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Abstract

This paper describes an efficient algorithm to solve integral equations
with complicated kernels. The algorithm can handle both piece-wise
constant and high-order elements in the collocation method and the Galerkin’s
method. A general and extensible fast integral equation solver has been
developed using the c++ generic programming technique. Numerical ex-
periments show that the memory usage and CPU time of the fast solver
is nearlyO(N) for various kernels.

1. Introduction
Integral equation methods have been used in applications as diverse as
parasitic parameter extraction of integrated circuit interconnects and pack-
ages [1, 2], antenna characterization and radar cross section calcula-
tion [3, 4], computation of the molecular electric potential [5, 6], com-
putational aerodynamics [7, 8], computational fluid dynamics [9].

Even though numerous fast algorithms already exist for efficiently solv-
ing the integral equations, such as Fast Multipole Method (FMM) [10,
11, 12, 13], hirarchical SVD [14], panel clustering method [15] and the
pre-corrected FFT (pFFT) algorithm [16], the practical implementation
of such methods may still seem daunting to researchers and engineers,
who are most often not specialists in fast integral equation solvers. As
a result many existing codes still use the traditional dense matrix ap-
proaches, which needO(N2) memory and at leastO(N2) CPU time.
One of the objects of this work is to provide a flexible and extensible
code to the public domain so that the researchers can easily accelerate
their codes. Hence we want to use an algorithm that is flexible enough
to handle the integral kernels commonly used in the above mentioned
engineering applications.

Though not as good as FMM’s more than ten digit accuracy, pFFT’s four
to five digit accuracy is good enough for most engineering applications,
where the accuracy requirement is usually modest. More importantly,
the pFFT method is almost kernel-independent. For example, it could
easily handle both Helmholtz kernel and Laplace kernel and their close
relatives in a unified framework. This makes it a particularly good algo-
rithm for our fast solver.

2. Mathematical Preliminaries
The integral equation method is a well studied subject [17, 15]. It is
well-known that a large class of linear partial differential equations with
appropriate boundary conditions could be casted into equivalent integral
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equations [18, 19, 20]. A general form for these integral equations isZ
S

dS′K(~r ′,~r)ρ(~r ′) = f (~r), ~r ∈ S (1)

where f (~r) is a known function, usually related to the known right hand
side term in the original partial differential equation, andK(~r ′,~r) could
be the commonly used single-layer kernel, double-layer kernel or other
more complicated kernels. For mixed boundary condition, we might
even have two kernels in equation (1). But this will not change the nature
of the problem and the method in this paper. So we focus on the single
kernel integral equation only. An abstract form of this kernel is

K(~r ′,~r) = F1(F2(G(~r ′,~r))) (2)

whereG(~r ′,~r) is the Green’s function for the partial differential equation,
and the possible options for operatorF1(·) andF2(·) are

F1(·) = U(·), d(·)
dx(~r)

,
d(·)

dy(~r)
,

d(·)
dz(~r)

,
d(·)

dn(~r)
, (3)

and

F2(·) = U(·), d(·)
dx(~r ′)

,
d(·)

dy(~r ′)
,

d(·)
dz(~r ′)

,
d(·)

dn(~r ′)
, (4)

andU(·) is the identity operator.

The standard procedure to solve equation (1) numerically is to discretize
it by means of projection [15] and solve the resultant linear system with
an iterative method [21, 22], such as GMRES [23]. LetX be the infinite-
dimensional functional space in which the exact solution of equation (1)
lies, and assume thatBn ⊂ X andTn ⊂ X are its subspaces with spans
{b j (~r), j = 1,2, ...,n} and{ti(~r), i = 1,2, ...,n}, wheren is the dimension
of both subspaces. In general, the solution of the equation (1) is not in
subspaceBn. Therefore, the approximate solution

ρn(~r) =
n

∑
j=1

α jb j (~r) ∈ Bn (5)

generates an error

en(~r) =
Z

S
dS′K(~r ′,~r)ρn(~r ′)− f (~r) = φ(~r)− f (~r), ~r ∈ S (6)

and the unknown expansion coefficientsαi could be computed by en-
forcing the projection of the error intoTn to vanish, i.e.,

