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Abstract

Designers of high-performance integrated circuits are paying ever-increasing atten-
tion to minimizing problems associated with interconnects such as noise, signal delay,
crosstalk, etc., many of which are caused by the presence of a conductive substrate.
The severity of these problems increases as integrated circuit clock frequencies rise
into the multiple gigahertz range. In this thesis, a simulation tool is presented for
the extraction of full-wave interconnect impedances in the presence of a conducting
substrate. The substrate effects are accounted for through the use of full-wave lay-
ered Green’s functions in a mixed-potential integral equation (MPIE) formulation.
Particularly, the choice of implementation for the layered Green’s function kernels
motivates the development of accelerated techniques for both their 3D volume and
2D surface integrations, where each integration type can be reduced to a sum of 1D
line integrals. In addition, a set of high-order, frequency-independent basis functions
is developed with the ability to parameterize the frequency-dependent nature of the
solution space, hence reducing the number of unknowns required to capture the in-
terconnects’ frequency-variant behavior. Moreover, a pre-corrected FFT acceleration
technique, conventional for the treatment of scalar Green’s function kernels, is ex-
tended in the solver to accommodate the dyadic Green’s function kernels encountered
in the substrate modeling problem. Overall, the integral-equation solver, combined
with its numerous acceleration techniques, serves as a viable solution to full-wave
substrate impedance extractions of large and complex interconnect structures.
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Title: Professor

Thesis Supervisor: Luca Daniel
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Chapter 1

Introduction

1.1 Motivation

The integration of RF, analog and digital circuitry on a single integrated-circuit sub-

strate, or system-on-chip (SoC), has become a popular solution for various mixed-

signal applications. However, there are many challenges associated with this design

paradigm where circuits of dissimilar nature, operating modes and functionality are

integrated on a common substrate.

One of these challenges is to ensure the correct operations of all the SoC compo-

nents in the presence of a conductive substrate. The semiconducting silicon substrate

used in most SoC systems permits noise injection and propagation, thereby exposing

circuitry to ubiquitous substrate noise coupling, leading to altered circuit performance

and partial or complete loss of system functionality. The severity of the substrate ef-

fects only worsens as operating frequencies increase. For instance, the induced eddy

currents in the substrate may degrade the quality factor of high-frequency RF in-

ductors, thus leading to poor analog performance. Substrate noise plagues digital

circuitry as well, severely impacting critical path delays [4].

In addition to substrate losses, conductor skin and proximity effects may im-

pact current return paths in a network of closely-spaced conductors. Skin effect is

manifested as the non-uniform distribution of current within individual conductors

at high signal frequencies. This phenomenon occurs due to the fact that electro-
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magnetic waves are attenuated as they penetrate a conductor’s volume, resulting in

current flows close to the material surface [3]. The thickness of this penetration depth

is determined by signal frequency as well as material conductivity. A different cause

of non-uniform current distribution between neighboring conductors is the proximity

effect. Current flows through path of least impedance [3]. This implies that at low

frequencies current distributes evenly across the entire cross-section of a conductor

in order to minimize the dominating resistance. However, as frequency increases, the

inductive contribution to the impedance dominates, leading to the minimization of

loop inductance in order to reduce the overall impedance. Therefore current returns

closer to the signal line at higher frequencies. Another area of problem is the oc-

currence of radiated electromagnetic interferences (EMI) in the SoC system, which

transmits disturbances by means of propagation electromagnetic waves. In this case,

distances between conductors are no longer insignificant in comparison to signal wave-

length. For example, the on-chip power and ground wires of lengths comparable to

the wavelength are potential sources of long-distance EMI emissions.

In order to avoid all the above problems in a circuit design, a simulation tool is

needed that can accurately and efficiently extract full-wave conductor impedances

in the presence of a conducting substrate. The solver described in this thesis ac-

complishes just that. In the solver, the substrate effect is accounted for through the

use of the well-developed complex image theory [9, 14, 1, 28], which generates a set

of closed-form, full-wave, 3D layered vector and scalar Green’s functions for a two-

layered medium. These layered media Green’s functions are then incorporated into

a mixed-potential integral equation (MPIE) formulation, as shall be explained in the

body of this thesis, in order to compute the 3D vector and scalar conductor potentials.

Since the substrate effect is already captured by the layered media Green’s functions,

the MPIE formulation performs 3D conductor impedance extraction without the need

to discretize the substrate’s volume or surface. In the MPIE formulation, the choice

of the closed-form, full-wave layered media Green’s function kernels motivates the de-

velopment in this thesis of a set of novel, accelerated volume and surface integration

schemes. These schemes reduce the 3D volume or 2D surface integrations of the lay-
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ered media Green’s function kernels to a sum of 1D line integrals. These techniques

dramatically improve the efficiency of the solver, thus making the combination a vi-

able approach to extracting full-wave substrate impedance of complex interconnect

structures.

Moreover, a set of specialized high-order basis functions is developed in the context

of the electromagnetic solver with the purpose of dramatically reducing the number of

unknowns in comparison to the use of piecewise constant basis functions. At an ever

increasing operating frequencies, using piecewise constant basis functions has proven

to be computationally expensive for the accurate evaluation of conductor currents in

the presence of frequency-dependent phenomenon such as skin and proximity effects.

In this thesis, a procedure is presented in which a set of basis functions, unique to a

conductor’s cross-sectional geometry, is developed that parameterizes the frequency-

dependent behavior of a conductor’s cross-sectional current variation over a wide

range of frequencies. This frequency-parameterizing nature allows the development

of system matrices that are much reduced in size in comparison to that of piecewise

constant basis functions. These higher-order basis functions themselves, however, are

frequency-independent, therefore guaranteeing the following favorable conditions:

1 These basis functions do not complicate the volume integrations in a Galerkin

technique for the solution of the MPIE. In fact, their use still permits the

application of the aforementioned accelerated volume integration schemes.

2 These basis functions only need to be computed once for each conductor cross-

section type for a given range of operating frequencies.

3 These basis functions are reusable with a minimal storage cost.

Overall, these frequency-independent basis functions promote the rapid and accurate

simulation of any frequency-variant system.

The novel techniques developed in this thesis are implemented in an electromag-

netic integral equation solver that extracts the impedance of any large and intricate

conductor system in the presence of a substrate and over a wide range of frequencies.
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A pre-corrected FFT (pFFT) scheme is incorporated into the Fastsub implementation

with the purpose of accelerating matrix-vector products, which, when combined with

an iterative method such as GMRES, is capable of achieving a solve cost of merely

O(n log n), with n being the total number of system unknowns. The novelty of our

pFFT scheme rests on the fact that it has been extended from the implementation

of [84], which only accommodates scalar Green’s function kernels, to the accommoda-

tion of dyadic Green’s function kernels that are encountered in the substrate modeling

problem of this thesis.

To summarize, novel contributions made by this thesis include: i.) the incorpo-

ration of layered Green’s functions in the MPIE formulation to account for substrate

effects; ii.) the development of accelerated volume and surface integration schemes

involving full-wave Green’s function kernels; iii.) the extension of pFFT method

to accelerate the matrix-vector products involving dyadic Green’s function kernels;

and iv.) the development of specialized basis functions to minimize the number of

unknowns needed to model the EM behavior of a conductor system.

1.2 Dissertation Outline

The body of this dissertation is organized as follows: Chapter 2 presents an overview

of the different types of field solvers, including the MPIE, for the analysis of con-

ductor systems. Chapter 3 provides a detailed derivation of the MPIE formulation

with emphasis on the general construction of basis functions for the representation

of current and charge densities of a conductor system. This chapter also contains a

summary of the mesh analysis technique for the computation of current and charge

density solutions of the MPIE. To account for substrate effect in the MPIE, Chap-

ter 4 introduces the concept of vector and scalar potential layered Green’s functions

and derives their components in terms of semi-infinite Sommerfeld integrals. Subse-

quently, Chapter 5 approximates each one of these integrals based on the Complex

Image Theory, according to which each integral can be expressed as a combination

of analytical expressions referred to as images. Chapter 6 demonstrates how these
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image approximations of the layered Green’s functions can be numerically incorpo-

rated into the MPIE in order to provide solutions of conductor current and charge

densities in the presence of a semi-conductive substrate. This chapter also seeks to

enhance the usability of the MPIE solver by introducing a set of accelerated volume

and surface integration schemes of the Green’s function kernels in a Galerkin tech-

nique. Chapter 7 further enhances the efficiency of the solver by introducing a set of

specialized basis functions that dramatically reduces the resulting system matrix size

in comparison to the use of piecewise-constant basis functions. Chapter 8 highlights

the implementation of a precorrected-FFT scheme, which, when combined with an

iterative solver, is capable of reducing the computational complexity of solving the

system involving dyadic Green’s function kernels to O(n log n). Finally, examples

are presented in Chapter 8 to validate the accuracy and efficiency of the numerous

impedance extraction techniques outlined in this thesis.
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Chapter 2

Background: Three-dimensional

Field Solvers

In computational electromagnetic theory, field solutions for three-dimensional(3D)

interconnect systems are obtained by solving some form of Maxwell equations. Ana-

lytical solutions of the Maxwell equations for simple or simplified interconnect geom-

etry can be used when accuracy is less important than speed. However, when the

configuration becomes complex and accuracy demands do not allow simplification,

numerical solution of the appropriate form of Maxwell’s equations must be employed.

2.1 Differential-equation vs. Integral-equation Meth-

ods

Many numerical methods have been developed in recent years for large interconnect

structural analysis, and they can be broadly categorized into two approaches, one

being differential-equation based and the other being integral-equation based.

Each Maxwell equation can be expressed in a differential form. The differential-

equation based approach exploits this differential form by solving discretized versions

of the Maxwell equations. Two of the most common approaches in this class are the

Finite Difference Method (FDM) [46] and the Finite Elements Method (FEM) [69].
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These methods require a mesh over the entire problem domain for the purpose of field

quantity expansions. The versatility of these methods makes them advantageous for

analysis of inhomogeneous materials. The resulting system matrices are large but

sparse and can be solved by sparse linear solution methods such as the Conjugate

Gradient algorithm [72]. However, one distinct disadvantage of FDM or FEM is that

it is quite computationally expensive when dealing with open structures because it

requires the discretization of the entire problem domain and the explicit truncation

of unbounded regions.

For the material homogeneous (or piecewise homogenous) case, differential Maxwell

equations can be rewritten as integral equations. This class of integral equation meth-

ods requires only the discretization of the sources of electromagentic field. Those

sources can be physical quantities such as surface charge density or volume current

density. A common approach in this class of methods is the Partial Element Equiva-

lent Circuit (PEEC) Method [59]. The resulting system matrices from such methods

are much smaller than those produced by differential-equation based methods, but

they are dense. In recent years, many efforts [19, 34, 35, 51, 55, 68] have been fo-

cused on developing accelerated algorithms to solve systems with dense matrices.

One particular development that has enjoyed much success in recent years is the

combination of a Krylov subspace iterative technique with a precorrected-FFT [55]

fast matrix-vector-product scheme, which, in most cases, achieves an almost linear

order of complexity for both time and memory. Fortunately, the advantages of using

these integral-equation based methods directly complement those of the differential-

equation based approaches. Mainly, the integral-equation based approaches are much

more efficient for the analysis of problems with homogenous materials and unbounded

regions. For computational electromagnetic analysis of VLSI or analog circuits, one

often encounters problems under these conditions. Therefore integral-equation based

techniques are generally preferred.

22



2.2 PEEC Formulation: Volume vs. Surface

For the analysis of arbitrarily-shaped interconnects in VLSI or analog circuits, the

PEEC method based on Mixed-Potential Integral Equation (MPIE) formulation has

been extensively used. This formulation solves for unknown field quantities uti-

lizing current and charge as state variables. More specifically, conductor surfaces

are discretized into panels to capture charge accumulation or displacement current.

Conductor volumes are discretized into filaments to capture conductor current and

frequency-related effects such as skin and proximity effects. Details regarding the

MPIE formulation can be found in the next chapter.

The volume based MPIE formulation seems to be suitable for the mixed simulation

of electromagnetic and circuit behavior [13]. Surface integral equation formulations

such as [18, 57, 84] have been developed to avoid the explicit discretization of the inte-

rior of conductors. However, these methods are plagued by problems of low-frequency

system instability. Hence, for the sake of robustness and ease of implementation, a

volume integral formulation is optimal for interconnect analysis.
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Chapter 3

Background: Frequency-domain

Integral Equation Formulation

In this chapter, a detailed derivation of the frequency-domain Mixed Potential Inte-

gral Equation (MPIE) formulation is presented and solved for the unknown current

and charge densities in a large network of conductors. We start the derivation by

introducing a set of differential equations for the potentials which are subsequently

reformulated into integral forms using Green’s theorem [37]. This mixed-potential

integral equation formulation is then discretized to yield a system of linear equa-

tions. Finally, each physical quantity in the system is mapped to an element in

an equivalent-circuit network, and mesh analysis is applied to solve for the system

unknowns.

3.1 Potential Differential Equations

As with all computational electromagnetic theory, the starting point of our analysis,

as developed in [32] for example, is the following set of Maxwell equations written in
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the frequency domain:

∇×H = jωεE + J (3.1)

∇× E = −jωµH (3.2)

∇ · εE = ρ (3.3)

∇ · µH = 0, (3.4)

where ω = 2πf is the temporal frequency, H and E are magnetic and electric fields,

respectively, J and ρ are current density and charge density, respectively, ε is the

dielectric constant, and µ is the magnetic permeability.

Equation(3.4) may be used to express magnetic field H in terms of magnetic vector

potential A such that,

B = µH = ∇× A. (3.5)

Substituting (3.5) into (3.2) yields the following equation:

∇× (E + jωA) = 0, (3.6)

which is used to define the electric scalar potential φ as:

−∇φ = E + jωA. (3.7)

Equation (3.1) can thus be expressed in terms of state variables A and φ by sub-

stituting the relations defined in (3.5) and (3.7) for H and E, respectively. That

is:

∇×∇× A = jωµε(−∇φ− jωA) + µJ. (3.8)

Using the Laplacian identity:

∇×∇× A = ∇(∇ · A)−∇2A (3.9)
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and the Lorenz gauge:

∇ · A = −jωµεφ, (3.10)

equation (3.8) is transformed to a Helmholtz equation relating current density J to

vector potential A:

(∇2 + ω2µε)A = −µJ. (3.11)

Similarly, (3.3) can be express in term of state variable φ using the relation in (3.7)

and the Lorenz gauge in (3.10), thus yielding the following Helmholtz equation:

(∇2 + ω2µε)φ = −ρ

ε
, (3.12)

which relates charge density ρ to scalar potential φ.

3.2 Green’s Functions for the Potentials

The solution of the Helmholtz equation (3.11) for vector potential A can be con-

structed by introducing a dyadic Green’s function GA which, in turn, is the solution

of another Helmholtz equation:

(∇2 + ω2µε)GA(r, r′) = −µIδ(r − r′), (3.13)

where I is an unit dyad that can be represented by an unit diagonal matrix. In the

above vector equation, GA is a Green’s function that characterizes the vector potential

response at position r due to a current dipole excitation at r’. More specifically, x-, y-

and z- directed dipoles at position r’ contribute to each scalar potential component

of A, namely Ax, Ay, and Az, at position r. By the principle of linearity, the general

solution to (3.11) for the magnetic vector potential A at position r due to current

density distribution J in a volume v can be written as

A(r) =

∫

v

GA(r, r′)J(r′)dr′. (3.14)
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Evidently the vector potential Green’s function GA is useful in expressing magnetic

vector potential A in terms of its current sources.

By the same token, a Green’s function for the scalar potential may be defined by

the differential equation:

(∇2 + ω2µε)Gφ(r, r
′) = −δ(r − r′)

ε
. (3.15)

The Green’s function Gφ characterizes the scalar potential response at position r

due to a point charge excitation at r’. Applying the concept of linearity again, the

general solution to (3.12) for the electric scalar potential φ at position r due to charge

distribution ρ on a surface s can be written as:

∫

s

Gφ(r, r
′)ρ(r′)dr′ = φ(r). (3.16)

In this case, the scalar potential Green’s function Gφ expresses electric scalar potential

φ in term of its surface charge source ρ.

In a homogenous medium where a dipole radiates in an unbounded space, a

spatially-unbounded Green’s function in the form of e−jk|r−r′|
|r−r′| can be used to cap-

ture potential fields due to source excitations, where k is a wave number defined as

k2 = ω2µε. However, if the field medium is not uniformly homogeneous due to the

presence of layered materials such as a layered substrate, the solution can be modified

by choosing the appropriate Green’s function representations for GA and Gφ. This

topic shall be explored in depth in the next chapter.

3.3 Mixed-potential Integral Equation Formulation

For a system of conductors, the constitutive relation for the conductor electric field

is E = σJ , where σ is the material conductivity. Substituting this constitutive

relation and equation (3.14) into (3.7) yields the electric field integral equation in

(3.17). The system of equations composed of (3.17), (3.18) which is the electrical

scalar potential integral equation, (3.19) which ensures current conservation in the
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Figure 3-1: Structural distributions of current density J and charge density ρ [7].

interior of conductors, and (3.20) which ensures charge conservation on the surface

of conductors, constitutes the entire MPIE formulation.

In summary, the set of integral equations (3.17)-(3.20) can be used to obtain the

solutions of volume current density J and surface charge density ρ. Fig. 3-1 shows the

volume and surface distributions of J and ρ, respectively, for a conductor structure.

J(r)

σ
+ jω

∫

V

GA(r, r′)J(r′)dr′ = −∇φ(r) (3.17)
∫

s

Gφ(r, r
′)ρ(r′)dr′ = φ(r) (3.18)

∇ · J(r) = 0 (3.19)

n̂ · J(r) = jωρ(r), (3.20)

where v and s are the union of conductor volumes and surfaces, respectively, and φ

is the electric scalar potential on the conductor surfaces.

3.4 Discretization

To solve (3.17)-(3.20) numerically for the conductor-volume current density J and

conductor-surface charge density ρ, one approximates each type of unknown by a

weighted sum of a finite set of basis functions such that:

J(r) ≈
∑

j

mj(r)Ij (3.21)

ρ(r) ≈
∑
m

vm(r)qm, (3.22)
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where mj(r) ∈ C3 is a current density basis function, and Ij is its corresponding basis

function weight. Similarly, vm(r) ∈ C and qm respectively denote a charge density

basis function and its weight.

A standard Galerkin technique [23] can then be used to generate a discrete system

of equations for the weights. This technique entails the substitution of the basis

function approximations of J (3.21) and ρ (3.22) into (3.17) and (3.18), respectively.

The approximation error generated as a consequence of such substitution is then

enforced to be orthogonal to the basis functions themselves, hence yielding:

〈∑
j mj(r)Ij

σ
+ jω

∫

v

∑
j

GA(r, r′)mj(r
′)Ijdr′ +∇φ(r),mi(r)

〉
= 0 (3.23)

〈∫

s

∑
m

Gφ(r, r
′)vm(r′)qmdr′ − φ(r), v`(r)

〉
= 0, (3.24)

with the inner products defined as:

〈
f(r),mi(r)

〉
=

∫

v

f(r) ·mi(r)dr

〈
g(r), v`(r)

〉
=

∫

s

g(r)v`(r)dr,

where mi and v` are current and charge density basis functions, respectively. Conse-

quently the following matrix system of linear equations is obtained:


R + jωL 0

0 P





I

q


 =


V

Vφ


 , (3.25)

where I and q are unknown vectors of current and charge density weights, respectively,
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and

Rij =
1

σ

∫

v

mi(r) ·mj(r)dr (3.26)

Lij =

∫

v

∫

v

GA(r, r′)mi(r) ·mj(r
′)dr′dr (3.27)

Pm` =

∫

s

∫

s

Gφ(r, r
′)vm(r)v`(r

′)dr′dr (3.28)

Vi = −
∫

v

∇φ(r) ·mi(r)dr (3.29)

Vφ`
=

∫

s

φ(r)v`(r)dr. (3.30)

A centroid-collocation technique [23] can also be used to generate a discrete sys-

tem of equations for the weights. Both the Galerkin and the collocation methods

produce a discretized system of equations by enforcing the difference between the

actual and approximated solutions, or residual, to be orthogonal to a set of test

functions. In the Galerkin method, these test functions are the same as the basis

functions used to represent the unknowns. Hence, the Galerkin method seeks to min-

imize the average approximation error over the entire compact physical support of

each basis function. On the other hand, the centroid-collocation method uses as test

functions the centroids of the basis functions’ physical supports. Thus the collocation

method is typically less accurate than the Galerkin technique in that it minimizes the

approximation error only at the centroid of each compact support.

