
A Numerical Engine for Distributed Sparse

Matrices

by

Ricardo Telichevesky

B.Sc., Universidade Federal do Rio Grande do Sul (1985)
M.Sc., The Technion - Israel Institute of Technology (1988)

Submitted to the Department of Electrical Engineering and Computer Science
in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1994

c 1994 Massachusetts Institute of Technology
All rights reserved

Signature of Author
Department of Electrical Engineering and Computer Science

Certi�ed by
Jacob K. White, Associate Professor of Electrical Engineering

Thesis Advisor

Certi�ed by
William J. Dally, Associate Professor of Computer Science and Engineering

Thesis Advisor

Accepted by
Frederic R. Morgenthaler, Professor of Electrical Engineering

Chairman, Department Committee on Graduate Students

A Numerical Engine for Distributed Sparse Matrices
by

Ricardo Telichevesky

Submitted to the Department of Electrical Engineering and Computer Science
on August 11, 2000, in partial ful�llment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In �elds as diverse as electronic circuit design, uid dynamics, and structural analysis,
the behavior of complex systems is modeled by large, sparsely coupled systems of di�erential
equations. Numerical solution of such systems is computationally expensive because even the
most e�cient algorithms evaluate and factor large sparse matrices hundreds or thousands of
times, and on most general purpose computers sparse matrix operations are ine�cient. Part
of the problem is that accessing sparse matrix elements is complicated, resulting in a poor
utilization of computational resources. The irregular non-zero pattern makes it very di�cult
to parallelize the operations; and the non-uniform data access time makes pipelining very
ine�cient.

This thesis suggests exploiting the infrequent change in matrix structure by developing a
symbolic compiler, and a special purpose parallel computer that uses compiler clues to accelerate
sparse data access. The compiler combines partitioning, scheduling, and storage allocation
algorithms in order to exploit locality of reference, achieve a high degree of parallelism, and
simplify the operand access in the sparse matrix, which in turn insures e�cient pipelining. Each
processing element contains a specialized datapath consisting of multiple interleaved memories
and functional units, and a microprogrammed control unit capable of initiating several datapath
operations per clock cycle. Extensive behavioral and register transfer level (RTL) emulation of
the execution of SIMLAB, a circuit simulation program, suggests that the combination of these
hardware and software techniques yield a high degree of utilization of computational resources
both in the assembly of circuit equations using device models and in its associated sparse matrix
solution.

Thesis Supervisors: Jacob K. White, Associate Professor of Electrical Engineering

William J. Dally, Associate Professor of Computer Science and Engineering

3

4

Acknowledgments

This thesis is based on work supported in part by the Conselho Nacional de Desenvolvimento

Cient���co e Tecnol�ogico (CNPq-Brazil) and the O�ce of Naval Research.

This thesis results from a combined e�ort with Professors Jacob White and William Dally.

More than providing advice, support, and guidance, their ideas are an essential part of this

research.

I wish to thank all the members of the research group that have helped me in this research.

Miguel Silveira, Keith Nabors, Kevin Lam, Khalid Rahmat, and Don Baltus are notable col-

laborators in the actual implementation of the algorithms presented in this thesis, as well as in

the architectural design. Steven McCormick provided the essential macros that helped so much

in writing the thesis. Bob Armstrong, our UNIX guru, was always there to answer all sorts of

system-related questions.

Prathima Agrawal and John Trotter of AT&T Bell Labs have been involved in the early

stages of this research and contributed signi�cantly to the development of scheduling and par-

titioning heuristics. Greg Papadopoulos also took time to participate on my thesis committee.

Milena Levak helped so much in all the complicated requirements of the International Students

O�ce. Many thanks to Marilyn Pierce, a saint that by saying \No problem" miraculously keeps

the sanity of graduate students.

Thanks to Jos�e Monteiro, Mattan Kamon, Ignacio McQuirk, Filip Van Aelten, Songmin

Kim, Jennifer Lloyd, Xuejun Cai, Stan Liao, Amelia Shen, Chris Umminger, Joel Phillips, and

all people in the eighth oor for their invaluable assistance.

Thanks to my friends Rodrigo Paiva, Julia Allen, Cristina Lopes, Brian Pan, Chris Berry,

and Paul Yu for the encouragement, patience and help in so many aspects of my graduate

student life here in the United States. From Brazil, the encouragement and emotional support

of my long-time friends Ricardo Mester, Jairo Moscovich, Nelson Zamel and of my family made

it all possible.

5

6

Contents

1 Introduction 15

1.1 Thesis Contributions . 15

1.2 Numerical Solution of Di�erential Equations . 17

1.3 Parallel Sparse Matrix Decomposition . 19

1.3.1 Reordering . 19

1.3.2 Storage Organization . 20

1.3.3 Scheduling . 21

1.4 Parallel Circuit Simulation . 22

1.5 Numerical Engine Architecture . 23

1.5.1 Related Work . 24

1.6 Thesis Outline . 25

2 Parallel Sparse Matrix Decomposition 27

2.1 Sparse LU Factorization . 29

2.2 The YSMP Scatter-Gather Approach . 32

2.2.1 E�cient Interleaving in Scattered Vectors 35

2.2.2 A Scatter-Gather Special Purpose Processor 38

2.3 Scheduling Heuristics for Fast Sparse Matrix Decomposition 40

2.3.1 Background . 40

2.3.2 Partitioning Schemes . 44

2.3.3 Scheduling Schemes . 46

2.3.4 Scheduling Results . 52

2.4 Overlapped-Scattered Arrays for Sparse Matrix Factorization 54

2.4.1 OSA Overhead Costs . 56

2.4.2 OSA-Based Fast Sparse Matrix Package 57

2.4.3 OSA-Based Fast Sparse Matrix Decomposition Hardware 59

2.5 Overlapped-Overlapped Scattered Arrays . 62

2.5.1 O2SA Performance . 63

2.5.2 O2SA-Based Fast Sparse Matrix Decomposition Hardware 64

7

8

2.5.3 Scheduling for O2SA . 67

2.6 Implementation Issues for Parallel Sparse Matrix Factorization on a General

Purpose Multiprocessor . 70

2.6.1 Inuence of Hardware Parameters on Multiprocessor Performance 70

2.6.2 Scheduler Validation . 72

3 Parallel Circuit Simulation 77

3.1 Major Issues in Parallel Circuit Simulation . 77

3.1.1 Circuit Simulation Background . 77

3.1.2 Overview of the Parallel Circuit Simulation Process 82

3.2 Parallel Model Evaluation . 85

3.2.1 Linear Elements and Voltage Sources . 85

3.2.2 Parallel Evaluation of Non-Linear Elements 89

3.3 Device Evaluation and Contribution Stamping Multiprocessor Performance . . . 92

4 Numerical Engine Architecture 97

4.1 System Considerations . 98

4.1.1 Timing Conventions . 98

4.1.2 Interconnection Network . 100

4.2 Processing Element Architecture . 104

4.2.1 Overview . 104

4.2.2 Pipelined Operation and Stall Issues . 108

4.2.3 Floating Point Subsystem . 111

4.2.4 Memory System . 118

4.2.5 Network Interface . 134

4.2.6 Microprogrammed Controller . 138

4.3 Architecture Emulation . 146

4.3.1 Behavioral Level Emulation . 146

4.3.2 RTL Emulation . 147

4.4 Architecture Emulation Results . 149

5 Conclusion and Future Work 153

5.1 Major Contributions . 153

5.2 Future Work . 154

A Fast Evaluation of Transcendental Functions 157

A.1 Background . 157

A.2 Evaluation of Transcendental Functions in Multiple Functional Units 159

B Emulation Tools 163

List of Figures

1-1 Introducing a symbolic precompilation step for SIMLAB 16

1-2 Sparse matrix created during the simulation of the �rst and second stages of an

in�nite impulse response digital �lter . 18

1-3 General architecture of the PACE . 25

2-1 A sparse matrix (a) and its associated orthogonal linked list storage (b) 28

2-2 Source-row directed (a) and target-row directed (b) forms of sparse matrix de-

composition . 33

2-3 Scatter-Gather LU decomposition . 34

2-4 M -way interleaved memory system . 35

2-5 Dedicated datapath for source-destination column matching 39

2-6 Task representation and its timing . 42

2-7 A sparse matrix and its associated task graph . 43

2-8 Inserting a task vj before vi . 51

2-9 Overlap-Scatter representation of a matrix . 54

2-10 Simulated processor utilization for Scatter-Gather and OSA-based storage 55

2-11 Dedicated datapath for fast updates with interleaved OSA access 60

2-12 O2SA representation of a matrix . 63

2-13 Processor utilization using up to R active targets on fast memory 64

2-14 Processor utilization using the O2SA structure to keep as many as possible active

targets on fast memory . 65

2-15 Dedicated datapath for fast O2SA update . 66

2-16 E�ect of the pipeline latency on system performance 71

2-17 E�ect of the bus bandwidth on system performance 72

3-1 Example circuit . 78

3-2 Examples of elements connected to a node . 79

3-3 Data structures used in a multiprocessor for transient analysis of an electrical

circuit . 83

3-4 Bus slack (a) versus processor idle (b) . 84

9

10

3-5 Local linear device and voltage source data structures 85

3-6 Local (a) and distributed (b) capacitor evaluation and stamp data structures . . 86

3-7 Local (a) and distributed (b) independent current source evaluation and stamp

data structures . 88

3-8 Distributed independent voltage source evaluation and stamp data structures . . 88

3-9 Data structures for the evaluation and stamp of the independent piecewise linear

voltage sources . 89

3-10 Distributed non-linear device data structures . 91

3-11 Task graphs associated with the execution of the non-linear device evaluation

and stamping procedures with task replication (a) and with data transmission (b) 93

4-1 Overview of the numerical engine architecture . 98

4-2 Timing conventions . 99

4-3 Synchronization scheme for aligning arbitrary outputs with the clock input signal 100

4-4 A generic bus signal input and output circuits . 101

4-5 Bus interface signals . 102

4-6 Bus protocol for passing control from processor #1 to processor #P 103

4-7 Microprogram boot sequence after reset . 104

4-8 Processing element internal architecture . 105

4-9 Processor element pipelined operation and stall issues 109

4-10 Floating point unit internal architecture . 113

4-11 Floating point register �le . 115

4-12 Floating point unit and register �le timing . 117

4-13 Index memory subsystem and its associated microinstruction �elds 118

4-14 A relevant sequence of operations in the index memory subsystem 120

4-15 Index memory subsystem timing . 122

4-16 Source memory subsystem and its associated microinstruction �elds 124

4-17 A relevant sequence of operations in the source memory subsystem 127

4-18 Destination memory subsystem and its associated microinstruction �elds 129

4-19 A relevant sequence of operations in the destination memory subsystem 131

4-20 Destination memory subsystem timing . 133

4-21 Interconnection interface and its associated microinstruction �elds 135

4-22 Network interface system timing . 137

4-23 Microprogrammed controller and its associated microprogram control �elds . . . 139

4-24 A relevant sequence of operations in the microprogrammed control unit 143

4-25 Microprogrammed controller system timing . 145

4-26 Behavioral level simulation of the proposed architecture 147

4-27 Modular hardware representation of the numerical engine and its corresponding

software data structures . 148

11

A-1 Microcode assembler source for the evaluation of ex 162

B-1 The SIMLAB emulation environment . 164

B-2 A Typical SIMLAB session . 165

B-3 Architectural description �le used in the SIMLAB session 167

12

List of Tables

2-1 Percentage of misses using column matching for sparse matrix decomposition . . 32

2-2 Achievable interleaving hit ratios . 36

2-3 E�ectiveness of reordering the rows with respect to column indices for interleaving 37

2-4 Comparison of di�erent partitioning schemes . 46

2-5 Comparison of di�erent scheduling schemes . 52

2-6 OSA overheads . 56

2-7 OSA versus Sparse 1.3b . 58

2-8 Inuence of static column misses on the performance of the OSA-based archi-

tecture and algorithm . 61

2-9 Comparison of O2SA-based and OSA-based sparse matrix hardware accelerators 67

2-10 Validation of the task model in an IBM RS6000/540 workstation 73

2-11 Experiments on the PACE hardware . 74

2-12 Validation of the task model for the proposed architecture 74

3-1 Comparison of predicted Numerical Engine performance for device evaluation

and stamping with task replication and with data transmission (shmem) 94

4-1 Index memory subsystem switching characteristics and timing requirements . . . 123

4-2 Destination memory subsystem switching characteristics and timing requirements 134

4-3 Network interface system switching characteristics and timing requirements . . . 138

4-4 Microprogrammed controller switching characteristics and timing requirements . 145

4-5 Sparse matrix factorization times . 150

4-6 Sparse matrix factorization performance (MFlops) 151

A-1 Computation of ex on a FPU with concurrent ALU and MPY 161

13

14

1

Introduction

Many physical systems can be modeled by large sparse systems of di�erential equations.

Ordinary di�erential equations (ODE's) are often used to model time varying discrete systems

such as electric circuits, or to predict the motion of planets or other bodies in space. Partial

di�erential equations (PDE's) are used to model the space and time variation of continuous

systems such as uid and heat ow and electron transport in semiconductors. Most of the

time for the numerical solution of di�erential equations is spent evaluating non-linearities and

solving a sparse set of linear equations.

1.1 Thesis Contributions

In order to e�ciently evaluate the non-linearities and solve the sparse set of linear equa-

tions associated with the numerical solution of di�erential equations, this thesis describes the

development of the Numerical Engine, a special purpose parallel processor that would take ad-

vantage of specialized hardware and software precompilation techniques in order to accelerate

the solution of sparse sets of linear equations. Even though the techniques discussed in this

thesis can be extended to the numerical solution of di�erential equations in general, it is focused

on the simulation of electrical circuits, a specially challenging problem due to its unstructured

nature.

In order to demonstrate the practical utilization of the Numerical Engine, we developed a

modi�ed version of a circuit simulation program, SIMLAB. Most of the computation time spent

during the execution of SIMLAB is split between the assembling of sparse circuit equations, and

their solution using sparse matrix techniques.

One important characteristic of these computations is that several iterations are executed

with di�erent numerical values but the sparse structure of the equations and the connectivity of

the circuit is kept static. We can take advantage of this fact by executing a symbolic compilation

that generates addressing clues, partitions the matrix and device data, schedules the internal

tasks for each individual processor, and schedules the interprocessor communication sequence

15

16

for the target multiprocessor system. Figure 1-1(a) depicts the traditional SIMLAB ow while the

symbolic compilation step for multiprocessor execution on the Numerical Engine is introduced

in Figure 1-1(b).

Compiler

Machine
 Code

Input
Data

Execution

Output
 Data

SIMLAB
 Source

(a)

Compiler

Symbolic Compiler

 Symbolic
Input Data

Numerical
Input Data

Output
 Data

Modified
SIMLAB
 Source

Host
Code

Numerical
 Engine
 Code

Parallel Execution

(b)

Figure 1-1: Introducing a symbolic precompilation step for SIMLAB

The major contributions of this thesis in order to speed up the parallel execution of the

matrix assembly and sparse matrix decomposition tasks are:

� The O2SA technique, which combines scheduling and storage allocation algorithms to

enhance the processor e�ciency. The essence of this technique is to keep an active data

subset, necessary to achieve a high degree of concurrency in the sparse matrix factor-

ization, in a small, fast memory tightly coupled with the oating point unit. Section

2.5 further discusses how to use this technique to substantially increase the factorization

speed.

17

� Exploit the properties of sparse matrices and scattered arrays to e�ciently use memory

interleaving as a general technique that increases the processor-memory communication

bandwidth. These properties are further discussed in Section 2.2.1.

� O(V log V) scheduling heuristics to e�ciently solve sparse matrix factorization on several

pipelined processors connected through a high speed bus. The fast scheduler is able to

exploit the underlying hardware characteristics such as interleaving, pipelining, static

column misses in DRAMs, bus conicts, etc. A detailed discussion of the scheduling

schemes proposed is presented in Section 2.3.

� Software techniques for the parallel device evaluation and parallel stamping of device

contributions, in order to assemble the sparse set of equations representing the circuit be-

havior. Even though these techniques are fairly general and can be used in any distributed

memory multiprocessor system, they have been specially tailored for the Numerical En-

gine. A detailed description of these techniques is available in Chapter 3.

� Specialized datapath and control in each Numerical Engine processor that permits the

execution of several tasks per clock cycle. These tasks include multiple memory access,

concurrent oating point and address generation operations, conditional branching, and

loop control. The processor architecture is discussed in detail in Chapter 4.

In order to introduce the reader to the thesis material, the next section provides an overview

of the numerical solution of di�erential equations.

1.2 Numerical Solution of Di�erential Equations

Numerical techniques for solving di�erential equations often discretize time or space (or

both) to reduce the di�erential problem to a sequence of large, usually non-linear, algebraic

systems. These systems, in turn, are solved by an iterative technique, such as the Newton-

Raphson method [Press92] that involves linearizing the non-linearities, and then solving the

linearized system of equations.

The evaluation of the non-linearities in a system of n equations in n unknowns, in the form

of a dense matrix A, takes O(n2) operations; the solution of the linearized system takes O(n3)

operations. These operations would be prohibitively expensive for systems with more than a

few hundred discrete elements. In many cases, however, the sparse connectivity of the discrete

elements causes most of the entries in the matrix A to be zero, and only a small percentage

(usually less than 1%) need to be stored and operated on. The matrix A is said to be sparse,

and by exploiting its sparsity the solution can be found in a tiny fraction of n3 operations.

Also, the cost of assembling the matrix A is reduced in many cases to O(nonzeros).

The simulation of electric circuits is a good example of sparse matrix usage. In the modi�ed

version of SIMLAB[Lumsdaine90] (a circuit simulation program similar to SPICE[Nagel75]) used

18

in this thesis, each node voltage not connected to an independent voltage source is represented

by one unknown and the matrix has a non-zero entry aij only if there is a circuit element

connecting node i and node j. For example, the matrix iir12 , depicted in Figure 1-2, was

created during the transient simulation of the �rst and the second stages of an in�nite impulse

response digital �lter. iir12 has 7; 310 equations and after the decomposition it has only 153; 858

non-zero elements, corresponding to a nonzero density of 0.28%.