< ti(~r),en(~r) >=< ti(~r),φ(~r) >−< ti(~r), f (~r) >= 0, i = 1,2, ...,n (7)

or
n

∑
j=1

α j

Z
∆t

i

dSti(~r)
Z

∆b
j

dS′K(~r ′,~r)b j (~r ′) =
Z

∆t
i

dSti(~r) f (~r), i = 1,2, ...,n,

(8)



Figure 1: A piece-wise constant basis function, shaded area is its
support

V

Figure 2: A piece-wise linear basis function associated with the ver-
tex V, where the shaded area is its support

where∆t
i and∆b

j are the support of the basis functionti(~r) andb j (~r),
respectively. In matrix, equation (8) becomes

[A]ᾱ = f̄ (9)

where

Ai, j =
Z

∆t
i

dSti(~r)
Z

∆b
j

dS′K(~r ′,~r)b j (~r ′) (10)

The commonly used basis functions inBn or Tn are low-order polyno-
mials with local support [15]. Figure 1 shows a piece-wise constant
basis function whose support is a panel. Figure 2 shows a vertex-based
piece-wise linear basis function whose support is the union of a cluster
of panels sharing the vertex with which the basis function is associated.

When theith testing function isti(~r) = δ(~r− ~rc,i), where~rc,i is the collo-
cation point, the discretization method is called the collocation method.
And whenBn = Tn, the discretization method is called the Galerkin’s
method.

3. Philosophical Preliminaries
Since forming matrixA and computing the matrix vector product in (9)
all requireO(N2) arithmetic operations, it is obvious that using an it-
erative method to solve equation (9) needs at leastO(N2) time, where
N is the size of the matrixA. This could be very expensive for large
N. Many fast algorithms avoid forming matrixA explicitly and com-
pute the matrix vector product approximately, which only needsO(N)
or O(Nlog(N)) operations [11, 24, 25].

The Pre-corrected FFT (pFFT) algorithm was originally proposed in [16,
25], where the detailed steps to accelerate a single-layer integral opera-
tor were shown. The basic idea of pFFT is to separate the potential

computation into far-field part and near-field part. The far-field potential
is computed by using the grid charges on a uniform 3D grid to repre-
sent charges on the panels. The near-field potential is compute directly.
The algorithm has four steps: Projection, Convolution, Interpolation and
Nearby interaction. The effect of this algorithm is to replace the matrix
vector productAᾱ in equation (9) with(D+ IHP)ᾱ, whereD is the direct
matrix that represents the nearby interaction,I is the interpolation ma-
trix, H is the convolution matrix, andP is the projection matrix. Matrices
D, I andP are sparse, hence their memory usage isO(Np), whereNp is
the number of panels, and their product with a vector needs onlyO(Np)
work. The matrixH is a multilevel Toeplitz matrix. Hence its memory
usage isO(Ng) and its product with a vector could be computed by using
FFT in O(Nglog(Ng)) operations [26], whereNg is the number of grid
points. Therefore, the overall computational complexity of(D+ IHP)ᾱ
is O(Np)+O(Nglog(Ng)). For some problems, usually small or medium
sized ones,Ng might be larger. Hence the computational complexity is
O(Nglog(Ng)). For other problems, usually large-sized ones, the com-
putational complexity is nearlyO(Np).

Unlike [16, 25], we use polynomials in both interpolation and projec-
tion steps. Hence the interpolation matrixI and projection matrixP are
completely independent of the Green’s functionG(~r,~r ′) in equation (2).
This makes it much easier to handle the complicated kernelsK(~r ′,~r) in
(2). It also makes it straight forward to treat piecewise constant basis and
high-order basis in either collocation or Galerkin’s method in a unified
framework. This is particularly important from implementation point of
view.