3.4.1 Basis Functions for Current Density

To motivate the use of basis functions for the representation of current density J,

consider that on an integrated circuit, the path taken by electric currents are usually

very long and do not often form small closed loops. Therefore it becomes convenient

if the computation of inductance can be broken down in such a way so that partial

inductances can be associated to portions of a conducting loop without having to

determine the loop path apriori. This introduces the concept of partial inductance [60]

that defines a unique approach to the evaluation of open-loop inductance.
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Ii Ij

Figure 3-2: A conductor volume is discretized into thin filaments for the support of
current density basis functions, where each basis function coefficient represents the
total current through a filament.

To facilitate the application of partial inductance for a large system of conductors,

the conductor volumes are discretized into N individually conducting filaments along

their length and cross-sections. For each discretized filament of volume Vj and cross-

sectional area aj, a constant current Ij is assumed to flow length-wise in the direction

of l̂j = [lx, ly, lz]. This concept is illustrated in Fig. 3-2. For the sake of accuracy,

discretization should be fine enough so that the resulting filaments are of appropriate

dimensions restricted by wavelength as well as skin and proximity effects.

We can thus express the current density for all filaments by the collection of these

constant filament currents as:

J(r) =
N∑

j=1

mj(r)Ij,

where mj is a current density basis function supported by the j th filament, and Ij is its

corresponding coefficient. In addition, Ij is explicitly designated as the total current

flowing through the j th filament. This explicit definition of Ij is necessary at the

mesh analysis stage as shall be demonstrated in the next few sections. Therefore care

must be taken to properly define basis function mj so as to uphold the interpretation

of basis coefficients as filament currents.

If piecewise-constant current density basis functions are used, then

mj(r) =





l̂j
aj

if r ∈ Vj;

0 otherwise.
(3.31)
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These piecewise-constant basis functions are normalized by cross-sectional area aj so

as to ensure that each basis function coefficient represents the actual filament current.

On the other hand, if higher-order basis functions are used:

mj(r) =





Wj(r)l̂jR
aj

Wj(r)dr
if r ∈ Vj;

0 otherwise,
(3.32)

then basis function normalization by
∫

aj
Wj(r)dr is enforced for the same reason.

Respectively substituting the piecewise-constant and higher-order basis function

representations into the first equation of the MPIE formulation (3.17) yields:

N∑
j=1

l̂jIj

σaj

+ jω

N∑
j=1

Ij

aj

∫

Vj

GA(r, r′)l̂jdr′ = −∇φ(r) (3.33)

for piecewise-constant basis functions, and

N∑
j=1

Wj(r)l̂jIj

σ
∫

aj
Wj(r)dr

+ jω

N∑
j=1

Ij∫
aj

Wj(r)dr

∫

Vj

GA(r, r′)Wj(r
′)l̂jdr′ = −∇φ(r) (3.34)

for higher-order basis functions.

The Galerkin procedure outlined in (3.23)-(3.30) is then individually applied to

(3.33) and (3.34) to generate a discrete linear system for the solution of the unknowns,

producing

[
`i

aiσ

]
Ii + jω

∑
j

[
1

aiaj

∫

Vi

∫

Vj

GA(r, r′)l̂j · l̂idr′dr

]
Ij =

1

ai

∫

Vi

−∇φ(r) · l̂idr (3.35)

for piecewise-constant basis functions, and

[ ∫
Vi

W 2
i (r)dr

σ(
∫

ai
Wi(r)dr)2

]
Ii + jω

∑
j

[∫
Vi

∫
Vj

GA(r, r′)Wj(r)l̂j ·Wi(r
′)l̂idr′dr∫

aj
Wj(r)dr

∫
ai

Wi(r)dr

]
Ij

=
1∫

ai
Wi(r)dr

∫

Vi

−∇φ(r) ·Wi(r)l̂idr (3.36)

for higher-order basis functions. Equations (3.35) and (3.36) can be individually
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Figure 3-3: Each discretized conductor filament is modeled by a resistor in series
with a group of partial inductors in an equivalent circuit network. Overall, the entire
system of filaments can be mapped to a corresponding circuit topology.

casted into the general form:

RiiIi + jω
∑

j

LijIj = Vi, (3.37)

where Rii corresponds to the quantity in the first bracket of (3.35) or (3.36) and is an

element of the resistance coefficient matrix R in (3.25) for the group of open wired

segments. Similarly, Lij in (3.37) corresponds to the second bracketed expression of

(3.35) or (3.36) and is an entry of the partial inductance coefficient matrix L in (3.25).

Finally Vi in (3.37) corresponds to the right-hand side expression of (3.35) or (3.36)

and is an entry of the right-hand side vector in (3.25). From a physical perspective,

(3.37) formulates the average voltage across a filament as a sum of voltages across a

resistor and a series of inductors. Hence, the internal impedance of a filament can be

represented by a resistive and an inductive effect as shown in Fig. 3-3.

3.4.2 Basis Functions for Charge Density

Consider the complex geometries typical of today’s VLSI circuits, the calculation

of capacitance on such conductor surfaces can be rather difficult. Using the partial

capacitance technique [60] that is similar in concept to the partial inductance method,
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one can replace the single conductor surface capacitance problem with a multi-surface

problem for a set of simpler surfaces. These surfaces are obtained by discretizing

the union of all conductor surfaces S into m rectangular panels of area Sm with

the assumption that a constant charge resides on each panel. An example of such

conductor surface discretization is shown in Fig. 3-4. The assumption of constant

panel charge translates to the following condition:

qm =

∫

Sm

ρ(r)dr. (3.38)

Surface charge density can then be represented by the collection of such panel charges

as defined in (3.22)

ρ(r) =
∑
m

vm(r)qm.

If piecewise-constant basis functions are used:

vm(r) =





1
Sm

if r ∈ Sm;

0 otherwise.
(3.39)

Alternatively, for higher-order basis functions:

vm(r) =





um(r)R
Sm

um(r)dr
if r ∈ Sm;

0 otherwise.
(3.40)

Basis function normalization by Sm in the piecewise constant case and by
∫

Sm
um(r)dr

in the higher order case is for the purpose of preserving the relationship between ρ

and q so that basis function coefficients qm have the definition of panel charge.

Respectively substituting the different basis function representations of charge

into the MPIE equation (3.18) yields

φ(r) =
∑
m

qm

Sm

∫

Sm

Gφ(r, r
′)dr′ (3.41)
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panel j panel i

Figure 3-4: A conductor surface is discretized into panels so as to support cur-
rent charge basis functions, where each basis function coefficient represents a panel
charge [13].

for piecewise-constant basis functions, and

φ(r) =
∑
m

qm∫
Sm

um(r)dr

∫

Sm

Gφ(r, r
′)um(r′)dr′ (3.42)

for higher-order basis functions.

The approach to produce a system of discrete linear equations for the unknown

weights, or panel charges qm, differs between piecewise-constant basis functions and

higher-order basis functions. A centroid-collocation scheme is sufficient for (3.41)

in order to produce a system with reasonable accuracy. For a single panel `, this

approach is equivalent to the computation of a point potential Vφ`
at panel centroid

r` due to a distribution of panel surface charge. More specifically,

Vφ`
= φ(r`) =

[ ∑
m

1

Sm

∫

Sm

Gφ(r`, r
′)dr′

]
qm. (3.43)

For the higher-order basis function representation in (3.42), a Galerkin technique can

be applied to generate a system of equations for the unknowns. That is:

Vφ`
=

∫

S`

u`(r)∫
S`

u`(r)
φ(r)dr

=
∑
m

[
1∫

Sm
um(r)dr

∫
S`

u`(r)dr

∫

S`

∫

Sm

Gφ(r, r
′)u`(r)um(r′)dr′dr

]
qm.(3.44)

The quantity in bracket (3.43) or (3.44) forms an element in a potential coefficient

matrix P. Equation (3.25) shows how matrix P fits into the overall matrix system
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through the relation:

Pq = Vφ, (3.45)

where q is a vector of unknown panel charges, and Vφ is a vector of panel centroid

potentials if piecewise-constant basis functions are used or a vector of average panel

potentials if higher-order basis functions are used.

3.5 Branch Equation System Formation

After discretization, a system matrix equation is assembled with the unknowns being

the filament currents in vector I and panel charges in vector q as shown in (3.25).

In order to effectively map the problem into an equivalent-circuit network so as to

facilitate the computation of the system unknowns, it is convenient to model surface

charge accumulation q as displacement current Ip defined by the relation Ip = jωq.

This yields the following modified matrix equation:


R + jωL 0

0 P
jω





 I

Ip


 =


V

Vφ


 . (3.46)

A system of branch equations can be established with each branch representing a

physical filament or panel from the discretization of a conductor network. The im-

pedance in a filament-type branch is represented by a resistor and several partial

inductors or current-controlled voltage sources in series, while the impedance in a

panel-type branch is modeled by a capacitor or several voltage-controlled current

sources in parallel. An example of such equivalent-circuit mapping is shown in Fig. 3-

5. The relationship between the branch impedance matrix Zem, branch current vector

Ib, and branch voltage vector Vb is given by

ZemIb = Vb, (3.47)
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Figure 3-5: Mapping of discretized conductor filaments and panels to their respective
circuit elements [13].

where

Zem =


R + jωL 0

0 P
jω


 , Ib =


 I

Ip


 , Vb =


V

Vφ


 , (3.48)

where I, Ip, V , and Vφ are all defined in (3.46). Conceptually, the system of equations

in (3.46) can be considered to be effectively mapped to a circuit topology containing

a network of resistors, inductors, capacitors, and voltage sources. Equations of dy-

namic fields are thus transformed by circuit theory into a circuit network with known

solution algorithms. The following section attempts to explore one such algorithm in

particular.

3.5.1 Mesh Analysis

Equations (3.17) and (3.18) have been shown to produce a linear system of branch

equations. Equations (3.19) and (3.20) impose current and charge conservations on

the MPIE, which, in circuit theory principle, correspond to the imposition of Kirchoff

Voltage Law (KVL) on each closed loop in the equivalent circuit network or Kirchoff

Current Law (KCL) at each node in the same network. If KVL analysis were applied
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to the equivalent circuit, a set of loop currents, containing both displacement current

and mesh current, becomes the new system unknown. The advantage of using these

loop currents is the explicit guarantee of current conservation in the system. This also

implicitly guarantees charge conservation when charge accumulation on the surface

of the conductors is modeled as displacement current.

As KVL is applied to the closed-loop connection of branches shown in Fig ??, one

needs to define a relationship between the voltage on each branch, Vb, to the voltage

in a closed loop composed of that branch, Vm:

MVb = Vm, (3.49)

where the mesh matrix M of size #loops × #branches imposes KVL through each row

of the M matrix, hence introducing mesh voltages in Vm for each closed loop in the

network. Evidently both matrix M and vector Vm are sparse. In addition, according

to the circuit network theory, the same mesh matrix M also maps each branch current

in vector Ib to its corresponding mesh current in vector Im through the relation:

Ib = MT Im. (3.50)

Substituting (3.49) and (3.50) into (3.47) generates the following meshed system:

[
MZemMT

]
Im = Vm, (3.51)

where the system unknowns in Ib has been transformed to mesh currents in Im.

Once vector Im is determined by solving (3.51), one can easily determine branch

currents and branch voltages using the relations:

Ib = MT Im (3.52)

Vb = ZemIb, (3.53)

which will in turn yield solutions for current density J and charge density ρ.
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According to [58], mesh analysis yields a relatively stable discrete system at low

frequencies. An essential requirement for maintaining numerical stability at very

low frequencies is to keep inductive and capacitive contributions decoupled from each

other. Mesh analysis accomplishes that by splitting loops into two sets where the first

set is composed of inductive branches and the second set includes capacitive branches.

In this context, the mesh analysis approach bears similarities to the ”divergence-free”

and ”curl-free” basis functions as described in [58] where the divergence-free compo-

nent of current responsible for magnetic field and the curl-free component responsible

for the electric field are modeled independently so as to improve the stability of nu-

merical solutions at low frequencies while maintaining solution accuracy.

3.5.2 Justification for Explicit Basis Function Normalization

The normalization in (3.32) and (3.40) complicates basis generation, but is essential

if the resulting basis functions are used in a mesh analysis. This section establishes

the necessity of such basis function normalization.

Branch-level Analysis

Given a matrix branch equation:

ZIb = Vb, (3.54)

where Z represents an impedance matrix obtained from normalized basis functions,

and vector Ib contains the basis function weights that represent the physical currents

carried by the basis functions. In contrast, consider the case where basis functions are

not normalized. Hence the entries in vector Ĩb are no longer physical branch currents,

but are related to the branch currents through the relation:

Ib = NĨb, (3.55)
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where N is a diagonal matrix containing basis function normalization factors. Sub-

stituting (3.55) into (3.54) yields the following equation:

Vb = ZNĨb. (3.56)

If we define Z̃ = ZN , then Z̃ is effectively the impedance matrix obtained from the un-

normalized basis functions. Equations (3.56) and (3.54) are thus equivalent:

Z̃Ĩb = ZIb = Vb, (3.57)

suggesting that normalization of basis functions is not necessary in branch analysis.

Mesh-level Analysis

In mesh analysis, the mesh current vector Im is related to the physical branch current vector

Ib by the relation:

Ib = MT Im. (3.58)

To use mesh analysis for the un-normalized basis functions, there should be a similar relation

of the form:

Ĩb = MT Ĩm. (3.59)

In an attempt to derive such a branch-mesh relation for the un-normalized basis functions,

multiply (3.58) by N−1 on both sides yields:

Ĩb = N−1Ib = N−1MT Im. (3.60)

Since N−1 does not commute in a non-square matrix multiplication, one can conclude

that, in general, such Ĩm doesn’t exist. Therefore explicit basis function normalization is

necessary if mesh analysis is applied to solve the discretized system.
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Chapter 4

Background: Representation of

Spatial-domain Layered Green’s

Functions

4.1 Introduction

In a VLSI or analog circuit, stratified media such as a layered substrate is ubiquitous.

Therefore fields in stratified media have been a topic of intense study for many years, with

numerous numerical techniques developed especially for the purpose of substrate analysis.

Some of these techniques [61, 70, 15] use finite-element methods (FEM) to determine field

solutions in the substrate, either by simulation of a 3D mesh of the substrate or by lumped-

element circuit simulation. In [5, 63], substrate modeling is accomplished by applying

finite-difference time-domain (FDTD) methods to a finely-discretized substrate, which can

be quite computationally expensive. Moreover, integral-equation approaches such as the one

used in [83] also requires the explicit discretization of a substrate volume. Alternatively,

[66, 75, 20] utilize the more efficient boundary-element methods which only require the

discretizzation of the surface of each layered region.

The most computationally efficient technique for the characterization of fields in a

planar-stratified medium is the method of layered Green’s functions which avoids the dis-

cretization of the substrate altogether. Instead, a set of pertinent Green’s functions is
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determined to capture the effect of the layered medium. These layered Green’s functions

are extremely versatile in that they can be easily integrated into any numerical technique

such as an integral equation formulation to provide an efficient approach to interconnect

modeling. Therefore, the construction of these multi-layered Green’s functions has received

frequent attention in literature, and numerous treatments have been proposed. The purpose

of this chapter is to present a complete summary of the derivation of the layered Green’s

functions through a comprehensive survey of the recent literature on this topic.

As it is widely known, the Green’s functions in the spatial domain do not generally exist

in closed forms. Their spectral counterparts, obtained in the Fourier transform (spectral)

domain, however, are readily available and can be derived in closed forms. In the spectral

domain, the problem is equivalent to formulating the vertical dependence of the fields in the

source region as a sum of vertically traveling TE and TM waves due to the reflections from

the layer boundaries [67, 2, 76], and the field solutions at the observation layer can then

be iteratively obtained based on the waves at the source layer. More generally formulated,

the problem can be reduced to an equivalent transmission line network along the vertical

direction for both TE and TM waves [45]. In this chapter, a detailed derivation of the

layered Green’s functions associated with arbitrarily-directed (x̂, ŷ or ẑ) electric source

excitations is derived in the spectral domain for a half-space structure. The derivation is

easily extensible to a medium with any number of planar layers.

Once all the spectral domain components have been determined,they should be trans-

formed into the spatial domain using an inverse Fourier transform. In the context of layered

media, this operation is often times referred to as Sommerfeld integrals. The integrals tend

to be highly oscillatory, and hence, computationally expensive to evaluate. Two major

evaluation approaches have been developed which include direct numerical algorithms with

accelerated techniques for convergence [49, 26] and approximation of Sommerfeld integral

kernels using Sommerfeld Identity [1]. In interconnect-analysis areas, the latter of the two

methods is preferred for reasons as shall be explained.
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4.2 Layered Green’s Function Derivation Prelimi-

naries

There exists a considerable amount of advantages to using the MPIE formulation for the

field characterization of a layered medium. This is due to the fact that since the MPIE

only involves the potential forms of the Green’s functions as oppose to field forms, the

Sommerfeld-type integrals of the Green’s functions converge faster than those presented in

any other form [22, 44]. Therefore, in our work, we are only concerned with the derivation of

layered-medium magnetic vector potential Green’s function GA and layered-medium electric

scalar potential Green’s function Gφ.

We can now formulate a goal for our Green’s function computation in view of its applica-

bility to our interconnect analysis problem. Broadly speaking, we need to be able to obtain

the potential field at observation point r given an elementary source with an arbitrary ex-

citation located at point r’. Tailoring this understanding to our interconnect application,

we see that the elementary sources of excitation are generated by conductor currents and

charges in the topmost unbounded region of a multilayered structure as shown in Fig. 4-1.

The substrate is modeled by all the subsequent layers. According to this framework, it is

only logical to assume that each source excitation position denoted by r’ is confined to the

topmost region of the multilayered structure. Similarly, we are only interested in determin-

ing the potential fields created in the region where the interconnects reside. Therefore, the

position of each observation location denoted by r is indigenous to the topmost region as

well.

We will now provide a more detailed examination of the planar-layered medium in Fig. 4-

1, whose properties of ε and µ vary along a normal direction taken as the z-coordinate.

Coordinates x and y span a horizontal plane of the medium. As an aid to the proceeding

computation, we shall first define free-space permittivity ε0 ≈ 8.85 × 10−12 and free-space

permeability µ0 ≈ 4π × 10−7. Hence free-space wave-number becomes k0 = ω
√

µ0ε0. Now

for an arbitrary layer i with conductivity σi, its complex permittivity ε̂i can be defined in

relation to the free-space permittivity as:

ε̂i =
εi

ε0
= εri − j

σi

ε0ω
, (4.1)
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Figure 4-1: A source dipole and an evaluation point in the topmost layer of a multi-
layered planar medium.

where εri is the relative permittivity for the ith homogenous medium. Using the assumption

that µi = µ0, the wave-number for the ith layer follows as:

ki = ω
√

µiε̂iε0 = k0
√

ε̂i. (4.2)

4.2.1 Boundary Conditions

The choice of components in the dyadic vector layered Green’s function GA, which directly

effects the value of the scalar Green’s function Gφ, is dictated by the boundary conditions

between layers. That is, the planar-stratified medium introduces boundary conditions in

the x-y planes located at z = zi, where layer properties, εi and µi, vary across the interface

as demonstrated in Fig. 4-1. Therefore boundary conditions must be enforced through the

choice of components of the dyadic vector layered Green’s function in order to guarantee

field continuity. In general, the following set of continuity conditions must be enforced at

46



the interface between the ith and the i+1 th layer interfaced at z = zi:

n̂× (Ei+1 − Ei) = 0 (4.3)

n̂× (H i+1 −H i) = Js (4.4)

n̂ · (Bi+1 −Bi) = 0 (4.5)

n̂ · (Di+1 −Di) = ρs, (4.6)

where n̂ is the normal surface vector, Js is the electric surface current on the boundary, and

ρs is the electric surface charge distribution. If there is no free charge or free current at the

interface zi, then:

E
‖
i = E

‖
i+1 (4.7)

H
‖
i = H

‖
i+1 (4.8)

µiH
⊥
i = µi+1H

⊥
i+1 (4.9)

εiE
⊥
i = εi+1E

⊥
i+1, (4.10)

where ‖ indicates field components parallel to the interface and ⊥ indicates normal field

components. Both E and H fields can be expressed in terms of vector potential A and scalar

potential φ according to relations provided in (3.5) and (3.7), which are in turn related to

GA and Gφ, through (3.14) and (3.16), respectively. Hence the above boundary conditions

can be used to derive the general forms of dyadic Green’s function GA and scalar Green’s

function Gφ as demonstrated in the next section.

4.2.2 Magnetic Vector Potential Layered Green’s Function

Let GAi represent the dyadic Green’s function in region i due to an unit-strength, arbitrarily-

oriented current dipole in region j. Then the solution for this Green’s function can be found

by solving the set of inhomogeneous Helmholtz equation for each layer, subjected to the con-

tinuity conditions across the interfaces between layers. For example, consider a half-spaced

problem in Fig. 4-2, consisting of two unbounded regions R0 and R1 interfaced at z=0.