 1 2 3 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7
 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 9 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 9 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 9 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 8 9 9 9 9 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 8 9 9 9 9 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 7 8 8 8 8 9 9 9 9 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 7 8 8 8 8 9 9 9 9 0 0 0 0 1 1 1 1 2 2 2 2 3
 2 4 7 9 2 4 7 9 1 4 6 9 1 4 6 9 1 3 6 8 1 3 6 8 0 3 5 8 0 3 5 8 0 2 5 7 0 2 5 7 9 2 4 7 9 2 4 7 9 1 4 6 9 1 4 6 8 1 3 6 8 1 3 5 8 0 3 5 8 0 3 5 7 0 2 5 7 0 2 4 7 9 2 4 7 9 2 4 6 9 1 4 6 9 1 3 6 8 1 3 6 8 1 3 5 8 0 3 5 8 0 2 5 7 0 2 5 7 0 2 4 7 9 2 4 7 9 1 4 6 9 1 4 6 9 1 3 6 8 1 3 6 8 0 3 5 8 0 3 5 7 0 2 5 7 0 2 5 7 9 2 4 7 9 2 4 6 9 1 4 6 9 1 4 6 8 1 3 6 8 1 3 5 8 0 3 5 8 0 3 5 7 0 2 5 7 0 2 4 7 9 2 4 7 9 2 4 6 9 1 4 6 9 1 3 6 8 1 3 6 8 0 3 5 8 0 3 5 8 0 2 5 7 0 2 5 7 9 2 4 7 9 2 4 7 9 1 4 6 9 1 4 6 8 1 3 6 8 1 3 6 8 0 3 5 8 0 3 5 7 0 2 5 7 0 2 5 7 9 2 4 7 9 2 4 6 9 1 4 6 9 1 3 6 8 1 3 6 8 1
 4 9 3 7 2 6 1 5 9 4 8 2 7 1 6 0 4 9 3 7 2 6 0 5 9 4 8 2 7 1 5 0 4 8 3 7 2 6 0 5 9 3 8 2 7 1 5 0 4 8 3 7 1 6 0 5 9 3 8 2 6 1 5 9 4 8 3 7 1 6 0 4 9 3 8 2 6 1 5 9 4 8 2 7 1 6 0 4 9 3 7 2 6 0 5 9 4 8 2 7 1 5 0 4 9 3 7 2 6 0 5 9 3 8 2 7 1 5 0 4 8 3 7 1 6 0 5 9 3 8 2 6 1 5 0 4 8 3 7 1 6 0 4 9 3 8 2 6 1 5 9 4 8 2 7 1 6 0 4 9 3 7 2 6 1 5 9 4 8 2 7 1 5 0 4 9 3 7 2 6 0 5 9 3 8 2 7 1 5 0 4 8 3 7 2 6 0 5 9 3 8 2 6 1 5 0 4 8 3 7 1 6 0 4 9 3 8 2 6 1 5 9 4 8 3 7 1 6 0 4 9 3 7 2 6 1 5 9 4 8 2 7 1 5 0 4 9 3 7 2 6 0 5 9 4 8 2 7 1 5 0 4 8 3 7 2 6 0 5 9 3 8 2 6 1 5 0 4 8 3 7 1 6 0 5 9 3 8 2 6 1 5 9 4 8 3 7 1 6 0 ___
 48: # # # # # # # # # # # |
 72: # # # # # # # # # # # # # # # # |
 96: # # # # # # # # # # # # # |
 121: # # # # # # # # # # # # # # # # # # |
 145: # # # # # # # # # # # # # |
 170: # # # # # # # # # # # # # # # # # # # |
 194: # # # # # # # # # # # # # # # # |
 218: # # # # # # # # # # # # # # # # # # # # # |
 243: # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 267: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 291: # # # # # # # # # # # # # # # # |
 316: # # # # # # # # # # # # # # # # # # # # |
 340: # # # # # # # # # # # # # # # # # |
 365: # # # # # # # # # # # # # # # # # # # # # # # |
 389: # # # # # # # # # # # # # # # # # # # # # # # # |
 413: # # # # # # # # # # # # # # # # # # # # # # # # # # |
 438: # # # # # # # # # |
 462: # # # # # # |
 486: # # # # # # # # |
 511: # # # # # # # |
 535: # # # # # # # |
 559: # # # # # # # # |
 584: # # # # # # # |
 608: # # # # # # |
 633: # # # # # # # # # # # # # # # # # # # # |
 657: # # # # # # # # # # # # # # # # # # # # |
 681: # # # # # # # # # # # # # # # # # # # # # |
 706: # # # # # # # # # # # # # # # # # # # |
 730: # # # # # # # # # # # # # # # # # # # # |
 754: # # # # # # # # # # # # # # # # # # # # # # |
 779: # # # # # # # # # # # # # # # # # # # # # # |
 803: # # # # # # # # # # # # # # # # # |
 827: # # # # # # # # # # # # # # # # # # # # # # # # # |
 852: # # # # # # # # # # # # # # # # |
 876: # # # # # # # # # # # # # # # # # |
 901: # # # # # # # # # # # # # # # # # # # # # # # |
 925: # # # # # # # # # # # # # # # # # # # |
 949: # # # # # # # # # # # # # # # # # # # # # |
 974: # # # # # # # # # # # # # |
 998: # # # # # # # # # # # # # # # # |
 1022: # # # # # # # # # # # # # # # # # |
 1047: # # # # # # # # # # # # # # # |
 1071: # # # # # # # # # # # # # # # # # # # # # |
 1096: # # # # # # # # # # # # # # # # # |
 1120: # # # # # # # # # # # # # # # # # # # # |
 1144: # # # # # # # # # # # # # # # # # |
 1169: # # # # # # # # # # # # # # # # # # # |
 1193: # # # # # # # # |
 1217: # # # # # # # # # # # # # # # # # # # # # # # |
 1242: # # # # # # # # # # # # # # # # # |
 1266: # # # # # # # # # # # # # # # # # # # |
 1290: # # # # # # # # # # # # # # # # # # # # |
 1315: # # # # # # # # # # # # # # # # # # |
 1339: # # # # # # # # # # # # # # # # # # # # # # # |
 1364: # # # # # # # # # # # # # # # # # |
 1388: # # # # # # # # # # # # # # # # # # # # # # # # # |
 1412: # # # # # # # # # # # # # # # # # # # |
 1437: # # # # # # # # # # # # # # # # # # # # # # # # # |
 1461: # # # # # # # # # # # # # # # # # # # # # |
 1485: # # # # # # # # # # # # # # # # |
 1510: # # # # # # # # # # # # # # # # # # # # # # # # # |
 1534: # # # # # # # # # # # # # # # # |
 1558: # # # # # # # # # # # # # # # # # # # # # # # # |
 1583: # # # # # # # # # # # # # # # # # # |
 1607: # # # # # # # # # # # # # # # # # # # # # |
 1632: # # # # # # # # # # # # # # # # # # # # # # # # |
 1656: # # # # # # # # # # # # # # |
 1680: # # # # # # # # # # # # # # # # # # |
 1705: # # # # # # # # # # # # # # # # # # |
 1729: # # # # # # # # # # # # # # # # # # # # |
 1753: # # # # # # # # # # # # # # # # # # # # # |
 1778: # # # # # # # # # # # # # # # # # # |
 1802: # # # # # # # # # # # # # # # # # # # # # # # |
 1827: # # # # # # # # # # # # # # # # # # # |
 1851: # # # # # # # # # # # # # # # # # # # # # |
 1875: # # # # # # # # # # # # # |
 1900: # # # # # # # # # # # # # # # # # |
 1924: # # # # # # # # # # # # # # # # # # # # # # |
 1948: # # # # # # # # # # # # # # # # |
 1973: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 1997: # # # # # # # # # # # # # # # # # # # # # |
 2021: # # # # # # # # # # # # # # # # # # # # # # # # # # |
 2046: # # # # # # # # # # # # # # # # # # # # # |
 2070: # # # # # # # # # # # # # # # # # # # # # # # # # |
 2095: # # # # # # # # # # # # # # # # # # # # # # # |
 2119: # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 2143: # # # # # # # # # # # # # # # # # # # # |
 2168: # # # # # # # # # # # # # # # # # # # # # # # # # |
 2192: # # # # # # # # # # # # # # |
 2216: # # # # # # # # # # # # # # # # # # # # |
 2241: # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 2265: # # # # # # # # # # # # # # # # # # # # |
 2289: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 2314: # # # # # # # # # # # # # # # # # # |
 2338: # # # # # # # # # # # # # # # # # # # # # # # # |
 2363: # # # # # # # # # # # # # # # # # # # # # # # # # # |
 2387: # # # # # # # # # # # # # # # # # # |
 2411: # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 2436: # # # # # # # # # # # # # # # # # # # # |
 2460: # # # # # # # # # # # # # # # # # # # |
 2484: # # # # # # # # # # # # # # # # # # # # # # # |
 2509: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 2533: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 2558: # # # # # # # # # # # # # # # # # # # # # # |
 2582: # # # # # # # # # # # # # # # # # # # |
 2606: # # # # # # # # # # # # # # # # # # # # # # |
 2631: # # # # # # # # # # # # # # # # # # # |
 2655: # # # # # # # # # # # # # # # # # # # # # # |
 2679: # # # # # # # # # # # # # # # # # # # |
 2704: # # # # # # # # # # # # # # # # |
 2728: # # # # # # # # # # # # # # # # # # # # |
 2752: # # # # # # # # # # # # # # # |
 2777: # # # # # # # # # # # # # # # # # # # # # # # # # # |
 2801: # # # # # # # # # # # # # # # # # # # # # # |
 2826: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 2850: # # # # # # # # # # # # # # # # # # # # # # |
 2874: # # # # # # # # # # # # # # # # |
 2899: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 2923: # # # # # # # # # # # # # # # # # # # |
 2947: # # # # # # # # # # # # # # # # # # # # # # # # # # |
 2972: # # # # # # # # # # # # # # # # # # # # |
 2996: # # # # # # # # # # # # # # # # # # # # # |
 3020: # # # # # # # # # # # # # # # # # # # # # # # # # |
 3045: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3069: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3094: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3118: # # # # # # # # # # # # # # # # # # # # # # # # |
 3142: # # # # # # # # # # # # # |
 3167: # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3191: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3215: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3240: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3264: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3289: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3313: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3337: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3362: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3386: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3410: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3435: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3459: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3483: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3508: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3532: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3557: # # # # # # # # # # # # # # # # # # # # # |
 3581: # # # # # # # # # # # # # # # # # # # |
 3605: # # # # # # # # # # # # # # # # # # # # # # # # # |
 3630: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3654: # # # # # # # # # # # # # # # # # # # # # # |
 3678: # # # # # # # # # # # # # # # # # # |
 3703: # # # # # # # # # # # # # # # # # # # # # # |
 3727: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3751: # # # # # # # # # # # # # # # |
 3776: # # # # # # # # # # # # # |
 3800: # # # # # # # # # # # # # # # |
 3825: # # # # # # # # # # # # # # |
 3849: # # # # # # # # # # # # # # # # # # |
 3873: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3898: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 3922: # # # # # # # # # # # # # # # # # |
 3946: # # # # # # # # # # # # # # # # # # # # # # |
 3971: # # # # # # # # # # # # # # # # |
 3995: # # # # # # # # # # # # # # # # # # # # # # # # # |
 4020: # # # # # # # # # # # # # # # # # # # # # # # # # |
 4044: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4068: # # # # # # # # # # # # # # # # |
 4093: # # # # # # # # # # # # # # # # # # # # # # # |
 4117: # # # # # # # |
 4141: # # # # # # # # # # # # # # # # # # # # |
 4166: # # # # # # # # # |
 4190: # # # # # # # # # # # # # # # # # # |
 4214: # # # # # # # # # # # # # # |
 4239: # # # # # # # # # # # # # # # # # # # # |
 4263: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4288: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4312: # # # # # # # # # # # # # # # # # # # |
 4336: # # # # # # # # # # # # # # # # # # # # # # # |
 4361: # # # # # # # # # # # # # # # |
 4385: # # # # # # # # # # # # # # # # # # # # # # # # # |
 4409: # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4434: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4458: # # # # # # # # # # # # # # # # # # |
 4482: # # # # # # # # # # # # # # # # # # |
 4507: # # # # # # # # # # # # # # # # # # # # |
 4531: # # # # # # # # # # # # # # # # # # |
 4556: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4580: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4604: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4629: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4653: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4677: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4702: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4726: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4751: # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4775: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4799: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4824: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4848: # # # # # # # # # # # # # # # |
 4872: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4897: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4921: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4945: # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4970: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 4994: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5019: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5043: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5067: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5092: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5116: # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5140: # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5165: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5189: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5213: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5238: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5262: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5287: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5311: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5335: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5360: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5384: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5408: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5433: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5457: # # # # # # # # # # # # # # # # # # # # # # # # # |
 5482: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5506: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5530: # # # # # # # # # # # # # # # # # # # # # # |
 5555: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5579: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5603: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5628: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5652: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5676: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5701: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5725: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5750: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5774: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5798: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5823: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5847: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5871: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5896: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5920: # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5944: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 5969: # # # # # # # # # # # # # # # # # # # # # # # # |
 5993: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6018: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6042: # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6066: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6091: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6115: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6139: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6164: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6188: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6213: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6237: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6261: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6286: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6310: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6334: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6359: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6383: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6407: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6432: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6456: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6481: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6505: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6529: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6554: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6578: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6602: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6627: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6651: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6675: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6700: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6724: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6749: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6773: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6797: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6822: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6846: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6870: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6895: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6919: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6944: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6968: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 6992: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 7017: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 7041: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 7065: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 7090: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 7114: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 7138: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 7163: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 7187: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 7212: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 7236: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 7260: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 7285: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 7309: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # |
 7310: # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # | ___

Figure 1-2: Sparse matrix created during the simulation of the �rst and second stages of an
in�nite impulse response digital �lter

For PDE's, the spatial discretization of the problem in a grid naturally leads to sparse

matrices. Finite di�erence methods will often generate regular sparse matrices given they

are often linked with structured grids, while �nite element methods will tend to generate an

irregular non-zero pattern due to the lack of grid structure.

An important issue in the numerical solution of di�erential equations is the method used for

solving the linear set of equations. Direct methods , like LU (lower-upper) decomposition, are

able to solve the system in a �xed and �nite number of steps, but are often very computationally

expensive and require large amounts of memory. Indirect or iterative methods , like the Gauss-

Seidel relaxation [Golub89], produce an in�nite sequence of approximate answers that may

or may not converge to the correct answer. If the proper conditions on the matrix A are

satis�ed, which is usually the case in many computational uid dynamics problems, iterative

methods will often compute a solution within a de�ned error margin in a fraction of the time

spent by direct methods and typically will not require as much memory. However, we are

particularly interested in the solution of sparse matrices related to circuit simulation, which

many times exhibit poor characteristics for an iterative solution. Most commercially available

circuit simulation programs available today rely on direct methods for sparse matrix solution.

19

Given these constraints, this thesis focuses on direct methods, and more speci�cally, focuses

on LU decomposition, which in almost all cases is able to compute the correct solution, if one

exists.

This thesis focuses on hardware and software techniques for the e�cient factorization of

sparse matrices and the parallel evaluation of non-linearities in an electrical circuit. The next

two sections provide a brief introduction and present some background material on these topics.

1.3 Parallel Sparse Matrix Decomposition

The major di�culty associated with LU decomposition is its superlinear time complexity |

the solver tends to dominate the simulation time for large problems. This di�culty, along with

the fact that most circuit simulators contain in their core a sparse matrix package that performs

LU decomposition, explains the great interest in exploiting the speed of parallel and pipelined

machines in order to accelerate the algorithm execution. This task is di�cult due to the

irregular structure of most sparse matrices associated with electrical circuits, which demands

a very complex sequence of instructions and data access. Many techniques are reported in

the literature to overcome these di�culties. In the following sections, we will briey discuss

reordering, storage organization and scheduling.

1.3.1 Reordering

One aspect that makes the utilization of LU decomposition on a sparse matrix di�cult is

that even though a given element aij is zero initially, some operations can make aij non-zero

during the decomposition. The new non-zero element is usually referred to as a �ll-in. The

reordering of the rows and columns of a matrix can strongly a�ect the number of �ll-ins, and

consequently the computational cost of the LU decomposition [Du�86].

Reordering is an operation that could be performed on the symbolic structure to obtain

a minimum number of �ll-ins. This problem has been shown to be \NP complete" [Rose78,

Yannakakis81]. Many heuristics have been proposed, but the Markowitz [Markowitz57] reorder-

ing method is generally preferred since it produces on average no more than 5% more �ll-ins

that the best of the other methods, but takes much less time. It is a greedy strategy that tries

to minimize the number of �ll-ins that can occur at each step. Empirical results show that

Markowitz reordering usually takes between one and two orders of magnitude more time than

the actual numerical decomposition. For this reason, most sparse matrix implementations that

do not require numerical pivoting perform Markowitz reordering on symbolic data only once in

the beginning of the program execution.

In a parallel processor, the objective of the ordering algorithm should be the reduction of the

completion time for the decomposition, which is not necessarily the ordering with the smallest

number of operations. A good �gure of merit for a reordering algorithm in a multiprocessor

20

system is the minimum number of steps required to compute the solution given an in�nite

number of computational resources. Several ordering algorithms have been proposed which

attempt to minimize the number of steps without increasing substantially the total number of

operations [Huang79, Smart89, Chang88].

1.3.2 Storage Organization

Early versions of sparse matrix codes used linked list structures to represent the non-zero

elements in the matrix. Given a matrix element akj (let us call it source), in order to perform

an operation like aij = aij�
aik
akk

akj , it was necessary to traverse the linked list of row i, �nd the

matching element aij , and then perform the arithmetic operation. Since these type operations

dominate the LU factorization time, the slow matching process makes the entire code very slow.

Even worse, the irregular access time of the elements made pipelining very ine�cient.

The Scatter-Gather approach starts by scattering the elements of a destination row i into a

vector of size n. Computers with pipelined indirect addressing could then perform the source-

destination match in constant time. After all the updates to row i are �nished, the elements are

gathered back in a dense vector. This technique has been used in the YSMP code [Eisenstat77].

One of the disadvantages of this approach is the Scatter-Gather overhead, which is O(nonzeros).

However, the major problem with this technique is that its extension to a multiprocessor envi-

ronment limits the available parallelism too much, as we shall demonstrate in Section 2.4.

Stager [Stager87] proposed the enumeration of all elemental operations and addresses re-

quired for the factorization. Even thought this approach can fully exploit pipelining, the ex-

cessive memory requirement makes it infeasible for large matrices, as the number of operations

grow superlinearly with the size of the matrix.

Sadayappan [Sadayappan89] studied the implementation of the sparse matrix factoriza-

tion by Overlap-Scattering. All destination rows are scattered in memory, allowing a source-

destination match of any element in constant time, just like in the Scatter-Gather approach,

but no scatter and gather operations are required. In practice, if independent scatter-vectors

of size n are used, the total space required would be prohibitive (O(n2)). Fortunately, the

sparsity of the rows can be exploited to share the memory e�ciently, by overlapping them in

such a way that the non-zeros of one row would �ll-up the nonused elements of another. The

rows are placed in scattered form into a single linear array, with di�erent origins, such that no

two rows have a non-zero in the same location in the array. During the update operation, the

matching target address is computed with simple addition. Then, data from the target row is

read, processed and written back to the same memory location.

Perhaps the most signi�cant drawback in the usage of overlapped-scattered arrays is that

each elemental update operation requires two accesses to a large memory that stores the entire

matrix. This thesis proposes a novel technique that combines sophisticated scheduling and

storage allocation algorithms by keeping only a selected set of active overlapped-scattered rows

21

in a small, fast access memory in order to further enhance the processor speed. We shall refer to

this allocation structure as an Overlapped-overlapped Scattered Array (O2SA). This technique

is specially relevant when applied to modern computers, as the overall performance of these

systems is strongly linked with the proper cache utilization.

In Section 2.4 we intend to discuss the overhead involved in using the overlap-scatter struc-

ture, and how special purpose hardware can be built in order to speed up the data access if

the matrix is stored in the overlap-scattered form. Section 2.5 discusses in detail the O2SA

structure, and also discusses a processor architecture designed to take advantage of O2SA in

order to further accelerate the matrix factorization.

1.3.3 Scheduling

In order to improve the utilization of a multiprocessor (or pipelined) system, a good schedul-

ing algorithm is necessary to choose among the possible operations so that the most critical

is executed �rst. The scheduling problem has been shown to be NP-complete and several

heuristics have been proposed to make it computationally feasible for large problems.

Wing and Huang [Wing80] modeled the sparse matrix factorization by an acyclic directed

graph in which nodes represent a task, in this case an elemental arithmetic operations applied to

the elements of A, and the arcs represent the precedence relations that exist among the opera-

tions in the factorization process. They applied Hu's [Hu61] level scheduling strategy and found

that the speed-up using parallel processing is proportional to the number of processors when

it is ten to twenty percent of n. The major problem with their model is that the scheduling is

associated with the enumeration of all elemental operations, a requirement that makes it infea-

sible for large matrices. As a side aspect, their model does not take into account interprocessor

communication, and the di�erent times consumed by di�erent arithmetic operations.

Sadayappan and Visvanathan [Sadayappan88] treat the problem at di�erents levels of

granularity. If individual tasks are row operations, then the task graph is referred to as a

medium-grained model, while choosing the tasks to be elementary arithmetic operations results

in a so called �ne-grained model. They implemented a parallel sparse matrix solver in a shared

memory multiprocessor and report that the medium-grained approach is consistently superior

for large matrices due to lower operand access costs and better vectorization potential. The

greedy heuristic used in Sadayappan's work tries to schedule tasks as soon as they become

enabled. Even though this simple scheduling can be executed very fast, its results are quite

poor since the greedy scheduling mechanism lacks the information about the priority of the

execution of certain critical tasks.

Trotter and Agrawal [Trotter90a] suggested a level-based approach, in which all tasks of a

certain level of a task graph would be executed, and then the computation would proceed in

the next level. The scheduling results are not as good as the greedy-based approach because at

each level many processors may stay idle. This happens because one processor is not permitted

22

to start the computations at the next level until all the other processors had �nished the

computations at the present level.

Several algorithms based on critical path scheduling are reported in the literature. In this

scheme, the �rst scheduled tasks are in the critical path. Next, each branch is analyzed and

the local critical path is scheduled in a recursive fashion. Even though this scheme produces

results that are consistently better than level scheduling, the time complexity of this algorithm

is O(E(V + E)) where E represents the number of edges and V the number of vertices in the

task graph. For large matrices, the schedule time using this scheme becomes prohibitive.

We presented an O(V logV) scheduling heuristic based upon the measure of the remaining

completion time [Telichevesky91b]. The resulting schedules are consistently better than the

level-based and greedy heuristics without a substantial penalty in the execution time. We will

further discuss this scheduling heuristic and present simulation results in Section 2.3.

1.4 Parallel Circuit Simulation

In order to accelerate the circuit simulation, the parallel assembly of the network equations

representing the behavior of the circuit is as important as the fast parallel sparse matrix de-

composition. The parallel assembly of the equations consists of evaluating the device models

and adding or stamping their contributions to formulate the equations.

For example, let us consider a circuit simulator like SIMLAB. Each timestep in a transient

analysis involves a Newton-Raphson iteration in which a voltage vector vk can be computed

iteratively by evaluating the non-linearities and solving a sparse set of linear equations of the

form:

JF (v
k)(vk � vk�1) = �f(vk) (1.1)

where JF (vk) is referred to as the Jacobian matrix that consists of the partial derivatives

of the components of the charge/current equations with respect to the components of vk, and

�f(vk), the right-hand-side vector , consists of the contributions of the current and charge

balance to the error in the approximation of the iterate vk. The determination of the terminal

currents and charges and their derivatives in respect with the terminal voltages for every device

instance in the circuit is usually referred to as model or device evaluation. The sum of these

contributions into the Jacobian matrix entries and into the right-hand-side vector in order to

assemble the network equations is usually called stamping .

In order to achieve high e�ciency for the evaluation and stamping tasks, it is necessary to

consider them both at processor level and in the context of multiprocessing.

A large circuit often has thousands of circuit element instances. The model evaluation can

be executed locally in each processor, so that we could simultaneously evaluate several elements.

In order to quickly execute these tasks each processor of the Numerical Engine contains several

23

functional units controlled by a single, wide instruction stream able to initiate several operations

per clock cycle. Hand programming such a machine is not a trivial task, and building a simpli�ed

compiler that makes this job easier might be even more di�cult. Even though some background

work in this �eld is presented in [Ellis85], and we performed some preliminary studies in order to

implement such compiler, the task was abandoned. Consequently, the parallel model evaluation

was only simulated at the behavioral level, discussed in detail in Section 4.3.1.

Stamping requires a more complex analysis in the context of multiprocessing. Sadayappan

and Visvanathan [Sadayappan88] describe this process as a lock-synchronized parallel loop.

They present a theoretical analysis and compare with measured speedups on a shared memory

multiprocessor. However, the implementation becomes ine�cient if the number of parallel

processors is larger than six. We intend to further discuss this problem and present a detailed

account of our implementation on the Numerical Engine (a distributed memory system) in

Chapter 3.