4. Pre-corrected FFT algorithm
In this section, we will use a simple 2D example to show how to generate
the four matrices,[I ], [P], [H] and[D]. Generalization of the procedure to
the 3D cases is straight forward. The algorithm presented here is general
enough such that the general integral operator in equation (1) discretized
either by the collocation method or by the Galerkin’s method using either
piece-wise constant element or high-order element could be handled in
a unified framework.

4.1 Interpolation matrix
We start with the interpolation, the third and the easiest step in the four-
step pFFT algorithm.

Suppose the potential on the uniform grids has been computed through
the first two steps, namely the projection and the convolution, we could
use a simple polynomial interpolation scheme to compute the potential
at any point within the region covered by the grids. Figure 3 shows a
2D 3×3 uniform grid (called interpolation stencil in this paper), more
points could be used to get more accurate results. The triangle inside
the grid represents the local support∆t

i in equation (8). The simplest
set of polynomial functions for the interpolation isfk(x,y) = xiy j , i, j =
0,1,2,k = 2i + j. The potential at any point can be written as a linear
combination of these polynomials,

φ(x,y) = ∑
k

ck fk(x,y) = f̄ t(x,y)c̄ (11)

wherec̄ is a column vector andt stands for transpose. Matchingφ(x,y)
in (11) with the given potential at each grid point results in a set of linear
equations. In matrix form, it is

[F ]c̄ = φ̄g (12)

where thej-th row of the matrix[F ] is the set of polynomials̄f (x,y)
evaluated at thejth grid point(x j ,y j ), andφg, j is the given potential at
point (x j ,y j ). Solving forc̄ and substituting it back into (11) yields

φ(~r) = φ(x,y) = f̄ t(x,y)[F ]−1φ̄g = D̄t
0(r̄)φ̄g (13)



It should be noted that matrix[F ] in (12) is only related to the distance
between points in the uniform grid and the specific set of interpolation
polynomials chosen in the algorithm. So the inverse of matrix[F ] is
done only once. And since the size of the matrix is rather small (9×9 in
this simple 2D case), computing its inverse is inexpensive. It is possible
that the number of polynomials is not equal to the number of points in
the interpolation grid. In this case the inverse becomes psuedo inverse,
which is computed using the singular value decomposition (SVD) [22].

It easily follows that the derivative of the potential at a pointr̄ with re-
spect toα is

dφ(r̄)
dα

=
d

dα
f̄ t(r̄)[F ]−1φ̄g = D̄t

α(r̄)φ̄g (14)

whereα stands forx or y. Hence the gradient of the potential atr̄ is

∇φ(r̄) = (x̂D̄t
x(r̄)+ ŷD̄t

y(r̄))φ̄g (15)

and the normal derivative of the potential at pointr̄ is

dφ(r̄)
dn

= n̂ ·∇φ(r̄) = (nx
d f̄ t(r̄)

dx
+ny

d f̄ t(r̄)
dy

)[F ]−1φ̄g = D̄t
n(r̄)φ̄g (16)

wherenx andny are the projection of the unit normal vector of the func-
tion support∆t

i alongx andy direction. Using the notation in (3), equa-
tions (13), (14) and (16) could be written as

F1(φ(~r)) = D̄t
β(r̄)φ̄g (17)

whereD̄t
β(r̄) stands forD̄t

0(r̄), D̄t
x(r̄), D̄t

y(r̄) or D̄t
n(r̄).

As described in section??, we want to compute

Ψi =
Z

∆t
i

dSF1(φ(~r))ti(~r), i = 1,2, ..,Nt . (18)

whereNt is the number of testing basis functions. Substituting (17) into
(18) yields

Ψi =
Z

∆t
i

dSti(~r)D̄t
β(r̄)φ̄g = (W̄(i)

β )t φ̄g, i = 1,2, ..,Nt , (19)

whereW̄(i)
β stands forW̄(i)

0 , W̄(i)
x , W̄(i)

y and W̄(i)
n . If the collocation

method is used, then̄W(i)
β in equation (19) could be simplified as

W̄(i)
β = D̄β(xc,yc), i = 1,2, ..,Nt , (20)

where(xc,yc) is the collocation point.