Assume that the source dipole is located in the topmost layer, then the set of Helmholtz
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Figure 4-2: A source dipole and an evaluation point in a two-layered medium.

equations becomes:

r ∈ R0 : (∇2 + k2
0)GA0(r, r

′) = −µ0Iδ(r − r′) (4.11)

r ∈ R1 : (∇2 + k2
1)GA1(r, r

′) = I0, (4.12)

where ki is defined by (4.2). Note that Iδ(r − r′) in (4.11) represents the unit-strength

current generated by an arbitrarily-oriented dipole source located in R0.

Boundary conditions (4.7)-(4.10) cannot be satisfied if we assume that vector potentials

are strictly parallel to the orientation of source dipoles, meaning that the general form of the

dyad GA cannot be represented as a diagonal matrix. For a planar layered medium, there

are actually several choices possible for the representation of GA [44], all of which would

satisfy the boundary conditions in (4.7)-(4.10). Depending on which form is selected, the

value of the scalar Green’s function Gφ is different. It is not surprising that both GA and Gφ

have multiple representations since the potentials themselves are not uniquely determined.

As a matter of fact, if we define two quantities A′ and φ′ such that

A
′ = A +∇f (4.13)

φ′ = φ + jωf, (4.14)

where f is a scalar function, then it is verifiable that the set A and φ produces the same
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fields as the set A′ and φ′. This condition is called gauge invariance. It is exactly due

to gauge invariance that boundary conditions in (4.7)-(4.10) can be upheld for different

combinations of GA and Gφ. It has been proven in [44] that one particular combination,

called the Sommerfeld choice [67], is much better suited than all others for the application

of the MPIE. The Sommerfeld choice of GA consists of:

GA =




Gxx
A 0 0

0 Gyy
A 0

Gxz
A Gyz

A Gzz
A


 , (4.15)

where a generic dyad element, Guv, denotes the v -component of the field created by an u-

directed unit source. Therefore, according to the above definition of GA, a x -directed source

dipole would generate a field Gxx
A in the x direction and a field Gxz

A in the z direction, a

y-directed source dipole would generate a field Gyy
A in the y direction and a field Gyz

A in the

z direction, and a z -directed dipole would generate a field Gzz
A in the z direction. Detailed

derivation of these scalar Green’s function components will be examined in the next few

sections.

In addition, the following symmetry properties [50] apply to the components of GA and

are helpful in simplifying their subsequent mathematical manipulations:

• Translational symmetry:

For a generic scalar component of a dyadic Green’s function G(r, r′), where r =

(x, y, z) and r′ = (x′, y′, z′), the layered medium is invariant along the x and y coor-

dinates. Hence

G
(
(x, y, z), (x′, y′, z′)

)
= G((x− x′, y − y′, z, z′). (4.16)

• Symmetry of revolution:

It is only necessary to obtained the fields created by a x-directed dipole and a z-

directed dipole. The field crated by a y-directed dipole can be easily obtained from
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those of a x-directed source using the following relations:

Let X = x− x′; Y = y − y′; (4.17)

Gyy = Gxx
(
X → Y ;Y → −X

)
(4.18)

Gyz = Gxz
(
X → Y ;Y → −X

)
. (4.19)

4.2.3 Electric Scalar Potential Layered Green’s Function

Care must be taken when dealing with scalar potential Green’s function Gφ. For instance,

the Lorenz gauge in (3.10) between vector and scalar potentials does not hold between their

Green’s function counterparts, meaning that

Gφ 6= −∇ ·GA

jωµε
. (4.20)

The following proof verifies the assertion in (4.20) and offers, instead, a relationship

that is valid between the scalar and vector layered Green’s functions. Rewriting the Lorenz

gauge between the potentials yields:

φ(r) =
j

ωµε
∇ ·A(r)

=
j

ωµε

∫ (∇ ·GA(r, r′)
)
J(r′)dr′. (4.21)

The scalar potential can also be expressed through the Green’s theorem as shown in (3.16)

where

φ(r) =
∫

Gφ(r, r′)ρ(r′)dr′.

Substituting the charge conservation equation in (3.20), where ρ(r) = − 1
jω∇·J(r), into the

above equation for ρ yields an alternative solution for φ:

φ(r) =
j

ω

∫
Gφ(r, r′)∇ · J(r′)dr′

= − j

ω

∫ (∇′Gφ(r, r′)
)
J(r′)dr′, (4.22)

where ∇′ indicates a gradient operation with respect to r′. Equating the parenthesized
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expressions in (4.21) and (4.22) engenders the following relationship [21]:

∇′Gφ(r, r′) = − 1
µε
∇ ·GA(r, r′). (4.23)

In view of (4.23), an important conclusion can be drawn regarding the physical nature of

the electric source excitation that produces Gφ. By the charge conservation law in (3.20), φ

is defined as the potential associated with a unitary dipole. More specifically, φ is associated

with the two separate charges of equal magnitude and opposite signs at the extremes of

the unitary dipole. In contrast, Gφ is the potential associated with an isolated unit point

charge, or a “quasi-dipole”. Even though there readily exists a physical explanation for φ,

there isn’t one possible for Gφ, which is viewed as a contrived quantity purely for the sake

of mathematical convenience.

Upon close examination of (4.23), one readily concludes that even though Gφ is a scalar

quantity, it still has directional properties associated with the dipole it belongs to. Moreover,

[44] has demonstrated that each choice of GA, which, in our case is the Sommerfeld choice

in (4.15), leads to an unique value of Gφ that varies for different orientation of source

dipoles. For the Sommerfeld choice of GA, the same scalar potential is generated by a x̂- or

ŷ-directed dipole source, but it differs from the potential generated by a ẑ-directed source.

This observation will be further collaborated in a later section.

4.3 Sommerfeld Integrals

Due to the translational symmetry property of (4.16) exhibited by GA along the x -y plane,

it is convenient at this point to introduce the concept of a 2D Fourier transform [2] where

G(x− x′, y − y′) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
G̃(kx, ky)ejkx(x−x′)ejky(y−y′)dkxdky (4.24)

G̃(kx, ky) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
G(x− x′, y − y′)e−jkx(x−x′)e−jky(y−y′)dxdy.(4.25)

In (4.24) and (4.25), the primed coordinate is associated with the position of a source

dipole whereas the unprimed coordinate is associated with the position of an observation

point. Quantity G̃ denotes the Fourier-domain or spectral-domain counterpart to the spatial

quantity G. Values of kx and ky are taken as the x and y components, respectively, of the
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propagation-wave vector k̂ where

k̂ = x̂kx + ŷky + ẑkz. (4.26)

Incidentally, The magnitude of the propagation-wave vector can be written as the wave-

number k:

k =
√

k2
x + k2

y + k2
z =

2π

λ
, (4.27)

where λ is the propagation wavelength.

Due to the apparent rotational symmetry around the z-axis, (4.24) can be simplified to

a single integral in the cylindrical coordinate system in terms of spatial radial coordinate

ρ =
√

(x− x′)2 + (y − y′)2 and spectral radial coordinate kρ =
√

k2
x + k2

y as:

G(ρ) =
∫ ∞

0
G̃(kρ)J0(kρρ)kρdkρ, (4.28)

where J0 is a 0th-order Bessel function. Equation (4.28) is known as a Sommerfeld integral

that provides functional transformation from spectral to spatial domain. A more generalized

form of the Sommerfeld integral [21] is defined as:

Sn[G̃(kρ)] =
∫ ∞

0
G̃(kρ)Jn(kρρ)kn+1

ρ dkρ. (4.29)

For a three-dimensional field possessing two-dimensional translational symmetry, Sommer-

feld integral of (4.29) is used for the representation of the following 3D spatial-domain

Green’s function:

Sn[G̃(kρ, z, z′)] =
∫ ∞

0
G̃(kρ, z, z′)Jn(kρρ)kn+1

ρ dkρ. (4.30)

As a special case, consider that in the absence of a stratified medium, field of a dipole

radiating in an unbounded space can be obtained from a Green’s function in the form of:
e−jk|r−r′|
|r−r′| , where |r − r′| =

√
ρ2 + (z − z′)2. The Fourier transformation of this spatially-

unbounded Green’s function is accomplished using the well known Sommerfeld Identity [37]:

e−jk|r−r′|

|r − r′| =
∫ ∞

0

e−jkz |z−z′|

jkz
J0(kρρ)kρdkρ. (4.31)
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If the spectral quantity G̃ has a linear dependence on kx or ky, namely, G̃ = −jkxÃ or

G̃ = −jkyÃ, where Ã has only kp, z, and z′ dependence, then its transformation into the

spatial domain corresponds to [21]:

−jkxÃ ←→ ∂A

∂x
(4.32)

−jkyÃ ←→ ∂A

∂y
. (4.33)

For example, if G̃ = −jkxÃ so that in the spatial domain,

G(ρ, z, z′) =
∫ ∞

0
−jkxÃ(kρ, z, z′)J0(kρρ)kρdkρ, (4.34)

then the same spatial-domain response can be obtained by correspondingly apply a differ-

ential operation to the spatial quantity A:

G(ρ, z, z′) =
∂A(ρ, z, z′)

∂x
(4.35)

=
∂

∂x

(∫ ∞

0
Ã(kρ, z, z′)J0(kρρ)kρdkρ

)

= −
∫ ∞

0
Ã(kρ, z, z′)

∂(kρρ)
∂x

J1(kρρ)kρdkρ

= − cosφ

∫ ∞

0
Ã(kρ, z, z′)J1(kρρ)k2

ρdkρ, (4.36)

where φ is an angle between ρ and the x-axis, and J1 is a 1st-order Bessel function. Similarly,

G̃ = −jkyÃ ⇐⇒ G = − sinφ

∫ ∞

0
Ã(kρ, z, z′)J1(kρρ)k2

ρdkρ. (4.37)

Spectral domain Spatial domain

G̃=Ã G=S0[Ã]

G̃=−jkxÃ G=− cos φS1[Ã]

G̃=−jkyÃ G=− sin φS1[Ã]

Table 4.1: Table of spatial-to-spectral domain transformations pertinent to the deriva-
tion of Green’s functions for a half-space structure.
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4.4 Component-by-component Derivation

In view of the preliminary information presented in Sec. 4.2, we now have all the resources at

our disposal to derive the various scalar components of the dyadic vector potential layered

Green’s function in (4.15) and its associated scalar potential Green’s function in (4.23). For

the sake of illustration, all derivations in this section are demonstrated on the half-space

structure in Fig. 4-2 where the source dipole is located in region R0 above the plane of

interface.

4.4.1 Derivation of Gzz
A

Consider a z-directed unit-strength source dipole located at r′ = (x′, y′, z′) in region R0.

The resulting z-directed potential field at position r = (x, y, z), which is denoted as Gzz
A0

in

region R0 or Gzz
A1

in region R1, can be obtained by solving the following set of Helmholtz

equations as simplified from (4.11) and (4.12):

r ∈ R0 : (∇2 + k2
0)G

zz
A0

(
ρ, z, z′

)
= −µ0δ(x− x′)δ(y − y′)δ(z − z′) (4.38)

r ∈ R1 : (∇2 + k2
1)G

zz
A1

(
ρ, z, z′

)
= 0. (4.39)

This system is subjected to the following set of boundary conditions:

Gzz
A0

= Gzz
A1

∣∣
z=0

(4.40)

1
ε0

∂Gzz
A0

∂z
=

1
ε1

∂Gzz
A1

∂z

∣∣∣∣
z=0

, (4.41)

which is obtained from the generalized boundary conditions (4.7)-(4.10) tailored to this

specific case of source and field orientation.

In cylindrical coordinate system, the solutions to (4.38) and (4.39) are readily obtained

as linear combinations of upward and downward-traveling waves in the form of e±jk0zJ0(kρρ)

as derived using the Fourier transformation introduced in Sec. 4.3. In fact, the general

solution of field response in the ith layered medium [76] is written as:

Gzz
Ai

(ρ, z, z′) = µi

∫ ∞

0

[
azz

i (kρ, z
′)e−jkizz + bzz

i (kρ, z
′)ejkizz

]
J0(kρρ)kρdkρ, (4.42)

where azz
i and bzz

i are the coefficients of upward and downward travelling waves in the ith
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layer obtained by applying the appropriate boundary conditions [14].

Pertaining to the half-space example at hand, the particular field solution for region R0

can be represented as a combination of [67]:

Gzz
A0

= Gp
0 + Gs

0, (4.43)

where Gp
0 is the primary field generated by the source excitation in the absence of the

layered boundary. Therefore field response Gp
0 is just the spatially-unbounded Green’s

function defined in (4.31). Field Gs
0 is generated as a secondary response by the primary

field due to the presence of the layered medium. Moreover (4.43) can be casted into the

form of (4.42) as:

Gzz
A0

(ρ, z, z′) = µ0

∫ ∞

0

[
e−jk0z |z−z′|

jk0z
+ azz

0 (kρ, z
′)e−jk0zz

]
J0(kρρ)kρdkρ, (4.44)

where the first bracketed term of (4.44) is the spectral-domain, spatially-unbounded Green’s

function, and the second term denotes the field of secondary waves generated by the source

dipole and reflected in an upward direction from the boundary interface. In the absence of

the source dipole in region R1, the solution of Gzz
A1

in (4.39) is written as:

Gzz
A1

(ρ, z, z′) = µ0

∫ ∞

0
bzz
1 (kρ, z

′)ejk1zzJ0(kρρ)kρdkρ, (4.45)

hence capturing the field of downward-travelling waves produced by the source dipole and

transmitted into R1. The two unknown quantities azz
0 and bzz

1 can be solved by substituting

(4.44) and (4.45) into boundary conditions (4.40) and (4.41) for Gzz
A0

and Gzz
A1

. Consequently,

azz
0 (kρ, z

′) =
e−jk0zz′

jk0z
R̃0,1

TM (4.46)

bzz
1 (kρ, z

′) =
e−jk0zz′

jk0z
R̃1,0

TM , (4.47)

55



where

R̃0,1
TM (kρ) =

(
n2k0z − k1z

n2k0z + k1z

)
(4.48)

R̃1,0
TM (kρ) =

(
2n2k0z

n2k0z + k1z

)
(4.49)

n2 =
ε̂1
ε̂0

k0z =
√

k2
0 − k2

ρ k1z =
√

k2
1 − k2

ρ,

with R̃ being the generalized reflection coefficients [6] for which the subscript TE or TM

represents the polarization of a wave, and the superscript (i,i+1) or (i,i -1) specifies a layer

interface. For the sake of brevity, details concerning field solutions for region R1 are omitted

henceforth. They can, however, be easily derived from the field solutions of region R0.

4.4.2 Derivation of Gxx
A and Gyy

A

Now consider a x-directed unit-strength source dipole located at r′ = (x′, y′, z′) in region R0.

The generated potential field in the x-direction at position r = (x, y, z), which is denoted as

Gxx
A0

in region R0 or Gxx
A1

in region R1, is obtained by solving the following set of Helmholtz

equations:

r ∈ R0 : (∇2 + k2
0)G

xx
A0

(
ρ, z, z′

)
= −µ0δ(x− x′)δ(y − y′)δ(z − z′) (4.50)

r ∈ R1 : (∇2 + k2
1)G

xx
A1

(
ρ, z, z′

)
= 0, (4.51)

subjected to the boundary conditions:

Gxx
A0

= Gxx
A1

∣∣
z=0

(4.52)
∂Gxx

A0

∂z
=

∂Gxx
A1

∂z

∣∣∣∣
z=0

. (4.53)

Using a completely analogous procedure as in Sec. 4.4.1, the solution of Gxx
A0

is in the form:

Gxx
A0

(ρ, z, z′) = µ0

∫ ∞

0

[
e−jk0|z−z′|

jk0z
+ axx

0 (kρ, z
′)e−jk0zz

]
J0(kρρ)kρdkρ, (4.54)
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with

axx
0 (kρ, z

′) =
e−jk0zz′

jk0z
R̃0,1

TE (4.55)

R̃0,1
TE(kρ) =

(
k0z − k1z

k0z + k1z

)
. (4.56)

Furthermore, due to the symmetry of revolution property in (4.18), we can easily conclude

that:

Gyy
A0

(ρ, z, z′) = Gxx
A0

(ρ, z, z′). (4.57)

4.4.3 Derivation of Gxz
A and Gyz

A

Using the same x-directed source dipole as in Sec. 4.4.2, we are now interested in computing

the z-directed potential field at observation point r. The following set of Helmholtz equations

can be written that governs each one of the two half-space regions:

r ∈ R0 : (∇2 + k2
0)G

xz
A0

(
ρ, z, z′

)
= 0 (4.58)

r ∈ R1 : (∇2 + k2
1)G

xz
A1

(
ρ, z, z′

)
= 0, (4.59)

with the boundary conditions being:

Gxz
A0

= Gxz
A1

∣∣
z=0

(4.60)

∂(n2Gxz
A0
−Gxz

A1
)

∂z
=

∂(Gxx
A1
− n2Gxx

A0
)

∂x
. (4.61)

It is worth noting that even though the x-oriented source dipole no longer directly

affects the z-oriented field Gxz
A0

in (4.58), the source dipole still bears an indirect effect

on the field through boundary condition (4.61). In view of (4.58), it is evident that the

spatially-unbounded Green’s function associated with the source dipole is no longer needed

as a part of the field solution of Gxz
A0

as in the case of Gxx
A0

. The general set of solutions

becomes:

Gxz
A0

(ρ, z, z′) = µ0

∫ ∞

0
axz

0 (kρ, z
′)e−jk0zzJ0(kρρ)kρdkρ (4.62)

Gxz
A1

(ρ, z, z′) = µ0

∫ ∞

0
axz

1 (kρ, z
′)ejk0zzJ0(kρρ)kρdkρ. (4.63)
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Unknown quantities axz
0 and axz

1 are determined by substituting (4.62) and (4.63) into

boundary conditions (4.60) and (4.61) for Gxz
A0

and Gxz
A1

. Consequently,

axz
0 (kρ, z

′) = −k0zkx

k2
ρ

[
− R̃0,1

TM − R̃0,1
TE

]
e−jk0zz′

jk0z
, (4.64)

where R̃0,1
TM and R̃0,1

TE are already defined in (4.48) and (4.56),respectively.

One perhaps immediately notices the kx dependence in (4.64). Therefore the simplifi-

cation defined in (4.36) can be applied to (4.64), producing an alternative representation

where

Gxz
A0

(ρ, z, z′) =
∂

∂x

[
µ0

∫ ∞

0

1
k2

ρ

(
R̃0,1

TM + R̃0,1
TE

)
e−jk0z(z+z′)J0(kρρ)kρdkρ

]

= −µ0 cosφ

∫ ∞

0

(
R̃0,1

TM + R̃0,1
TE

)
e−jk0z(z+z′)J1(kρρ)dkρ. (4.65)

Furthermore, due to the symmetry of revolution property in (4.19), one can conclude by

(4.37) that:

Gyz
A0

(ρ, z, z′) = µ0

∫ ∞

0
− 1

k0z

k0zky

k2
ρ

(
− R̃0,1

TM − R̃0,1
TE

)
e−jk0z(z+z′)J0(kρρ)kρdkρ(4.66)

= −µ0 sinφ

∫ ∞

0

(
R̃0,1

TM + R̃0,1
TE

)
e−jk0z(z+z′)J1(kρρ)dkρ. (4.67)

4.4.4 Scalar Potential Layered Green’s Functions

According to (4.23), the relationship between the dyadic vector layered Green’s function

and the scalar layered Green’s function is:

∇′Gφ(r, r′) = − 1
µε
∇ ·GA(r, r′).

Now that the various components of the dyadic Green’s function are known, the above

relationship enables us to derive the scalar layered Green’s function. After equating, com-

ponent by component, the right- and left-hand sides of (4.23), one can draw the following

conclusions:
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• For a z-directed dipole:
∂Gφ

∂z′
= − 1

µε

∂Gzz
A

∂z
. (4.68)

• For a x-directed dipole:

∂Gφ

∂x′
= − 1

µε

(
∂Gxx

A

∂x
+

∂Gxz
A

∂z

)
. (4.69)

• For a y-directed dipole:

∂Gφ

∂y′
= − 1

µε

(
∂Gyy

A

∂y
+

∂Gyz
A

∂z

)
. (4.70)

Upon close inspection, one notices that the scalar potential field created by a x-directed

dipole in (4.69) is exactly the same as that created by a y-directed dipole in (4.70). Thus

there exists only two different types of scalar layered Green’s functions, Gv
φ and Gh

φ, each

is respectively associated to a vertically or a horizontally-oriented dipole.