The computation of transcendental functions is a very time consuming task in non-linear

evaluation. A mathematical library of transcendental functions based on the fast evaluation of

Chebyshev polynomials [Clenshaw63, Clenshaw62] was hand-coded for the Numerical Engine

architecture proposed in Chapter 4. A combination of operation reordering, clever register

allocation and multiple memory access was used to achieve a high utilization of the oating

point hardware. We shall further discuss these techniques in Appendix A.

1.5 Numerical Engine Architecture

The factorization of sparse matrices is a very ine�cient operation on general purpose com-

puters due to the di�cult access to sparse matrix elements. The di�culty in accessing sparse

matrix elements is partly due to the address generation complexity, and partly due to the large

bandwidth requirements between the main memory and the oating point unit. The end result

is a poor utilization of the oating point resources, specially in state-of-the-art heavily pipelined

architectures. For instance, experimental results show that the average oating point unit uti-

lization of an AXP ALPHA computer is around 2% for sparse matrix factorization. A detailed

discussion of the experimental results is provided in Section 4.4.

The Numerical Engine architecture overcomes the di�culties mentioned above by using

specialized hardware and the combination of scheduling and storage algorithms for the fast

parallel factorization of sparse matrices. The primary objective of the architecture development

was the design of a multicomputer containing processing elements with added hardware support

for fast sparse execution of operations of the type aij = aij � aik � akj , which are the most

frequent operations in matrix decomposition. In order to achieve its primary objective, each

processing element has multiple interleaved memories to supply data at high rates for the

oating point unit, support for the concurrent generation of addresses and writeback, and a

24

simple but fast pipeline interlock mechanism. In order to provide high speed control with the

smallest possible latency, the controller is a very simple microprogrammed unit, containing a

very wide microinstruction memory tightly coupled with the datapath. The Numerical Engine

performance for sparse matrix decomposition has been tested by a detailed register transfer

level (RTL) simulation, using a hand microcoded sparse matrix package for a single processor.

The results indicate that a single Numerical Engine processor could solve sparse matrices at

a sustained rate of 73 MFlops, or 73% utilization of the oating point unit. These results are

further discussed in Section 4.4.

The Numerical Engine is also expected to perform the device evaluation and stamping

tasks described briey in Section 1.4 and discussed in detail in Chapter 3 with a high degree

of oating point unit utilization. Even though these tasks have not been simulated in detail

using RTL simulation due to the extreme di�culty in writing its microcode, it seems that they

could also achieve high performance. This theory is supported by the high degree of oating

point unit utilization, 89% or 89 MFlops, achieved in the RTL simulation of the evaluation of

the transcendental function ex, described in detail in the Appendix A.

A detailed description of the Numerical Engine architecture is presented in Chapter 4.

1.5.1 Related Work

Gyurcsik and Pederson [Gyurcsik85] have designed, assembled and tested a prototype of

an attached processor for an IBM-PC computer for MOS model evaluation. The system uses

a table-based approach for the fast evaluation of the contributions of MOS transistors to the

assembly of the network equations.

Ginosar and Jacobson [Ginosar85] proposed a VLSI architecture for circuit simulation based

on waveform-relaxation. They proposed several specialized building blocks that would perform

concurrently di�erent tasks required for the implementation of the waveform-relaxation algo-

rithm.

Lewis [Lewis86] suggested the usage of a Forward-Euler integration method for avoiding the

solution of a sparse system of network equations in circuit simulation and proposed a specialized

hardware for matrix multiplication and table-based evaluation of the device contributions. The

shortcoming of the Forward-Euler integration method is that it requires very small timesteps

to ensure the stability of the solution.

Nakata, Tanabe, Onozuka, Kurobe and Koike [Nakata87] used a relaxation method for

circuit simulation, dividing the circuit to be simulated into several modules for independent

evaluation on a specialized parallel computer.

Agrawal and Trotter [Agrawal92] have designed, assembled and tested a prototype machine,

named PACE (Parallel Architecture for Circuit Evaluation), which consists of four Intel i860

[Intel90] microprocessors connected by a wide high speed bus. The PACE hardware is intended

for circuit simulation using a direct method solver. The PACE partitioning and scheduling

25

heuristics for sparse matrix decomposition are the same as the techniques presented in Chapter

2 of this thesis.

 Network
ProcessorHost Communication

 Network

Memory

Cache

Floating
 Point
 Unit

Integer
 Unit

Communication
 Processor

i860

P
rocessing

 E
lem

ent

Processing
 Element

Processing

 Element

Proce
ss

ing

 E
lement

P
rocessing

 E
lem

ent

Figure 1-3: General architecture of the PACE

Figure 1-3 gives a block diagram of the machine. It consists of several processing elements

(PEs) and a communication network (CN) controlled by a network processor (NP) and a host

processor. The prototype PACE is a wire-wrapped circuit board that connects to the backplane

of a VME SUN workstation. The network processor provides an interface to the host and con-

trols the PEs and the communication network by sequencing the communication transactions.

Each of the four PEs has a communication processor that interfaces to the communication

network, an integer unit that is responsible for address calculation, a oating point unit, cache,

and a memory system to hold the bulk of matrix data.

Performance measurements on PACE, using matrices generated during the simulation of

VLSI circuits, demonstrate the e�ectiveness of the partitioning and scheduling heuristics sug-

gested in this thesis. A detailed discussion of the PACE performance is provided in Section

2.6.2.

1.6 Thesis Outline

As discussed before, this thesis presents hardware and software techniques for the fast

numerical solution of di�erential equations, with an emphasis on the fast execution of the

circuit simulation algorithm. Most of the computation time in a circuit simulator is spent in

the assembly of a sparse set of linearized equations that represent the circuit behavior and

solving them.

Chapter 2 describes several software and hardware techniques that accelerate the solution

of sparse sets of linear equations. These techniques include storage allocation methods to

simplify data access, multiprocessor scheduling mechanisms, and how to exploit the locality of

26

reference and hardware characteristics such as pipelining, main memory paged-mode access,

and interleaving, in order to achieve a high degree of utilization of computational resources

both at processor and at system level.

Chapter 3 describes several software techniques that accelerate the assembly of the linearized

equations representing the circuit behavior in a general purpose multiprocessor environment,

and are specially e�ective when applied to the Numerical Engine proposed in Chapter 4.

Chapter 4 provides a comprehensive description of the proposed Numerical Engine archi-

tecture, both at system and at processor level. A complete description of the interprocessor

bus interface protocol and electrical speci�cation, as well as system-wide issues such as clock

generation is provided in the �rst section of Chapter 4. The second section presents a de-

tailed explanation of the register-transfer-level operation and accurate timing information on

the components of each individual processing element. The third section provides a description

of software developed for the architectural emulation and the veri�cation of its proper operation

when executing a modi�ed version of SIMLAB. The last section provides a comparison of the pre-

dicted performance of a single processing element with measurements taken from commercially

available state-of-the-art general purpose computers.

Finally, Chapter 5 summarizes the simulation results and presents a discussion on the major

contributions of this thesis, suggesting some paths for future research.

2

Parallel Sparse Matrix

Decomposition

A sparse system of linear algebraic equations can be written in matrix form as Ax = b,

where A = [aij] is an n � n sparse matrix of real or complex coe�cients, x is the vector of n

unknowns and b is the vector of n known right-hand side terms. In this work, we will assume

aij are real numbers.

If aij are complex coe�cients, the sparse matrix decomposition can be performed using

analogous techniques. The overall pattern of matrix data access and operations, and specially

its impact on computer architectures is very similar. In fact, matrices with complex elements

represent a less challenging problem in terms of achieving high processor e�ciency. One of the

major factors that reduce the e�ciency of sparse matrix computations is the bandwidth between

the memory and the oating point unit. It is very di�cult to design a memory system that can

keep pace with the oating point unit for the predominant operation in matrix decomposition,

called gaxpy [Golub89], and de�ned as aij = aij + aik � akj . In sparse matrices with real

coe�cients, four memory accesses are required per gaxpy , and only two arithmetic operations

are performed. If the coe�cient are complex, eight memory accesses are required, but eight

arithmetic operations are performed.

It is desirable to exploit the sparsity of some matrices, such as the large, unstructured ma-

trices generated during circuit simulation. The most obvious reason is to avoid storing the

elements that are zero in the beginning of the decomposition and will never change during the

decomposition, which are called structural zeros . Not storing these zeros makes it much more

complicated to store the other matrix elements, called structural non-zeros . These elements

could be originally non-zeros, or they might become non-zero during the course of decomposi-

tion, and in that case they are called �ll-ins . In the matrix examples further discussed in this

chapter, the non-zeros account roughly for 0.1% to 0.7% of the elements in the corresponding

dense matrix. Another advantage of not storing the structural zeros is that no time is required

27

28

to access them, which in turn avoids the trivial multiply-by-zero and add-with-zero operations.

1 2 3 4 5 6 7 8
1 X X
2 X X X
3 X X X
4 X X
5 X X X
6 X X X
7 X X
8 X X X X X X X

(a)

nil

nil

nil

nil

nil

nil

nil

nil

nil nil nil nil nil nil nil

nil

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(b)

Figure 2-1: A sparse matrix (a) and its associated orthogonal linked list storage (b)

One way of storing the structural non-zeros is by using orthogonal linked lists , described

in [Kundert86]. For example, consider the sparse matrix depicted in Figure 2-1(a) and its

associated orthogonal linked list storage representation, as shown in Figure 2-1(b). In this

representation, each structural non-zero element corresponds to a data structure which typically

contains the numerical value aij , the row and column indices i and j, and a pair of pointers

to the next data structure in the row and column. Even though simple and very exible,

this orthogonal linked lists are not very e�cient when used to perform factorization. Several

di�erent storage data structures have been proposed that help to achieve faster access to matrix

data, and these will be discussed later in this chapter.

As mentioned in Chapter 1, there are two classes of methods for solving systems of equations:

direct methods , which are able to solve the system in a �xed and �nite number of steps, and

indirect or iterative methods , which produce an in�nite sequence of approximate answers that

may converge to the correct answer. Since we are particularly interested in the decomposition

of sparse matrices for circuit simulation, iterative methods will only converge if rather strong

conditions on A are satis�ed.

It is often desirable to solve a system of equations with more than one right-hand side,

preserving the original matrix. In circuit simulation, this technique is widely used to avoid

the costly reconstruction of the Jacobian matrix in the inner loop of a Newton iteration, as

described in Chapter 3. A simple modi�cation of the original Gaussian Elimination scheme,

allows the solution of various problems with varying right-hand side vectors b. This technique,

called LU decomposition, is widely used in simulators and will be further discussed in Section

29

2.1. This work is focused on direct methods, and in particular, LU decomposition.

In this chapter, several aspects of parallel sparse matrix decomposition will be discussed.

Section 2.1 introduces the basic sparse LU factorization and the column match problem re-

lated to the usage of the orthogonal linked list storage by itself. Section 2.2 will describe the

Scatter-Gather approach, which solves the column match problem. Section 2.3 will introduce

the readers to the extensions of the basic LU decomposition algorithm for a multicomputer

environment, and will present a greedy heuristic based on a multitask graph measure called

remaining completion time which empirically generates excellent multiprocessor schedulings

without a substantial penalty in the execution time. Section 2.4 will describe Overlap-Scatter

Arrays, and how its exibility greatly enhances the utilization of a parallel processor when

compared with the plain Scatter-Gather approach. Section 2.5 will introduce O2SA arrays

and how they can be used to exploit locality of reference within each processor without sacri-

�cing multiprocessor performance. Section 2.5.3 also discusses how to change the scheduling

mechanism to accommodate di�erent storage organizations. Finally, Section 2.6 addresses some

actual implementation issues, using an enhanced scheduler to predict the performance of serial

and parallel processors.

2.1 Sparse LU Factorization

The LU factorization or decomposition consists of applying preserving transformations on

the original matrix A, decomposing into the product of two matrices, L and U , which are

respectively lower and upper triangular, as:

Ax = L(Ux) = Ly = b (2.1)

Once the matrix A is factored into L and U , it is easy to solve the lower triangular problem

Ly = b for y, in a process called forward elimination. Then, the upper triangular system

Ux = y can be solved for x, in a process called back substitution. The decomposition can be

thought as the product:2
6666664

l11 0 � � � 0

l21 l22 � � � 0
...

...
...

ln1 ln2 � � � lnn

3
7777775
�

2
6666664

u11 u12 � � � u1n

0 u22 � � � u2n
...

...
...

0 0 � � � unn

3
7777775
=

2
6666664

a11 a12 � � � a1n

a21 a22 � � � a2n
...

...
...

an1 an2 � � � ann

3
7777775

If the matrix is dense, this system has n2 equations corresponding to the elements of A,

and n2 + n unknowns, the entries of L and U . Since this is an under-determined system

of equations, n elements can be chosen freely. For implementation reasons, we chose to set

the diagonal elements of U to one, which is often referred to as Crout's algorithm for LU

decomposition, with the small di�erence that only row-wise operations are performed.

30

Assuming the original coe�cients aij are no longer necessary, it is possible to perform all

computations in place, i.e. no additional storage is required to store the LU coe�cients. The

upper-triangular diagonal elements ukk are implicitly stored, as they are all set to ukk = 1. In

terms of memory usage, these are the key advantages of the LU decomposition method.

Since oating point divisions are more expensive operations than oating point adds or mul-

tiplies, another small change in the original Crout's algorithm involves computing the reciprocal

of a�1kk = 1
akk

and storing it for future use. The original value akk is discarded.

Given A, a non-singular sparse matrix, Algorithm 2.1 can be used to solve the system of

equations Ax = b. This algorithm is called Source-row directed because at each LU decomposi-

tion step, some row k is picked to be used as a source, i.e. to update the rows i underneath it.

The rows i, updated by row k, are called destination, or target rows. If it is necessary to solve

for multiple b(m), multiple forward eliminations and back substitutions are executed, but only

one LU decomposition. The double loop marked \Update" consumes most of the time during

the algorithm execution.

Algorithm 2.1 exploits the sparsity of the matrix to reduce the number of operations required

to solve the system of equations. If a sparse matrix problem is solved as a dense matrix problem,

O(n3) operations would be required. The number of operations necessary when the matrix

sparsity is exploited decreases to O(n�), where � is a factor which depends on the structure

of the matrix. � is 1.5 for a grid, and probably smaller for circuit problems, but di�cult to

determine exactly. The matrix sparsity is represented in Algorithm 2.1 by the operator foreach,

which visits all the elements on a list of structural non-zeros. Using the data structure shown in

Figure 2-1(b), the access of the desired non-zero elements consists of visiting the next element

in the linked list, and is reasonably trivial for all foreach cases, except for the element marked

a�ij in the update loop.

Consider, for example, the execution of the update loop in Algorithm 2.1, and more speci�-

cally, the operation a87 = a87�a81�a17 during the factorization of the example matrix depicted

in Figure 2-1. The element aik = a81 is naturally accessed by visiting the next element in the

�rst column list during the execution of the outer foreach loop. The element akj = a17 is also

easily accessed by visiting the next element in the �rst row during the execution of the inner

foreach loop. However, there is no obvious way of accessing directly a�ij = a87 with this data

structure. In order to reach element a87 it is necessary to traverse the linked list binding the

elements of row 8 (or column 7), and checking the column index (or row index), until the desired

element is reached. An ine�cient approach to this search, often referred as column matching ,

can substantially degrade the performance of sparse matrix factorization algorithms.

In order to quantify the costs of column matching, when an element aij is read, but its

column index does not match the desired index, we refer to this as a miss , because an entry

is read but not used. Table 2-1 summarizes the number of gaxpys and misses for a number of

test matrices derived from the circuit simulation of real VLSI circuits. dram is a 2806� 2806

31

Algorithm 2.1 (Modi�ed Source-row Directed Form of Crout's Algorithm).

k = 1

while k � n f /* LU Decomposition */

a�1kk = 1
akk

foreach j > k such that akj 6= 0
akj = a�1kk � akj /* Normalize */

foreach i > k such that aik 6= 0
foreach j > k such that akj 6= 0

a�ij = a�ij � aik � akj /* Update */

k = k + 1

g

k = 1

while k � n f /* Forward Elimination */

yk = b
(m)
k

foreach j < k such that akj 6= 0
yk = yk � akj � yj

yk = a�1kk � yk

k = k + 1

g

k = n

while k � 1 f /* Back Substitution */

xk = yk

foreach j > k such that akj 6= 0
xk = xk � akj � xj

k = k + 1

g

matrix representing a subsection of a dynamic memory chip. feb is part of a bitonic sorter chip.

mesh represents the solution of a two-dimensional Poisson problem on a 32�32 grid. The other

matrices are derived from digital signal processing circuits. The table also lists, in the sixth

column, the percentage of wasted reads. In extreme cases, the percentage of these misses can

be as high as 99%. In other words, if the column matching is performed as suggested in the

previous paragraph, the decomposition time would be a hundred times slower than necessary.

It should be noted that in earlier machines, read overhead was small compared with the time

required to perform a oating point operation, making misses less signi�cant. For this reason,

older versions of circuit simulators like SPICE [Nagel75] used only a orthogonal linked list

storage. However, in modern workstations and supercomputers, the overhead is much larger

than the time necessary for a oating point operation, making avoiding misses much more

important.

Next section will describe the Scatter-Gather approach, which provides an elegant solution

32

matrix n nonzeros gaxpys misses misses(%) total

dram 2,806 55,706 908,129 3,081,412 77.24 3,989,541
feb 10,060 136,486 291,230 26,271,225 98.90 26,562,455
mesh 961 28,881 325,920 76,604 19.03 402,524
iir12 7,310 153,858 1,734,954 1,525,921 46.79 3,260,875
iir123 11,014 229,004 2,449,967 2,522,306 50.73 4,972,273
omega 4,212 48,850 53,178 6,431,113 99.18 6,484,291
mfr 5,496 93,826 378,976 1,280,927 77.16 1,659,903

total | | 6,142,354 41,189,508 87.03 47,331,862

Table 2-1: Percentage of misses using column matching for sparse matrix decomposition

to the column match problem.

2.2 The YSMP Scatter-Gather Approach

The Scatter-Gather approach was �rst introduced in the Yale Sparse Matrix Package [Eisenstat77].

The basic idea consists of adding to the sparse matrix representation an extra vector S of size n

which holds the values of a�ij in Algorithm 2.1 in scattered form. Instead of traversing a linked

list to match the proper column index, the value of a�ij is directly obtained as a�ij = S[j], using

indirect addressing. In order to obtain this representation, the i-th row is �rst scattered in

the proper positions of the vector S, the row operation performed, and then the i-the row is

gathered back into its previous compact representation.

Using the approach just described, the great advantages introduced by the elimination of

the linked list traversal would be entirely o�set by the overhead costs due to the scattering and

gathering of a row before and after each inner loop of the update. A much better approach

would be to move the scattering and gathering process out of the update loop, in which case

each row would be scattered and gathered only once during the factorization. In order to achieve

this goal, it is necessary to fundamentally change Algorithm 2.1 to a Target-row directed form

of the sparse matrix decomposition.

Figure 2-2(a) depicts the Source-row directed nature of the Algorithm 2.1. In particular, the

�rst execution of the update loop is highlighted, showing the �rst row updating rows beneath

it. In general, in each update loop, a particular source row k is �xed, and used many times to

update the rows beneath it.

In order to take full advantage of the Scatter-Gather mechanism, in each update double

loop, a particular destination, or target row i, is �xed, and used many times to be updated by

the rows above it. Figure 2-2(b) depicts the Target-row directed version of Crout's algorithm.

In particular, the last execution of the update loop is highlighted, showing the update of the

last row by other rows above it.

33

1 2 3 4 5 6 7 8
1 X X
2 X X X
3 X X X
4 X X
5 X X X
6 X X X
7 X X
8 X X X X X X X

(a)

1 2 3 4 5 6 7 8
1 X X
2 X X X
3 X X X
4 X X
5 X X X
6 X X X
7 X X
8 X X X X X X X

(b)

Figure 2-2: Source-row directed (a) and target-row directed (b) forms of sparse matrix de-
composition

Given A, a non-singular sparse matrix, and a scatter vector S, Algorithm 2.2 can be used for

the e�cient LU decomposition of A. In order to solve Ax = b, the forward elimination and back

substitution steps shown in Algorithm 2.1 are used without any changes. This algorithm can

be slightly re�ned by combining the gather and normalize operations for the common elements.

Even though this method is used in the actual implementation, the original form was left here

for clarity. Though both algorithms represent exactly the same set of arithmetic operations,

the execution in di�erent sequential order have a great impact on the operand's access and

parallelization. Later in this chapter, we shall demonstrate that both Algorithms 2.1 and 2.2

restrict the available parallelism too much.

Algorithm 2.2 (Scatter-gather Target-row Directed Form of Crout's Algorithm).

i = 1

while i � n f /* LU Decomposition */

foreach j such that aij 6= 0
S[j] = aij /* Scatter */

foreach k < i such that aik 6= 0
foreach j > k such that akj 6= 0

S[j] = S[j]� aik � akj /* Update */

foreach j such that aij 6= 0
aij = S[j] /* Gather */

a�1ii = 1
aii

foreach j > i such that aij 6= 0
aij = a�1ii � aij /* Normalize */

i = i+ 1

g

34

Figure 2-3 helps illustrate the whole Scatter-Gather process. Before each update loop, the

elements of a particular target row are scattered into the proper position j in the S vector by

traversing the linked row list and using the column index j as an address. This process, called

scattering , is depicted in Figure 2-3 with arrows pointing to the scatter vector S. During the

update loop, access to the source elements akj and the multipliers aik is naturally done by

visiting the next element in the linked lists, just as described in Algorithm 2.1. The di�erence

is that instead of traversing a linked list to reach a�ij , there is an immediate indirect access to

S[j]. After all the update operations are �nished, it is possible to gather back the elements of

the row by traversing the linked row list and using the column index j as an address. This

process, called gathering , is depicted in Figure 2-3 with arrows pointing from the scatter vector

S back to the actual matrix elements.

