TRUE) vf*+1=ok

else solve
k k=1 k-1 1k
EIC( e oa ORHOFT, oL, UF ,u)uj
5 k ok ok =1 k=1 ,\ok-1
+ i-fz’l Cﬁ(ol' e l’ S R ,Un ,B)Ui
+ fi (9?v cee U:“.Ur+ ll ..... uﬁ_l,u} =0

for v:"(:); t € [0,T), with the initial condition vi(0) = v,

}

buntil (max; ¢ ; ¢, max, g 7 lof(t) - vk~ Y1) < ¢
that is, until the iteration converges.
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3.5.5. Eaxperimental Results

The degree to which the WR algorithm improves circuit simulation efficiency
can be traced to two properties of a circuit. The first property, mentioned before,
is the difference in the rates of change of voltages in the system, as this will deter-
mine how much efficiency is gained by solving the subsystems with independent
integration timesteps. The second is the amount of coupling between the subsystems.
If the subsystems are tightly coupled, then many relaxation iterations will be re-
quired to achieve convergence, and the advantage gained by solving each subsystem
with its own timestep will be lost. To show this interaction for a practical example,
we will use the Relax2.2 (White and Sangiovanni-Vincentelli 1984) program to com-
pare the computation time required to simulate a 141-node CMOS memory circuit
using standard direct methods and using the WR algorithm. In order to demonstrate
the effect of tighter coupling, the CMOS memory circuit will be simulated using
several values of a parameter XQC, which is the percent of the gate oxide capacitance
that is considered as gate-drain or gate-source overlap capacitance.

Table 3
Direct vs. WR on a Memory Circuit with Different Couplings.

Method XQC Timepoints # WR Iters. CPU Time
Direct 0.01 124,539 1 933s
WR 0.01 17,728 2.5 304s
Direct 0.05 122,988 1 945s
WR 0.05 19,199 3 410s
Direct 0.2 118,335 1 917s
WR 0.2 19,193 4 530s
Direct 0.33 115,233 1 895s
WR 0.33 19,315 6.5 707s

The results in Table 3 are exactly as expected. As the coupling increases, the
number of WR iterations required increases, and the difference in the simulation
time for WR and the direct method decreases.

It is possible to verify for this example our claim of the nature of the efficien-
cies of using WR. Consider the number of timepoints computed by the direct method
versus the number of computed timepoints for the WR method in the final itera-
tion. By comparing these two numbers, a bound can be put on the maximum speed
increase that can be achieved by solving different subsystems using different
timesteps. (Note that we are only considering the number of timepoints computed
by the WR method in the final iteration, because we are only interested in the
number of timepoints needed to accurately compute the given waveform.)

The total number of timepoints computed for each of the simulation cases of
the memory circuit example is also given in Table 3. This number is the sum of
the computed timepoints over all the waveforms in the circuit. If most of the effi-
ciency of a decomposition method stems from solving each of the subsystems with
its own timestep, then the maximum improvement that could be gained from a
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decomposition integration method would be the ratio of the number of timepoints
computed using the direct method compared to the number of timepoints computed
in the final WR iteration. As can be seen from Table 3, for the CMOS memory
example this ratio is approximately six. In order to compute the actual efficiency
of the WR method, the average number of WR iterations performed must be con-
sidered, because for each WR iteration the set of timepoints is recomputed. Then,
if our claims above are correct, when the ratio of the number of timepoints for the
direct method to the number of WR timepoints is divided into the average number
of relaxation iterations, the result should be almost equal to the ratio of WR com-
putation time to direct computation time. And as Table 3 shows, it is.

In the above analysis we have ignored an important advantage of relaxation
methods: that they avoid large matrix solutions. This is a reasonable assumption
for the above example because the matrix operations account for only a small percent-
age of the computations, even when direct methods are used. However, for much
larger problems, of the order of several thousand nodes, the time to perform the
large matrix solutions required by direct methods will dominate. In those cases WR
methods should compare even more favorably because they avoid these large matrix
solutions.

Finally, in Table 4, we present several circuits that have been simulated using
RELAX2.2 with direct and WR methods.

Table 4
CPU Time for Direct Methods vs. WR for Several Industrial Circuits.
Circuit Devices Direct WR
uP Control 232 90s* 45s*
CMQOS Memory 621 995s* 308s*
4-bit Counter 259 540s* 299s*
Inverter Chain 250 98s** 38s**
Digital Filter 1082 1800s* 520s*
Encode-Decode 3295 5000s* 1500s*

*On VAX11/780 running Unix using Shichman-Hodges Mosfet model.
**On VAX11/780 running VMS using Yang-Chatterjeec Mosfet model.

4. CONCLUSIONS

In this paper several of the WR algorithms that have been proposed in the
literature have been analyzed both from a theoretical and practical point of view.
We have, however, treated several of these aspects too lightly. In particular, research
is needed to understand more thoroughly the nature of WR convergence under
discretization, and to characterize systems for which WR algorithms contract in
uniform norm. In addition, theoretical and practical work needs to be continued
on breaking large systems into smaller subsystems in such a way that relaxation
algorithms converge rapidly. Finally, since the WR algorithm has a tremendous
amount of inherent parallelism, its application to solving problems using parallel
processors is also an important research question.
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