Derivation of scalar Green’s function Gv
φ

From (4.68), the scalar layered Green’s function Gv
φ0

for a vertical dipole in region R0 can

be readily obtained as:

Gv
φ0

= − 1
µ0ε0

∫
∂Gzz

A0

∂z
dz′ = − 1

µ0ε0

∫ ∫ ∞

0

∂G̃zz
A

∂z
J0(kρρ)kρdkρdz′. (4.71)

Substituting G̃zz
A0

, which is the expression in the bracket of (4.44), into (4.71) one obtains:

Gv
φ0

(ρ, z, z′) =
1
ε0

(
e−jk0R

R
−

∫ ∞

0

1
jk0z

R̃0,1
TMe−jk0z(z+z′)J0(kρρ)kρdkρ

)
, (4.72)

where R=
√

p2 + (z − z′)2, and R̃0,1
TM is already defined in (4.48).

Derivation of scalar Green’s function Gh
φ

Let’s first provide two more spatial-to-spectral domain correspondences, namely,

∂

∂x′
←→ jkx (4.73)

∂

∂x
←→ −jkx. (4.74)
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Hence, the following relationship holds for (4.69) in the spectral domain:

jkxG̃h
φ = − 1

µε

(
− jkxG̃xx

A +
∂G̃zz

A

∂z

)

G̃h
φ =

1
µε

(
G̃xx

A − 1
jkx

∂G̃zz
A

∂z

)
. (4.75)

Therefore, the spatial-domain representation of the scalar layered Green’s function associ-

ated to a horizontal dipole in region R0 becomes:

Gh
φ0

(kρ, z, z′) =
1

µ0ε0

∫ ∞

0

(
G̃xx

A0
− 1

jkx

∂G̃zz
A0

∂z

)
J0(kρρ)kρdkρ

=
1
ε0

(
e−jk0R

R
+

∫ ∞

0

1
jk0z

k2
0zR̃

01
TM + k2

0R̃
01
TE

k2
ρ

e−jk0z(z+z′)J0(kρρ)kρdkρ

)
, (4.76)

where the spectral functions G̃xx
A0

and G̃zz
A0

are the expressions in the brackets of (4.54) and

(4.44), respectively. Quantities R̃01
TM and R̃01

TE are defined in (4.48) and (4.56), respectively.

4.4.5 Sectional Summary

This section provides a succinct summary of the spectral-domain Green’s functions for the

source layer, which, according to our assumption, is the topmost unbounded region of a

multilayered structure as shown in Fig. 4-1. The field evaluation region is also confined to

the same topmost layer. For a x-, y-, and z-oriented electric dipole embedded in this layer,

the following spectral-domain Green’s functions are obtained:

• z-oriented dipole:

G̃zz
A0

=
µ0

jk0z

[
e−jk0z |z−z′| + azze

−jk0zz

]

G̃z
φ0

= G̃v
φ0

=
1

ε0jk0z

[
e−jk0z |z−z′| + ave

−jk0zz

]
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• x-oriented dipole:

G̃xx
A0

=
µ0

jk0z

[
e−jk0z |z−z′| + axxe−jk0zz

]

G̃xz
A0

=
µ0

jk0z

[
k0zkx

k2
ρ

(axz − bxz)e−jk0zz

]

G̃x
φ0

= G̃h
φ0

=
1

ε0jk0z

[
e−jk0z |z−z′| +

k2
0ah − k2

0zbh

k2
ρ

e−jk0zz

]

• y-oriented dipole:

G̃yy
A0

=
µ0

jk0z

[
e−jk0z |z−z′| + ayye

−jk0zz

]

G̃yz
A0

=
µ0

jk0z

[
k0zky

k2
ρ

(ayz − byz)e−jk0zz

]

G̃y
φ0

= G̃h
φ0

,

where,

axx = ayy; axz = ayz; bxz = byz. (4.77)

For a half-space problem, the wave coefficients are:

azz = R̃01
TMe−jk0zz′

av = R̃01
TMe−jk0zz′

axx = R̃01
TEe−jk0zz′

axz = −R̃01
TMe−jk0zz′

bxz = R̃01
TEe−jk0zz′

ah = R̃01
TMe−jk0zz′

bh = R̃01
TEe−jk0zz′ ,

where R̃01
TM and R̃01

TE are defined in (4.48) and (4.56), respectively. These spectral-domain

Green’s functions can be transformed into the spatial domain by using the various types of

Sommerfeld integral transformations described in the section. Furthermore, multi-layered

solutions for azz, av, axx, axz, bxz, ah and bh can be easily determined using a similar

derivation procedure as in the case of the half-space example.
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Figure 4-3: A source dipole and an evaluation point embedded in arbitrary layers of
a multilayered planar medium.

In a more generalized situation as shown in Fig. 4-3, where the source is embedded in

an arbitrary layer i, which is not necessarily the topmost region, and the field is evaluated

in layer j, where j might not be equal to i, the following generalized procedure [6] can be

used to derive the spectral-domain Green’s functions.

1 Green’s functions are derived in the source layer i where the z dependence of the

field in the source region is formulated as a sum of 1) a spatially-unbounded Green’s

function, 2) a series of upward-traveling waves due to reflection at boundary z = zi+1,

and 3) a series of downward-traveling waves generated at z = zi. The coefficients of

the upward and downward traveling waves are obtained in terms of the generalized

coefficients by applying the appropriate boundary conditions.

2 If the evaluation layer j is different from source layer i, Green’s functions in the

evaluation layer are obtained using an iterative algorithm [6] applied to each TE and

TM component of the Green’s functions in the source layer.

Details concerning the above procedure can be found in [6, 14].

An alternative procedure is offered by [45, 21] where a multi-layered planar structure is

formulated in terms of a transmission-line like network along the axis normal to the stratifi-

cation. Particularly, analogies can be drawn from the various Green’s function components
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to circuit components in an equivalent transmission line model so that familiar electromag-

netic analysis of transmission line equations can be applied to determine solutions of these

layered Green’s functions.
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Chapter 5

Background: Evaluation of

Spatial-domain Layered Green’s

Functions

In the previous chapter, we have shown the derivation for the expression of spatial-domain

dyadic vector potential and scalar potential layered Green’s functions as Sommerfeld-type

integrals over semi-infinite integration paths. In this section, we shall explore the numerous

methods to evaluate these integrals, where these integrals are extremely complicated to

compute and do not usually have closed forms. The reasons for the difficulty of evalua-

tion can be attributed to the poles presented on the integration path for spectral function

G̃(kρ, z, z′) and the oscillatory nature of the Bessel functions which prevents fast integration

convergence. Hence this area of study has sparked much research effort that culminated into

two major approaches, one of which consists of the numerical evaluation of the Sommerfeld

integrals using special-purpose acceleration techniques such as those in [48, 21]. A lack of

closed-form analytical expressions combined with a heavy cost associated with numerical

algorithms for slow-converging integrals make this approach an inviable option for our inter-

connect analysis. The complex image method, on the other hand, has been extensively used

in literature as well as in practice due to its versatility, efficiency, and ease of integration

into existing potential/field solvers. It is due to this reason that the complex image method

is chosen for the evaluation of Sommefeld integrals in our interconnect analysis problem.
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5.1 Literature Survey on the Complex Image Method

The rudimentary concept behind the complex image method is to numerically approximate

the kernel of a Sommerfeld-type integral as a series of exponentials with complex exponents

and coefficients. The Sommerfeld Identity is then applied to these exponentials to produce a

set of closed-form expressions in the spatial domain which serves as a complete replacement

of the original Sommerfeld integral.

The image theory has been attempted by numerous authors with Van der Pol [74] being

the first to interpret the closed-form analytical solutions of layered Green’s functions as

complex images. One of the early authors to participate in the modern development of the

image theory is Silvester [64] who approximated the static equivalent of the dyadic Green’s

functions using a set of static images. Chow and El-behery [8] subsequently extended his

work by modeling Green’s functions in dynamic frequency ranges for a horizontal dipole in

a half-space utilizing quasi-static images. Following Chow and El-behery, a series of papers

was published by Lindell et al. who developed an image theory where a series of discrete

and continuous images are utilized to approximate fields generated by vertical electric and

magnetic dipoles in a half-space [39, 40] as well as in a horizontally-layered medium [41].

The most significant drawback associated with these early formulations is that the methods

deteriorate rapidly when the relative dielectric constant or the thickness of the substrate

increases, creating areas called “far fields” where surface waves dominate, and the image

theory is no longer sufficiently accurate.

Fang et al. [17] recognized this problem and developed a method that became the

cornerstone of all recent investigations. This method approximates solutions in the far field

using a residue expression to account for the surface wave poles near the approximation

contour of integration. According to his work, a Sommerfeld integral can be accurately

approximated as a combination of:

1 Quasi-static images dominating in static near field; these images have real spatial

locations and are obtained analytically using the Sommerfeld Identity.

2 Surface waves dominating in far field; the surface wave contributions are obtained

using residue calculus.

3 Complex images with each image having a complex amplitude and occupying a com-
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plex spatial location; these images are obtained by first approximating their spectral

counterparts as series of exponentials using an exponential-fitting method called the

Prony method [25]. These complex exponentials are then analytically transformed

into the spatial domain using the Sommerfeld Identity.

When compared to the method developed by Lindell et al., this three-part approximation

approach has demonstrated a reduction in computational cost and an increase in accuracy.

This concept of Green’s function approximation is fully implemented by [80] in the case of

a horizontal dipole above and embedded in a lossy medium as well as by [62] in the case of

a vertical dipole above a lossy medium.

The idea of approximating a Sommerfeld integral-type Green’s function by a three-part

procedure was thus established, and the ensuing research focused on further defining and

honing this methodology. For example, Chow et al. [9] extended the idea by providing a

conceptual basis for the complex images, relating them to leaky waves that are important in

the intermediate field region. Chow et al. were able to use many fewer terms for the closed-

form Green’s functions while still achieving an error of less than 1%. A critical inaccuracy

in the method developed by Fang et al. was identified by Kipp and Chan [36] who supplied

a correction to the methodology in the case where a source is embedded in a dielectric

layer. This error was due to an incorrect description of the integration plane’s branch-cut

topology. The correction brought about by Kipp and Chan further extended the generality

of the image approach. In addition, Hojjat et al. [27] vigorously demonstrated that the near

field computation is inaccurate if the surface wave contributions were extracted from the

spectral Green’s functions. They also provided a range within which the surface waves must

not be extracted. Furthermore, Hojjat et al. [28] extended the three-part approximation of

a dyadic layered Green’s function to include its non-symmetrical components, namely, Gxz
A

and Gyz
A . The image method has become even more applicable and general to all possible

cases encountered. Moreover, Dural and Aksun [14] offered several improvements to the

three-part approximation technique that ultimately elevated the method to the status of

being a practical tool for various circuit analysis applications. Their work include:

1 Provide a complete set of closed-form Green’s functions in spectral and spatial do-

mains for general stratified media.

2 Use a General Pencil of Function (GPOF) method [29] instead of a Prony method for
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complex image calculation which is more robust and less noise sensitive.

3 Cast the closed-form Green’s functions into a suitable form for the solution of the

MPIE by the method of moments for a general 3D geometry.

In recent years, Aksun [1] offered another breakthrough that obviated the need to extract

either quasi-static images or surface wave contributions; instead, he outlined a two-level ap-

proximation technique for the spectral-domain representation of the Green’s functions which

would generate, through the Sommerfeld Identity, a small set consisting of only complex

images. The procedure developed previously suffered from the difficulty associated with

choosing the appropriate approximation parameters for the exponential-fitting methods,

thereby rendering the technique not so robust. Moreover, the extraction of the surface-

wave poles and real images may not be possible for multi-layered geometries. Aksun’s

two-level approximation for the automatic generation of closed-form layered Green’s func-

tions overcomes these difficulties and makes the use of the method a convincing option in

any robust and efficient EM solver.

In our research, we have logically chosen to approximate the various components of the

layered Green’s functions using the aforementioned two-level approximation technique. As

an exception to the technique, since our analysis only involves a half-space configuration, the

quasi-static images can be extracted without much difficulty and would reduce the number

of images generated by the two-level approximation scheme, thus minimizing the overall

computational cost. Therefore, in our approximation approach, each one of the spatial-

domain Green’s function components is represented as a sum of quasi-static and complex

images that are obtained using the two-level method.

5.2 Extraction of Quasi-static Images

Quasi-static range of operation is only valid at extremely low operating frequencies (f ),

that is, as f→ 0. Using the same half-space problem as the previous chapter for illustration

purposes, one can see that, under the quasi-static assumption, the wave-number k0 in the

source region R0 also tends to 0, leading to the conclusion that k0z = k1z = jkρ, where

kiz =
√

k2
i − k2

ρ for i = 0, 1.

Since the Sommerfeld integral representation of the vector potential dyadic Green’s
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function as well as the scalar potential Green’s function in region R0 depend on the spectral

values of R̃01
TM and R̃01

TE , it is only logical to examine how the quasi-static assumptions

would affect these values. Mainly,

R̃0,1
TMq

= R̃0,1
TM

∣∣
k0z=k1z

=
n2 − 1
n2 + 1

(5.1)

R̃0,1
TEq

= R̃0,1
TE

∣∣
k0z=k1z

= 0, (5.2)

signifying that R̃0,1
TM and R̃0,1

TE would converge to their spectral quasi-static values of R̃0,1
TMq

and R̃0,1
TEq

as f tends to zero.

Therefore substituting (5.1) into the Sommerfeld-type integral in (4.44) produces the

following quasi-static expression Gzz
A0zq

for Gzz
A0

:

Gzz
A0zq

= µ0

∫ ∞

0

1
jk0z

R̃0,1
TMq

e−jk0z(z+z′)J0(kρρ)kρdkρ

= µ0
n2 − 1
n2 + 1

∫ ∞

0

1
jk0z

e−jk0z(z+z′)J0(kρρ)kρdkρ (5.3)

= µ0
n2 − 1
n2 + 1

e−jk0r0

r0
, (5.4)

with r0 =
√

ρ2 + (z + z′)2. (5.5)

The expression in (5.4) is obtained through the application of the Sommerfeld Identity which

analytically back-transforms the expression in (5.3) to a closed-form spatial-domain quasi-

static “image” in (5.7). This image of the source dipole is situated at a vertical distance z′

below the plane of regional interface, where the interface serves as a “mirror” of reflection

for the source dipole. Hence Gzz
A0

can now be represented as:

Gzz
A0

= Gzz
A0s

+ Gzz
A0zq

+ Gzz
A0zr

= µ0

[
e−jk0r

r
+

n2 − 1
n2 + 1

e−jk0r0

r0
+

∫ ∞

0

1
jk0z

(R̃0,1
TM − R̃0,1

TMq
)e−jk0z(z+z′)J0(kρρ)kρdkρ

]
,

(5.6)

where the first term, Gzz
A0s

, is the field contribution made by the source dipole in the

absence of the stratified medium and r =
√

ρ2 + (z − z′)2, the second term, Gzz
A0zq

, is the

the field associated with an image of the source dipole and r0 =
√

ρ2 + (z + z′)2, and the

third term, Gzz
A0zr

, is the remainder of the Sommerfeld integral after the extraction of the
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quasi-static contribution, and this integral is to be expanded as a series of complex images

as shall be explained shortly. Evidently if medium R1 is infinitely conducting or if f→
0, then the third term would vanish, and the entire field solution can be represented as

a combination of effected generated by the mirroring dipoles without the presence of the

planar-stratified medium. This observation agrees with the equivalence principle in the

classical electromagnetic theories [37].

As for the field created by a x-directed source dipole, no quasi-static images can be

extracted for Gxx
A0

since its spectral-domain representation, consisting of only R̃0,1
TE , vanishes

according to (5.2) as f→ 0. For field solution Gxz
A0

, after replacing R̃0,1
TM and R̃0,1

TE in (4.65) by

their quasi-static values in (5.1) and (5.2), respectively, the following quasi-static expression

is generated according to [27]:

Gxz
A0q

= −µ0 cosφ

∫ ∞

0

(
R̃0,1

TMq
+ R̃0,1

TEq

)
e−jk0z(z+z′)J1(kρρ)dkρ

= −µ0

(n2 − 1
n2 + 1

)
cosφ

∫ ∞

0
e−jk0z(z+z′)J1(kρρ)dkρ. (5.7)

Applying the following identity to (5.7):

∫ ∞

0
e−aµJ1(µρ)dµ =

√
a2 + ρ2 − a

ρ
√

a2 + ρ2
,

and using the quasi-static assumption that k0z → jkρ, the quasi-static extraction of (5.7)

becomes:

Gxz
A0q

≈ −µ0

(n2 − 1
n2 + 1

)
cosφ

√
(z + z′)2 + ρ2 − (z + z′)

ρ
√

(z + z′)2 + ρ2
. (5.8)

It is obvious that the mathematical premise on which this quasi-static contribution is ex-

tracted doesn’t fit into the general framework of the image theory in that there isn’t a

physical interpretation for the closed-form expression in (5.8). In addition, this expression

cannot be easily integrated into the MPIE formulation in comparison to the e−jkR

R form taken

by the other images. As mentioned earlier, the two-level approximation of Sommerfeld-type

integrals doesn’t actually require the extraction of quasi-static contributions in order to

produce accurate solutions, therefore the quasi-static extraction in the case of Gxz
A0

should

be avoided.

Moving onto the quasi-static extractions of the scalar layered Green’s functions, for the
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case associated with a vertical dipole Gv
φ0

, as defined in (4.72), the following quasi-static

image is produced:

Gv
φ0q

= − 1
ε0

n2 − 1
n2 + 1

e−jk0r0

r0
, (5.9)

where r0 is defined in (5.5). Therefore Gv
φ0

can be represented by the following three-part

approximation:

Gv
φ0

= Gv
φ0s

+ Gv
φ0q

+ Gv
φ0r

=
1
ε0

(
e−jk0r

r
− n2 − 1

n2 + 1
e−jk0r0

r0
−

∫ ∞

0

1
jk0z

(
R̃0,1

TM − R̃0,1
TMq

)
e−jk0z(z+z′)J0(kρρ)kρdkρ

)
,

with the first term, Gv
φ0s

, being the free-space Green’s function for the source, the second

term, Gv
φ0q

, being the quasi-static image of the source, and the last term, Gv
φ0r

, being the

Sommerfeld integral remainder after the quasi-static contribution is extracted.

As for the scalar potential Gh
φ0

that is associated with a horizontal dipole in (4.76), the

quasi-static expression becomes:

Gh
φ0q

=
1
ε0

∫ ∞

0

1
jk0z

k2
0zR̃

01
TMq

k2
ρ

e−jk0z(z+z′)J0(kρρ)kρdkρ.

Under the assumption that k0z → jkρ, the above expression is simplified to a closed-form

image:

Gh
φ0q

= − 1
ε0

∫ ∞

0

1
jk0z

R̃01
TMq

e−jk0z(z+z′)J0(kρρ)kρdkρ.

= − 1
ε0

n2 − 1
n2 + 1

e−jk0r0

r0
. (5.10)

Additionally, Gv
φ0

can also be represented by a three-component expression:

Gh
φ0

= Gh
φ0s

+ Gh
φ0q

+ Gh
φ0r

=
1
ε0

(
e−jk0r

r
− n2 − 1

n2 + 1
e−jk0r0

r0
+

∫ ∞

0

1
jk0z

(
R̃0,1

TM + R̃0,1
TMq

)
e−jk0z(z+z′)J0(kρρ)kρdkρ

)
.

The following table summaries the quasi-static images obtained for various type of

Green’s function components:
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Green’s function type quasi-static image
Gxx

A0
none

Gxz
A0

none

Gzz
A0

µ0
n2−1
n2+1

e−jk0r0

r0

Gv
φ0

− 1
ε0

n2−1
n2+1

e−jk0r0

r0

Gh
φ0

− 1
ε0

n2−1
n2+1

e−jk0r0

r0

Table 5.1: Quasi-static images corresponding to various type of layered Green’s func-
tion components in region R0 of a half-space medium;r0 =

√
ρ2 + (z + z′)2.

5.3 Expansion of Complex Images

The purpose of this section is to offer an accurate and efficient approach to approximat-

ing each Sommerfeld-type Green’s function integral after the quasi-static contribution is

extracted.

5.3.1 Preliminaries

Before entering the numerical process of integral evaluation, let’s explore some mathematical

grounds by first deriving the complex-plane topology induced by the variable of integration

kρ and on which an integration path is defined.

kρ =
√

k2
i − k2

zi
, (5.11)

where i indexes the various layers in a multi-layered environment. It is obvious that kρ is

a double-valued function, and therefore, the locations of various branch cuts and Riemann

sheets should be explicitly located in order to identify the Sommerfeld integration path

(SIP). This topic has been extensively addressed in literature, resulting in a SIP on the

complex-kρ plane as shown in Fig. 5-1, which is determined by three effects [21, 36]:

1 Hankel function branch cut. The Hankel function has a logarithmic singularity at

kρ = 0, and hence, produces a branch cut with an end point at the origin. This cut

can be stipulated to extend along the negative real axis to connect with the other

end point located at infinity. For the case of Re(kρ) < 0, the SIP should lie below

the cut [47].
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Figure 5-1: Topology of a spectral-domain Green’s function in a complex-kρ plane
with 1) being Hankel function branch cuts, 2) being surface-wave poles and 3) being
kzi

poles.