The impact of scattering the destination rows has broader implications than just the simpli-

�cation of the column search. Supercomputers with pipelined indirect addressing capabilities

could use the Scatter-Gather algorithm and take advantage of the constant update time in

order to keep the oating point arithmetic pipelines full. Another advantage of this method is

that it exploits the locality of reference for accessing data. The destination row accesses can be

done to a local cache that keeps the scatter vector S. The source row access, though accessing

a large memory, is sequential, which might be an advantage for some computers.

nil

nil

nil

nil

nil

nil

nil

nil

nil

nil

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

nilnil nil nil nil nil

scatter

gatherscatter
vector
 S

Figure 2-3: Scatter-Gather LU decomposition

Another advantage of the Scatter-Gather approach, also useful in all storage mechanisms

that use scattering, is the e�cient interleaving , described in detail in the next section.

35

2.2.1 E�cient Interleaving in Scattered Vectors

As mentioned earlier, one of the key issues for achieving high e�ciency in sparse matrix

computations is the design of a memory system that can keep pace with today's fastest oating

point units. In order to increase the memory throughput, a possible design decision is to

use faster memories, which tend to be smaller and much more expensive or, if possible, use

interleaving.

Consider the memory organization shown in Figure 2-4. There areM memory modules, each

one with its independent memory address registers (MAR) and memory data registers (MDR).

A fast processor could issue up to M memory requests reqi during a single memory cycle if

all requests are guaranteed to be directed to distinct memory modules. The address space is

divided in such way that memory module i contains all addresses k such that i = k mod M .

This organization is called M-way interleaved memory .

Address

Data

Memory
Bank 1

Memory
Bank 2

Memory
Bank 3

Memory
Bank M

M:1 Multiplex

MAR 1 MAR 2 MAR 3 MAR M

MDR 1 MDR 2 MDR 3 MDR M

Figure 2-4: M -way interleaved memory system

If memory accesses were sequential, it would be easy to achieve a high degree of e�ciency

in interleaving, because the data would certainly be in distinct memory banks. This is the case

when accessing source row elements and column indices during the update loop in Algorithm

2.2. However, the target row elements are scattered in a random order with respect to the

interleaved memory banks. For example, in a two-way interleaved memory system, the hit

ratio, or the chance of accessing a particular target row element in a given memory bank is

50%. By multiplying the number of memory modules (2) by the hit ratio just described (50%),

we obtain the e�ective usage of the memory system. In our example, the e�ective usage is 1:0,

or in other words, the usage of interleaved memories is a waste, as the same results would be

obtained using a non-interleaved memory system.

36

matrix 2-way 4-way 8-way

dram 0.93 0.85 0.73

feb 0.81 0.59 0.39

mesh 0.96 0.87 0.77

iir12 0.94 0.83 0.68

iir123 0.93 0.82 0.67

omega 0.76 0.53 0.34

mfr 0.88 0.70 0.50

Average 0.88 0.74 0.58

Table 2-2: Achievable interleaving hit ratios

On the other hand, it is desirable to achieve a high degree of interleaving, specially for

the memories that hold the scattered destination row. In terms of a sparse matrix solver

implementation, this is particularly important because each gaxpy operation requires both a

read and a write access cycle in the target data memory.

Fortunately, interleaving can be e�ciently used for increasing the memory throughput with

a small modi�cation in Algorithm 2.2. Assuming a two-way interleaving, and using the fact

that the order in which elemental updates are executed in a row update operation is irrelevant,

we can pre-reorder the column indices and the source elements akj (those with j > k) of any

particular row k in an even-odd fashion. Because the scattered structure preserves the relative

position of the elements, the access to an even-numbered source element akj will be tied to the

access of an even-numbered destination element S[j]. The same holds for odd-number elements

akj . By accessing the source elements in this even-odd fashion, we expect to obtain twice the

throughput for the target elements as the row size increases. This concept can be extended

to m-way interleaving by reordering the column indices in a round robin module m fashion, in

order to obtain asymptotically m times the throughput.

Since the number of elements in a sparse matrix row is usually small, it is important to

check the e�ectiveness of interleaving for the test matrices. A simple benchmark was initially

devised. For each row operation, we accumulated the total number of elemental accesses and,

assuming m-way interleaving, we also accumulated m times the number of elemental accesses

to the most used memory bank. The ratio of the two sums above indicates the interleaving

e�ciency, which is the worst case scenario of interleaved memory access. A smart scheduling

heuristic could improve slightly these �gures by trying to �ll in the unused memory slots at the

end of one task with the appropriate accesses at the beginning of the next. On the other hand,

a scheduling heuristic that cannot cope with these e�ects can make this �gure a little worse.

Table 2-2 lists the results of the simple experiment on available interleaving e�ciency for

the factorization of the test matrices previously described using two-, four- and eight-way

interleaving factors. On average, two-way interleaving can achieve a high hit ratio (90%). Four-

37

Matrix No Reordering With Reordering
Cycles PE Stall Bank Misses Cycles PE Stall Bank Misses

dram 1,641,218 491,407 426,909 1,286,943 137,132 75,532

feb 1,171,617 284,448 132,139 1,106,794 219,625 84,338

mesh 637,602 203,584 145,070 503,960 69,942 23,155

iir12 3,373,011 1,055,524 802,858 2,669,872 352,385 119,309

iir123 4,868,721 1,551,858 1,152,210 3,892,886 576,023 208,670

omega 346,034 89,502 29,208 340,756 82,224 25,329

mfr 1,080,600 334,331 174,780 960,518 214,249 67,302

Total 13,118,803 4,010,654 2,863,174 10,761,729 1,651,580 603,635

Table 2-3: E�ectiveness of reordering the rows with respect to column indices for interleaving

way interleaving permits on average the e�ective usage of three out of four memory cycles, while

eight-way interleaving exhibits low e�ciency. The hit ratio is particularly small in matrices

where most rows have only 2 or 3 elements, like feb and omega.

In order to fully test the e�ectivity of the row reordering scheme in respect to the column

indices, a detailed RTL simulation of the proposed architecture was necessary. Chapter 4

contains a detailed description of the proposed architecture. It was decided that two-way

interleaved memories would be used in the processor design, since its usage provides high

e�ciency at a relatively low component and wiring cost. According to Table 2-2, two-way

interleaving can achieve an average of 2� 0:88 = 1:76 e�ective usage.

The results of a detailed RTL simulation of sparse LU decomposition for the test matrices

on the proposed target architecture are summarized on Table 2-3. The data on Table 2-3

is organized to highlight the e�ectiveness of reordering the rows with respect to the column

indices for interleaving. In the �rst data set, unordered matrices are used. In each data set, the

�rst column lists the total number of clock cycles required by the sparse matrix decomposition

algorithm. The second column lists the number of cycles in which the processor was stalled.

The third column lists the number of interleaved memory bank misses. Each memory bank

miss causes the processor to stall for one cycle. While the number of stalled cycles account for

31% of the total number of cycles, a signi�cant majority, 71% on average (and up to 86%) of

the stalled cycles were caused by interleaved memory bank misses. The exceptions are feb and

omega, which have a very small number of elements per row, on average. The second data set,

corresponding to matrices that have their column indices reordered for improving interleaving

e�ciency, exhibits consistently better results. Even though the change was not signi�cant for

matrices like omega and feb, the number of interleaved memory bank misses in the second

data set are typically one-�fth of the original number of misses. The impact on processor

performance is quite signi�cant, as the number of stalled cycles was reduced to a third of the

original �gure, resulting in global improvements in the order of 25%.

38

Next section describes a special purpose single processor architecture that could take advan-

tage of the characteristics of Algorithm 2.2 in order to achieve high utilization of the oating

point unit.

2.2.2 A Scatter-Gather Special Purpose Processor

Given the current technology, the most e�cient way of keeping large amounts of data,

required in the storage of large sparse matrices, with high speed random access is the usage

of dynamic random access memories (DRAMs). In comparison, static memories (SRAMs) are

faster, but their density is much lower, which makes them unsuited for the storage of large

amounts of data. SRAMs can be used to hold small amounts of temporary data, such as

source rows in compact form, or up to O(n) elements used to hold a small number of scattered

rows. Therefore, the sparse matrix storage must be restricted to DRAMs for a reasonable

implementation, while SRAM's can be used for small scale data storage.

An important aspect of DRAMs is that data access time depends on access locality. One

can think of a DRAM chip as a large array of w � w elements. The access to elements in the

same column is reasonably fast, while the access to elements in di�erent columns is usually four

times slower. Fast access to elements in a given column is referred to as fast static column mode

or fast page mode.

Comparing the highest density memories available today, SRAMs present more than twice

the speed of the DRAMs' fast static column mode access, while they have only one-sixteenth

of DRAMs' density.

Figure 2-5 depicts a row-update operation being executed in a processor with a dedicated

datapath for source-target alignment. In order to simplify the overall picture, the memories are

not interleaved. We assume a target-row directed form algorithm with Scatter-Gather storage.

The entire sparse matrix is stored in a row-ordered compact form in the DRAM, which can be

part of the actual implementation of the orthogonal linked list storage. Each entry consists of

numerical data (64bits) and a column index (32bits). The scattered target row i is kept in the

SRAM. There is a counter that scans sequentially the elements of a row in DRAM and also a

dedicated path that reads in column indices from DRAM, providing the addresses of matching

data to the SRAM. Since each SRAM address is used twice, once for read and once for write,

there is a shift register with a number of stages that matches the number of pipeline stages in

the memory to oating point unit path, providing the write address for the SRAM aligned with

the FPU output. Finally, the controller has to keep track of the number of operations executed

and perform a conditional jump to stay in the update loop.

The update operation proceeds in a pipelined fashion. The pair fn, akn g is read from

the DRAM, while the previous values read are stored in the multiplier input (akm) and in the

SRAM read address register(m). The proper matching data (aim) from the scattered vector i,

is being read from the SRAM. The result of the previous multiplication (aik � akl) is stored in

39

the ALU input, being subtracted from the last data read from the SRAM (ail). The result of

the previous ALU operation (a0ij = aij�aik�akj) is written back to the proper target location

(j). Note that in each clock cycle, approximately nine operations are being executed | two

integer operations, two oating point operations, four memory accesses and a conditional jump.

It is important to note that this is a balanced system. During one read cycle of the DRAM,

the SRAM is accessed twice, once for a read operation and once for a write operation. This is

consistent with our assumption that the SRAM can operate at least at twice the speed of the

DRAM's fast static column mode. In this case, we can assume that during most of the time,

the DRAM is operating in fast static column mode because the accessed data is in consecutive

memory positions.

j

l

m

n

a

a

a

a

a

kj

kl

km

kn

kp

akmaikail aik akl*

a’ij

ALU MPY

aij

ail

aim

p

SRAM DRAM

m ++

l

j

write

read

read

data index data

Figure 2-5: Dedicated datapath for source-destination column matching

A small problem with this scheme is the time spent during a row scatter, when no useful

numerical operation is executed. Note that gathering can be done concurrently with normal-

ization. However, the major problem with this technique is its extension to a multiprocessor

environment. The target-row directed form restricts the available parallelism too much because

40

it fundamentally restricts the scheduler freedom, as we shall demonstrate in Section 2.4.

The next section address the methodology used to schedule the sparse matrix factorization

operations in a multiprocessor environment to achieve a high degree of utilization of the available

computational resources.

2.3 Scheduling Heuristics for Fast Sparse Matrix Decomposi-

tion

Given a series of operations and their dependencies, the objective of scheduling consists of

�nding the sequence of operations for each processor in order to minimize the total completion

time. It is also required that a schedule have the deadlock free property. We are interested in

scheduling heuristics for a bounded number of resources, in which an optimal solution is shown

to be NP-complete.

Several heuristics have been proposed for scheduling the sparse matrix factorization in

a multiprocessor system. They have been briey discussed in Chapter 1. In the following

we shall discuss in detail the approach proposed by this PhD thesis. We start by providing

some background information in order to better understand the remaining completion time

heuristic. Next, we describe in detail the proposed algorithms and compare them with results

from previous works. One important characteristic of our algorithm is that it can be easily

tailored for di�erent architectures, enabling us to predict the performance of a particular system

con�guration. In Section 2.6, we will discuss briey the predictions we have used to �ne tune the

architecture proposed in Section 2.5.2, and compare the performance predicted by the scheduler

with some actual measurements performed in a specially designed parallel computer and in a

workstation.

For clarity, the following scheduling analysis will only be done for the LU decomposition. In

the actual scheduler implementation, the tasks corresponding to the forward elimination and

back substitution were also taken in consideration.

2.3.1 Background

Let us consider the direct solution of the system Ax = b, using the Modi�ed Crout's Algo-

rithm described in Section 2.1. Our objective is to partition and schedule amongst P processors

the operations executed in the /* Update */ and /* Normalize */ loops in Algorithm 2.1 in order

to minimize the time spent in a multiprocessor for performing a sparse matrix decomposition.

As discussed in Chapter 1, the scheduling can be done at di�erent granularity levels. In face of

the tradeo�s between the amount of available concurrency and the required storage, we decided

to use the medium-grained approach, where each pre-scheduled task represent a single row-wise

operation from Algorithm 2.1. Another reason for choosing the medium-grained tasks is then

the �ne-grain concurrency can be exploited in a pipelined oating point unit. Using this model,

41

the LU decomposition consists of a series of operations that follow in one of the two categories:

A row-wise normalization, denoted by Nk, and de�ned by:

akj = akj �
1

akk
8akj j akj 6= 0 and j > k (2.2)

and a row-wise update, denoted by k ! i, corresponding to the row i being updated by row

k, which is de�ned by:

aij = aij � aik � akj 8akj j akj 6= 0 and j > k (2.3)

Each non-zero element aik with i > k de�nes a row-wise update task k ! i. In order to

keep the update naming consistent with the previously described convention, we shall refer to

k as a source row and i as a target row or destination row of an update operation. Given an

n � n sparse matrix A, n row-wise normalizations Nk, and roughly nonzeros
2 row-wise updates

k ! i are necessary to complete the LU factorization. This estimate assumes there are roughly

as many non-zero elements in the upper and lower triangular parts of A.

The update and normalize operations just described can be executed in any sequence, pro-

vided that the following rules are respected:

i. Nk cannot be started unless all update operations that modify akk are completed.

ii. k ! i cannot start before all updates that modify aik have been completed and

iii. Element aij in k! i cannot be updated before akj has been normalized.

Rules (i) and (ii) establish dependencies in the strong sense with respect to row-wise oper-

ations, i.e. one operation cannot start fetching operands before the other has �nished storing

all results, which usually is a bad characteristic for pipelined systems. Rule (iii), however,

permits a row update task to start as soon as the �rst result of the normalize operation is

available, provided that both pipelines run at the same speed. This rule establishes a new type

of dependency which we shall refer to as a mild dependency.

These tasks and the dependencies among them could be conveniently expressed as a gener-

alized multitask graph G(V;Es; Em), consisting of a node set V and two arc sets Es and Em

(corresponding to both strong and mild dependencies). This task graph has no cycles and is

sometimes referred as a Direct Acyclic Graph (DAG).

In order to properly exploit pipelining in a multiprocessor vector machine we suggest the

following task model:

Each node vi 2 V corresponds to a pipelined task, as shown in Figure 2-6. Figure 2-6(a)

shows the representation of the node vi in the task graph. Figure 2-6(b) depicts the execution

of the task in a real processor. The �rst piece of data enters the pipeline at t = tif . After a

time delay pi (t = tof = tif + pi) corresponding to the pipeline latency, the result of the �rst

elemental operation is available. After a time ci (t = til = tif + ci), which corresponds to the

42

p
i

c i

(a)

t

t

t

t ol

il

of

if p
i

c iTask v
i

Task v
j

(in a different
 processor)

Task v
k

time

(b)

Figure 2-6: Task representation and its timing

pipeline throughput times the number of elemental operations, the last piece of data is fed into

the pipeline and the processor is ready to start feeding the pipeline some data corresponding

to a new task. At t = tol = tif + ci + pi, the result of the last elemental operation is ready,

and task vi is �nished. If a task vj depends strongly on vi, it can only start at t = tol, but

in the case of a mild dependency, like the situation depicted in Figure 2-6(b), it can start in

another processor as early as t = tof . If a task vk is executed in the same processor and is

either independent of or depends mildly on vi, it can start execution as early as t = til. Strong

dependencies are represented in the task graph by a solid arc esij , while mild ones are represented

by a dotted arc emij . The ability to exploit mild dependencies plays a key role in the performance

of state-of-the-art computers with deeply pipelined oating point units.

Figure 2-7(b) shows the task graph that represents the LU Decomposition of the sparse

matrix depicted in Figure 2-7(a). For the sake of simplicity, the costs shown in the task graph

vertices are the number of elemental update or normalize operations necessary to complete it.

Ignoring pipelining for the while being, the pi costs vanish and all dependencies become strong.

A task is called an initial or �-task if it does not depend on any previous operations, and

is called a terminal or
-task if no task depends on it. We say that vi depends on vj if and

only if there is at least one directed path R
j;i
k that starts at vj and �nishes at vi. Every task

vi has an associate set of dependency paths R�;i. Each element R�;i
k 2 R�;i is itself a set of

vertices vj that are traversed in the path that connects vi to any �-node (and includes them).

Furthermore, we can associate with each set R�;i
k an integer function S(R�;i

k) that represents

the cardinality of R�;i
k . A task vi is said to be at level hi if among all the paths R

�;i
k connecting

the initial tasks to vi, the largest one contains hi elements, or

43

1 2 3 4 5 6 7 8
1 X X
2 X X X
3 X X X
4 X X
5 X X X
6 X X X
7 X X
8 X X X X X X X

(a)

1 1 1 22

1 1 2 2 2

1 1

1 1

1

0

N1 N4 N2 N7 N6

1->3 1->8 2->5 2->8 6->8

3->8 5->8

N3 N5

7->8

N8

(b)

Figure 2-7: A sparse matrix and its associated task graph

hi = max
k

n
S(R�;i

k)
o

8R�;i
k 2 R�;i: (2.4)

In Figure 2-7, tasks at the same level are grouped together in the same horizontal line. The

height H of a task graph is de�ned as the level of the vertex at the highest level, or

H = max
i
f hi g 8i j vi 2 V is a terminal node: (2.5)

Clearly, the height of the task graph is associated with the minimum completion time of

the matrix triangulation. Task graphs that are short and stout are expected to better exploit

parallelism than ones that are tall and skinny. In the example in Figure 2-7, the height of

the task graph is six. However, the level of the task is not enough to properly model some

hardware features and di�erent task sizes, so we introduce the concept of the completion time

di of a given task vi, which is de�ned as follows:

di = max
k

8<
:

iX
j=�

(cost(vj))

9=
; 8vj j vj 2 R

�;i
k (2.6)

where R�;i
k is any path starting at an �-node and �nishing at vi. Cost(vj) can be either

cj (resource cost), pj (pipeline latency time) or even cj + pj , depending on the type of the

dependencies on vj that occur while traversing the path R
�;i
k . The earliest completion time D

for the decomposition is de�ned as the completion time of the node with the largest di, or

44

D = max
i
f di g 8i j vi 2 V is a terminal node: (2.7)

The earliest completion time establishes the �rst barrier on the available concurrency for a

given matrix and cost function. Given t1 the sequential execution time and P processors, one

could de�ne �D, the maximum achievable processor utilization due to the critical path as:

�D = min

�
1;

t1

D � P

�
(2.8)

We can also de�ne a critical path R�;

c as any path whose total cost d
 = D. For example,

in Figure 2-7, the critical path is the one containing N2, 2 ! 5, N5, 5 ! 8, 7 ! 8 and N8,

corresponding to D = 7.

The critical path is not a very strong bound, since we have shown in previous work that

the partitioning bound is usually more restrictive than the critical path bound for row-wise

operations [Telichevesky91a]. The main results of that work are reproduced in the next section.

Nevertheless, the critical path plays an important role in the scheduling algorithm, as it seems

natural that tasks that belong to the critical path should be executed before other less important

tasks. The last de�nition we need for our scheduling algorithm is the remaining completion time

�i of a given task vi. Assuming vj is a terminal task, or a
-task with di = D, and there is at

least one path R
i;j
k , we de�ne �i as:

�i = max
k

8<
:

jX
x=i

(cost(vx))

9=
; 8vx j vx 2 R

i;j
k and vx 6= vi (2.9)

The remaining completion time is a measure of how important the early execution of a given

task is, as it is known that once the task vi is �nished, the minimum time for completion of all

the tasks that depend upon vi is �i. Clearly � for
-tasks is zero. In Section 2.3.3, we shall

describe an algorithm for computing the remaining completion time for the entire task graph

in linear time and a quasi-linear time scheduling scheme based on �-heuristics.

2.3.2 Partitioning Schemes

Many heuristics have been proposed in the literature for the partitioning problem [Gerasoulis90].

However, due to the large number of rows in a matrix, usually many thousands, we could not af-

ford to have computational costs that do not exhibit nearly linear time complexity. We focused

our attention on simple algorithms that yield suboptimal results at very small computational

cost.

All three partitioning methods described in [Telichevesky91a] are row-based. Once a par-

ticular row has been assigned to a particular processor, the processor will become responsible

for all the update tasks that use the row as a target, as well as its normalization. If necessary,

the processor will also send the normalized row to other processors to update other rows. This

45

heuristic minimizes the amount of data transmitted in the network, as it sets the upper bound

to O(nonzeros).