When the piece-wise constant testing function is used, the support∆t
i

is the panel associated with it, as shown in figure 1. When the linear
testing function is used,∆t

i is a cluster of panels, as shown in figure 2.

Apparently, computing elements of̄W(i)
β for higher order basis functions

could be more expensive because integrating over a cluster of panels
needs more quadrature points than integrating over a single panel.

In matrix format, equation (19) becomes

Ψ̄ = [I ]φ̄g (21)

where[I ] is anNt ×Ng matrix, andNg is the number of grid points. To
cover the local support of a basis function, only a small number of the
interpolation grid points are needed, as shown in figure 3. More im-
portantly, the potentialφ in (6) is a smooth function of~r when |~r −~r ′|
is large. Hence low-order polynomials in (11) are sufficient to well ap-
proximate the distant interaction. Therefore, computing eachΨi through
interpolation only involves grid potentials at a few grid points. This im-
plies that each row of the interpolation matrix[I ] is rather sparse. The
non-zero elements in thei-th row of the matrix[I ] are just the elements

Figure 3: 2-D pictorial representation of the interpolation step, the
interpolation stencil size is 3

of the row vector(W̄(i)
β )t in (19) or (20). And the number of nonzeros’s

is equal to the interpolation stencil size.

4.2 Projection matrix
Figure 4 shows a 2D pictorial representation of the projection step. Sim-
ilar to the previous section, a triangle is used to represent the support
of a basis function. A3×3 projection grid (called projection stencil in
this paper) is assumed here and obviously more points could be used if
higher accuracy is desired.

We start with a point chargeρp at pointSon the triangle, shown in figure
4. The potential at pointE due to this point charge is

φ(1)
E = ρpG(~rs,~rE). (22)

The purpose of the projection is to find a set of grid chargesρ̄g on the
projection grid points such that they generate the same potential at point
E, i.e.,

φ(2)
E = ∑

i
ρg,iG(~r i ,~rE) = (ρ̄g)t φ̄g = φ(1)

E (23)

whereφg,i = G(~r i ,~rE). We could use the same set of polynomials in (11)
to expand the Green’s function

G(~r,~rE) = ∑
k

fk(~r)ck = f̄ t(~r)c̄. (24)

Matching both sides at each grid point~r i yields a linear system

[F ]c̄ = φ̄g, (25)

whereF is same as that in (12). Substituting the solutionc̄= F−1φ̄g into
(24) and evaluating it at pointS yields

G(~rs,~rE) = f̄ t(~rs)F−1φ̄g. (26)

In light of (22) and (23) we have

(ρ̄g)t = ρp f̄ t(~rs)F−1, (27)

the projection charges for a point charge.

A charge distributionb j (~r) on the jth basis function support could be
regarded as a linear combination of an infinite number of point charges.
Equation (27) implies that the projection charges are linearly propor-
tional to the point charge, hence it easily follows that the projection
charges for the charge distributionb j (~r) is

(ρ̄( j)
g )

t
=

(Z
∆b

j

dSbj (~r) f̄ t(~r)

)
[F ]−1. (28)



If the piece-wise constant basis function is used, equation (28) becomes

(ρ̄( j)
g )

t
=

(Z
∆b

j

dSf̄ t(~r)

)
[F ]−1. (29)

We usually have to use more than one basis function in the approximate
solution, as implied by equation (5). In this case, the total charge on
each grid point is the accumulation of the grid charge due to each basis
function. Assuming there areNb basis functions andNg grid points, the
relation between the total grid charges̄Qg and the magnitude of basis
functionsᾱ in (5) is

Q̄g =
Nb

∑
j=1

α j ρ̄
( j)
g = [P]ᾱ, (30)

where[P] is anNg×Nb matrix. Due to the locality of the basis support,
the projection grid for each basis function has only a small number of
points. And similar to interpolation matrix, the Green’s function in (24)
is a smooth function of~r when|~r−~rE| is large. Hence low-order poly-
nomials in (24) are sufficient to approximate it well. This implies that
each column of the projection matrix[P] is rather sparse. The non-zero
elements in thej-th column of matrix[P] are the elements of the column

vector ρ̄( j)
g in equation (28) or (29). And the number of nonzero’s is

equal to the projection stencil size.