2 surface wave poles. The location and number of surface wave poles of the spectral

Green’s function depend both on the multi-layer structure and the excitation fre-

quency. The spectral Green’s functions are even functions of kρ so that the poles

always appear in corresponding pairs in the complex-kρ topology. For lossless di-

electrics, they are located on the real axis whereas in lossy materials, they migrate

into the second and fourth quadrants of the complex-kρ plane. Consequently, restrict-

ing kρ to be real would lead to possibe strongly divergent behavior. This explains the

fact that a lossless case is more difficult to integrate than a lossy case and that the

SIP should be deformed in order to avoid possible singularities.

3 kzi branch cut. The vertical wave-number associated with each layer, kzi , is a multi-

valued function of kρ as demonstrated by:

kzi =
√

k2
i − k2

ρ, (5.12)

with branch points at kρ = ±√ε̂ik
0, where ε̂i is the complex permittivity of the ith

layer as defined in (4.1), and k0 is the free-space wave-number. While the shape of
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the branch cuts are arbitrary, they must extend toward ±j∞ rather than join each

other along the real axis so that the SIP doesn’t cross a branch cut [36]. However,

only those wave-numbers associated with unbounded regions will have their branch

cuts manifested in the spectral Green’s functions. According to [6, 36], this can be

explained by the fact that bounded layers have waves travelling in both directions,

so the selection of the sign for the wave-number is irrelevant. In unbounded layers,

waves are only travelling away from the source, and the sign of the wave number must

be selected accordingly. For our half-space example, both the top and bottom layers

are assumed to be unbounded, hence both kz0 and kz1 generate branch cuts for the

spectral layered Green’s functions.

In addition, the wave radiation condition needs to be imposed on the fields [37], that

is, Re{kzi} > 0 and Im{kzi} < 0. Taking into account this condition as well as the various

branch cuts and surface-wave poles, one comes to the conclusion that the SIP should be

restricted to lie in the first and third quadrants while passing through the origin as shown

in Fig. 5-1. There are equivalent choices of integration path and branch cuts, but the final

results of integration should be the same.

5.3.2 Two-level Approximation Approach

The SIP in Fig. 5-1 is deformed to avoid the poles. However, according to [23], these poles do

not lie on the entire real axis, but are concentrated, rather, in the interval [k0, k0
√

(ε̂i)max],

with (ε̂i)max being the maximum relative permittivity of the layered medium. For this

reason, the integration path can be divided into two distinct intervals: [0, k0
√

(ε̂i)max] on

which a complex-kρ contour of integration is used to avoid the poles, and [k0
√

(ε̂i)max,∞]

on which kρ is real.

These two intervals form the basis of the two-level approximation approach developed

by [1]. Traditionally, the one-level approximation [36, 9, 17] consists of the extraction of the

quasi-static contribution as well as the surface-wave pole contribution before performing the

integration of the remaining Green’s function over a contour as shown in Fig. 5-2. However,

as demonstrated by [1], this one-level approximation is not robust in that it requires the

users to investigate apriori the spectral-domain behavior of the Green’s function and to

perform iterations to determine the most optimal approximation parameters needed by an
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Figure 5-2: Complex-kρ integration path for a one-level approximation scheme.

exponential fitting method such as the GPOF. In addition, since the known exponential

fitting methods only permit uniform sampling, a large number of samples much be taken

in order to accurately approximate a slow-converging function with rapid changes, even if

these changes only occur in a small region.

To circumvent these difficulties, the approximation is performed in two levels, with the

first along the path of Cap1 and the second along Cap2 as shown in Fig. 5-3. The first-level

approximation along the path of the real-kρ axis is performed with the double purpose of

capturing the behavior of a spectral-domain Green’s function in the far field for large kρ

and delimiting the near field range within which the Green’s function changes sharply for

small kρ. The path Cap1 is defined as a mapping of a real variable t onto the imaginary kz

plane by:

On Cap1 : kiz = −jki(T02 + t), 0 ≤ t ≤ T01 (5.13)

where ki is the wave-number for the source layer i. Hence kρ takes on real functional values

in the interval of [kρmax2
, kρmax21 ] where:

kρ = ki

√
1 + (T02 + t)2, 0 ≤ t ≤ T01. (5.14)

The reason that variable t parameterizes kz rather than kρ, as one might expect, is that

the spectral-domain Green’s functions should be approximated in terms of exponentials of
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Figure 5-3: Complex-kρ integration path for a two-level approximation scheme.

kz in order to take advantage of the Sommerfeld Identity.

The second level of the two-level approximation scheme is along the deformed path Cap2,

which is the same as the one-level scheme as shown in Fig. 5-2. This path is defined as a

mapping of a real variable t onto the complex kz plane by:

On Cap2 : kiz = ki

[− jt + (1− t

T02
)
]

0 ≤ t ≤ T02. (5.15)

In this case, kρ is a complex function where:

kρ = ki

√
1−

[
− jt + (1− t

T02
)
]2

. (5.16)

Details of the Two-level Approximation Scheme

Using the Sommerfeld-integral remainder in (5.6) as an example, we will illustrate step

by step how the two-level approximation method is applied to obtain a set of analytical

expressions for the integral. Just to reiterate, the integral has the form:

Gzz
A0r =

∫ ∞

0

1
jk0z

(R̃0,1
TM − R̃0,1

TMq
)e−jk0z(z+z′)J0(kρρ)kρdkρ. (5.17)

According to the two-level approximation procedure:

1 Choose T02 in (5.13) and (5.15) such that kρmax2
> k0

√
(ε̂i)max, where kρmax2

(
=
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k0

√
1 + T 2

02

)
is located on the real-axis of the complex-kρ plane as shown in Fig. 5-3,

and k0
√

(ε̂i)max is the maximum value of the wave-number between the two layers.

This choice serves as a delimiter between the complex contour of integration and the

real contour of integration and is determined by the range where the surface-wave

poles are concentrated.

2 Choose T01 in (5.13) and (5.15) such that kρmax1

(
= k0

√
1 + (T01 + T02)2

)
ensures

that the behavior of the spectral-domain Green’s function R̃0,1
TM − R̃0,1

TMq
is captured

for large values of kρ. The number of function samples on [kρmax2
, kρmax1

] is also

chosen. Since the spectral-domain behavior is always smooth beyond kρmax2
, it is not

necessary to have a large number of samples in this interval.

3 Sample the spectral function R̃0,1
TM − R̃0,1

TMq
along path Cap1 using the GPOF method;

the sample is produced by varying t between 0 and T01 uniformly in (5.13). Therefore:

R̃0,1
TM − R̃0,1

TMq
≈ f(kρ) =

m∑

i=1

aie
bit

=
m∑

i=1

aie
bi(

k0z
−jk0

−T02)

=
m∑

i=1

(
aie

−T02bi
)
e
− bi

jk0
k0z

=
m∑

i=1

atie
−btik0z , (5.18)

where ati = aie
−T02bi ; bti =

bi

jk0
.

Complex coefficients and exponents a and b, respectively, are obtained from the GPOF

method, and m is the number of exponentials used in the approximation. This num-

ber is dependent on the number of significant singular values determined through a

step of the GPOF method [29]. These coefficients and exponents are subsequently

transformed to at and bt in order to cast the approximating function into a form

suitable for the application of the Sommerfeld Identity, namely, as an exponential

function of k0z. To mathematically illustrate this analytical transformation, let’s first

substitute the series of approximating exponentials in (5.18) into the original integral
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(5.17), generating:

∫ ∞

0

1
jk0z

f(kρ)e−jk0z(z+z′)J0(kρρ)kρdkρ

=
m∑

i=1

ati

∫ ∞

0

1
jk0z

e
−jk0z

(
z+z′− bti

k0

)
J0(kρρ)kρdkρ

=
m∑

i=1

ati

e−jk0rcxi

rcxi

(5.19)

with rcxi =
√

r2 +
(
z + z′ − bi

k0

)
. (5.20)

Each term in the summation of (5.19) is called a complex image of the source dipole,

which is signified by its complex amplitude ati and its complex location at a vertical

distance z + z′ − bi
k0

below the plane of media interface.

4 The approximating function f(kρ) in (5.18) is subtracted from the original spectral-

domain Green’s function R̃0,1
TM − R̃0,1

TMq
in order to guarantee that the function is

negligible beyond kρmax2
. In other words, the function will be nonzero only in a small

range of kρ ∈ [0, kρmax2
] so that the fine features of the function in the near field can

be captured without using many sampling points. To demonstrate this concept:

Gzz
A0r =

∫ ∞

0

1
jk0z

(
R̃0,1

TM − R̃0,1
TMq

− f(kρ) + f(kρ)
)

e−jk0z(z+z′)J0(kρρ)kρdkρ

=
∫ ∞

0

1
jk0z

(
R̃0,1

TM − R̃0,1
TMq

− f(kρ)
)

e−jk0z(z+z′)J0(kρρ)kρdkρ

+
∫ ∞

0

1
jk0z

f(kρ)e−jk0z(z+z′)J0(kρρ)kρdkρ

≈
∫

Cap2

(
R̃0,1

TM − R̃0,1
TMq

− f(kρ)
)

e−jk0z(z+z′)J0(kρρ)kρdkρ +
m∑

i=1

ati

e−jk0rcxi

rcxi

(5.21)

Note that the first integral is evaluated along only Cap2 due to the fact that the

integrand is negligible along Cap1.

5 The integral of (5.21) is sampled along Cap2. Since the range [0, kρmax2
] is small,

the sampling frequency can still be quite high without incurring a large number of

sample points. Applying the GPOF approximation method again to the spectral-
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domain function of the integral in (5.21) generates:

R̃0,1
TM − R̃0,1

TMq
− f(kρ) ≈

n∑

i=1

a2ie
b2it

=
n∑

i=1

a2ie
−b2i

(
k0z
k0

−1)T02

jT02+1

=
n∑

i=1

(
a2ie

b2i
T02

jT02+1
)
e
−b2i

T02k0z
k0(jT02+1)

=
n∑

i=1

a2ti
e
−b2ti

k0z , (5.22)

where a2ti
= a2ie

k0b2ti ; b2ti
=

b2iT02

k0(jT02 + 1)
.

Substituting (5.22) into (5.21) and subsequently applying the Sommerfeld Identity

yields:

Gzz
A0r ≈

n∑

i=1

a2ti

e−jk0rcx2i

rcx2i

+
m∑

i=1

ati

e−jk0rcxi

rcxi

, (5.23)

with rcx2i =

√
r2 +

(
z + z′ − b2iT02

k0(jT02 + 1)

)
. (5.24)

By following the above 5-step procedure, it can be seen that the semi-infinite integral of

(5.17) can ultimately be approximated as a series of analytical complex images in (5.23).

It is evident that this procedure can also be applied in a straightforward manner to the

treatment of Sommerfeld-type integrals of Gxx
A0

, Gv
φ0

, Gh
φ0

, in addition to Gzz
A0

. However, one

problem remains concerning the use of the Sommerfeld Identity for the generation of closed-

form approximations for Gxz
A0

, where its spectral-domain function has an additional linear

dependence on jkx. We have already shown in the previous section that the extraction of

its quasi-static contribution is not a feasible task. Hence the Sommerfeld integral must be

approximated in its entirety, with the integral being:

Gxz
A0

(ρ, z, z′) = −µ0

∫ ∞

0

1
k0z

k0zkx

k2
ρ

(
− R̃0,1

TM − R̃0,1
TE

)
e−jk0z(z+z′)J0(kρρ)kρdkρ.

Using the property defined in (4.35), Gxz
A0

has an equivalent expression as:

Gxz
A0

(ρ, z, z′) = −µ0
∂

∂x

[ ∫ ∞

0

1
k0z

[−jk0z

k2
ρ

(−R̃0,1
TM−R̃0,1

TE

)]
e−jk0z(z+z′)J0(kρρ)kρdkρ

]
. (5.25)
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If we approximate the integral in the bracketed expression using the two-level method, then

the following type of analytical forms are obtained:

Gxz
A0

≈ −µ0
∂

∂x

( n∑

i=1

axz
2ti

e
−jk0rxz

cx2i

rxz
cx2i

+
m∑

i=1

axz
ti

e−jk0rxz
cxi

rxz
cxi

)

= −µ0

[ n∑

i=1

axz
2ti

∂

∂x

(
e
−jk0rxz

cx2i

rxz
cx2i

)
+

m∑

i=1

axz
ti

∂

∂x

(
e−jk0rxz

cxi

rxz
cxi

)]
, (5.26)

where the subscript xz is indicative of the fact that each set of complex coefficients and

exponents is uniquely tailored the specific spectral-domain Green’s function from which it

is obtained. Hence this set of complex parameters is different from the set for the case of

Gzz
A0

.

5.4 Chapter Summary

Combining the concept of real and complex images as explained in this section, we can now

apply them to our half-space problem and expand each spatial-domain vector and scalar

potential Green’s function component into a sum of analytical forms as summarized in

Table 5.2.

Green’s function type source dipole quasi-static image complex image
contribution contribution contribution

Gxx
A0

µ0
e−jk0r

r
none µ0

∑
i a

xx
i

e
−jk0rxx

cxi

rxx
cxi

Gxz
A0

none none µ0

∑
i a

xz
i

∂
∂x

(
e
−jk0rxz

cxi

rxz
cxi

)

Gyz
A0

none none µ0

∑
i a

xz
i

∂
∂y

(
e
−jk0rxz

cxi

rxz
cxi

)

Gzz
A0

µ0
e−jk0r

r
µ0

n2−1
n2+1

e−jk0r0

r0 µ0

∑
i a

zz
i

e
−jk0rzz

cxi

rzz
cxi

Gv
φ0

1
ε0

e−jk0r

r
− 1

ε0
n2−1
n2+1

e−jk0r0

r0 − 1
ε0

∑
i a

zz
i

e
−jk0rzz

cxi

rzz
cxi

Gh
φ0

1
ε0

e−jk0r

r
− 1

ε0
n2−1
n2+1

e−jk0r0

r0
1
ε0

∑
i a

h
i

e
−jk0rh

cxi

rh
cxi

Table 5.2: Closed form approximations corresponding to various type of lay-
ered Green’s function components in region R0 of a half-space medium; r =√

ρ2 + (z − z′)2, r0 =
√

ρ2 + (z + z′)2 and rcx =
√

ρ2 + (z + z′ − bcx)2.

From Table 5.2, we see that the source contribution is the field generated by the source
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Figure 5-4: Complex image representation of Gxx
A0.

dipole at an evaluation point in the absence of the substrate; the distance between the

source dipole and the evaluation point is denoted by r =
√

ρ2 + (z − z′)2. The quasi-

static image contribution is the field generated by the image of the source dipole and

measured at an evaluation point in the absence of the substrate; the distance between the

dipole image and the evaluation point is denoted by r0 =
√

ρ2 + (z + z′)2. Finally, the

complex image contribution is the sum of the fields generated by a series complex images

of the source dipole and measured at an evaluation point in the absence of the substrate;

the distance between each complex source image and the evaluation point is denoted by

rcx =
√

ρ2 + (z + z′ − bcx)2. Fig. 5-4 provides a graphical illustration of this concept. From

the figure, the complex image theory becomes clear: the field generated by a dipole in

the presence of a layered medium is the same as the field generated, in the absence of the

medium, by the dipole itself and a set of its images with real and complex locations in

space.

Several additional observations can be made. First, the complex coefficients and expo-

nents of Gzz
A0

and Gv
φ0

are the same due to the fact that both have the same spectral-domain

Green’s function remainder after the real images are extracted. Second, the GPOF method

is only performed in four different cases of field computation due to symmetry and integrand
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equivalence.
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Chapter 6

Practical Considerations of

Incorporating Layered Green’s

Functions into the MPIE

In Chapter 3, we have described the use of the MPIE formulation to numerically obtain

potential-field solutions of complex 3D interconnect geometries. More specifically, one is

able to determine magnetic vector potential A and electric scalar potential φ from the set

of integral equations in the MPIE formulation by integrating type-specific Green’s func-

tion kernels over conductor volumes and surfaces. For example, the set of layered Green’s

functions introduced in Chapter 5 can be utilized to account for the influence of a semi-

conductive substrate on a system of conductors. In this chapter, we shall explore the concept

of incorporating these closed-form Green’s functions into the MPIE formulation. Moreover,

we will introduce a set of novel integration techniques of the closed-form layered Green’s

function kernels in order to promote the overall computational efficiency of the solver.

6.1 Integration of Layered Green’s Functions into

the MPIE

To assemble the discretized version of the MPIE as shown in the matrix form of (3.25),

equations (3.26)-(3.30) must be numerically integrated with the incorporation of the layered
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Green’s function kernels GA and Gφ. The vector potential computation in (3.27) becomes:

Lij(r) =
∫

v

∫

v
GA(r, r′)mi(r) ·mj(r′)dr′dr,

where, after representing mi(r) by its vector components [mix(r),miy(r),miz(r)] and sub-

stituting (4.15) for GA,

GA(r, r′)mi(r) ·mj(r′) =




Gxx
A (r, r′) 0 0

0 Gyy
A (r, r′) 0

Gxz
A (r, r′) Gyz

A (r, r′) Gzz
A (r, r′)







mix(r)

miy(r)

miz(r)


 ·




mjx(r′)

mjy(r′)

mjz(r′)




= Gxx
A (r, r′)mix(r)mjx(r′) + Gyy

A (r, r′)miy(r)mjy(r
′)

+Gxz
A (r, r′)mix(r)mjz(r

′) + Gyz
A (r, r′)miy(r)mjz(r

′)

+Gzz
A (r, r′)miz(r)mjz(r

′). (6.1)

Therefore,

Lij(r) =
∫

v

∫

v
Gxx

A (r, r′)
(

mix(r)mjx(r′) + miy(r)mjy(r
′)
)

drdr′

+
∫

v

∫

v
Gxz

A (r, r′)mix(r)mjz(r
′)drdr′ +

∫

v

∫

v
Gyz

A (r, r′)miy(r)mjz(r
′)drdr′

+
∫

v

∫

v
Gzz

A (r, r′)miz(r)mjz(r
′)drdr′. (6.2)

Equation (6.2) is obtained after having applied the simplification Gxx
A (r, r′) = Gyy

A (r, r′) for

a planar-stratified medium.

Similarly, (3.28) becomes,

Pm`(r) =
∫

s

∫

s
Gφ(r, r′)v`(r′)vm(r)dr′dr.

As explained in Sec. 4.2.3, a scalar layered Green’s function is directionally associated to

the orientation of the source dipole, with Gv
φ associated to a vertical dipole and Gh

φ to a

horizontal dipole, hence the following simplification can be made:

Gφ(r, r′)v`(r′) = Gh
φ(r, r′)

(
v`x(r′) + v`y(r

′)
)

+ Gv
φ(r, r′)v`z(r

′), (6.3)
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where [v`x(r′), v`y(r
′), v`z(r

′)] = v`(r′)n̂s, and n̂s denotes the normal direction of the source

conductor surface. Therefore,

Pm`(r) =
∫

s

∫

s
Gh

φ(r, r′)vm(r)
(

v`x(r′) + v`y(r
′)
)

dr′dr +
∫

s

∫

s
Gv

φ(r, r′)vm(r)v`z(r
′)dr′dr.

(6.4)

Furthermore, since we have learned from the previous chapter that each layered Green’s

function component in (6.2) and (6.4) can be approximated by a set of closed-form images

with forms shown in Table 5.2, the double volume and surface integrations of (6.2) and (6.4)

can then be approximated by a series of integrations involving these closed-form images.

For example, in (6.2), the double volume integration involving Gzz
A is approximated as:

∫

v

∫

v
Gzz

A (r, r′)miz(r)mjz(r
′)drdr′

≈ µ0

∫

v

∫

v

(
e−jk0Rs

Rs
+

n2 − 1
n2 + 1

e−jk0R0

R0
+

∑

i

azz
i

e−jk0Rzz
cxi

Rzz
cxi

)
miz(r)mjz(r

′)drdr′

(6.5)

where

Rs(r, r′) =
√

(x− x′)2 + (y − y′)2 + (z − z′)2;

R0(r, r′) =
√

(x− x′)2 + (y − y′)2 + (z + z′)2;

Rzz
cxi

(r, r′) =
√

(x− x′)2 + (y − y′)2 + (z + z′ − bzz
cxi

)2. (6.6)

Moreover, if piecewise-constant basis functions as defined in (3.31) were used in a Galerkin

scheme for the computation of the magnetic potential, then the above double volume inte-

gration over a pair of filaments i and j becomes:

ljz liz
aiaj

∫

vi

∫

vj

Gzz
A (r, r′)drdr′

≈ µ0
ljz liz
aiaj

( ∫

vi

∫

vj

e−jk0Rs

Rs
dr′dr +

n2 − 1
n2 + 1

∫

vi

∫

vj

e−jk0R0

R0
drdr′ +

∑

i

azz
i

∫

vi

∫

vj

e−jk0Rzz
cxi

Rzz
cxi

drdr′
)

.