In order to compare the relative merits of di�erent schemes, we need to de�ne the partition

utilization �P , due to the partitioning constraints, as:

�P =
t1

tP � P
(2.10)

where tP represents the barrier to the amount of parallelism available during the LU de-

composition, and corresponds to the minimum completion time due to partitioning. t1 is the

sequential execution time, and tP can be computed as:

tP = max
p

8<
:
X
j

C(vj)

9=
; vj 2 p (2.11)

where
P

j C(vj) represents the total execution time of the tasks vj that are executed in

processor p.

Fortunately, it is also possible to obtain the optimal partitioning utilization, or the upper

bound in utilization due to partitioning , �P;upper, which represents the maximum amount of

parallelism available constrained by the load of a single row, and de�ned as:

�P;upper = min

(
1;

t1

tP;lower � P

)
(2.12)

where tP;lower represents the load of the most computationally expensive row, de�ned as:

tP;lower = max
i

8<
:
X
j

C(vj)

9=
; vj is j ! i orNi (2.13)

where
P

j C(vj) represents the total execution time of the the tasks vj that have row i as

destination.

Three di�erent partitioning methods were studied: the round robin O(n) scheme, the ele-

ment equalization O(n logn) scheme, and the load balancing O(n logn) scheme. In the round

robin scheme, rows are simply assigned to processors in a round robin fashion. In the element

equalization scheme, the rows are sorted in decreasing order of the number of elements, and

then assigned in order, from the largest towards the smallest. Both these schemes severely limit

the multiprocessor utilization, as shown in Table 2-4.

In the load balancing scheme, �rst the total cost of the execution of all tasks for each row

is computed. Then, the rows are sorted in decreasing order of the row load, an O(n logn) step.

Finally, the rows are processed in order, from the largest load to the smallest, and assigned

to the processor p with the smallest accumulated load. As shown in Table 2-4, this scheme is

nearly optimal with respect to the row-based heuristic.

46

matrix P �P (Round Robin) �P (Eq. Elements) �P (Ld. Balance) �P;upper �D

2 0.90 0.91 1.00 1.00 1.00
4 0.74 0.76 1.00 1.00 1.00

feb 8 0.54 0.59 1.00 1.00 1.00
16 0.40 0.39 0.60 0.60 1.00
32 0.24 0.24 0.30 0.30 1.00
64 0.14 0.14 0.15 0.15 0.58

2 0.99 1.00 1.00 1.00 1.00
4 0.97 1.00 1.00 1.00 1.00

iir12 8 0.92 0.95 1.00 1.00 1.00
16 0.90 0.91 1.00 1.00 1.00
32 0.75 0.80 1.00 1.00 1.00
64 0.64 0.68 1.00 1.00 1.00

2 0.98 0.98 1.00 1.00 1.00
4 0.89 0.92 1.00 1.00 1.00

mfr 8 0.84 0.80 1.00 1.00 1.00
16 0.65 0.65 1.00 1.00 1.00
32 0.48 0.48 0.85 0.85 1.00
64 0.31 0.32 0.42 0.43 1.00

2 0.88 0.86 1.00 1.00 1,00
4 0.63 0.67 1.00 1.00 1.00

omega 8 0.40 0.46 0.74 0.75 1.00
16 0.24 0.29 0.37 0.37 1.00
32 0.17 0.16 0.18 0.19 0.56
64 0.09 0.09 0.09 0.09 0.28

Table 2-4: Comparison of di�erent partitioning schemes

Table 2-4 summarizes the results for di�erent partitioning schemes. The third and fourth

columns list respectively the results for the round robin and element-based approaches, while

the �fth column lists the results for the load-balancing scheme, clearly indicating its superiority

over the other methods. The sixth column lists �P;upper, the upper bound in utilization due

to the partitioning. The seventh column lists the �D, the maximum achievable e�ciency due

to critical path constraints. It is an interesting result that in all the test cases studied, the

maximum utilization is limited by the partitioning scheme, and not by the critical path.

2.3.3 Scheduling Schemes

In a multiprocessor environment, there are two major factors that heavily inuence the

utilization of computational resources during the sparse matrix factorization. The �rst is the

allocation of data to the processors, and the second is the task scheduling within each processor

and in the communication network. In the previous section we have studied several partitioning

algorithms and empirically demonstrated that even a simple balancing scheme that assigns

47

tasks in decreasing order of its cost to the processor with smallest load yields nearly optimal

partitions with respect to overall e�ciency However, a simple greedy scheduling mechanism

causes a signi�cant gap between the simulated results and the theoretical maximum performance

imposed by the partitioning algorithm. In this thesis we shall introduce more e�cient, though

fast, scheduling schemes in order to reduce this gap.

Greedy scheduling is not very e�cient because it lacks knowledge about the future, as it

picks enabled tasks in any order, and schedules them for execution. As a result of this policy,

the execution of a task in the critical path could be deferred, and all processors waiting for the

data output from that task will have to stall, dropping the system performance. In order to

improve the utilization of the system, a good scheduling algorithm should be able to choose

among the enabled tasks the most critical, and schedule it to be executed �rst.

A possible heuristic is based on the remaining completion time (�) concept, introduced in

Section 2.3.1. In this scheme, tasks with large � are scheduled to be executed before the others,

as tasks in the critical path or in heavier branches tend to have a larger � than others. The net

e�ect of this scheduling is not as good as the critical path scheduling described in [Sarkar89],

but it has a much smaller cost, as � can be computed for the entire task graph in linear time.

Even if the e�ciency obtained by the usage of this scheme is not optimal, it usually performs

better than the greedy scheduling, and in some cases even approaches the bounds imposed by

partitioning or by the earliest completion time D.

Critical path analysis is the basis for many scheduling heuristics previously developed. Fore-

most among these are PERT [Malcolm59], and CPM [Kelley61], and many other [Jackson55,

Hu61, Efe82, Kim88]. Graham et al. [Graham79] studied the scheduling problem in great

depth. They classify the problem of scheduling tasks to a multiprocessor with precedence rela-

tions in order to achieve minimum completion time as P jprecjCmax, and present several bounds

comparing the worst case results from several algorithms with the optimal parallel execution

time.

Algorithm 2.3, a variation on single source shortest path, computes the remaining completion

time � for the entire task graph in linear O(V) +O(E) time. We assume that in the beginning

of the algorithm the task graph is levelized and each node vi contains a list of tasks vj on which

it depends, corresponding to the arcs in the opposite direction as shown in Figure 2-7(b). We

also assume D = 0, and initially each node vi contains �i = 0.

At the end of the algorithm execution, all nodes vi will be set to �i and D will be set to the

earliest completion time. It is possible to add code /* optionally store the critical edge ecj */ to

store the edge that caused �j to be maximum as the critical edge ecj . This set of critical edges

form the critical path and its branches.

After the values of �i are found, the actual scheduling task is very simple. Assuming P

processors are available, the tasks can be distributed to the processors into P bins labeled Xp,

using any of the heuristics described in Section 2.3.2; we then proceed to Algorithm 2.4. We

48

Algorithm 2.3 (Computing Remaining Completion Time in O(V) + O(E)).

level = H

while level > 0 f
foreach vi such that hi == level f

�s = �i + ci + pi

foreach vj such that 9esji /*strong nodes */

�j = max(�j ; �s)

/* optionally store the critical edge ecj */

foreach vj such that 9emji f /* mild nodes */

�m = �s � cj

�j = max(�m; �i; �j)

/* optionally store the critical edge ecj */

g

D = max(D; �s)

g

level = level� 1

g

associate with each task vi a timestamp ti, representing the time the task will start, and to

each processor p a timestamp tp, which indicates when the processor is free to start a new task.

In the beginning of the execution, all time values are set to zero. We also associate with each

task vi the number of dependencies ndi that must be satis�ed before the task is initiated. After

the Algorithm 2.4 is �nished, the auxiliary variable last will contain the total time necessary

to complete the decomposition.

The actual scheduling is executed in the SORT step. This scheduling is so simple that

one might ask if it is correct, as it is not obvious that it will generate deadlock-free code. The

following proof, by contradiction, provides necessary and su�cient conditions for a deadlock-free

code:

Theorem 2.1. The scheduling generated by sorting in each processor the tasks in the decreas-

ing order of � is deadlock-free.

Proof. This proof is divided into three parts, the �rst corresponding to the uniprocessor

case and the remaining regarding interprocessor deadlocks.

(a) Suppose two tasks vi and vj are in the same processor and vi depends on vj . A deadlock

can occur if and only if vi is scheduled to be executed before vj . However, if vi depends

on vj there must be at least one directed path Rj;i
k and therefore �j = �i +

Pi
k=j cost(vp)

provided vp 2 R
j;i
k and vp 6= vj . Assuming cost(vp) > 0, otherwise not physically possible,

�j > �i and vj will be scheduled to be executed before vi, which contradicts the initial

deadlock hypothesis.

49

Algorithm 2.4 (�-Based O(V logV) Scheduling Algorithm).

p = 1

while p � P f
SORT all tasks vi 2 Xp in decreasing order of �i

p = p+ 1

g

while
S
Xp 6= ; f

p = 1

while p � P f
visit the next ordered task to be scheduled vi 2 Xp

if (ndi == 0) f /* optionally insert greedy algorithm */

ti = tif = max(ti; tp)

tol = tif + ci + pi

tof = tif + pi

tp = til = tif + ci

foreach vj such that 9esij f /* strong */

ndj = ndj � 1

tj = max(tj ; tol)

g

foreach vj such that 9emij f /* mild */

ndj = ndj � 1

tj = max(tj ; tof)

g

last = max(last; tol)

Xp = Xp � vi

g

p = p+ 1

g

g

(b) Suppose vi and vj are in a processor pr and vm is in processor ps. An interprocessor

deadlock can occur if and only if vm depends on vj and vi depends on vm, but vi is

scheduled to happen before vj . Using the same arguments as in part (a) we can say

�j > �m and �m > �i. Using associativity �j > �i, which �nishes the proof of the theorem

by the same arguments as in (a).

(c) By induction on (b) we can prove that there will be no deadlocks in any number of

processors. 2

As we shall see in Section 2.3.4, the code generated by the �-based scheduling does not

produce very good results in terms of e�ciency. A simple modi�cation on the plain �-based

scheduling algorithm yields much better results. One can imagine that �-heuristic and greediness

50

are conicting issues. While the �-heuristic blindly waits for the most critical task to be

scheduled even if it might execute another less important task to �ll up the available time slots,

the greedy heuristic would just schedule anything available, regardless of the fact that sacri�cing

a little time waiting for a more important task could actually reduce the total time. It is clear

that during the scheduling, if a less important enabled task could �ll up some available time

slots without delaying the most critical task chosen by the � heuristic it should be scheduled

to execute �rst. However, if the insertion would delay the execution of the critical task, it

is necessary to have some heuristic to decide whether or not it is worth sacri�cing the free

time slots. The easiest way to manage this situation is to establish quantitatively a scheduling

elasticity �, which is discussed in the following.

Algorithm 2.5 (Added code for the �-Greedy Algorithm).

if (ti � tp) /* no slack */

ti = tp

else f /* slack */

vs = vi

slacks = slacki = ti � tp

foreach vj 2 Xp such that (ndj == 0) and (slacks 6= 0) f /* search */

slackj = max(tj � tp; 0)

if (slackj < slacks) and (slackj + cj < � � slacki) f
slacks = slackj

vs = vj

g

g

vi = vs

ti = tp + slacks

g

The new algorithm is basically the same as Algorithm 2.4, with the exception that the line

annotated by /* insert greedy algorithm */ is substituted by the Algorithm 2.5.

Immediately after the line annotated with /* insert greedy algorithm */ in Algorithm 2.4, we

set tif = max(ti; tp). This code says that vi cannot start before it is enabled by the completion

of tasks it depends upon (ti), or before the processor is ready to execute it (tp), whichever

occurs last. If ti > tp, the processor stalls. However, there might be another task vj such that

tj < ti, but �j < �i and ndj == 0. In this case, we could execute vj before vi in order to reduce

the slack. Figure 2-8 depicts four possible timing situations, which might occur if we tried to

insert vj before vi.

In (a) and (c), tj > tp, and therefore there is still a little slack left, while in (b) and (d),

vj causes no slack. In (a) and (b), the insertion of vj causes the beginning of vi to be delayed,

while in (c) and (d), there is no delay involved, since the inserted task �nishes before vi is

51

tp

tj

t i
delay

i
c

j
islack

j
slack

time

(a)

tp

ti
delay

i
cj

islack

tj tp<

(b)

p

tj

t i

jslack

islack
cj

no delay

t

(c)

p

ti

c j

t j p<

no delay

islack

t t

(d)

Figure 2-8: Inserting a task vj before vi

enabled. The heuristic used to decide whether or not insert a task vj depends on �, so if the

condition

slackj + cj

slacki
< � (2.14)

is satis�ed, we insert vj before vi. If � � 0, no insertion is permitted, and the algorithm

yields the same results as the plain �-based scheduling. If � � 1, no conict happens between

the �-heuristic and the greedy algorithm. In this case, the insertions depicted in Figure 2-8

parts (a) and (b) are not allowed. If � > 1, there is a compromise between the greedy algorithm

and the �-based scheme. Empirically, the algorithm results are very much insensitive to the

actual value of �, as long as � > 1.

In the following section, we discuss the results of these scheduling heuristics and compare

them with previous results.

52

Matrix P �P;L �P;G �P;� �P;��G �max

2 0.94 0.99 0.99 0.99 1.00
4 0.84 0.99 0.99 0.99 1.00

dram 8 0.71 0.99 0.99 0.99 1.00
16 0.58 0.88 0.83 0.96 1.00
32 0.44 0.79 0.76 0.89 1.00
64 0.28 0.48 0.55 0.56 1.00

2 0.88 0.91 0.85 0.95 1.00
4 0.71 0.87 0.74 0.87 1.00

feb 8 0.51 0.61 0.63 0.82 1.00
16 0.33 0.38 0.60 0.60 0.60
32 0.19 0.22 0.30 0.30 0.30
64 0.11 0.13 0.15 0.15 0.15

2 0.97 0.99 0.93 1.00 1.00
4 0.91 0.99 0.85 1.00 1.00

iir12 8 0.83 0.89 0.74 0.87 1.00
16 0.70 0.77 0.53 0.75 1.00
32 0.52 0.64 0.43 0.68 1.00
64 0.37 0.50 0.32 0.56 1.00

Table 2-5: Comparison of di�erent scheduling schemes

2.3.4 Scheduling Results

In order to properly compare the quality of the code generated by di�erent scheduling

schemes, we are interested in the processor utilization � achieved by the algorithm. We compare

the completion time tP;S , which is the total time required to complete the decomposition in P

processors using a particular scheduling scheme S, with t1, the sequential execution time. We

can de�ne the utilization �P;S achieved by the usage of a particular scheduling scheme S with

P processors, by:

�P;S =
t1

tP;S � P
(2.15)

It is also useful to compare �P;S with the upper bound in utilization �max, due either to

partitioning constraints or due to the critical path, and de�ned by:

�max = min f �P;upper; �Dg (2.16)

where �P;upper is the upper bound in utilization due to partitioning, as de�ned in Section

2.3.2, and �D is the upper bound in utilization due to the critical path, as de�ned in Section

2.3.1. Table 2-5 lists the scheduling e�ciency for relevant test matrices previously described,

and for various values of P . The second column in Table 2-5 represents P , the number

of processors used in the simulation experiment. The next four columns show the processor

53

utilizations �P;L, �P;G, �P;� and �P;��G respectively for the level-based , greedy, plain �-based

(Algorithm 2.4) and �-greedy (Algorithm 2.4 with modi�cations described in Algorithm 2.5)

scheduling schemes. The last column in the table shows �max, the upper bound in utilization.

Superiority of the greedy algorithm over the level-based approach is evidenced in all results

presented. This result was expected because the level-based scheme incurs in a lot of processor

idle time, as the processors are not permitted to execute the tasks at the next level until all

tasks at the present level are completed. The greedy heuristic overcomes this shortcoming,

but still lacks the ability to schedule critical tasks before other less relevant tasks. Compared

with the � based heuristic, the greedy heuristic is usually better, but tends to exhibit poorer

performance as the number of processors grow.

The �-greedy scheduling yields the best utilization in the majority of cases, as it combines

the advantages of the greedy heuristic with the concept of remaining time for completion. The

improvement that results by permitting the insertion of tasks in the processor idle periods can

be observed by comparing columns for �P;� and �P;��G in Table 2-5.

It is important to observe that in feb, the �-greedy heuristic approaches the theoretical

maximum value of processor utilization as the number of processors in the system increases.

In the remaining two cases, dram and iir12, it falls short of the theoretical utilization at least

for a moderate number of processors. The reason for this appears to be the nature of the

dependencies among the tasks and the sub-optimal way in which data is assigned to di�erent

processors, which in turn reduces the overall scheduling freedom in the system.

The heuristics described in Section 2.3.3 are very simple, yet yield experimentally very

good schedules. Perhaps the most distinguished feature is that they exhibit fast execution time,

comparable with the actual decomposition on a workstation. The complexity of these algorithms

is O(V logV), compared with O(V 2) of the critical path algorithm. Since the number of tasks

involved in the test matrices is on the order of hundreds of thousands, the ratio V 2

V logV yields

tens of thousands, which in terms of CPU time represents days instead of seconds. In this case,

the precompilation step itself becomes a bottleneck and its results are meaningless.

The results presented in this section are valuable for comparing di�erent algorithms. How-

ever, the cost functions they represent are not realistic due to implementation restrictions on

the previous algorithms. In Section 2.6 we use the �-greedy heuristic with extensions for more

realistic simulations.

So far, it was assumed by the scheduling algorithm that any data necessary for the task

execution would be readily accessible in constant time. In other words, it was assumed that

the scheduler had total freedom to pick any operation as long as they did not violate the

dependency constraints. However, this assumption is not correct if the Scatter-Gather storage

is used, as only a single row i can be scattered in each processor at a given time. In that case,

it is necessary to schedule a scatter operation on row i, schedule all the updates to that row,

normalize it, and gather it back into the dense form. Instead of having O(nonzeros) tasks

54

to choose from, the scheduler is restricted to O(n) tasks, corresponding to the coarse grain

parallelism in Sadayappan's nomenclature [Sadayappan88].

The next section discusses an e�cient storage organization based on overlapped-scattered

arrays (OSA), which allows all rows to be simultaneously scattered, thus allowing row-wise

operation freedom to the scheduling mechanism, corresponding to medium grain parallelism.

2.4 Overlapped-Scattered Arrays for Sparse Matrix Factoriza-

tion

The Overlap-Scatter Array (OSA) representation is a mapping from a two dimensional

representation of a matrix onto a one dimensional vector in such a way that the distance

between any two non-zero elements in the same row is preserved, and no pair of non-zero

elements occupy the same physical position in the vector [Sadayappan88]. A memory e�cient

OSA organization intersperses the non-zeros of distinct rows in order to minimize the size of the

resulting vector. Each row k in the original matrix is associated with an o�set that represents

the distance between the physical location where ak0 would be stored and the origin of the

OSA vector.

Figure 2-9 depicts a sparse matrix and its associated OSA representation. Any non-zero

element aij of the original matrix can be accessed in constant time by adding the column index

j with the appropriate row o�set o�set[i]. For example, if we want to access a37 we simply

add 7 to o�set[3]= 15 in order to obtain the proper array index, 22. Elements 24, 25 and 27

represent wasted memory positions. In this hand packed example, the memory utilization is
25
28 = 89%.

1 2 3 4 5 6 7 8 Row O�set

1 X X 1 0

2 X X X 2 10

3 X X X 3 15

4 X X 4 -2

5 X X X 5 21

6 X X X 6 13

7 X X 7 6

8 X X X X X X X 8 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

a11 a44 a45 a81 a82 a83 a17 a85 a86 a87 a88 a22 a77 a78 a25 a31 a27 a33 a66 a67 a68 a37 a52 � � a55 � a57

Figure 2-9: Overlap-Scatter representation of a matrix

55

The OSA representation of a sparse matrix is also an e�ective solution to the source-

target element matching problem during update operations. During a normalize operation,

the (upper-triangular) non-zero elements aij from a source row can be stored in a temporary,

dense vector along with its column indices j. During update operations the elements of this

vector are accessed sequentially and the column indices are simply added with the target row

o�set in order to compute the address of the matching target element. All these operations are

very regular and therefore can be easily vectorized in a general purpose supercomputer and are

especially attractive for the special purpose hardware.

The major feature of the OSA structure is its impact on concurrency. Since all the data

in the matrix is readily accessible, there is no reason to limit ourselves to a source-oriented or

target-oriented algorithm, resulting in much better schedules in a multicomputer environment.