If the kernel has a differential operator inside the integral, the potential
at pointE due to a point charge is

φ(1)
E =

∂
∂β(~rs)

[ρpG(~rs,~rE)] =
∂

∂β(~rs)
[ρp f̄ t(~rs)F−1φ̄g]. (31)

whereβ stands forx, yorn. We again want to find a set of grid chargesσ̄β
on the projection grid points such that they generate the same potential
at pointE, i.e.,

φ(2)
E = ∑

i
σβ,iG(~r i ,~rE) = (σ̄β)t φ̄g = φ(1)

E . (32)

Equations (31) and (32) imply that the projection charges are

(σ̄β)t =
∂

∂β(~rs)

(
ρp f̄ t(~rs)F−1

)
. (33)

Similar to the single-layer operator case, the projection charges for a
charge distributionb j (~r) on the jth basis function support is

(σ̄( j)
β )

t
=

(Z
∆b

j

dSbj (~r)
∂

∂β(~r)
f̄ t(~r)

)
[F ]−1. (34)

The projection matrix for the kernel with a differential operator is struc-
turely identical to the matrix[P] in equation (30). The non-zero elements
in the j-th column of the matrix are the elements of the column vector

σ̄( j)
β in equation (34).

4.3 Convolution matrix and fast convolution by
FFT

By definition, the relation between the grid potentialφ̄g in (21) and grid
chargeQ̄g in (30) is

φg, j = ∑
i

G(~r ′ i ,~r j )Qg,i (35)

In matrix form, it is

φ̄g = [H]Q̄g (36)

where the matrixH is the so-call convolution matrix. Since the Green’s
function is position invariant and̄φg andQ̄g are defined on the same set

��

���� ��

��

	�	
�
����
�
���

��

��

���� E

S

Figure 4: 2-D pictorial representation of the projection step, the pro-
jection stencil size is 3

of uniform grid, we have

Hi, j = G(~r ′ i ,~r j ) = G(~r i ,~r j ) = G(~r i −~r j ,0). (37)

Matrix H is a multilevel Toeplitz matrix [26]. The number of levels is
2 and 3 for 2D cases and 3D cases, respectively. It is well-known that
the storage of a Toeplitz matrix only needsO(N) memory and a Toeplitz
matrix vector product can be computed inO(Nlog(N)) operations using
FFT [26], whereN is the total number of grid points. It should be pointed
out that convolution matrixH being a Toeplitz matrix is hinged upon the
position invariance of the Green’s function. Fortunately most commonly
used Green’s functions are position invariant.

4.4 Direct matrix and pre-correction
Substituting equation (36) and (30) into (21) yields

Ψ̄ = [I ][H][P]ᾱ (38)

In view of (18), (7) and (9), this implies

A = [I ][H][P]. (39)

As pointed out in previous three sections, the sparse representation of
matrix A in (39) reduces the memory usage and computing time for ma-
trix vector product dramatically. Unfortunately, the calculations of the
potential on the grid using (39) do not accurately approximate the nearby
interaction. It is proposed in [25] that the nearby interaction should be
computed directly and the inaccurate contributions from the use of grid
should be removed. Figure 5 shows how the nearby neighboring basis
supports are defined. The empty circle in middle of the solid dots are the
center of the so-called direct stencil and the stencil size in figure 5 is 5.
The shaded triangle represents the source, and the other empty triangles
represent the targets whereΨ in equation (18) is to be evaluated. Only
those triangles within the region covered by the direct stencil are con-
sidered to be nearby neighbors to the source. And the direct interaction
between this list of nearby neighbors and the source is justAi, j defined in
(10), wherei is the index of the shaded triangle representing the source
and j ∈Ni , the nearby neighbor set for theith source. The pre-corrected
direct matrix element is

Di, j = Ai, j − (W̄(i)
β )t [HL]ρ̄( j)

g , j ∈Ni (40)
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Figure 5: 2-D pictorial representation of the nearby interaction. Di-
rect stencil size is 5.