(6.7)

As another example, consider the double surface integration of the Gv
φ kernel in (6.4). If
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this kernel were to be replaced by its approximating images, then

∫

s

∫

s
Gv

φ(r, r′)vm(r)v`z(r
′)dr′dr

≈ 1
ε0

∫

s

∫

s

(
e−jk0Rs

Rs
− n2 − 1

n2 + 1
e−jk0R0

R0
−

∑

i

azz
i

e−jk0Rzz
cxi

Rzz
cxi

)
vm(r)v`z(r

′)dr′dr,

(6.8)

where Rs, R0 and Rzz
cxi

are defined in (6.6). If piecewise-constant collocation technique were

applied to the scalar potential calculation, then the above surface integration over a pair of

panels ` and m, with panel ` being the evaluation panel, becomes:

∫

sm

Gv
φ(r`c , r

′)dr′

≈ 1
ε0

( ∫

sm

e−jk0Rs(`c,r′)

Rs(`c, r′)
dr′ − n2 − 1

n2 + 1

∫

sm

e−jk0R0(`c,r′)

R0(`c, r′)
dr′ −

∑

i

azz
i

∫

sm

e−jk0Rzz
cxi

(`c,r′)

Rzz
cxi

(`c, r′)
dr′

)
,

(6.9)

where `c is the centroid of panel `.

As an observation, if a piecewise-constant Galerkin scheme were utilized in the com-

putation of vector potentials, then the resulting double volume integrations consist of the

following two types of scalar kernels:

Type I: e−jkR

R

Type II: ∂
∂h

(
e−jkR

R

)
; h=x or y,

while distance R has the various forms as defined in (6.6). Similarly, if a piecewise-constant

centroid-collocation scheme were used in the scalar potential analysis, then the resulting

panel integrations consist of only the Type I kernel as suggested by Table 5.2.

6.2 Volume Integration of Type I kernel

As a consequence of using the Galerkin technique for vector potential computations, the

resulting double volume integrals, in (6.7) for example, are extremely expensive to compute

if a traditional 3D quadrature approach were to be applied to both inner and outer inte-

grations. This observation motivates the development of a set of accelerated integration
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Figure 6-1: Geometric definition of quantities used in a volume integration scheme.

schemes applicable to inner volume integrations, which when combined with a 3D quadra-

ture approach to outer integrations, dramatically enhances the efficiency of the overall

double volume integration process.

First, let’s examine the case of

∫

V

e−jk|r′−r|

|r′ − r| dv′. (6.10)

Consider the distribution of sources within a filament of volume V. As shown in Fig. 6-1, the

surface of V, denoted by ∂V , is composed of several faces, each indexed as ∂jV . Each ∂jV

has an outward unit normal n̂j . The perpendicular distance generated from the projection

of the observation point r onto the plane of ∂jV is denoted as hj . This style of notation is

adopted from [78].

The first step in evaluating the volume integral in (6.10) is to apply the Divergence

theorem [37] to transform the integral in V to an integration over ∂V . The theorem states,

∫

V
(∇ · F )dv =

∫

∂V
F · n̂ da. (6.11)
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6.2.1 Observation I: Volume-to-surface Integration

According to (6.11), the volume integration in (6.10) can be transformed to

an integral over the volume’s enclosing surfaces if a vector can be determined

such that its divergence is the same as the integrand in (6.10). In order to apply

such theorem, the integration kernel must be continuously differentiable over the domain of

integration V. This is not the case, however, when the observation point r is in V or on ∂V .

A separate treatment is devised to handle this self-term case as shown in the latter part

of this section. However, if r is outside of V, the Divergence theorem is applied to (6.10)

which yields

∫

V

e−jkR

R
dv′ =

∫

V
∇′ ·R

[
1
−jk

e−jkR

R2
− 1

(−jk)2
(e−jkR

R3
− 1

R3

)]
dv′

=
∫

∂V
n̂ ·R

[
1
−jk

e−jkR

R2
− 1

(−jk)2
(e−jkR

R3
− 1

R3

)]
ds′

=
∑

j

∫

∂jV
n̂j ·R

[
1
−jk

e−jkR

R2
− 1

(−jk)2
(e−jkR

R3
− 1

R3

)]
ds′

=
∑

j

hj

∫

∂jV

[
1
−jk

e−jkR

R2
− 1

(−jk)2
(e−jkR

R3
− 1

R3

)]
ds′,

(6.12)

where R = x̂(x− x′) + ŷ(y − y′) + ẑ(z − z′) is a vector from r to r′, and R = ||~R||.
In (6.12), the 3D integration in V is transformed to a sum of 2D integrations over faces

bounding V. In order to proceed further, more properties have to be defined for ∂jV in

relation to the observation point r as shown in Fig. 6-1:

• P is the end point of the projection of r onto the plane defined by ∂jV .

• ∂jV is enclosed by a set of edges, each indexed as ∂i∂jV .

• For each ∂i∂jV , a local coordinate system is defined with the origin centered at P

and three axes of directions, l̂ij ,ûij and n̂j .

• dij is the perpendicular distance of the projection of P onto the line ∂i∂jV .

• ρ is a vector from P to a point on ∂∂jV , the boundary of ∂jV , and ρ denotes the

distance between the two points.
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6.2.2 Observation II: Surface-to-line Integration

The Divergence theorem can be applied once more to transform integration

over surface ∂jV to one over contour ∂∂jV of ∂jV . However, if P is in ∂jV or on

∂∂jV , before such theorem can be applied, it is necessary to exclude for separate treatment

a region of ∂jVε, which is the intersection of ∂jV and a small disk of radius ε centered at

P. Continue on with the calculation of (6.12), but for the sake of brevity, let’s define I(R)

to be the integrand of (6.12) such that

∫

V

e−jkR

R
dv′ =

∑

j

hj

∫

∂jV
I(R)ds′

= lim
ε→0

∑

j

hj

∫

∂j(V−Vε)
I(R)ds′ + lim

ε→0

∑

j

hj

∫

Vε

I(R)ds′

= lim
ε→0

∑

j

hj

∫

∂j(V−Vε)
∇′ · ρ

ρ2

[
1

(−jk)2
(
e−jkR

R
− 1

R
)− 1

−jk

]
ds′

= lim
ε→0

∑

j

hj

∫

∂∂j(V−Vε)
û · ρ

ρ2

[
1

(−jk)2
(
e−jkR

R
− 1

R
)− 1

−jk

]
dl′

=
∑

j

hj

∑

i

∫

∂i∂jV

dij

ρ2

[
1

(−jk)2
(
e−jkR

R
− 1

R
)− 1

−jk

]
dl′

+ lim
ε→0

∑

j

hj

∫

∂∂jVε

û · ρ

ρ2

[
1

(−jk)2
(
e−jkR

R
− 1

R
)− 1

−jk

]
dl′,

(6.13)

where û is the outward normal vector of ∂jV \∂jVε. The last integral of (6.13) can be

evaluated using a local polar coordinate system centered at P. This produces:

lim
ε→0

∑

j

hj

∫

∂∂jVε

û · ρ

ρ2

[
1

(−jk)2
(
e−jkR

R
− 1

R
)− 1

−jk

]
dl′

=
∑

j

hj

∑

i

∫

∂i∂jV

dij

ρ2

[
1

(−jk)2
(
e−jk|h|

|h| − 1
|h|)−

1
−jk

]
dl′.

(6.14)

Substituting (6.14) into (6.13) yields the final expression

∫

V

e−jkR

R
dv′ =

∑

j

hj

∑

i

∫

∂i∂jV

dij

ρ2

[
1

(−jk)2

(
e−jkR − 1

R
− e−jk|h| − 1

|h|

)]
dl′. (6.15)
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Equation (6.15) shows that the volume integration of (6.10) can be transformed to a sum

of 1D integrations over the line segments contouring the volume.

6.2.3 Self-term Volume Integration

For the separate case where r∈V \∂V , a simple approximation scheme is used. That is,

∫

V

e−jk|r−r′|

|r − r′| dv′ =
∑

i

e−jk|r−ric|
∫

Vi

1
|r − r′|dr′, (6.16)

where the source filament is divided into sub-filaments, and ric is the center of the ith

sub-filament. The integral in (6.16) is solved using the method described in [78] which

transforms the volume integral of 1
|r−r′| into a sum of boundary segment integrals through

the application of the Divergence theorem. The effect of extracting the e−jkR term outside

of the integral is minimal since both source and evaluation points vary within only one

filament-length, which is a small fraction of the wavelength.

6.3 Volume Integration of Type II kernel

Let’s examine the case of

∫

V

∂

∂h

e−jk|r′−r|

|r′ − r| dv′, where h = x or y. (6.17)

Since only GA
xz and GA

yz require the use of Type II kernels, there is no need to be concerned

with the self-term case where r∈V \∂V . Through two consecutive applications of the Di-

vergence theorem, the volume integral of (6.17) can also be transformed to a sum of 1D line
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integrals. That is,

∫

V

∂

∂h

e−jk|r′−r|

|r′ − r| dv′ = −
∫

V
∇′ ·

(
ĥ

e−jkR

R

)
dv′

= −
∫

∂V
n̂ · ĥ(

e−jkR

R
)ds′

= −
∑

j

njh

∫

∂jV

e−jkR

R
ds′

= −
∑

j

njh

∫

∂jV
∇′ · ρ

ρ2

(
e−jkR

−jk
− 1
−jk

)
ds′

= −
∑

j

njh

∫

∂∂jV
û · ρ

ρ2

(
e−jkR

−jk
− 1
−jk

)
dl′

= −
∑

j

njh

∑

i

dij

ρ2

∫

∂i∂jV

(
e−jkR

−jk
− 1
−jk

)
dl′,

(6.18)

where njh
is either the x or y component of n̂j .

6.4 Surface Integration of Type I kernel

To determine the surface integration of the Type I kernel,

∫

S

e−jk|r−r′|

|r − r′| ds′, (6.19)

one immediately sees that the solution is already obtained in (6.18) where the integrand

generated after applying the first Divergence theorem is exactly the same as the integrand

of the surface integration. However, one still needs to account for the case where evaluation

point r ∈ S \∂S. In another words, if the end point of the projection of r is in S or on

∂jS, before the Divergence theorem can be applied, it is necessary to exclude for separate

treatment a region of Sε, which is the intersection of S and a small circle of radius ε centered

at P. Such configuration is shown in Fig. 6-2. Using the notation defined in Fig. 6-2,
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Figure 6-2: Geometric definition of quantities used in a surface integration scheme.

∫

S

e−jk|r−r′|

|r − r′| ds′ = lim
ε→0

∫

(S−Sε)

e−jk|r−r′|

|r − r′| ds′ +
∫

Sε

e−jk|r−r′|

|r − r′| ds′

= lim
ε→0

∫

(S−Sε)
∇′ · ρ

ρ2

(
e−jkR

−jk
− 1
−jk

)
ds′

= lim
ε→0

∫

(S−Sε)
û · ρ

ρ2

(
e−jkR

−jk
− 1
−jk

)
ds′

=
∑

i

di

ρ2

∫

∂iS

(
e−jkR

−jk
− 1
−jk

)
dl′ + lim

ε→0

∫

Sε

û · ρ

ρ2

(
e−jkR

−jk
− 1
−jk

)
ds′,

(6.20)

where û is the outward normal vector of S\Sε. The last surface integral of (6.20), when

casted into the polar coordinate system, can also be reduced to a sum of 1D line integrals

over the segments bounding the surface:

lim
ε→0

∫

Sε

û · ρ

ρ2

(
e−jkR

−jk
− 1
−jk

)
ds′ =

∑

i

di

ρ2

∫

∂iS

(
e−jk|h|

−jk
− 1
−jk

)
dl′, (6.21)

where h is the normal projection of r onto S. When substituting (6.21) into (6.20), one

obtains the final expression:

∫

S

e−jk|r−r′|

|r − r′| ds′ =
∑

i

di

ρ2

∫

∂iS

(
e−jkR

−jk
− e−jk|h|

−jk

)
dl′. (6.22)
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6.5 Chapter Summary

Table 6.1 summaries all the 1D integral representations obtained for the volume or surface

integrations of the full-wave Green’s function kernels used in potential evaluations. It should

be emphasized that these integrals are only valid if piecewise-constant basis functions were

utilized.

Integration region Integration type 1D integral representation

r /∈V \∂V
∫

V
e−jkR

R
dv′

∑
j hj

∑
i

∫
∂i∂jV

dij

ρ2

[
1

(−jk)2

(
e−jkR−1

R
− e−jk|h|−1

|h|

)]
dl′

r∈V \∂V
∫

V
e−jkR

R
dv′

∑
i e
−jk|r−ric| ∫

Vi

1
|r−r′|dr′

r /∈V \∂V ; h=x or y
∫

V
∂
∂h

e−jk|r′−r|
|r′−r| dv′ −∑

j njh

∑
i

dij

ρ2

∫
∂i∂jV

(
e−jkR

−jk
− 1

−jk

)
dl′

all cases
∫

S
e−jk|r−r′|
|r−r′| ds′

∑
i

di

ρ2

∫
∂iS

(
e−jkR

−jk
− e−jk|h|

−jk

)
dl′

Table 6.1: Representation of volume and surface integrations of full-wave Green’s
function kernels as series of 1D line integrations.
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Chapter 7

Optimization-based

Frequency-parameterizing Basis

Functions

The conductors-over-substrate impedance solver described in the previous sections uses

piecewise-constant basis functions to approximate the unknown conductor filament currents

for any layout geometry. However, the efficiency of the solver is being challenged by the ever

increasing operating frequencies which generate skin and proximity effects, as illustrated

in Fig. 7-1, that need to be accurately modeled in order to provide accurate impedance

solutions.

If piecewise constant basis functions were used to model these effects, each conductor

volume is first discretized lengthwise into individually conducting segments with the as-

sumption that the cross-sectional current density does not vary along the length of the

segments. The number of segments produced per conductor is dictated by accuracy, and

the segments are always much shorter than a wavelength. Then the cross-sectional interior

of each segment is discretized in a manner dictated by skin depth [11], hence generating, per

segment, bundles of many tightly-packed parallel filaments with very large aspect ratios.

One might think this is not problematic if the system were to be solved by a fast technique

since, theoretically speaking, the computational cost only scales in a linear fashion with

the total number of basis functions. The resulting filament-to-filament interactions within

each segment, however, cannot be accelerated by fast techniques that are based on the
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Figure 7-1: Skin effect: high frequency current-crowding phenomenon over the cross-
section of a filament.

approximation of distant interactions only. Therefore direct computations must be used to

resolve these near-distanced interactions with a complexity that grows quadratically with

the number of filaments per segment.

The explosive cost associated with high-frequency impedance simulations has spurred

the development of methods that seek to either represent interior conductor current us-

ing surface field quantities [10, 30, 65, 73, 77] or generate specialized basis functions that

have the built-in capability of capturing interior current variations [12, 11]. However, ma-

jor drawbacks have been observed in the first approach where surface-based formulations

such as [77, 30] result in excessively complex systems that are numerical unstable at low-

frequencies. Therefore, for the sake of accuracy and robustness of implementation, the latter

of the two approaches is preferred.

Specifically, according to [12], a set of specialized basis functions is derived from the

interior Helmoholtz equations governing the flow of longitudinal current through a con-

ductor. The resulting basis function set is composed of a series of exponentials, with each

exponential being a function of frequency and cross-sectional position and is referred to as a

“conduction mode.” Each conduction mode is capable of capturing the frequency-dependent

current distribution originating from a certain region of a conductor’s cross section. How-

ever, these specialized basis functions can only be generated for those cross-section shapes

where analytical solutions of the diffusion equation are available. Practically speaking, only

rectangular and cylindrical cross-sections can be handled. Another disadvantage of the
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conduction mode basis functions is that they are incapable of capturing proximity effects

in neighboring wires of dissimilar cross-sectional shapes.

To remedy these shortcomings, [11] describes another set of basis functions called “prox-

imity templates” that is pre-computed numerically at each desired frequency for each unique

conductor cross-section type. More specifically, at a desired frequency, basis function tem-

plates for a source conductor of a specific cross-section type are constructed as a composite

of nine or so simulation results generated from placing test conductors at judiciously chosen

locations surrounding the source conductor. An apparent disadvantage of such an approach

is the high computational cost associated with constructing these basis functions if there

exists a large number of frequency points of interest. Another disadvantage is the lack

of predictability in the method’s accuracy due to the fact that its solutions are entirely

dependent on how well the locations of the few trial samples are chosen.

In this chapter, a set of novel basis functions is introduced that maximizes the efficiency

with which large and complex interconnect structures are modeled. According to the proce-

dure outlined in Sec. 7.1 of this chapter, these basis functions only need to be pre-computed

once per conductor cross-section geometry of interest, and they are valid for a wide range

of frequencies of operation. For the sake of reusability, these basis functions can be stored

off-line with a minimal storage cost. In spite of having the advantage of being inherently

frequency-independent within a given frequency range, these basis functions are also able to

collectively capture the frequency-variant nature of conductor current distributions, hence

providing reasonably accurate modeling solutions with far fewer degrees of freedom in com-

parison to the use of traditional basis functions. Furthermore, post-optimization techniques

are applied to the resulting basis functions in order to guarantee their robustness. The

necessity of such optimization is firmly established in Sec. 3.5.2 of this thesis. In addi-

tion, these basis functions will not complicate the cost of volume integrations in a Galerkin

scheme if a MPIE formulation were used.

7.1 Pre-computation of Specialized Basis Functions

This section describes the construction of a high-order basis that minimizes the number of

functions per segment, parameterizes the frequency-dependent nature of current variation

unique to different cross-section shapes, and guarantees frequency-independence for a wide

97



n
R

Figure 7-2: Example of a source and test conductor pair for the construction of
specialized basis functions that capture skin and proximity effects.

range of frequencies. The procedure is as follows:

1 For a given conductor of a specific cross-section shape, let’s call this conductor a

“source” conductor, consider placing another conductor, called ”test” conductor, at a

certain interaction distance ri from the source conductor. Shorting the conductors at

one end while exciting the structure with a unity current source at a desired frequency

point would allow one to examine the current distribution over the cross section

of the source conductor in response to the proximity effect generated by the test

conductor at position ri. Fig. 7-2 shows an example of such source and test conductor

pair. The resulting solution of source current response vi is obtained by using a

very fine piecewise constant discretization method, hence producing η filaments per

conductor segment. Extending this concept to p such test conductors situated at

various locations surrounding the source conductor, one would thus obtain, for a

specific excitation frequency, a collection V of such current solutions for the source

conductor with V = {vi}, i = 1 . . . p, and each vector vi is of length η. If the spatial

sampling of the test conductors is sufficiently fine, matrix V would contain a decent

set of “snapshots” from which proximity effects for a specific cross-section shape at

a specific frequency can be captured. This step of the procedure is the same as the

basis function generation procedure in [11].

2 Now select a set of frequency samples Sn = {s1, s2, ..., sn} at which step 1 is repeated.
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Figure 7-3: Example of a fine piecewise-constant volume discretization used to obtain
higher-order basis functions.

It becomes crucial that Sn spans the entire range of desired operating frequencies. In

addition, the frequency samples should be fine enough so that the interpolation of the

resulting sampled currents faithfully captures their overall variation with frequency.

The combination of such spatial and frequency sampling subsequently generates a

collection Vpn of source current solutions with Vpn = {vi}, i = 1 . . . p× n.

3 It becomes evident that the span of matrix Vpn captures a conductor’s cross-sectional

current distribution, accounting for both frequency-dependent skin effects and fre-

quency plus spatial-dependent proximity effects. Therefore the subspace spanned by

Vpn can be used to generate a set of specialized basis functions. More specifically,

let’s determine q (q¿ p × n, q¿ η) such linearly-independent basis functions, the

collection of which, U = {u1, u2, . . . uq}, approximates Vpn. The accuracy of the ap-

proximation is measured by the minimal distance, in a least square sense, between

the span of U and Vpn. To satisfy this minimization requirement, a singular-value-

decomposition (SVD) method is used to generate these q orthogonal basis functions

from the q dominant singular vectors of Vpn. Each one of these q basis functions can

be viewed as a mode representing an orthogonally decomposed current distribution

shape over a conductor’s cross section. Therefore a weighted sum of these current

distribution modes is capable of accounting for the cross-sectional current distribution

at any particular frequency point within the range from which the basis functions are
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generated.

In practice, at most 8 of these specialized basis functions (q = 8) are needed to accurately

capture current distributions in most cross-section shapes over a wide span of frequencies.