Figure 2-10 depicts the impact of di�erent storage techniques on multiprocessor performance

for the sparse decomposition of the example test matrix dram. If the multiprocessor scheduling

is constrained in such a way that only one scattered row can be used as a target in each

processor, which is the case of the Scatter-Gather algorithm, the utilization attained is so poor

that it does not justify the usage of a parallel processor. On the other hand, the additional

freedom given to the scheduler by the OSA structure, where all target rows are scattered, is

enough to yield utilizations as high as 90% even on 32 processors.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32 64

Processors

Scatter-Gather

OSA

D
ra

m
 -

 P
ro

ce
ss

or
 U

til
iz

at
io

n

Figure 2-10: Simulated processor utilization for Scatter-Gather and OSA-based storage

In spite of the great advantages for multiprocessing, the OSA structure exhibits many

drawbacks in terms of local processing. The most obvious ones are the wasted memory positions

and the initial packing overhead, which will be empirically proven not very relevant for circuit

simulation in Section 2.4.1. However, other less obvious disadvantages actually play a major

56

Matrix %mem. ut. time(OSA) time(LU)

dram 37.49 10.800 4.922

feb 62.98 8.160 1.016

mesh 64.48 3.086 0.672

iir12 38.22 33.321 4.605

iir123 38.14 50.621 6.612

omega 75.14 1.574 0.265

mfr 53.92 8.620 0.949

Average 52.91 5.223 0.889

Table 2-6: OSA overheads

role in the local processor performance. First, the targets for the row update operations, which

must be accessed twice per gaxpy , are spread exactly in a large memory which tends to be

the slowest component of the system. Second, given the scheduler freedom, there is a random

memory access pattern to all OSA elements, making it very di�cult to exploit the locality of

reference, which in turn makes cache utilization very ine�ective. Finally, there is the issue of

DRAM static column misses, which will be further discussed in Section 2.4.3, in the context

of special purpose hardware for OSA. In the next section, we will discuss the OSA overhead

costs.

2.4.1 OSA Overhead Costs

The most important �gures of merit for evaluating the OSA overheads are: the percentage

of memory utilization and the time necessary to compute the proper OSA o�sets. The problem

of packing the matrix into this form using a minimum amount of memory is NP-complete

[Tarjan79]. Several heuristics have been proposed to quickly pack the matrix with reasonable

memory utilization [Ziegler77, Tarjan79, Rao88, Sadayappan89, Trotter90b]. The discussion of

these methods is beyond the scope of this thesis, so we will simply use their results to discuss

if the utilization of the OSA structure is feasible.

According to experimental data in Table 2-6, both the memory utilization and packing

time overhead introduced by the OSA algorithm are reasonable. Typically, half of the OSA

array positions are left unused, and the packing algorithm requires no more than 10� the

LU decomposition time. If the system of equations has to be solved only once or only a few

times, the usage of OSA arrays is not e�ective. However, considering that in a typical circuit

simulation the matrices need to be decomposed thousands of times, the initial packing overhead

cost is insigni�cant.

Table 2-6 summarizes the OSA memory utilization and the time spent for generating the

OSA structure on a DEC 5000/200 for a number of test matrices derived from the circuit

57

simulation of real VLSI circuits. The algorithm used is a variation on the yback storage

method (FSM) described in [Trotter90b]. The table also lists, in the last two columns, the

number of oating point operations and the actual LU factorization (without counting the

Markowitz reordering time) time for these matrices, using the SPICE sparse matrix package

1.3b [Kundert88]. All times are in seconds and the same optimization options were used for

both programs.

There are many possibilities in exploiting the properties of the OSA structure. In the

following we will discuss the implementation of a fast sparse matrix solver for workstations,

which delivers, on average, twice the performance of the Sparse 1.3b package [Kundert88].

2.4.2 OSA-Based Fast Sparse Matrix Package

A very simple, yet powerful sparse matrix decomposition scheme is shown in Algorithm 2.6.

Algorithm 2.6 (OSA-Based Fast Sparse Matrix Decomposition Algorithm).

Generate INST[ninst], OSA[nonzeros
mem ut:

], and INDEX[nonzeros] structures

i = 0

while i < ninst f
o�set = INST[i]:o�set

size = INST[i]:size

COLUMN = INST[i]:column

if (INST[i]:type == 0normalize0) f /* Normalize */

OSA[o�set] = mult = 1
OSA[o�set]

j = 0

while j < size f
BUFFER[j] = mult� OSA[o�set + COLUMN[j]]

j = j + 1

g

g

else f /* Update */

mult = OSA[o�set]

j = 0

while j < size f
OSA[o�set + COLUMN[j]] = OSA[o�set + COLUMN[j]]�mult� BUFFER[j]

j = j + 1

g

g

i = i+ 1

g

58

matrix IBM RS6000/540 Sparcstation 2 DEC 5000/200
Sparse1.3b OSA s Sparse1.3b OSA s Sparse1.3b OSA s

dram 780 280 2.8 5,300 1,099 4.8 4,922 4,781 1.0

feb 340 170 2.0 867 - - 1,016 617 1.6

mesh 180 90 2.0 567 316 1.8 672 398 1.7

iir12 1,430 670 2.1 3,433 1,567 2.2 4,605 2,430 1.9

iir123 2,030 950 2.1 5,033 2,217 2.3 6,612 3,781 1.7

omega 90 40 2.3 217 100 2.2 265 137 1.9

mfr 290 170 1.7 817 - - 949 621 1.5

Average 274 129 2.1 742 329 2.4 889 503 1.5

Table 2-7: OSA versus Sparse 1.3b

The symbolic structure of the sparse matrix is �rst analyzed and its OSA representation is

created. This precompilation phase also generates a sequence of ninst instruction records, or

task descriptors, each representing a row-wise update or normalization, which will be executed

sequentially during the decomposition.

Each instruction contains information on the type of the operation, its size, the correspond-

ing o�set of the target row in the OSA structure and the starting address of the column indices

of the source row. INST is a vector that contains all these instructions sequentially. OSA is a

vector containing the OSA structure. INDEX is a vector that contains the column index for all

the (upper-triangular) elements of the matrix sequentially, in row-major order. Each COLUMN

array is a subset of the INDEX vector. BUFFER is a temporary vector of size n that contains

one source row stored in sequential order.

In order to save space and avoid unnecessary indexing operations, the column indices in the

INDEX array are actually o�set by the row number, so that the diagonal will have column index

zero, while upper-triangular elements will have positive column indices. In order to compensate

for this, the o�set �eld of the instruction is added to the diagonal column index.

Table 2-7 lists the execution times (in mili-seconds) for matrix factorization in various

architectures using the Sparse1.3b package [Kundert88] and using OSA-based Algorithm 2.6.

The table also lists the speedup obtained in each platform using the OSA-based algorithm.

The OSA algorithm presents roughly a factor of two speedup on average. This factor is likely

to increase in vector machines because of the high potential for vectorization present in the

algorithm.

In the next section we describe a pipelined special purpose system that uses the OSA

structure in order to achieve high e�ciency, without the heavy concurrency constraints imposed

by the architecture previously described in Section 2.2.2.

59

2.4.3 OSA-Based Fast Sparse Matrix Decomposition Hardware

In attempting to design special purpose hardware that could exploit the advantages of the

OSA structure, one immediately realizes that only using DRAMs we could e�ectively store a

large structure such as the OSA vector for large matrices. However, there is a fundamental

problem in keeping the OSA data in DRAM: the target row data for updates, which requires

two accesses for each elemental operation, would be placed in the slowest component of the

system.

Fortunately, it is possible to overcome this problem by interleaving multiple memory banks,

as described in Section 2.2.1. The same interleaving results that apply for the Scatter-Gather

approach also hold for the OSA-based algorithm. In fact, there is an extra degree of freedom

for the OSA-based interleaving, depending on the value of o�set for a given row. If the row

o�set is an even number, even-numbered accesses in the source memory will correspond to even-

numbered accesses in the target memory, while odd-numbered source accesses will correspond to

odd-numbered target accesses. Conversely, if the row o�set is an odd number, even-numbered

accesses in the source memory will correspond to odd-numbered accesses in the target memory,

while odd-numbered accesses in the source memory will correspond to even-numbered accesses

in the target memory. A clever scheduling and memory allocation scheme can take advantage

of this extra degree of freedom to further increase the interleaving e�ectiveness.

Figure 2-11 depicts a row update operation being executed in a special purpose processor

with dedicated datapath for fast OSA addressing. The DRAM, which holds the OSA data

structure, is a two-way interleaved memory. The SRAM contains one (or more, depending on

the scheduling algorithm) source row, with its elements stored sequentially along with their

corresponding column indices (in even-odd form). The other components of the system are

similar to those discussed in Section 2.2.2 with little modi�cations.

The other elements are: a counter that scans sequentially the SRAM addresses, a dedicated

datapath, which reads in column indices from SRAM and feeds an adder to generate the proper

OSA address, and two shift registers to store addresses for both even and odd memory write-

backs, with the proper length such that their contents are aligned with the oating point unit

output.

The algorithm implemented is a slight variation of Algorithm 2.6. The only modi�cation

required is that the vector COLUMN is now kept in SRAM for updates. Due to the limited

space available in SRAM, it is necessary to copy the proper subset of the INDEX vector from

DRAM during a row normalize.

The update operation proceeds in a pipelined fashion. The pair fr; akrg is read from the

dense source row vector in SRAM. At the same time, the element previously read, akq , is

multiplied by aik | corresponding to mult � BUFFER[j] in Algorithm 2.6, while q is added to

the o�set off| corresponding to o�set+COLUMN[j] in Algorithm 2.6. The address previously

generated, off + p, is used to read the matching target data aip from the even memory bank.

60

akqaikain aik akn*

a’im

ALU MPY

ain

ail

aim

SRAMDRAM

q

write

read

data index datadata

++

even odd add

off+p

off+m

off+l

off+n

?

?

?

?

aiqaip

air

ais

afo

afmafl

afn

aik akp*

off

l

m

n

p

q

r

s

akr

aks

akq

akp

akn

akm

akl

a’il

read

Figure 2-11: Dedicated datapath for fast updates with interleaved OSA access

The result of the multiplication that started two cycles before (aik�akn) is subtracted from the

data previously read (from the odd memory bank) ain . This delay is necessary for the proper

pipeline alignment. Also, it can be caused by the intrinsic characteristics of the oating point

multiplier hardware, which, for this example, exhibits a latency of two clock cycles. Assuming

the ALU also exhibits the same latency, its output register contains the results of the subtract

operation initiated two cycles before a0il = ail� aik � akl, which in turn are being written back

to the odd memory bank. In addition to all these operations, the read pointer to SRAM is

being incremented | corresponding to j = j + 1 in the algorithm, and a counter (not shown

in the Figure 2-11) is being decremented to check the size of the operation and a conditional

jump is taken to stay in the loop if the counter did not reach zero. Note that in each clock

cycle approximately ten operations are being executed | three integer operations, two oating

61

Matrix Uniform Access Paged Access
Cycles PE Stall % Stall Cycles PE Stall % Stall

dram 1,241,873 69,222 5.6% 1,523,775 351,124 23.0%

feb 970,178 89,248 9.2% 1,791,373 910,443 50.8%

mesh 483,779 25,040 5.2% 607,502 148,763 24.5%

iir12 2,490,026 112,484 4.5% 3,304,100 926,558 28.0%

iir123 3,585,329 178,524 5.0% 4,946,384 1,539,579 31.1%

omega 283,852 25,828 9.1% 519,517 261,493 50.3%

mfr 834,161 61,763 7.4% 1,300,575 528,177 40.6%

Average 699,080 47,476 5.4% 1,067,171 356,871 28.6%

Table 2-8: Inuence of static column misses on the performance of the OSA-based architecture
and algorithm

point operations, four memory accesses and a conditional jump.

Comparing this processor architecture for OSA with the much simpler one described in

Section 2.2.2 with support for Scatter-Gather, the gaxpy throughput is the same, and the only

time saved is the Scatter-Gather overhead, which is only O(nonzeros). In addition to the

previously described problems associated to the OSA structure, it is also important to mention

the additional problem posed by DRAM static column misses. Since the OSA-based algorithm

causes a random access to di�erent portions of the DRAM, there is a high ratio of static column

misses. Worse yet, matrices like feb, with very long rows (n = 10; 600), have elements belonging

to the same row spread through several distinct DRAM static column pages, which are typically

1,024 or 2,048 words long. Also, the even-odd access pattern used for increasing the interleaving

e�ciency seems empirically to cause more static column misses.

Table 2-8 highlights the e�ects of static column misses. The data was obtained by a detailed

RTL simulation of the architecture shown in Figure 2-11 using a slight modi�cation of Algorithm

2.6. In the �rst data set, a memory with uniform data access is assumed. This could be achieved

by substituting the DRAMs in the Figure 2-11 by much more expensive, much lower density

static memories. The second set, represents a memory system implemented with DRAMs,

assuming a three-cycle penalty for each static column miss, and each static column 2,048 words

long. In each set, the �rst column lists the total number of clock cycles required by the sparse

matrix decomposition algorithm. The second column lists the total number of cycles in which

the processor was stalled. The third column lists the percent rate of the stalled cycles relative

to the total number of cycles. In the �rst set, stalls are only caused by interleaved memory

bank misses, which are rather infrequent, on average 5.4% of the total number of cycles, thanks

to the even-odd reordering scheme. On the second data set, the number of stalled cycles grows

on average 7:5� or as much as 8� due to the inuence of the static column misses, causing an

average slowdown of 52% on the total number of cycles.

62

Assuming the oating point throughput can be substantially increased, as the processor

speed tends to grow faster than the memory speed, one could also argue that just by adding a

relatively small amount of hardware in order to make the SRAM interleaved, and reverting back

to the old Scatter-Gather scheme, it would be possible to actually double the gaxpy throughput,

and at the same time eliminate all the problems associated with the OSA structure. However,

the multiprocessor utilization would be extremely poor. In the next section we will introduce

the O2SA storage scheme, which successfully bridges the tradeo�s between available parallelism

for the OSA scheme, and the ability to exploit the locality of reference, as in the Scatter-Gather

approach.

2.5 Overlapped-Overlapped Scattered Arrays

We are interested in exploiting the locality of reference in order to achieve higher execution

speed in each individual processor. If this approach does not restrict the available concurrency

too much, we should consider keeping the target rows in a fast, two-way interleaved SRAM in

order to achieve twice the speed of the con�gurations described in Sections 2.2.2 and 2.4.3 in

each processor. In this case, the execution of a particular row-wise operation is enabled by the

completion of the tasks it depends upon, and by the availability of the target row in scattered

form in the SRAM.

We initially assumed that a �xed number R of rows could be scattered in SRAM, which

would require R � n words of storage. This situation corresponds to a very ine�cient (< 1%)

usage of the fast memory due the sparse nature of the matrix. A severe restriction on R will

cause in turn a severe restriction in the amount of concurrency available, as we shall demonstrate

in the next section. In order to obtain a better utilization of the memory, and consequently

obtain higher degree of parallelism, we propose a marching OSA structure, in which we try to

�t in the fast memory as many rows as possible. We call this technique Overlapped-overlapped

Scatter Array (O2SA).

Figure 2-12 depicts the O2SA representation of the small matrix used in our previous

examples. Comparing this organization with the OSA structure shown in Figure 2-9, it is

worth mention that the space required is substantially smaller; only the rows that are used as

targets in update operations must be scattered (in this case rows 3, 5, and 8); and the structure

changes are tightly controlled by the scheduling scheme: In the beginning of the execution,

rows 3 and 5 are �tted in the array, and row 8 is left out because there is no space available.

Even after the normalization of row 5 is executed, row 8 cannot �t in the structure. Only

after the third row is discarded that it becomes possible to �t row 8. In other words, there is

an adaptive utilization of the available memory space, depending on the structure of the rows

and the scheduling heuristic. We will further discuss scheduling heuristics, and in particular

the changes necessary in the scheduling for accommodating the O2SA storage methodology in

63

1 2 3 4 5 6 7 8 Row O�set
1 X X 1 �
2 X X X 2 �
3 X X X 3 2
4 X X 4 �
5 X X X 5 -1
6 X X X 6 �
7 X X 7 �
8 X X X X X X X 8 0

when 1 2 3 4 5 6 7 8 9

initial a52 � a31 a55 a33 a57 � � a37
after N5 � � a31 � a33 � � � a37
after N3 a81 a82 a83 � a85 a86 a87 a88 �

Figure 2-12: O2SA representation of a matrix

Section 2.5.3.

2.5.1 O2SA Performance

In order to evaluate empirically the requirements for the O2SA, a valuable tool is to measure

the processor utilization by restricting the number of scattered rows available on fast memory.

Assuming R rows scattered at the same time in the fast memory, it is possible to use the

scheduler to predict the processor utilization for the test matrices. A detailed description of

scheduler used was given in Section 2.3.

Figure 2-13 depicts the processor utilization for the test matrix dram for 1 (or Scatter-

Gather), 2, 4, 8, 16, 32, and 64 simultaneously scattered rows present in fast memory. According

to Figure 2-13, at least a dozen active target rows, if not more, are necessary to achieve a

reasonably high processor utilization. On the other hand, for practical purposes we would like

to restrict the cache size to a maximum of two to three times n elements in order to be able to

accommodate very large matrices with commercially available fast SRAMs. If these rows are

simply scattered in separate memory positions, the utilization attained would be so poor that

it would not justify the usage of a parallel processor.

In order to achieve our goal of keeping the destination row data in SRAM memory in order

to achieve fast processing within each processor, we must radically change the way we perceive

the usage of the SRAM space. Instead of a constrained set of R target rows, one should envision

the expensive SRAM space as a cached O2SA structure, which evolves with the execution of

64

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32 64

Processors

1

2

4

8

16
32
64

D
ra

m
 -

 P
ro

ce
ss

or
 U

til
iz

at
io

n

Figure 2-13: Processor utilization using up to R active targets on fast memory

the factorization, as shown in Figure 2-12. In the beginning of the factorization, dozens of small

rows are scattered and overlapped, �tting in a small SRAM space of size O(n), allowing a high

degree of freedom for the parallel scheduling. Scattering into this small SRAM, in the other

hand, insures the fast code execution within each processing element. After all the updates to a

target row are �nished, its elements are gathered back in a dense vector, and then other targets

can be scattered in the SRAM. The factorization proceeds in this fashion, thus dynamically

trading available SRAM space for concurrency.

Figure 2-14 depicts the estimated processor utilization for the LU decomposition of the test

matrix dram, using the O2SA technique for SRAM sizes of 2n, 4n and 8n. Considering the space

occupied by the O2SA structure, there is a substantial improvement relative to the utilizations

depicted in Figure 2-13. This large improvement in the SRAM space requirements will enable

us to design a parallel computer with specialized datapath and control in each processor geared

towards the execution of the sparse matrix decomposition. This processor, briey introduced

in the next section, and described in detail in Chapter 4, pro�ts from the O2SA strategy by

keeping the target rows in a fast, interleaved SRAM memory which is tightly coupled with the

oating point unit.

2.5.2 O2SA-Based Fast Sparse Matrix Decomposition Hardware

Figure 2-15 depicts a row update operation being executed in a special purpose processor,

with dedicated datapath for O2SA addressing. In essence, this organization is the same as

that described for OSA addressing, as we use specialized units for address computation, special

paths for column indices and we rely on memory interleaving for increasing the bandwidth.

65

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32 64

2.0n 4.0n 8.0n

Processors

D
ra

m
 -

 P
ro

ce
ss

or
 U

til
iz

at
io

n

Figure 2-14: Processor utilization using the O2SA structure to keep as many as possible
active targets on fast memory

The combination of scheduling and storage proposed by this thesis opens the path for

keeping the target rows in a smaller, faster SRAM memory. Also, as discussed in Section 2.2.1,

two-way interleaving can be used very e�ciently with target rows to double the processor speed.

Two-way interleaving will also be required for the DRAM that holds the source data and the

column indices, in order to match the speed requirements of the processor. Obviously, this

interleaving exhibits even higher e�ciency due to the sequential nature of the access to the

source rows.

The system operates with two synchronized clock signals. One is fast and drives the oating

point unit, the control unit and the SRAMs. The second, at half speed, controls the DRAMs,

as these devices are slower. This constraint requires that the access to di�erent DRAM memory

banks be skewed by a half cycle.

The update operation depicted in Figure 2-15 proceeds in a pipelined fashion. The pair

fq; akqg is read from the dense source row vector in DRAM in the �rst half of a DRAM major

cycle. In the second half cycle fr; akrg are read, corresponding to the situation shown in the

Figure 2-15. akq is multiplied by aik, while q is added to the o�set o� in order to access the

even SRAM memory. The address previously generated o� + p is used to read the matching

target data aip from the odd SRAM memory bank. The result of the multiplication that started

two cycles before (aik�akn) is subtracted from the data previously read (from the even SRAM

memory bank) ain. The ALU output register contains the results of the subtract operation

initiated two cycles before a0il = ail � aik � akl, which in turn are being written back to the

even SRAM memory bank. In addition to all these operations, the read pointer to DRAM is

being incremented and a counter is being decremented to check the size of the operation and

66

akqa ika in a ik akn*

a’im

ALU MPY

a in

a il

a im

SRAM DRAM

write

read

data

index

datadata

++

even odd

off+p

off+m

off+l

off+n

?

?

?

a iq

a ip

a ir

a is

a ft

a fs

a ik akp*

s

akr

aks

akq

akpakn

akmakl

a’il

read

?

add

offq

add

off

l

n

q

m

p

r

t

index

data

even odd

akt

even odd

?

a it

Figure 2-15: Dedicated datapath for fast O2SA update

a conditional jump is taken to stay in the loop if the counter did not reach zero. Note that

during each DRAM clock cycle twenty operations are executed | six integer operations, four

oating point operations, eight memory accesses and two conditional jumps.

Table 2-9 compares the performance of the O2SA-based sparse matrix hardware described

in this section with the OSA-based sparse matrix hardware described in Section 2.4.3. The

data was obtained by a detailed RTL simulation of the architectures shown in Figures 2-11 and

2-15. We also assumed that both systems are using the same memory technology: the DRAMs

with a 40ns page-mode read/write cycle and 100ns random read/write cycle, and the SRAMs

with a 20ns random read/write cycle. A more detailed description of the components and the

overall processor architecture is provided in Chapter 4.