Table 1: Relation between operator pair and the interpolation ma-
trix and the projection matrix

F1 U(·) d(·)
dx′ , d(·)

dy′
d(·)
dn′

interpolation W̄(i)
0 in (19) W̄(i)

x , W̄(i)
y in (19) W̄(i)

n in (19)

F2 U(·) d(·)
dx , d(·)

dy
d(·)
dn

projection ρ̄( j)
g in (28) σ̄( j)

x , σ̄( j)
y in (34) σ̄( j)

n in (34)

where(W̄(i)
β )t is defined in equation (19),̄ρ( j)

g is defined in equation (28)

and (34), and[HL] is a small convolution matrix (not to be confused
with [H] in (39)) that relates the potential on the grid points around basis
support∆t

i and the charge on the grid points around basis support∆b
j . It is

intuitive from figure 5 thatNi is a very small set. Hence the direct matrix
D is very sparse and the sparsity ofD is dependent upon the size of the
direct stencil. Larger stencil size means more neighboring triangles in
figure 5 and hence more computation in (40).

Since matrix[HL] in (40) is rather small, the FFT does not speed up the
computation much. However, there are other ways to reduce the oper-
ation count. Because the grid is uniform and the Green’s function is
position invariant, only a few matrices[HL] are unique. So we could
pre-compute them once and use them to pre-correct all the nearby inter-
actions in the direct matrix[D].

4.5 A summary of the four matrices
In view of (38), (39) and (40), the matrix vector product is computed
efficiently using

[A]ᾱ = ([D]+ [I ][H][P])ᾱ. (41)

Sections 4.1 and 4.2 are summarized in table 1. It is clear by now that
the interpolation matrix[I ] and the projection matrix[P] are independent
of the Green’s function. Matrix[I ] is only related to the operatorF1 and
the testing functions. And matrix[P] is only related to the operatorF2
and the basis functions.

The direct matrix, however, is dependent upon all the above information.

So we have to set up one direct matrix for eachF1 andF2 operator pair.
The convolution matrix, on the other hand, is only related to the Green’s
function and the location of grid points. It is not related toF1 or F2. So
we only need to set up one convolution matrix for each unique Green’s
function.

In addition, if the Galerkin’s method is used, the basis functionb j (~r) in
equation (28) or (34) is identical to the testing functionti(~r) in equation

(19). It is easy to check that̄W(i)
0 = ρ̄( j)

g , W̄(i)
x = σ̄( j)

x , W̄(i)
y = σ̄( j)

y and

W̄(i)
n = σ̄( j)

n . This implies a duality relation

[I ] = [P]t . (42)

4.6 Implementation
Base upon the algorithm described above, we have developed a C++
program called pfft++, using the generic programming technique [27,
28, 29]. The whole algorithm includes two major parts: forming the
four matricesI , P, D andH, and computing the matrix vector product
using (41). Since the matricesI and P are not related to the Green’s
function, they are formed separately so that they could be used for dif-
ferent Green’s functions. This is particularly useful when for example a
Helmholtz equation is to be solved at various wave numbers or frequen-
cies. Algorithms 1, 2 and 3 are high level description of the implemen-
tation of the pfft++.

Algorithm 1: construct Green’s function Independent sparse
matrices.

Input: discretization, differential operator pairs
(F1, F2) , interpolation stencil size , projection sten-
cil size , direct stencil size
Output: interpolation matrix[I ] and projection ma-
trix [P]
(1) find the optimal grid size
(2) setup grid and element association
(3) setup interpolation stencil
(4) setup projection stencil
(5) setup direct stencil
(6) form the interpolation matrix[I ] for each

F1
(7) form the projection matrix[P] for eachF2

Algorithm 2: construct Green’s function dependent sparse
matrices.