In contrast, a much larger number (η À 8) of piecewise-constant basis functions is needed to

capture the cross-sectional current variation at one frequency point, and this number grows

rapidly with the increase in frequency. In addition, the frequency-independent nature of the

specialized basis functions implies that they only need to be pre-computed once for each

unique cross-section geometry and can be stored off-line for repeated use. Since the number

of these basis functions is small, storage cost is negligible.

7.2 Post-optimization of Specialized Basis Func-

tions

In this section, we will demonstrate how optimization can be applied to the set of basis

functions U = {u1 . . . uq} constructed from the previous section in order to avoid numerical

difficulties encountered when these basis functions are used to approximate unknown current

densities in a conductor system.

According to (3.21), the current density distribution in the ith conductor segment can

be approximated by a weighted sum of the basis functions in U as:

J i ≈
q∑

j=1

uj
ˆ̀
i∑

uj
Iij , (7.1)

where current variation unique to a cross-section shape can be effectively captured by the

span of U within a given frequency range. Coefficient Iij denotes the weight corresponding

to the jth basis function, uj , as it contributes to the overall current distribution in segment

i. In turn, each uj is a vector of η piecewise-constant filament currents, the union of which

provides an accurate approximation of the cross-sectional current contained in the jth basis

function mode. Quantity
∑

uj is the sum of these currents. The purpose of basis function

normalization by
∑

uj is to explicitly define basis function weight Iij as a physical current,

the necessity of which has been firmly established in Sec. 3.5.2. However, the possibility that

the total current contained in the jth basis function mode (
∑

uj) might be zero signifies
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that it might be necessary to additionally process the basis functions in U in order to prevent

each normalized vector from blowing up. The problem can be mathematically formulated

as:

Given a basis function matrix U={ui, i=1..q}, where U is an orthonormal

matrix with possible column sums being zero, we need to determine a set of

coefficients {αij , i=1..q, j=1..q} such that

mj =
q∑

i=1

αijui, (7.2)

where mj forms a column of a new basis function matrix M={mj, j=1..q}.
M is subjected to the following constraints in terms of α:

• Orthogonality:
(
mk ·m` ≈ 0 if k > `

)

−ε <

( q∑

i=1

αikui

)T ( q∑

i=1

αi`ui

)
< ε if k > `, (7.3)

where ε is a small constant.

• Nonzero column sums:
(∑

mj > β
)

∣∣∣∣
( q∑

i=1

αikui

)T

ones(η)
∣∣∣∣ > β, (7.4)

where β is a positive non-zero constant and ones(η) is a η-length

vector of one’s.

The problem is now formulated so that a standard optimization technique can be applied

to solve the q2 unknown α’s, thus yielding a new ortho-normal basis function matrix M

having the same span as the original matrix U , but guaranteeing nonzero column sums.

7.3 Incorporation of Basis Functions into MPIE

This section demonstrates how the collection of such modal basis functions, obtained using

the procedure in Sec. 7.1 and optimized using the method in Sec. 7.2, is incorporated into
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the MPIE formulation to produce a reduced system of equations for the potentials of a large

interconnect network.

After replacing U in (7.1) by the optimized set of basis functions M(= {mj}; j = 1 . . . q),

one is able to use the new basis functions in a Galerkin technique to produce a linear system

of equations for the unknown basis function weights. To obtain partial resistance Rij in

(3.26) in terms of basis function vectors mi and mj , the following approximation can be

made:

Rij ≈ 1
σ

∑η
k=1 mik

∑η
k=1 mjk

η∑

k=1

mikmjk

lik
aik

,

where mik is the kth piecewise-constant current in the ith mode, lik and aik are the length

and cross-sectional area, respectively, of the filament on which the kth piecewise-constant

current of the ith mode is defined. If there are n conductor segments in the discretized

system and q basis function modes for each segment, then R is a block-diagonal matrix of

size qn× qn with each block being q × q.

Similarly, for the calculation of partial inductance Lij in (3.27):

Lij ≈ 1∑η
k=1 mik

∑η
k=1 mjk

η∑

k1=1

η∑

k2=1

mik1
mjk2

∫

vik1

∫

vjk2

GA(r, r′, ω)ˆ̀i · ˆ̀jdr′dr. (7.5)

Therefore L is a dense matrix of size qn × qn. The system setup cost associated with

computing the integrals of higher-order basis functions, as in (7.5), is actually the same as

those involving piecewise-constant basis functions. Furthermore, the accelerated integration

techniques introduced in the previous chapter for piecewise-constant basis functions can still

be applied to the higher-order basis functions introduced in this paper. More importantly,

due to the fact that q ¿ η, R and L matrices produced by the use of the specialized basis

functions are much smaller in comparison to the use of piecewise-constant basis functions,

which yields, instead, matrices of size ηn× ηn.

7.4 Chapter Summary

In this chapter, a procedure for the automatic generation of specialized basis functions is

presented. The resulting set of high-order basis functions, unique to a conductor’s cross-

sectional geometry, is capable of generating system matrices for the MPIE that are much
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reduced in size in comparison to that of piecewise-constant basis functions. This is because

the specialized basis functions are derived to parameterize the frequency-dependent nature

of a conductor’s cross-sectional current variation, hence capable of capturing electromag-

netic phenomenon such as skin and proximity effects over a wide range of frequencies. The

basis functions themselves are frequency-independent within a specified frequency range of

operation. Therefore they only need to be pre-computed once for each conductor cross-

section type and can be stored off-line with a minimal cost for the purpose of future use.

In addition, these basis functions have proven to bear the same computational cost as

piecewise-constant basis functions if used in a Galerkin scheme for the solutions of the

MPIE.

103



104



Chapter 8

FastSub: a pFFT-accelerated

Integral Equation Solver

The techniques described in the body of this thesis culminate into the implementation of an

electromagnetic integral equation solver called FastSub. This solver is capable of performing

interconnect impedance extractions in the presence of a conductive substrate and over a wide

range of operating frequencies. Numerous novel schemes are implemented in the solver to

enhance its overall performance, some which have been extensively discussed in the previous

chapters, but others are yet to be explained. These techniques of acceleration include:

• Accelerated volume and surface integration schemes (Chap.6).

• Frequency-parameterizing, yet frequency-independent specialized basis functions (Chap.7).

• Pre-corrected Fast-Fourier Transform (pFFT) method tailored to the utilization of

dyadic Green’s functions.

The last method is the focus of discussion in this chapter. Rather than providing detailed

description regarding every aspect of pFFT, many of which can be found in the works

of [55, 56, 84], the purpose of this chapter is to highlight the extensions made to the existing

pFFT in order to accommodate dyadic Green’s functions.
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8.1 Preliminaries

In order to use a Krylov-based iterative method to solve a discretized system such as the

one in (3.51), one needs to consider the fact that the dominating cost of such a method is

the dense matrix-vector product Axi, which produces an overall computational complexity

of O(n2), with n2 being the number of non-zeros in the matrix. In our problem, A =
[
MZemMT

]
and xi = Imi . However, exploiting the physical structure of the problem,

one can reduce the computational complexity of the matrix-vector product to O(n log n)

utilizing pFFT. The theoretical principle behind this method rests on the observation that

in (3.46), the product of LI, where L is a dense matrix of size m ×m, corresponds to the

computation of magnetic potentials in m filaments generated by m currents (I) flowing

through the same filaments. Similarly, the product Pq, where P is a dense matrix of size

n × n, corresponds to the computation of scalar potentials on n panels generated by n

charges (q) residing on the same panels. Using the former interaction as an example, the

procedure utilized in pFFT to approximate the computation of magnetic vector potentials

can be summarized as:

• Projection: Superimpose a three-dimensional grid onto the entire physical space of

interest. Project each filament current I onto a set of nearby grid points or stencils

surrounding the filament. This projection is done such that the potential produced

by the new grid currents is the same as the potential produced by the original fila-

ment current on far away grid points. Consequently, a sparse projection matrix P is

produced, where P is of size Ng ×Nb, where Ng is the number of grid points, and Nb

is the number of basis functions.

• Convolution: The grid potentials generated by the current on the same grid points

can be easily computed using a convolution operation in the spatial domain. Such

convolution can be handled by a Fast-Fourier Transformation (FFT). Hence a convo-

lution matrix H is produced where H is of size Ng ×Ng.

• Interpolation: The computed grid potentials can be interpolated onto the filaments to

approximate filament potentials. Hence a sparse interpolation matrix I is generated

with I being Nb ×Ng.

• Direct computation and pre-correction: Accuracy of the above procedure deteriorates
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rapidly for nearby filament interactions. Therefore contributions of nearby filament

currents must be computed directly and care must be taken to remove the grid po-

tential contributions of those direct-interacting filaments. The resulting direct matrix

D and pre-correction matrix Pc are both sparse and of sizes Nb ×Nb.

• Putting it all together:

Axi ≈
(

[D − Pc] + [I][H][P ]
)

xi. (8.1)

Of course, the same procedure can be applied to the computation of electric scalar potentials

on panels. Thus far, the pFFT technique has only been extensively applied to accelerations

involving scalar Green’s functions. This chapter demonstrates how pFFT can be extended

to include acceleration of matrix-vector products involving the dyadic Green’s function

kernels encountered in our problem.

In our problem, the integral equation used to compute the magnetic vector potential

for each entry of the inductance matrix L can be expressed as:

Aij =
∫

vi

dr wi(r)ˆ̀∗i ·
∫

vj

dr′ GA(r, r′)wj(r′)ˆ̀j

= ˆ̀∗
i ·

(∫

vi

dr wi(r)
∫

vj

dr′ GA(r, r′)wj(r′)
)

ˆ̀
j , (8.2)

where vi and vj are the volume supports for basis functions wi(r) and wj(r), respectively.

Vectors ˆ̀
i and ˆ̀

j are the directions of current flow in volumes vi and vj , respectively. Dyad

GA is the layered Green’s function as derived in the previous chapter of this thesis and has

the following dyadic form:

GA =




Gxx
A 0 0

0 Gyy
A 0

Gxz
A Gyz

A Gzz
A


 , (8.3)

where Gyy
A = Gxx

A .
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According to the method of complex images, scalar components Gxx
A , Gyy

A and Gzz
A can

be expressed by the following generalized representation:

Gvv
A (r, r′) = Gvv

Areal
(r, r′) + Gvv

Aimages
(r, r′)

= g(x− x′, y − y′, z − z′) +
∑

i

ai g(x− x′, y − y′, z + z′ − jbi),

(8.4)

where subscript vv indicates a diagonal component of the dyadic Green’s function in (8.3).

In the above equation, Gvv
Areal

corresponds to the potential generated by real filament inter-

actions in the absence of the substrate. Gvv
Aimages

corresponds to the potential generated by

complex-image filaments on real filaments, and a′is and b′is are the complex coefficients and

exponents of the images, respectively. Both Gvv
Areal

and Gvv
Aimages

can be expressed in terms

of free-space Green’s function g.

The off-diagonal component Gxz
A , on the other hand, has the following differential form

with respect to the x-direction:

Gxz
A (r, r′) =

∑

i

ai
∂

∂x′
g(x− x′, y − y′, z + z′ − jbi). (8.5)

Similarly, the off-diagonal component Gyz
A has the following differential form with respect

to the y-direction,

Gyz
A (r, r′) =

∑

i

ai
∂

∂y′
g(x− x′, y − y′, z + z′ − jbi). (8.6)

Note that both Gxz
A and Gyz

A are generated by only complex image filaments.

8.2 Projection and Interpolation

It should be noted that the variant of the pFFT method employs polynomial projection

and interpolation schemes, hence producing projection and interpolation matrices that are

independent of the specific underlying Green’s function [55]. This makes it much easier

to handle complex Green’s function kernels and, from an implementation point of view,

provides a unified framework regardless of basis function types or particular method of
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evaluation. However, projection and interpolation schemes do depend on the type of applied

operators to the inner and outer integration kernels.

First, consider the case of projection. The double volume integration of the dyadic

Green’s function kernel can be decomposed into the double volume integrations of five

scalar kernels. These scalar kernels can be placed into three categories based on the type

of applied operators to the green’s functions in (8.4)-(8.6). In (8.5), an inner differential

operator d(.)
dx′ is applied to its free-space green’s functions. In (8.6), d(.)

dy′ is applied. In

(8.4), an identity operator is applied. Therefore, according to the projection principle [84],

different projection matrices need to be produced for these different inner integral operator

types. It is clear that the projection of our dyadic Green’s function cannot be treated as an

encapsulated unit. Rather, projection should be considered on an individual basis for each

scalar component of the dyadic Green’s function. Consequently three projection matrices,

PF , P dF
dx

and P dF
dy

are produced for our problem [85].

From (8.2), one observes that the scalar kernels of the dyadic Green’s function all share

the same identity operator in the outer integral. Hence only one interpolation matrix I is

suffice for our problem.

8.3 Convolution and Grid-generation Constraints

In (8.4), one notices that even though the first term Gvv
Areal

is shift invariant in all direc-

tions, the second term Gvv
Aimages

is only shift invariant along the x-y plane. Particularly, its

dependence on z + z′ adds complexity to the overall pFFT approach. A similar observation

is made for (8.5) and (8.6), where only image contributions are present.

The additional complexity in FFT due to the presence of layered interface is resolved

by [55], according to which the matrix that maps grid current to grid potentials is the

sum of a matrix with block-toeplitz structure corresponding to the first term of (8.4), and a

matrix with block-Hankel structure corresponding to the second term of (8.4). The Toeplitz

matrix is generated from the discrete convolution of the free-space Green’s function and can

be treated with an ordinary FFT technique. The Hankel matrix is related to a Toeplitz

matrix via a simple permutation matrix, therefore multiplication by a Hankel matrix is

also O(N log N) via the FFT. Furthermore, the permutation matrix may be represented

in Fourier space so that multiplication of a vector by the sum of a Hankel and a Toeplitz
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matrix can be performed using a single forward and inverse FFT pair.

In our problem, we have assumed that all conductor structures occupy only the topmost

layer of the layered medium. Hence the grid generation step is essentially the same as the

case of free space. However, care much be taken to ensure that the grid is always above the

plane of interface and never crosses below to the substrate region.

8.4 Direct Matrix and Pre-correction

As mentioned earlier, the nearby interactions should be computed directly and the inaccu-

rate contributions from the use of grid should be removed. Since there are three different

types of projection schemes involved in our problem, the dyadic Green’s function cannot

be treated as a single unit when it comes to the computation of direct interactions and the

removal of grid contributions. Rather, they should be applied individually to each scalar

component of the dyadic Green’s function. Hence a direct matrix is generated for each

unique scalar component, producing Dxx, Dzz, Dxz and Dyz. In addition, pre-correction

matrices are produced unique to each component, hence generating pre-correction matrices

Pcxx, Pczz, Pcxz and Pcyz.

8.5 Algorithm Summary

The following algorithm summarizes the pFFT approach developed for the computation

of magnetic vector potentials A = [Ax, Ay, Az] due to the excitation of vector currents

I = [Ix, Iy, Iz] in the presence of a substrate:

1. Construct projection matrices PF , P dF
dx

, P dF
dy

.

2. Construct interpolation matrix I.

3. Construct direct-interaction matrices Dxx, Dzz, Dxz and Dyz.

4. Construct pre-correction matrices Pcxx, Pczz, Pcxz and Pcyz.

5. FFT projected inputs:

. Îx = FFT
(
[PF ]Ix

)
Îximage = reflect(Îx)
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. Îy = FFT
(
[PF ]Iy

)
Îyimage = reflect(Îy)

. Îz = FFT
(
[PF ]Iz

)
Îzimage = reflect(Îz)

. Îximage2 = reflect
(

FFT
([

P dF
dx

]
Ix

))

. Îyimage2 = reflect
(

FFT
([

P dF
dy

]
Iy

))

6. FFT scalar Green’s function components:

. H̃toeplitz(Gxx
Areal

) = FFT(Gxx
Areal

) H̃hankel(Gxx
Aimage

) = FFT(Gxx
Aimage

)

. H̃toeplitz(Gzz
Areal

) = FFT(Gzz
Areal

) H̃hankel(Gzz
Aimage

) = FFT(Gzz
Aimage

)

. H̃hankel(Gxz
Aimage

) = FFT(Gxz
Aimage

)

. H̃hankel(G
yz
Aimage

) = FFT(Gyz
Aimage

)

6. Convolution:

. Âx = H̃toeplitz(Gxx
Areal

)Îx + H̃hankel(Gxx
Aimage

)Îximage

. Ây = H̃toeplitz(Gxx
Areal

)Îy + H̃hankel(Gxx
Aimage

)Îyimage

. Âz = H̃toeplitz(Gzz
Areal

)Îz+H̃hankel(Gzz
Aimage

)Îzimage+H̃hankel(Gxz
A )Îximage2+H̃hankel(G

yz
A )Îyimage2

7. Inverse FFT and interpolate:

. Ax = [I]FFT−1(Âx)

. Ay = [I]FFT−1(Ây)

. Az = [I]FFT−1(Âz)

8. Pre-correction:

. Ax = Ax + (Dxx − Pcxx)Ix

. Ay = Ay + (Dxx − Pcxx)Iy

. Az = Az + (Dxz − Pcxz)Ix + (Dyz − Pcyz)Iy + (Dzz − Pczz)Iz
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Chapter 9

Results

This chapter contains various examples that demonstrate the efficiency and accuracy of the

solver presented in the thesis. The purpose of the first section is to establish the efficiency of

the solver due its use of the novel accelerated integration schemes. The purpose of the second

section is to validate the overall simulation techniques described in the thesis by comparing

measurement data obtained on fabricated devices to the results produced from our solver

simulation. Examples in the third section seek to demonstrate the solver’s versatility of

application in various design areas. For instance, examples are presented to demonstrate

the solver’s ability to analyze the effects of design parameter and substrate conductivity

variations on impedance and to account for full-wave effects at the integrated-circuit level.

The last section of this chapter contains examples that conclusively establish the superior

efficiency with which the specialized high-order basis functions are capable of capturing

conductor cross-sectional current distributions when compared to piecewise-constant basis

functions.

9.1 Computational Cost Comparisons

This section presents cost analysis and comparison of utilizing the accelerated integration

scheme as opposed to a standard 3D Gaussian quadrature approach for the volume filament

integration of a Type I kernel and a Type II kernel with an associated x-directed derivative.

The source filament is 1um x 1um in the cross-section and 500um in length. The potentials

are evaluated 2.5um and 10um from the center of the filament at an operating frequency
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of 30GHz.

Tables 9.1 and 9.2 show that, in comparison to the standard 3D Gaussian quadrature

scheme, an average of 14X reduction in computational cost is achieved when the accelerated

integration scheme is used for close-field potential calculation and an average of 7X cost

reduction is achieved when the accelerated integration scheme is used for intermediate-field

potential calculation.

Accuracy 3D Gaussian 1D accelerated cost
(%) quadrature (pts #) method (pts #) reduction
0.1 266 20 13X
1 160 10 16X
4 98 6 16X

Table 9.1: Cost analysis for the volume integration of a Type I kernel evaluated at a
distance of 2.5um from the filament center.

Accuracy 3D Gaussian 1D accelerated cost
(%) quadrature (pts #) method (pts #) reduction
0.1 90 10 9X
1 42 6 5.25X
4 28 4 7X

Table 9.2: Cost analysis for the volume integration of a Type I kernel evaluated at a
distance of 10um from the filament center.

For the potential evaluation consisting of the Type II kernel, tables 9.3 and 9.4 show

that averages of 17X and 10X cost reductions are achieved corresponding to near-field and

intermediate field evaluations, respectively.

Accuracy 3D Gaussian 1D accelerated cost
(%) quadrature (pts #) method (pts #) reduction
0.1 450 28 16X
1 320 18 17X
4 250 12 20X

Table 9.3: Cost analysis for the volume integration of a Type II kernel with an
associated x-directed derivative. The kernel is evaluated at a distance of 2.5um from
the filament center.
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Accuracy 3D Gaussian 1D accelerated cost
(%) quadrature (pts #) method (pts #) reduction
0.1 110 12 9X
1 80 8 10X
4 62 6 10X

Table 9.4: Cost analysis for the volume integration of a Type II kernel with an
associated x-directed derivative. The kernel is evaluated at a distance of 10um from
the filament center.

9.2 Accuracy Validation Against Measurements

This section contains four examples that validate the accuracy of our solver when compared

to actual measurement data collected by [54] on four fabricated RF spiral inductors of

various dimensions.

9.2.1 A Square 2.25mm2-area, 1.75-turn RF Inductor

The first example is run on a square 1.75-turn spiral RF inductor with an area of 2.25mm2

as shown in Fig. 9-1. This inductor is fabricated on a multi-chip module (MCM) [54] using

copper wires that are 5µm thick and 65.9µm wide. The separation distance between the

turns is 34.1µm. A guard ring that is 125µm wide and 5µm thick is placed 200µm from

the RF-inductor to simulate a nearby ground. This structure is embedded in a dielectric

and situated 180µm above a substrate. The dielectric has a resistivity(ρ) of 1.0x1017Ω · cm
and a relative permittivity (εr) of 3.5. The material properties of the substrate are: ρ =

1.0x1014Ω · cm and εr = 9.9. Fig. 9-2 shows a plot of quality factors (Q-factors) obtained

for this RF inductor excited over a range of frequency inputs. One set of Q-factor data is

produced from measurements while the other set is from the solver introduced in this thesis.