The �rst data set in the Table 2-9 corresponds to the OSA-based hardware and the second

67

Matrix OSA tCY CLE = 40ns O2SA tCY CLE = 20ns
Cycles PE Stall Time(ms) Cycles PE Stall Time(ms)

dram 1,523,775 351,124 61.0 1,286,943 137,132 25.7

feb 1,791,373 910,443 71.7 1,106,794 219,625 22.1

mesh 607,502 148,763 24.3 503,960 69,942 10.1

iir12 3,304,100 926,558 132.2 2,669,872 352,385 53.4

iir123 4,946,384 1,539,579 197.9 3,892,886 576,023 77.9

omega 519,517 261,493 20.8 340,756 82,224 6.8

mfr 1,300,575 528,177 52.0 960,518 214,249 19.2

Average 1,155,276 386,425 46.2 846,227 147,225 16.9

Table 2-9: Comparison of O2SA-based and OSA-based sparse matrix hardware accelerators

data set corresponds to the O2SA-based hardware. In each data set, the �rst column lists the

total number of cycles necessary for the completion of the sparse LU decomposition. The second

column lists the number of cycles in which the processor was stalled either due to a interleaved

memory bank miss or because of a DRAM static column miss. The third column represents the

expected time to complete the factorization, obtained by multiplying the total number of cycles

by tCY CLE . From the table, if it were possible to avoid the stalls, the cycle count for both

schemes would be roughly the same. However, due to the di�culty in exploiting the locality

of reference and the excessive number of DRAM static column misses, the overall number of

clock cycles for the OSA-based scheme is on average 36% higher than the clock cycle count for

O2SA-based scheme. The biggest improvement however, derives from the ability to keep the

target rows in the fast SRAM memory, e�ectively doubling the gaxpy throughput. When both

e�ects are taken into account, the O2SA-based hardware can deliver on average 2:7� the speed

of the OSA-based hardware with a comparable component count and technological constraints.

The O2SA improvements are not only limited for the hardware accelerators described in this

section. The same techniques could also be applied to a block-oriented main memory (DRAM),

and a small SRAM cache found in most computers today.

Having achieved the goal of exploiting the locality of reference, which allows a fast sparse

matrix decomposition in each individual processor, the next section addresses the methodology

used to schedule the sparse matrix factorization operations in a multiprocessor environment

using the O2SA storage mechanism.

2.5.3 Scheduling for O2SA

Algorithm 2.7 uses a �-greedy heuristic coupled with a simple scheme to support the concept

of active target rows : one more dependency is added to the updates, as a row update operation

can happen only if the corresponding target row has been scattered. The number of rows is

68

not �xed a priori: the O2SA strategy tries to overlap-scatter as many rows as possible in the

small SRAM or cache space.

Algorithm 2.7 (�-Greedy O2SA Algorithm).

p = 1

while p � P f
SORT in Np all tasks Ni 2 Xp in decreasing order of �Ni

SORT all tasks vi 2 Xp in decreasing order of �i

tryto�t(p)

p = p+ 1

g

while
S
Xp 6= ; f

p = 1

while p � P f
visit the next ordered task to be scheduled vi 2 Xp

if (ndi == 0) f /* optionally insert greedy algorithm */

...

equivalent code in Algorithm 2.4,

computes tif, tol, tof, til and subtracting one from ndj for

all tasks vj such that 9es;mij
.....

if (vi == Ni) f /* if vi is a row normalize task */

schedule a gather for row i from O2SAp

remove(i, O2SAp)

tryto�t(p)

g

last = max(last; tol)

Xp = Xp � vi

g

p = p+ 1

g

g

One safe way to decide the order in which the rows are going to be scattered in the O2SA

structure is by the using the top rows �rst, and descending towards the bottom rows. A better

heuristic, and the only other way we were able to rigorously prove that the generated schedule

is deadlock-free is by establishing a sequence of \candidate" rows i for scattering, ordered in

decreasing values of �Ni for the tasks Ni. All other attempts to change this order caused the

scheduler itself to stay in an endless loop. The proof that the proposed scheme can never cause

deadlocks is analogous to the proof of Theorem 2.1, and is not shown here.

The execution starts in the same fashion as the �-greedy scheme. After the values �i were

69

Algorithm 2.8 (tryto�t(p) procedure).

fail= false

while !fail f
visit the next ordered task normalize row i, or Ni 2 Np

if (�t(i, O2SAp)) f
schedule a scatter for row i in O2SAp

mark(i,O2SAp)

foreach vj 2 Xp such that vj is an update k ! i

ndj = ndj � 1 /* enable the update */

g

else fail= true

g

computed for all tasks vi, the tasks are distributed to P processors into separate bins Xp. The

normalize tasks Ni are also copied into P bins Np. Each task vi has an associated timestamp

ti, representing the time the task will start, and the number of dependencies ndi that must be

satis�ed before vi is initiated.

Normalize tasks are ordered with respect to decreasing values of � in each processor. Using

this ordering, the procedure tryto�t(p) will attempt to �t in the limited SRAM space in each

processor as many rows as possible, in order to keep the maximum amount of concurrency

available. Every time a row normalize is going to be scheduled, it is necessary to also schedule

a gather from the O2SA. The row is then removed from the structure and, according to the

previously described order, a set of new rows is tested to �t in the unused spaces of the O2SA

structure. If any row �ts in the available space, a scatter is scheduled, and the update tasks

will be enabled, as highlighted by the comment /* enable the update */ in the tryto�t(p)

procedure shown in Algorithm 2.8.

The procedures mark(i, O2SAp), �t(i, O
2SAp), and remove(i, O

2SAp) handle a large

array of single bits containing as many entries as the O2SA structure, in which a bit set

corresponds to an occupied scattered entry. These procedures correspond to setting, checking

if possible to �t in, and resetting the bit positions corresponding to the non-zero entries of row

i. The implementation of these procedures is straightforward. However, the scheduling speed

will depend fundamentally on the implementation of the procedure �t(i, O2SAp).

A nice feature of Algorithm 2.7 is that it adapts the amount of concurrency available with

the size and pattern of the rows. Typically, in the beginning of the execution, it is possible

to scatter many short rows, allowing a lot of parallelism. As bigger rows are brought to the

SRAM, the freedom of the scheduler algorithm decreases. In the worst case, a single row will

be present in the SRAM, and the algorithm will behave as in the Scatter-Gather case. As

previously discussed, the experimental results indicate that there is no substantial di�erence

70

between the concurrency available using the OSA structure and O2SA structure if the available

SRAM (or cache) space is at least 2n words.

In the next section, we will discuss how we used the scheduler and its ability to predict

the performance of a speci�c computer, given the appropriate cost functions, to perform some

theoretical experiments and to �ne tune the �nal version of architecture, described in detailed

in Chapter 4. These results are validated by the comparison of the performance predicted by

the scheduler and actual measurements made in a parallel processor and in a general purpose

workstation.

2.6 Implementation Issues for Parallel Sparse Matrix Factor-

ization on a General Purpose Multiprocessor

The task model described in Section 2.3.1 can represent with reasonable accuracy the un-

derlying characteristics of the processor hardware and network interconnection, given the ap-

propriate cost functions ci and pi. This approach has two advantages: �rst, a scheduler with

insight into the hardware characteristics of the processor produces better code sequences; and

second, it provides us feedback information about the performance that can be obtained using

a speci�c con�guration, which in turn helps in �ne tuning the processor design.

The following discussion addresses some issues that are relevant for a real multiprocessor

implementation, and illustrates the usage of the scheduler as a simulation tool. Specially

relevant for us is the ability to predict the performance of a hypothetical machine and the e�ect

of varying hardware parameters like the oating point unit latency, and the bus throughput.

Many other issues can be easily addressed, as the scheduler software is able to bind the internal

data structures with user supplied cost functions in a C-style syntax.

2.6.1 Inuence of Hardware Parameters on Multiprocessor Performance

An issue that might interest a processor designer is the e�ect of the oating point pipeline

depth on the performance of the system. Figure 2-16 depicts the processor utilization during

the factorization of dram as a function of the number of processors for pipeline latencies of one,

two, four, etc. clock cycles. The plot shows that a special purpose oating point unit for this

application should have a large number of pipeline stages in order to operate with the highest

possible throughput, as the performance degradation due to the pipeline latency is less than

5% in the worst case.

A simple explanation for this characteristic is that by having a deeper oating point pipeline

the system is in fact exploiting in part the elemental or �ne-grain concurrency available in the

sparse matrix solution. Even though this approach does not provide the ultimate levels of

concurrency, it substantially bridges the gap between the row-wise based scheduling and the

elemental-level scheduling, exploited in the work of Huang and Karmakar [Huang79, Dhillon91].

71

The degree of parallelism can be measured by the depth of the pipeline times the number of

processors times the utilization. For example, assuming �fty processors with a pipelined oating

point unit eight levels deep, according to Figure 2-16, the utilization is around 75%. In other

words, this would be equivalent to a level of concurrency of 50� 8� 0:75 = 300.

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70

1
2
4
8
16

Number of Processors

U
til

iz
at

io
n

Figure 2-16: E�ect of the pipeline latency on system performance

Since the design of a deeply-pipelined, extremely fast oating point unit is far beyond the

scope of this thesis, we leave this issue as a topic for future research.

Another issue with more immediate repercussions is the impact of the network structure

and bandwidth on the processor performance. We can model a high speed bus interconnection

with the addition of bus broadcast tasks to the original task graph. These tasks are inserted

between Ni and i ! k and they must be executed in a special \processor" that represents

the bus. This approach is consistent with the general task model, and therefore the scheduling

schemes presented in Section 2.3.3 can be used without any modi�cations. Another advantage

of this approach is that the bus transactions will also be ordered so that the total completion

time is minimized. Figure 2-17 depicts the processor utilization during the factorization of

dram, as a function of the bus bandwidth. The top line represents a theoretical network with

no latency and in�nite bandwidth. The middle line represents the utilization achieved if the

bus has the same throughput as the oating point pipeline. In other words, the bus must be

able to transmit a double precision oating point number in the same period that the oating

point unit can compute one add and one multiply. Finally, the bottom line corresponds to

the utilization achieved if the bus has half the bandwidth of the oating point pipeline. These

results suggest that for a prototype implementation containing a small number of processors

(4 � P � 16), it is not worth spending a lot of time designing a very high speed bus, as only

a minimal advantage can be obtained by a running the bus any faster than half the processor

72

speed. The bus interface subsystem described in detail in Chapter 4 was designed in view of

these �ndings.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70

Infinite Bandwidth

FPU Pipe

Half FPU Pipe

Number of processors

U
til

iz
at

io
n

Figure 2-17: E�ect of the bus bandwidth on system performance

Another important issue is the validation of the scheduler predictions, so that one can trust

the results previously described. In the next section, the scheduler is validated using results

from more detailed architectural simulations and from actual measurements.

2.6.2 Scheduler Validation

In order to validate the scheduler predictions, we have created an ensemble of tests designed

to experimentally compare the performance predicted by the scheduler with actual measure-

ments made in real machines, or with the results of a detailed RTL-level simulator for the

architecture proposed in this thesis.

Table 2-10 compares the scheduler predicted values with the measured values for a RISC-

based workstation, the IBM RS6000/540. The sparse matrix solver, a slightly modi�ed version

of Algorithm 2.6, was compiled, a list of the machine instructions was printed, and the appro-

priate cost functions for the row-wise update and the normalize tasks were hand-calculated.

The cost functions are given in terms of clock cycles, which corresponds to 30ns for the IBM

RS6000/540. The analysis of the inner loop of the sparse matrix code yielded the following

clock cycle cost functions:

tUPDATE = 20 + 7� sizeSOURCE (2.17)

tNORMALIZE = 35 + 5� sizeSOURCE

73

Matrix Predicted (ms) Measured (ms)

mesh 88 90

dram 237 250

feb 133 170

iir12 474 670

iir123 676 950

omega 36 40

mfr 132 170

Table 2-10: Validation of the task model in an IBM RS6000/540 workstation

Table 2-10 indicates that for small matrices that �t totally in the processor cache, like mesh,

dram, and omega, the values predicted by the scheduler were correct within 10%. Since the

scheduler does not account for cache misses, the predicted values for large matrices were o� by

up to 40%.

Another important con�rmation of the scheduler results comes from the PACE system, de-

veloped at AT&T by Prathima Agrawal and John Trotter[Agrawal92]. PACE is a distributed

memory multiprocessor designed to speed up the LU decomposition of sparse matrices. The

prototype machine consists of four Intel i860 processors interconnected by a wide, high speed

bus. Table 2-11 [Agrawal92] shows the factorization times for some of the test matrices previ-

ously described. The �rst and second columns indicate respectively the matrix and the number

of processors used to factor it. The third and fourth columns show respectively the speedup

predicted by the scheduler and the corresponding speedup measured in the PACE hardware.

For dram and iir12 , all results match within 5%. In the worst case, omega, the predicted perfor-

mance was rather optimistic, as the speedup predictions were o� by 15%. Column 5 shows the

actual processor utilization, which in most cases is reasonably high. The actual decomposition

time is in shown in the sixth column.

Overall, the results presented in Table 2-11 con�rm that the processor utilization measured

on PACE hardware is nearly in agreement with the simulated scheduling experimental results.

More important, however, the results show that the scheduler is able to correctly generate code

for the e�cient sparse matrix decomposition on a multiprocessor system.

Finally, another validation of the scheduler results comes from a detailed simulation of the

architecture proposed in this thesis. The �rst and second columns of Table 2-12 are respectively

the matrix and the scheduler predicted performance, in clock cycles. The third column lists

the total number of clock cycles obtained by a detailed RTL simulation of a single processing

element. The fourth column list the number of cycles the processor was stalled, due to DRAM's

static column misses and interleaving memory bank conicts. Since the scheduler is not able to

cope with these stalled cycles it is meaningful to compare the total number of valid cycles with

the predicted values from the scheduler. It is also important to understand to which extension

74

Matrix P Speedup Actual Decomposition
Predicted Actual Utilization Time (s)

1 1.00 1.00 1.00 0.81
dram 2 1.92 1.88 0.94 0.43

3 2.65 2.61 0.87 0.31
4 3.55 3.38 0.85 0.24

1 1.00 1.00 1.00 0.58
mfr 2 1.85 1.71 0.86 0.34

3 2.67 2.42 0.80 0.24
4 3.37 2.90 0.73 0.20

1 1.00 1.00 1.00 2.03
iir12 2 1.94 1.85 0.93 1.10

3 2.70 2.67 0.89 0.76
4 3.41 3.33 0.83 0.59

Table 2-11: Experiments on the PACE hardware

the stalled cycles degrade the processor performance.

According to Table 2-12, the number of valid cycles obtained by a detailed simulation is on

average within 1% of the value predicted by the scheduler, even though on very sparse matrices

like feb, and omega, the di�erence can be as big as 7%. On average, the number of cycles

that the processor is stalled is 15%, tough in matrices that are very sparse like omega the

stalled cycles can account for as much as 24% of the total number of cycles. The results from

a detailed simulation are consistent with the proposed scheduler task model. In the future, a

task model able to take into account the interleaving memory bank conicts and the DRAM's

static column misses could not only produce results closer to a more detailed simulation, but

could also reduce the total number of clock cycles.

Matrix Scheduler RTL Simulation
(Predicted) Total Cycles PE Stalled

dram 1,131,755 1,286,943 137,132

feb 826,309 1,106,794 219,625

mesh 438,760 503,960 69,942

iir12 2,318,158 2,669,872 352,385

iir123 3,318,758 3,892,886 576,023

omega 249,027 340,756 82,224

mfr 741,427 960,518 214,249

Average 1,289,256 1,537,390 235,940

Table 2-12: Validation of the task model for the proposed architecture

Having discussed several storage and schedule methodologies, and validated some of the pre-

75

dicted performance results, we expect that the combined use of these software techniques, along

with special purpose hardware for executing twenty operations per DRAM cycle will enable us

to achieve in each processor execution speeds one order of magnitude faster than available

general purpose processors driven by comparable clock speeds. The scheduler predictions and

validations support the claims that another order of magnitude increase in performance can be

obtained by the usage of multiple processors connected through a high speed bus.

In the next chapter, we intend to study techniques to use e�ciently the computational

resources for more generalized computations that are required for the evaluation of nonlinear-

ities, as discussed in the Introduction. We intend to further discuss the proposed architecture

in Chapter 4.

76

3

Parallel Circuit Simulation

The objective of this research is the study of software and hardware parallel execution

techniques to speed up the simulation of electrical circuit. The main components that comprise

the bulk of the circuit simulation computation are the assembly of a sparse set of network

equations and the sparse matrix solution. While Chapter 2 describes several techniques for

parallel sparse matrix decomposition, this chapter focuses on the aspects of parallel assembly of

the network equations. The assembly process consists of the evaluation of all the circuit devices

and the stamping of their contributions in the network equations.

Section 3.1 provides some background information about circuit simulation in general, along

with an overview of the parallel circuit simulation process and the major issues needed to be

addressed in order to achieve a high degree of multiprocessor utilization during the assembly of

the network equations. Section 3.2 provides a detailed description of the data structures, equa-

tions and scheduling schemes used in a modi�ed version of SIMLAB[Lumsdaine90] to implement

the parallel device evaluation and contribution stamping. Finally, Section 3.3 presents predic-

tions for the network equation assembly multiprocessor performance, along with a discussion

on the merits of di�erent scheduling schemes. The predictions are based on a relatively simple

task graph cost function model similar to the one described in Section 2.3.

3.1 Major Issues in Parallel Circuit Simulation

3.1.1 Circuit Simulation Background

The equations that govern the dynamic behavior of electric circuits are the conservation

laws, like Kircho�'s current (KCL) and voltage laws (KVL), the constitutive relations or current-

voltage characteristics of the elements, and the physical correlations of rates of change of charge

and ux with current and voltage. Let us consider, for example, the circuit in Figure 3-1.

Applying the conservation laws (KCL) for this circuit we obtain the following equations:

77

78

R1

C1 C2 D1

R2

R3 I1

v1 v2 v3

iC1 ic2 iD1 iR3

L1

iL1

iR1 iR2

Figure 3-1: Example circuit

iR1 � iL1 � iC1 = 0

iR2 � iR1 � iC2 � iD1 = 0 (3.1)

iI1 � iR2 � iR3 = 0

The following equations represent the constitutive relations, or the current-voltage charac-

teristics of the elements:

iR1 =
v2 � v1

R1

iR2 =
v3 � v2

R2
(3.2)

iR3 =
v3

R1

iD1 = IS � (e
v2
Vth � 1)

The following equations represent the physical correlations of rates of change of charge and

ux with currents and voltages:

iC1 = C1 �
dv1

dt

iC2 = C2 �
dv2

dt
(3.3)

vL1 = L1 �
diL1

dt

Relationships 3.1, 3.2, and 3.3 can be generalized for any network containing a mix of linear

and non-linear lumped elements. These equations are represented as a sparse set of non-linear,

algebraic-di�erential equations [Vlach83]:

F

�
dx(t)

dt
; x(t); t

�
= 0 (3.4)

79

where x(t) is a vector containing voltages, currents, charges and uxes, dx(t)
dt

represents the

rate of change of these variables in respect with time, and F () represents the set of non-linear

equations linking x(t), dx(t)
dt

, and t associated with the circuit. Finding an appropriate value of

x(0) that is consistent with Equation 3.4 is known as the DC solution of the circuit. Given the

DC solution, the transient analysis computes numerically the values of x(t) for some t > 0.

The particular implementation of the circuit simulator used in this thesis is a modi�ed

version of SIMLAB [Lumsdaine90]. SIMLAB restricts to a small extent the exibility of the

simulator by allowing only charges and currents to participate in the formulation of F (). Since

ux and voltage equations are not modeled, oating voltage sources cannot be represented

in the model. In spite of its shortcoming, SIMLAB can simulate most devices present in an

integrated circuit. Furthermore, the extension for a more generalized simulator is relatively

straightforward.

During the transient simulation in SIMLAB, there is one non-linear di�erential-algebraic

equation per circuit node that is not directly connected to a voltage source. Each equation

relates the rate of change of the node charge with the current balance.

R

C

q(v)

i(v)

I

gv

Figure 3-2: Examples of elements connected to a node

Let us consider, for example, the rate of change of charges in capacitors connected to all

nodes in the circuit and the balance of currents entering and leaving these nodes. Figure 3-2

depicts several examples of devices connected to a particular circuit node. The following set of

equations represent the circuit behavior of a generic SIMLAB network:

dq(v(t))

dt
+ C0

dv(t)

dt
+ i(v(t)) + G0v(t) = 0 (3.5)

In Equation 3.5, v(t) is the vector of node voltages, q(v(t)) represents the contribution

of the non-linear capacitive elements, and i(v(t)) represent the contribution of the non-linear

resistive elements. C0 and G0 represent respectively the linear capacitive and resistive elements.

Assuming a known voltage vector v(t � h), and a generic timestep h, this version of SIMLAB

uses the trapezoidal integration method to approximate the time derivatives in Equation 3.5

80

by the average value of the current values at time t and t� h, which yields the following sparse

set of non-linear algebraic equations:

�
Q(v(t))�Q(v(t� h))

h

�
+

�
I(v(t)) + I(v(t� h))

2

�
= 0 (3.6)

where Q(v) is the vector of charges, including the contributions of both linear and non-linear

capacitive elements, while I(v) is the vector of currents, including the contributions of both

linear and non-linear conductances. Equation 3.6 can be solved using the multidimensional

Newton-Raphson iteration scheme, in which the value of the k-th iterate vk(t) is given by

solving the following sparse set of linear equations:

@

@vk(t)

h
�[Q(vk(t))� Q(v(t� h))] + [I(vk(t)) + I(v(t� h))]

ih
vk(t)� vk�1(t)

i
= (3.7)

��[Q(vk(t))�Q(v(t� h))]� [I(vk(t)) + I(v(t� h))]

where � = 2
h
. This equation can be rewritten in a compact way as JF (vk)�vk = �f(vk).