Input: discretization, Green’s function, differential
operator pairs (F1, F2)
Output: direct matrix[D] and convolution matrixH
(1) form the sparse representation of[H]
(2) compute the FFT of[H]
(3) form the direct matrix[D] for each pair of

(F1, F2)

Using pfft++ to solve a single kernel integral equation such as (1) is
straight forward. We could simply treat pfft++ as a black box that could
perform the matrix vector product efficiently. After forming the four ma-
trices by calling algorithms 1 and 2, algorithm 3 is to be called repeatedly
in the inner loop of an iterative solver. To solve the integral equations
with multiple kernels, we could simply repeat the above procedure for
each integral operator individually.

4.7 Comparison to the original pFFT algorithm
The basic sparsification ideas in this paper are very similar to those in
the original pre-corrected FFT algorithm [16]. The difference lies pri-
marily in the ways the interpolation matrix and the projection matrix are
generated. And this difference turns out to be important.



Algorithm 3: compute matrix vector product.
Input: vector x, differential operator pair (F1, F2)
Output: vector y
(1) find the indexn of [I ] from F1
(2) find the indexm of [P] from F2
(3) find the indexk of [D] from operator pair

(F1, F2)
(4) y1 = [Pm]x
(5) y1 = f f t(y1)
(6) y2 = [H]y1
(7) y2 = i f f t (y2)
(8) y3 = [In]y2
(9) y = y3 +[Dk]x

In the original pFFT algorithm [16, 25], the local collocation scheme
is used to construct the projection matrix and the interpolation matrix
is considered as the dual of the projection matrix. Hence both matri-
ces are related to the Green’s function or kernel. If one wants to solve
a Helmholtz equation with different wave numbers or at different fre-
quencies, these two matrices have to be re-generated for each frequency.
As explained in section 4.6, the interpolation matrix and the projection
matrix are only generated once in pfft++.

In the original pFFT algorithm, the convolution matrix is directly related
to the kernel, which includes the effect of the operatorF2. The convolu-
tion matrix in this work is directly related to the Green’s function, not the
operatorF2. To see why this difference is important, suppose we want
to compute the double-layer integralZ

S
d~r ′

∂G(~r,~r ′)
∂n(~r ′)

ρ(~r ′).

Using the original pFFT algorithm, it has to be done as the followingZ
S

d~r ′[nx
∂G(~r,~r ′)

∂x(~r ′)
+ny

∂G(~r,~r ′)
∂y(~r ′)

+nz
∂G(~r,~r ′)

∂z(~r ′)
]ρ(~r ′). (43)

This suggests that three convolution matrices[Hx], [Hy] and[Hz] corre-
sponding to∂G

∂x , ∂G
∂y and ∂G

∂z have to be generated and foreward FFT has
to be performed for each of them. For each operation of the double-
layer integral operator,[Hx]ρ̄, [Hy]ρ̄ and [Hz]ρ̄ have to be carried out
separately. As shown in section 4.3, pfft++ only needs one convolution
matrix and hence only one convolution will be carried out in the matrix
vector product step. This is a significant reduction in memory usage and
CPU time.

5. Numerical Results
Base upon the algorithm described in section 4, we have developed pfft++,
a flexible and extensible fast integral equation solver. The program
pfft++ has been tested using random distributions on the surface of a
sphere. After discretizing the surface, the integral operator in equation
(1) is turned into either the dense matrix[A] in (9) or the sparse matrix
representation in (41). We assume a random vectorα and compute the
matrix vector product in (9) directly asy1 = [A]ᾱ. We then compute the
matrix vector product using pfft++ asy2 = p f f t(ᾱ). The relative error
in the pFFT approximation is

error = (
∑N

i=1(y1,i −y2,i)2

∑N
i=1y2

1,i

)1/2. (44)

We first use a medium size example to demonstrate the trade-off between
accuracy and CPU time and memory usage. We carried out the numeri-
cal experiment described above on a sphere discretized with 4800 panels.