9.2.2 A Square 4mm2-area, 2.75-turn RF Inductor

The second example is run on a square 2.75-turn spiral RF inductor with an area of 4mm2

as shown in Fig. 9-3. The metal and substrate material properties for this example are the

same as those in the first example. This 2.75-turn inductor is composed of wires that are

5µm thick and 67.1µm wide. The separation distance between the turns is 45.4µm. The
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Figure 9-1: A square 1.75-turn RF inductor with an area of 2.25 mm2 and surrounded
by a ground ring.
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Figure 9-2: Measured and simulated Q-factors for the RF inductor described in Fig. 9-
1.

inductor is situated at the same distance from the substrate as that of the first example and

is surrounded by a similar ground ring. Fig. 9-4 shows a plot of the Q-factor comparison

obtained for this inductor.
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Figure 9-3: A square 2.75-turn RF inductor with an area of 4 mm2 and surrounded
by a ground ring.
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Figure 9-4: Measured and simulated Q-factors for the RF inductor described in Fig. 9-
3.

9.2.3 A square 2.25mm2-area, 3.75-turn RF Inductor

The third example is a square 3.75-turn spiral RF inductor with an area of 2.25mm2 as

shown in Fig. 9-5. The metal and substrate material properties used in this example are the

same as those in the first example. This 3.75-turn inductor is composed of wires that are

5µm thick and 61.6µm wide. The separation distance between the turns is 38.4µm. The
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inductor is situated at the same distance from the substrate as that of the first example

and is surrounded by a similar ground ring. Fig. 9-6 shows a plot of Q-factor comparison

obtained for the 3.75-turn inductor.

Figure 9-5: A square 3.75-turn RF inductor with an area of 2.25mm2 and surrounded
by a ground ring.
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Figure 9-6: Measured and simulated Q-factors for the RF inductor described in Fig. 9-
5.
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9.2.4 A square 2.25mm2-area, 4.75-turn RF Inductor

The last example of this section is a square 4.75-turn spiral RF inductor with an area of

2.25mm2 as shown in Fig. 9-7. This 4.75-turn inductor is composed of wires that are 5µm

thick and 37.6µm wide. The separation distance between the turns is 24.95µm. Fig. 9-8

shows a plot of Q-factor comparison obtained for the 4.75-turn inductor.

Figure 9-7: A square 4.75-turn RF inductor with an area of 2.25mm2 and surrounded
by a ground ring.

Measuring Q-factors on fabricated RF inductors is a difficult task, and measurements

are typically noisy; nevertheless, Figs. 9-2, 9-4, 9-6, and 9-8 all demonstrate that simulation

results obtained from our solver can accurately reflect the overall Q-factor behavior of

fabricated devices. One interesting observation worth noting is that as the number of turns

increases, the effect of the substrate becomes increasingly negligible. This is due to the

fact that the parasitics created between metal windings dominate as the number of turns

increases, hence rendering the effect of the substrate negligible.

9.3 Applied Examples

After thoroughly establishing the validity of our solver in the previous section, this section

uses the solver to quantitatively analyze substrate effects on various IC structures with the

purpose of showcasing the versatility of our solver in various application areas.
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Figure 9-8: Measured and simulated Q-factors for the RF inductor described in Fig. 9-
7.

9.3.1 Full-wave Effects on a MCM Transmission Line

This section studies full-wave substrate effects on a MCM transmission line. The transmis-

sion line is constructed using two copper wires that are 5µm thick, 10µm wide, and 3cm

long. The two lines are situated 1cm apart at a height 180µm above the substrate in the

oxide layer. The properties of the oxide layer and the substrate are the same as the MCM

in the previous section.

In Fig. 9-9, one set of resistance results is generated in quasi-static mode where the

full-wave kernels are replaced with the 1
R kernels, and the other set is generated in full-wave

mode. In Fig. 9-9, the full-wave effects are manifested as discrepancies in the resonance

peaks between the data generated in the full-wave mode and those in quasi-static mode.

These discrepancies increase with frequency, reflecting on the full-wave mode’s ability, or,

the quasi-static mode’s inability, to capture high-frequency radiation losses in the system.

9.3.2 Design Parameter Variation Effects on a RF Inductor

A clear advantage of our simulation tool is the ease for which parameter changes are modeled

in a spiral inductor design in order to optimize its electrical behavior or examine its para-
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Figure 9-9: Resistance comparison between full-wave and quasi-static simulations on
the transmission line structure in Sec. 9.3.1.

meter sensitivity. To illustrate this concept, we will examine the effects design parameter

changes bear on spiral inductors’ quality factor behavior over frequency. The square spiral

inductors used in this example are composed of copper wires and embedded in a dielectric

(εr = 3.9) 7µm above a conducting silicon substrate (εr = 11.7,ρ = 1Ω · cm). Each inductor

layout has the following design parameters: metallization width (W ), metallization thick-

ness (T ), separation distance between metal windings (SI ), number of windings (N) and

outer dimension (OD). We will start our analysis with the following nominal values: N=3,

W=5µm, T=1µm, SI=2um, OD=400µm.

Variation on the number of windings (N )

The quality factor plots for five values of N are shown in Fig. 9-10. The self-resonance

frequency (fSR) decreases in a non-linear fashion with each additional winding due to the

increase in capacitive coupling between the windings as well as to the substrate. In addition,

the peak of quality factors decreases with increased metal loss introduced by the additional

windings [24].

Variation on the separation distance (SI )

Fig. 9-11 shows the effect of varying metal spacing on the overall quality factor behavior

of an inductor. A smaller spacing results in higher capacitive coupling between windings,
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Figure 9-10: Quality factors for N=2, 3, 4, 5, 6 (W=5µm, T=1µm, SI=2µm,
OD=400µm).
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Figure 9-11: Quality factors for SI=1µm, 2µm, 3µm, 4µm, 5µm (W=5µm, T=1µm,
N=3, OD=400µm).

hence leads to a lower fSR. The peak of the quality factors, however, is not so sensitive to

changes in separation distance.
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Variation on the metallization width (W )

Fig. 9-12 shows the effect of varying metallization width on the overall quality factor behav-

ior of an inductor. The larger surface area associated with wider metallization width results
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Figure 9-12: Quality factors for W=3µm, 4µm, 5µm, 6µm, 7µm (SI=2µm, T=1µm,
N=3, OD=400µm).

in higher parasitic capacitances, which lowers the inductor’s fSR and increases its loss due

to substrate dissipation. In addition, as metal line widens, ac resistance increases due to

skin effects at a given frequency [42]. Thus quality factor peak shifts to a lower frequency

as the conductor width increases.

9.3.3 Substrate Conductivity Effects on a Transmission Line

This section studies the effect of substrate conductivity variation on a transmission line

structure. The transmission line is constructed using two copper wires that are 2µm thick,

10µm wide, and 100µm in length. The two lines are situated 110µm apart in an oxide layer

(εr = 3.9) at a height 5µm above a substrate of varying conductivities (σ = 8 S
m , σ = 800 S

m ,

σ = 8000 S
m , εr = 11). Figs. 9-13 and 9-14 present the simulated closed-circuit resistance

and inductance, respectively, for such a configuration, and Fig. 9-15 presents its simulated

open-circuit capacitance. These plots clearly show the influence of substrate skin effect on

the resulting impedance.

123



0 0.5 1 1.5 2 2.5 3

x 10
10

0

0.5

1

1.5

2

2.5

3

frequency

R

sigma=8S/m

sigma=800S/m

sigma=8000S/m

Figure 9-13: Closed-circuit resistance analysis for a transmission line structure in the
presence of a substrate with a varying degree of conductivity.

Due to the strong skin effect in the substrate, the substrate resistance increases rapidly

with frequency. This explains the overall increase in the resistance of the transmission line

for the high conductivity case in Fig. 9-13. The figure also shows that this increase in

resistance becomes weaker for decreasing substrate conductivities.

According to Fig. 9-14, as substrate conductivity and frequency increase, transmission

line inductance decreases. This can be explained by the fact that increased skin effect di-

minishes the magnetic field’s ability to penetrate into the substrate’s interior, hence weakens

the transmission line’s inductance.

Capacitance behavior in Fig. 9-15 can be explained by the fact that at a high con-

ductivity, the substrate acts as a ground plane for the electric field. Consequently, the

transmission line’s capacitance remains nearly constant for the cases of σ = 800 S
m and

σ = 8000 S
m because the electric field is confined to only the oxide layer. However, for a

low-conductivity substrate at high frequencies, the increased penetration of the electric field

into the substrate leads to the observed reduction of capacitance in the case of σ = 8 S
m .
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Figure 9-14: Closed-circuit inductance analysis for a transmission line structure in
the presence of a substrate with various conductivities.
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Figure 9-15: Open-circuit capacitance analysis for a transmission line structure in the
presence of a substrate with a varying degree of conductivity.

9.3.4 Use of Ground Shielding for Substrate Loss Prevention

The goal of this section is to examine the optimality of using a patterned ground shield

by analyzing its effect on the impedance of a spiral structure in comparison to the effect
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generated without a shield or with a solid shield in the presence of a substrate.

The inductor structure with a patterned ground shield is shown in Figs. 9-16 and 9-17,

taken from various viewing angles. The square 3-turn spiral RF inductor with an area of

Figure 9-16: Angled view of a spiral inductor with a patterned ground shield.

Figure 9-17: Top view of a spiral inductor with a patterned ground shield.

0.09mm2 is composed of copper wires that are 2µm thick and 15µm wide. The separation

distance between the turns is 5µm. An underpass is situated 1µm below the inductor to

contact the center of the spiral. The spiral and the ground shield are separated by 4.8µm

of oxide (εr = 4). The ground shield is separated from the silicon substrate (σ = 10 S
m)

by 0.4µm of oxide. To investigate the effect of shield pattern, a ground shield with 5µm

slot width, 0.34µm slot thickness, and 20µm pitch is used. The shield is composed of a
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polysilicon material (σ = 2e4 S
m). The ground strips of the shield are merged together

around the four outer edges of the spiral.

Figs. 9-18 shows the quality factor comparison obtained for the inductor in this example

simulated without a shield, with a solid ground shield and with a patterned ground shield.

From the results, it seems that having a patterned shield doesn’t necessarily improve the

quality factor of the spiral inductor in this example.
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Figure 9-18: Quality-factor comparison obtained for the inductor structure with a
patterned ground shield, a solid ground shield, and no shield.

9.4 Specialized High-order Basis Functions

This section utilizes our specialized high-order basis functions to efficiently extract the

impedances of various complex IC structures. The basis functions are implemented in the

context of our EM solver where a pre-corrected FFT (pFFT) scheme is introduced for

the accelerated matrix-vector products involving dyadic Green’s function kernels so that

substrate effects can be accounted for. The specialized basis functions’ efficiency is validated

by comparing their performance to that of piecewise-constant basis functions.
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9.4.1 Stacked Inductors

A set of specialized basis functions is first pre-computed in the frequency range of [0.01MHz . . . 10GHz ]

for trial copper wires with rectangular cross-sections that are 5µm thick and 10µm wide.

Subsequently, impedance analysis utilizing the specialized basis functions is performed on

four structures as shown in Fig 9-19.a,b,c,d, where each structure is embedded in a silicon

oxide dielectric (εr = 3.9) above a silicon substrate (εr = 3.9, ρ = 1Ω · cm). For the three-

Figure 9-19: a. A three-layer M3-M2-M1 inductor. b. A one layer M3 inductor. c. A
two-layer M3-M2 inductor. d. A two-layer M3-M1 inductor. Note that the structures
are not drawn to scale for the sake of visual clarity.

layer M3-M2-M1 inductor in Fig. 9-19.a, the vertical heights of its three spirals are 16µm,

26µm and 36µm, respectively, above the silicon substrate. The single-layer M3 inductor in

Fig. 9-19.b is composed from the topmost layer of the inductor in Fig. 9-19.a. The M3-M2

inductor of Fig. 9-19.c is composed from the top and middle layers of the three-layer in-
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ductor. The M3-M1 inductor of Fig. 9-19.d is composed from the top and bottom layers

of the same three-layer inductor. In turn, each inductor spiral is composed of a 4-turned

copper wire that is 5µm thick and 10µm wide with a lateral dimension of 0.25mm2 and a

separation distance of 2µm between metal windings.

Fig. 9-20 shows the error generated from the utilization of the high-order basis functions

in comparison to the solution obtained from a fine piecewise-constant discretization scheme.

For a maximum absolute error of only 0.25%, 8 specialized basis functions per conductor

segment are needed in contrast to the requisite 48 piecewise-constant basis functions per

segment to obtain the same amount of accuracy. The factor of 6× reduction in the number
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Figure 9-20: Error analysis for the usage of specialized high-order basis functions.
Analysis is performed on the single-layer inductor example.

of basis functions translates to a significant 36× reduction in the computational cost of near-

distance interactions when solving the system in a pre-corrected FFT (pFFT ) scheme. This

fact is confirmed by the FLOP (floating point operation) count decomposition in Table. 9.5

for each major stage of the pFFT scheme as it is applied to our single-layer inductor example.

Note that even though the cost of assembling projection (P) and interpolation (I ) matrices

is only reduced by a factor of 8.6 for the use of higher-order basis functions, there exists a

dramatic 36.28× reduction in the cost of pre-correction, an observation that collaborates

our theory that by reducing the overall number of basis functions by a factor of N, one is

able to reduce the cost of resolving nearby interactions, which cannot take advantage of the

acceleration offered by pFFT, by a factor of N2 as manifested at the pre-correction stage.

Furthermore, the cost of iterative solve is reduced by a factor of 12, which is approximately
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piecewise- Higher- reduction
constant order factor

# filaments 720 120 6
P and I matrices 1.9e5 2.3e4 8.3

D matrix 1.1e9 6.8e8 1.6
Pre-correction matrix 1.27e10 3.5e8 36.3

Iterative solve 1.18e8 9.4e6 12.6

Table 9.5: Flop count for the assembly of each pFFT stage for filament potential
calculations of the single-layer inductor at frequency=1GHz.

O(NlogN ).

Additionally, Fig. 9-21 shows the quality factor analysis of the four inductor structures in

this section. Their overall simulated behavior confirms the research conducted by [86] which
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Figure 9-21: Quality factor analysis for the four inductors in Fig. 9-19.

theorizes that a stacked spiral inductor’s self-resonance frequency (fSR) can be drastically

modified by the vertical placement of its spiral layers, and in some cases, by as much as 100%.

Typically, a stacked structure exhibits a single fSR = 1

2π
√

Leqceq
, where Leq and Ceq are the

equivalent inductance and capacitance of the structure, respectively. Generally speaking,

the inter-layer capacitance between the spirals has a much greater impact on fSR than the

layer-to-substrate capacitance. Hence increasing the stack separation distance diminishes

the inter-layer capacitance while maintains a relatively constant inductance because the

lateral dimensions of a stacked inductor are nearly two orders of magnitude greater than its
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vertical dimension. Results in Fig. 9-21 confirm that this is indeed the case for our inductor

examples. One observes that fSR of the M3-M1 inductor is 25% greater than that of the

M3-M2 inductor. Even more dramatic is the fact that fSR of the M3-M1 inductor is 100%

greater than that of the M3-M2-M1 inductor.

9.4.2 Conductor Array with Trapezoidal Cross-sections

A second set of specialized basis functions is pre-computed in the frequency range of

[1MHz . . . 40GHz ] for trial copper wires with trapezoidal cross-sections that are 1.2µm

thick, 1µm wide on the top base and 0.6µm wide on the bottom base. Subsequently, im-

pedance analysis is performed on an 8-conductor bus example with each conductor 300µm

in length and separated 2µm from the neighboring wires. Fig. 9-22 offers a zoomed view

of such configuration. The entire structure is embedded in a dielectric (εr = 3.9) and

situated 16µm above a conductive substrate (ρ = 0.1Ω · cm, εr = 11.7). Due to the com-
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Figure 9-22: Structural view of an array of 8 conductors with trapezoidal cross-
sections. Each conductor is 300µm in length with a cross-sectional dimension of
1.2µm in thickness, 1µm on the top base and 0.6µm on the bottom base. Separation
distance between the conductors is 2µm.

bined effects of irregular cross-sectional shape and skin and proximity phenomenon, each

conductor’s trapezoidal cross-section must be discretized finely if piecewise-constant basis

functions were used. This concept is illustrated by the fine cross-sectional mesh shown in

Fig. 9-22. To be specific, 104 piecewise-constant filaments per conductor are required for

this particular example. In contrast, only 8 specialized higher-order basis functions are

needed to capture the same conductor cross-sectional current distribution for a maximum

131



error of only 0.0072% as shown in Fig. 9-23. This is a factor of 13× reduction in the num-
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Figure 9-23: Error analysis for the usage of higher-order basis functions in comparison
to the usage of piecewise-constant basis functions in the conductor array example in
Fig. 9-22.

ber of basis functions, which translates to a reduction of 169× in the computational cost

of near-distanced interactions when solving the system in a pre-corrected PFFT scheme.

Flop count analysis in Table 9.6 confirms such claim. For the use of higher-order basis

functions, the cost of constructing P and I matrices are reduced by a factor of 17, the cost

of D matrix construction is comparable to that of piecewise-constant basis functions, but

the cost of pre-correction is reduced by a factor of 170 and the cost of solving the system

using an iterative method is reduced by a factor of 108.

piecewise- Higher- reduction
constant order factor

# filaments 832 64 13
P and I matrices 2.3e5 1.3e4 17.7

D matrix 2.8e9 1.6e9 1.8
Pre-correction matrix 1.7e10 1.0e8 170

Iterative solve 1.3e8 1.2e6 108.3

Table 9.6: Flop count for the assembly of each pFFT stage for filament potential
calculations of the conductor array example at frequency=1GHz.

To further demonstrate the versatility of our solver, we can compare the impedances
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extracted for the trapezoidal example to those extracted for the case where the conductors

have rectangular cross-sections (1.2µm thick and 0.8µm wide). Such configuration is shown

in Fig. 9-24. The simulation setup is such that resistance and inductance are extracted
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0

0.5

Figure 9-24: An array of 8 conductors with rectangular cross-sections. Each conductor
is 300µm in length with a cross-sectional dimension of 1.2µm in thickness and 0.8µm
in width. Separation distance between the conductors is 2µm.

under the condition where the two center conductors are shorted at one end, while capaci-

tance extractions are performed under an open-circuit condition. The resulting resistance,

inductance, and capacitance comparisons are shown in Fig. 9-25.a, b, and c, respectively.
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Figure 9-25: Comparisons of (a) resistance, (b) inductance and (c) capacitance be-
tween the 8-conductor array with trapezoidal cross-sections in Fig. 9-22 and the array
structure in Fig. 9-24 with rectangular cross-sections.
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Chapter 10

Conclusion

In this thesis, we have offered a systematic treatment on the subject of 3D full-wave in-

terconnect impedance extractions, accounting for frequency-related effects as well as effects

invoked by the presence of a planar conducting substrate. Our research effort has cul-

minated into the practical implementation of an electromagnetic solver that contains the

following innovative features:

• Incremental contribution to the existing MPIE solver through the incorporation of

layered Green’s functions in order to capture substrate effects. The use of these

layered Green’s functions obviates the necessity of explicit substrate volume or surface

discretization. Using the complex image theory, we can approximate each scalar

Green’s function component as a series of full-wave, closed-form kernels.

• Much of the computational efficiency of this solver is obtained from the implementa-

tion of a set of accelerated integration schemes tailored to the collection of closed-form

kernels derived from the application of the complex image theory. Both the 3D fil-

ament integrations and 2D panel integrations of the complex image kernels in the

solver can be reduced to a sum of 1D integrals over segments contouring either the

filament volumes or panel surfaces.

• In addition to system setup acceleration, further efficiency is gained at the system

solve level through the implementation of specialized high-order basis functions tai-

lored to each conductor’s cross-section shape. These basis functions are frequency

independent within a pre-specified range of frequency values; yet they parameterize
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the frequency-dependent nature of a conductor’s cross-sectional current distribution

with much fewer degrees of freedom than the use of traditional basis functions. It

has been conclusively shown that reducing the number of basis functions in this man-

ner would reduce the cost of resolving near-distanced interactions by O(n2) when

a pre-corrected FFT scheme coupled with an iterative solver is used to obtain the

solutions.

• Furthermore, the pre-corrected FFT scheme is modified and extended in this thesis in

order to accommodate the dyadic nature of the Green’s function kernels encountered

in the substrate modeling problem.
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