Table 2: Relative error in (44) for different projection and interpo-
lation stencil sizes and different kernels

p = 3 p = 5 p = 7
1
r 8.4e−5 1.3e−6 4.3e−9
∂
∂n

1
r 8.5e−3 1.1e−4 8.4e−7

eikr

r , kR= 1.11e−9 8.3e−5 1.3e−6 1.7e−9
∂
∂n

eikr

r , kR= 1.11e−9 6.0e−3 7.5e−5 5.9e−7
eikr

r , kR= 11.1 4.9e−4 1.1e−5 4.0e−7
∂
∂n

eikr

r , kR= 11.1 1.4e−2 2.8e−4 6.5e−6

Table 3: CPU time for forming I , P, D and H matrices in (41) for
different projection and interpolation stencil sizes and different ker-
nels, unit is second

p = 3 p = 5 p = 7
1
r 3.76 39.48 305.61
∂
∂n

1
r 4.28 45.93 326.47

eikr

r , kR= 1.11e−9 55.66 249.01 1022.05
∂
∂n

eikr

r , kR= 1.11e−9 47.80 229.02 971.32
eikr

r , kR= 11.1 53.06 242.65 1082.36
∂
∂n

eikr

r , kR= 11.1 47.99 226.89 967.58

When the kernels are Laplace kernel and its normal derivative, the radius
of the sphere isR= 1m. When the kernels are Helmholtz kernel and its
normal derivative, the radius of the sphere isR= 5.3cmso that the size
of the panels is smaller than one tenth of a wave length at 10GHz. Us-
ing increasingly larger stencil size in projection and interpolation, the
accuracy is expected to increase. Table 2 clearly shows that this expecta-
tion has been met, wherep stands for the stencil size of both projection
and interpolation. For instance,p = 3 means that a3× 3× 3 3D grid
is used as the projection and the interpolation stencil. With the increase
of the stencil size, the computational resource is expected to increase as
well. This is shown in table 3, 4 and 5. The CPU time and memory
usage increase significantly with the increase of the stencil size. In par-
ticular, the setup time of pfft++ increases by 4 to 10 times when stencil
size increases from 3 to 5 or from 5 to 7. Though we only show data
for a medium size problem here, from our numerical experiments, the
observation is also true for large examples. Foutunately, almost all en-
gineering problems only require modest accuracy, 3 to 4 digits. At this
level of accuracy, the computational cost of pfft++ is very reasonable.

Figure 6 shows the CPU time versus problem size for different kernels.
The projection and the interpolation stencil size is 3 for all these cases.
It is clear that the CPU time grows almost linearly with the problem size
for all types of kernels. Though not shown here in plot, the memory
usage of pfft++ also grows linearly with the problem size.

6. Conclusions
This paper extends a recently developed pFFT algorithm to more gen-
eral integral equations. Due to the introduction of polynomials in both
interpolation and projection steps, pFFT now could handle complex ker-
nels under a unified framework. It could also easily handle high-order
elements as well as the discretization using Galerkin’s method. A public-
domain C++ code called pfft++ has been developed. Numerical results
of large examples show that the memory usage and CPU time of the
pfft++ are nearlyO(N).



Table 4: CPU time for doing one matrix vector product for different
projection and interpolation stencil sizes and different kernels, unit
is second

p = 3 p = 5 p = 7
1
r 0.07 0.11 0.17
∂

∂n
1
r 0.07 0.11 0.17

eikr

r , kR= 1.11e−9 0.20 0.33 0.64
∂

∂n
eikr

r , kR= 1.11e−9 0.20 0.33 0.61
eikr

r , kR= 11.1 0.19 0.32 0.63
∂

∂n
eikr

r , kR= 11.1 0.19 0.33 0.65

Table 5: Memory usage for different projection and interpolation
stencil sizes and different kernels, unit is Mb

p = 3 p = 5 p = 7
1
r 10.75 35.18 87.94
∂

∂n
1
r 10.75 35.18 87.94

eikr

r , kR= 1.11e−9 16.04 47.3 114.5
∂

∂n
eikr

r , kR= 1.11e−9 16.04 47.3 114.5
eikr

r , kR= 11.1 16.04 47.3 114.5
∂

∂n
eikr

r , kR= 11.1 16.04 47.3 114.5
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Figure 6: Run time of pfft++ versus the problem size,kR= 11.1 for
Helmholtz kernel and its normal derivative
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