The Jacobian JF (v
k) consists of the partial derivatives of the components of F () with respect to

the components of v(t), or
h
�
@Q(vk(t))
@vk(t) +

@I(vk(t))
@vk(t)

i
. The right hand side �f(vk) consists of the

contributions of current and charge to the error in the approximation of the iterate vk(t). The

iterative scheme starts with some initial guess v0(t), which can be obtained by interpolation

of the previous timestep values, and is repeated until k�vkk � � and kf(vk)k � �, given some

arbitrary error tolerance � and �. Once the convergence is reached and v(t) is obtained, a new

timestep h0 is picked, and the whole process is repeated to obtain v(t+ h0).

Assembling these equations involves determining for all devices in the circuit the currents,

charges, and their derivatives in respect with the voltage vector, a process often called model

evaluation, and then adding their contributions to the Jacobian matrix JF (v
k) and the right-

hand-side vector �f(vk). The processes of adding these contributions are called respectively

Jacobian and right-hand-side stamping .

Algorithm 3.1 describes in detail one step of the transient analysis algorithm used in SIMLAB.

The algorithm starts by choosing a value for the timestep h based on an estimate of the local

truncation error. Also, an initial voltage vector vg for the N nodes that are not connected to

independent voltage sources is guessed by interpolating v(t) from a small set of previous values

of v. The vector u(t) has Nindep entries corresponding to nodes with independent voltage

sources, and it is updated to reect their status at time t. The initial guess v0(t) is assembled

by the concatenation of vg(t) and u(t) vectors. The contributions of ��Q(v(t�h))+I(v(t�h))

in Equation 3.7 are combined in a single vector rhsold. The algorithm then proceeds with the

Newton-Raphson iteration.

During the Newton-Raphson iteration process, it is possible to substantially reduce the

computation costs by evaluating the Jacobian entries only once in a cycle that consists of a

81

Algorithm 3.1 (Transient Analysis | Computation of one timestep).

converged= v converged= false

h= pick timestep() /* Choose timestep */

t= t+ h

� = 2
h

vg(t)= guess voltage(t) /* Compute initial guess */

u(t)= compute independent Vsources(t)

k = 0

vk(t) = vg(t)
S
u(t)

rhsold = c� �q /* Initialize rhsold with ��Q(v(t� h)) + I(v(t� h)) */

while (k < MaxIter) and (!converged) f /* Newton-Raphson iteration */

do LU= false

if ((k % NJacob) == 0) f /* Compute Jacobian once per NJacob cycle */

C = @Q(vk(t))
@vk(t)

/* Evaluation of derivatives using models */

G = @I(vk(t))
@vk(t)

JF (vk(t)) = �C + G /* Jacobian stamping */

do LU= true

g

q = Q(vk(t)) /* Evaluation of device models */

c = I(vk(t))

rhs = c+ �q + rhsold /* rhs stamping */

if (!v converged) or (!check Iconvergence(rhs)) f

�vk(t)= sparse solve(JF (v
k(t));�rhs; do LU) /* Solve linear equations */

v converged= check Vconvergence(�vk(t))

if (!v converged) f /* If has not converged yet */

vk+1(t) = vk(t) + �vk(t)

k = k + 1

g

g

else f
converged= true

g

g

small number NJacob of iterations. This change does not change substantially the total number

of iterations necessary to achieve convergence, yet substantially reduce the computational costs.

Since the Jacobian entries do not change during the other iterations of the NJacob cycle, it is

only necessary to perform a matrix LU decomposition when the Jacobian entries are updated,

as indicated in Algorithm 3.1 by the do LU boolean variable.

82

Besides the solution of the sparse set of equations, discussed in detail in Chapter 2, the

bulk of the algorithm execution time is spent computing matrices C and G, respectively the

capacitive and conductive derivatives that are added to form JF (v
k(t)), and the vectors c and

q, respectively the current and charge parts of rhs. The matrices C and G are not actually

computed separately and merged during the stamping phase generating the Jacobian matrix

JF (v
k(t)). This approach would require a large amount of memory to store three very large

matrices. Instead, the contributions are automatically merged and saved directly into the

Jacobian matrix, as shown in detail for some devices in Section 3.2. However, vectors c and q

must actually be separately generated before the right-hand-side vector is assembled, and must

be kept separate until the next timestep, as their contributions are needed to generate the old

right-hand-side vector rhsold = c � �q. This constraint, however, does not demand a large

amount of memory.

3.1.2 Overview of the Parallel Circuit Simulation Process

Figure 3-3 depicts some of the data structures involved in the parallel execution of the

model evaluation and the stamping process. Each processor contains a set of Jacobian matrix

JF (vk(t)) rows that are selected by the sparse matrix partioning and scheduling algorithm, and

the corresponding scattered set of entries in vectors �vk(t) and rhs(vk(t)). We assume that

each processor contains a copy of the entire voltage vector vk(t). Each processor also contains

a list of devices that will be evaluated locally. Each device instance has associated with it a

model, the instance parameters, and an ordered list of addresses that correspond to the terminal

voltages, and to the contributions for the Jacobian and the right-hand-side vectors c and q.

For example, processor #1 in Figure 3-3 contains in its device list a diode. The processor

can examine the values of vka(t) and vkc (t) in the local voltage vector vk(t) to evaluate the

current c and charge q contributions for the anode a and the cathode c, as well as the four

contributions to the Jacobian Jaa, Jac, Jca, and Jcc. In Figure 3-3, processor #P contains the

data associated with the node 1, where the anode is connected to, while processor #1 contains

the data associated with the node 2, where the cathode is connected to. Following the steps in

Algorithm 3.1, after the models have been evaluated and their contributions to Jacobian and

the right-hand-side vector have been updated in the di�erent processors, the parallel sparse

matrix solution algorithm described in Chapter 2 is executed, and the local values of �vk(t)

are obtained. The solution vector, augmented by extra zeros representing the Nindep nodes

connected to independent voltage sources is then added to the present voltage values vk(t) in

order to obtain the next iterate vk+1(t). The convergence is checked, and the next Newton-

Raphson iteration is restarted.

The model evaluation is a parallel problem that can easily achieve near perfect speedup in

most multiprocessor systems. The speedup is bounded only by the granularity of the tasks,

which is usually very �ne, as the number of devices M to be evaluated is usually much larger

83

=x

= +

0
0
0
0

∆ v (t)k
−rhs(v (t))

k

v (t)
kk+1

v (t)

J (v (t))
k

F

device_list

a
c

Va

Vc

J aa

J ac

J cc

J ca

=x

= +

0
0
0
0

J
J

J
J

mm

mn

nm

nn

Vm

Vn

m
n

device_listProcessor #1 Processor #P

∆ v (t)k

∆ v (t)k
−rhs(v (t))

k

v (t)
kk+1

v (t)

J (v (t))
k

F

∆ v (t)k

1

3

8

11
12

2

4
5
6
7

9
10

node node

Figure 3-3: Data structures used in a multiprocessor for transient analysis of an electrical
circuit

than the number of processors P . However, adding the di�erent device contributions to the

Jacobian JF (vk(t)) and to the right-hand-side vectors c and qs requires either the transmission

of the contributions across the network, or the duplication of the device evaluation e�ort. For

example, considering the diode in Figure 3-3, its contributions Jaa and Jac for the Jacobian, as

well as the anode current and charge contributions can either be transmitted from processor

#1 to processor #P, or the diode evaluation can be done independently in processor #P, and

the above mentioned contributions could be locally added.

Assuming that no evaluation task is replicated in di�erent processors, implying that some

data must be transmitted over the network to other processors, and the interconnection network

topology consists of a simple bus, it is possible to envision two di�erent situations, previously

described in the work of Sadayappan and Visvanathan [Sadayappan88] for a shared memory

84

multiprocessor. This simpli�ed model permits a quick evaluation of the impact of the network

bandwidth on multiprocessor performance. In order to extend Sadayappan's results for a dis-

tributed memory multiprocessor with message passing, let us consider a parallel loop executed

in P processors, which consists of the evaluation of a very large number of compute intensive

tasks corresponding to the model evaluation, each with a probability � of being followed by a

transmission of its results, so that if necessary, the contributions are added in the appropriate

processor to the correct entry of the right-hand-side vector or the Jacobian matrix. Empiri-

cally, the value of � � 0:5 is a reasonable assumption for large MOS circuits simulated in a

large number of processors, a claim further discussed in Section 3.3. Figure 3-4 shows this loop:

after a given task is �nished, its corresponding output data might be transmitted in the bus.

Assuming that the average time required for the device evaluation is teval, and the time for each

transmission is ttrans, Figure 3-4 depicts the two possible scenarios. If teval � � � P � ttrans,

the speed-up obtained is P , which corresponds to an utilization of 100% of the computational

resources. This situation is depicted in Figure 3-4(a). The empty time slots in the bus represent

bus slack . On the other hand, if teval < � � P � ttrans, the speed-up obtained is teval
��ttrans

, re-

gardless of the number of processors available. We shall refer to this ratio as maximum speedup

due to stamping , or smax. The utilization in this case drops to teval
��P�ttrans

. This situation is

depicted in Figure 3-4(b). The empty time slots in each processor represent an idle processor.

A clever scheduling algorithm can predict in advance the latter situation, and duplicate some

of the tasks in order to alleviate the network tra�c. The ideal operating situation is when all

processors are all used most of the time, and the bus is always occupied, thus minimizing the

total completion time for equation assembly.

P1

P2

P3

P4

Bus

time

(a)

P1

P2

P3

P4

Bus

time

(b)

Figure 3-4: Bus slack (a) versus processor idle (b)

It is important to note that for certain devices, like linear elements and simple voltage

85

sources, the evaluation costs teval are actually smaller than the ttrans. Let us consider, for

example, the resistor in Figure 3-3. Assuming that 1
R
has been precomputed, there is no cost

for the evaluation of the contributions for the Jacobian JF , and the cost for the contributions

to the right hand side is one oating point multiplication, which is smaller than ttrans in almost

all multiprocessor systems currently available. Since this is the case with most linear devices

and independent voltage sources, the �rst version of the scheduler replicates the work for these

elements if their contributions reside on di�erent processors. On the other hand, we expect

teval for non-linear devices like transistors and diodes to be much larger than ttrans, at least

considering the Numerical Engine proposed in Chapter 4, so the �rst version of the scheduler

computes only once the contributions of non-linear devices, and then transmit the results over

the network for stamping. The next section discusses in detail the issues involved in parallel

model evaluation and the issues involved in the �nal assembly of the equations by stamping the

device contributions.

3.2 Parallel Model Evaluation

3.2.1 Linear Elements and Voltage Sources

Assuming the k-th iterate of the voltage vector vk(t) is present in all processors, it is rather

straightforward to compute all contributions for the linear elements. Since most linear element

computations are very simple, the evaluation and stamping are done in the same task, and no

data is transmitted over the network for �nishing the assembling the equations. Figure 3-5

depicts for each processor the data structures associated with the evaluation of linear elements

and voltage sources, corresponding loosely to part of the device list structure in Figure 3-3.

1/ rij &Vi
&Vj

Parameter Address

#shres
#lcap

#lpwl

#lres

1/ rkl

n

&V
&V

k

l

&Vm

V (t)δ δ tn−1 n−2

Par_ptr Descriptor #devs Add_ptr

p
&Vp

local_pwl()

local_cap()
shared_res()
local_res()

Linear Device and Voltage Source Table

Figure 3-5: Local linear device and voltage source data structures

Once the partition algorithm for sparse matrices has decided in which processor a particular

86

row (representing a circuit node) is stored, it is relatively straightforward to precompile a list

of linear device evaluation tasks for each processor. In order to simplify the precompilation, all

independent voltage sources are evaluated locally in each processor. Each type of device has

one or more entries in the Linear Device and Voltage Source Table. Each entry in this table

contains a descriptor �eld containing the address of the device evaluation procedure, the number

of device instances, a pointer to a list of double precision oating point numbers representing

instance parameters, and a pointer to list of addresses associated with the instances. For

example, capacitors are either connected to two circuit nodes stored in the same processor,

or connected to nodes stored in di�erent processors. Therefore, there are two entries in the

device table for capacitors. In each processor, for all capacitor instances whose nodes are stored

locally, the local cap() procedure evaluates and stamps their contributions for the Jacobian and

the right-hand-side. For instances of capacitors whose nodes are stored in di�erent processors,

the shared cap() procedure in each processor evaluates and stamps the local contributions. In

the following, the evaluation and stamping of some of linear devices and independent voltage

sources are described in detail.

Linear Capacitors

Figure 3-6 illustrates the data structures associated with each capacitor instance, for both

local (a) and distributed (b) evaluation and stamping.

&Vi
&Vj

&J
&J
&J

&J ii

Parameter Address

i j
ij

 Local
Processor

ijc

c
jj

ij

ji

i&q

j&q

(a)

&Vi
&Vj

&J ij

&J ii

&V
&V
&J
&J

Parameter Address

Address

j

i

Processor(i)

Processor(j)

ij

ijc

ijc

j

i

jj

ji

c

i&q

j&q

Parameter

(b)

Figure 3-6: Local (a) and distributed (b) capacitor evaluation and stamp data structures

The constant � = 2
h
is described in Equation 3.7. For each capacitor instance terminal,

Equations 3.8 and 3.9 describe the evaluation and the stamping in the Jacobian matrix and in

87

the q vector, which represents the part associated with charges in the right-hand-side vector.

Jii = Jii + �cij

Jij = Jij � �cij (3.8)

qi = qi � cij(Vi � Vj)

and

Jjj = Jjj + �cij

Jji = Jji � �cij (3.9)

qj = qj � cij(Vj � Vi)

It is important to note that the form of Equations 3.8 and 3.9 is the same to simplify the

implementation of the shared cap() procedure. In order to accommodate this situation, the

order of Vi and Vj addresses for the device instance in di�erent processors is swapped, as shown

in Figure 3-6(b).

Independent Current Sources

Figure 3-7 illustrates the data structures associated with each independent current source

instance, for both local (a) and distributed (b) evaluation and stamping.

Equations 3.10 and 3.11 describe for each independent current source instance node the

evaluation and the stamping in the right-hand-side vector. No Jacobian entries are a�ected.

In order to simplify the implementation of shared isrc(), the current parameters for the same

instance in di�erent processors have opposite signs, as shown in Figure 3-7(b).

ci = ci � Iij (3.10)

cj = cj � (�Iij) (3.11)

Independent Voltage Sources

Figure 3-8 illustrates the data structures associated with each independent voltage source in-

stance. As the evaluation and stamping for these elements is trivial, all instances are local in all

processors in order to simplify the precompilation software. The evaluation and stamping of the

independent voltage source instances consists only of resetting the appropriate voltage Vi in the

i-th position of the vector u(t), during the execution of compute independent Vsources(t)

procedure in Algorithm 3.1.

88

Parameter Address

i j

 Local
Processor

ijI

ijI

i

j

&c

&c

(a)

Parameter Address

Parameter Address

j

i

Processor(i)

Processor(j)

ijI

ijI

ij−I

i&c

j&c

(b)

Figure 3-7: Local (a) and distributed (b) independent current source evaluation and stamp
data structures

Parameter Address

i

iV i&V

iV
+

−

Processor #1

Parameter Address

i

iV i&V

iV
+

−

Parameter Address

i

iV i&V

iV
+

−

Processor #2 Processor #P

Figure 3-8: Distributed independent voltage source evaluation and stamp data structures

Piecewise Linear Independent Voltage Sources

Figure 3-9 illustrates the data structures associated with each independent piecewise linear

voltage source instance. Like independent voltage sources, the evaluation and stamping for

these elements is trivial, and all instances are local in all processors in order to simplify the

precompilation software. Algorithm 3.2 describes how to obtain Vi(t) given t during the execu-

tion of compute independent Vsources(t) in Algorithm 3.1. As shown in Figure 3-9, the

set of parameters associated with each instance of a voltage source consists of n, the number of

linear pieces that compose the waveform, its delay �T , its period T , and three vectors of size n

whose components de�ne precisely each linear piece. The three vectors represent respectively

the initial time, the initial voltage, and the slope of each linear piece. The slope vector is

added to accelerate the execution of the procedure, as oating point divisions are substantially

89

more expensive than multiplications. The �rst time element t0 = 0 is implicitly stored, so the

�rst vector is actually skewed by one element in respect to the other vectors, and �nishes with

tn = T . The total size of the data structure for each voltage source is 3n+ 3.

Parameter Address

i

i&V

i

+

−

Processor #1

V (t)

n
delay
period

V (t)n−1i

t
t

V (t)δ δ ti n−1

Parameter Address

i

i&V

i

+

−
V (t)

n
delay
period

V (t)n−1i

t
t

V (t)i 1

V (t)δ δ ti n−1

Parameter Address

i

i&V

i

+

−
V (t)

n
delay
period

V (t)n−1i

t
t

V (t)i 1

V (t)δ δ ti n−1

Processor #2 Processor #P

1

2

i 1V (t)
iV (0)

1

2

iV (0)

1

2

iV (0)

iδ δ tV (0) iδ δ tV (0)
V (t)δ δ ti 1 V (t)δ δ ti 1V (t)δ δ ti 1

iδ δ tV (0)

tn tntn

Figure 3-9: Data structures for the evaluation and stamp of the independent piecewise linear
voltage sources

For each piecewise linear independent voltage source, Algorithm 3.2 computes the local time

relative to t0, searches for the appropriate linear segment j that corresponds to the local time,

and obtains the voltage Vi(t) by multipling the distance between tlocal and tj by the slope
@Vi(tj)
@t

and adding it to the initial voltage Vi(tj).

3.2.2 Parallel Evaluation of Non-Linear Elements

The parallel evaluation and stamping of non-linear elements is a substantially harder prob-

lem than its equivalent for linear devices. The time necessary for the evaluation of the contri-

butions for a complex device like a diode or a transistor is much larger than the time required

to transmit them in the Numerical Engine network described in Chapter 4. Therefore, the

�rst version of the scheduling software assumes that the contributions for non-linear devices

will be computed in only one processor and transmitted over the network for stamping. In the

following, we present in detail the mechanics of precompiling a list of operations for the parallel

device evaluation and contribution stamping using data transmission. The mechanics for task

replication scheduling are trivial and therefore are not discussed. A short discussion on the

predicted performance for di�erent scheduling methods is presented in Section 3.3.

During the precompilation phase, each device instance is visited, and the least loaded pro-

cessor that contains nodes connected to the instance under consideration is assigned for the

evaluation of the contributions to the Jacobian and the right-hand-side entries. If any instance

terminals are connected to nodes that reside in di�erent processors, the appropriate contribu-

90

Algorithm 3.2 (Computing v(t) for an independent piecewise linear voltage source).

local pwl(Par ptr, #lpwl, Add ptr, t)

ptr= pbase= Par ptr

abase= Adr ptr

for k = 1 to #lpwl do f /* Foreach pwl source */

n = �ptr ++ /* Number of linear segments */

�T = �ptr+ + /* Delay */

T = �ptr ++ /* Period */

tlocal = t ��T � b t��T
T

cT /* Local time */

j = 0

while tlocal > (tj = �ptr + +) f /* Search for corresponding time segment */

j = j + 1

g

Vi(tj) = pbase[n+ j + 3] /* Corresponding initial voltage */
@Vi(tj)
@t

= pbase[2n+ j + 3] /* Corresponding slope */

Vi(t) = Vi(tj) +
@Vi(tj)
@t

� (tlocal � tj)

**abase = Vi(t) /* Stamp */

abase= abase + 1 /* abase points to next pwl source */

pbase= pbase + 3n+ 3 /* pbase points to next pwl source */

g

tions will be transmitted over the network and stamped remotely, as shown in Figure 3-3.

The simple partitioning and scheduling scheme described above is not optimal, as the at-

tribution of nodes to processors is only determined by the parallel sparse matrix factorization

heuristic. A better partitioning scheme should take also in consideration the load balance and

the volume of data transmitted across the network for device evaluation and stamping. Also,

the multiprocessor performance is limited when the interconnection network is saturated, as

discussed in Section 3.1.2. A better scheduling heuristic could predict in advance the inter-

face network saturation and replicate a subset of the tasks in di�erent processors in order to

alleviate network tra�c. In spite of these shortcomings, the scheduling is quite e�ective for

the Numerical Engine architecture described in Chapter 4. Empirical evidence based on simu-

lated results at behavioral level and reasonable cost functions for data transmission and device

evaluation in the Numerical Engine shows that the bus saturation for model evaluation and

stamping typically occurs when the number of processors is around twenty. Since the target

number of processors P is relatively small (4 � P � 16), it seemed unnecessary to write a more

sophisticated partitioning and scheduling algorithm.

Figure 3-10 depicts in detail the data structures associated with the evaluation of non-linear

91

devices and the stamping of the Jacobian matrix and right-hand-side vectors across processors.

These data structures are created during the partition and scheduling precompilation phase,

before the actual transient analysis loop starts.

&V
&V
&V
&V
&J
&J
&J
&J
&q

&c
&J
&Jss
&J
&J
&q

s
&cs
&J
&J
&q

&c

d

s

g

b

dg

db

d

d

dd

ds

sd

sg

sb

aa

ac

a

a

Address

Descriptor

stuff_drain()

gate_trans()
stuff_source()

read_anode()

main_mos1()

bulk_trans()

Ad_ptr Pa_ptr

Parameter

β x

Cgsubx

sign_mos
m

Vt0_mosm
dVtdVbs0_mos m

φ _mos
m

Vt0fix_mosm

γ_mosm

λ _mos
m

Vfb_mosm

Model

main_diode()

stuff_cathode()
anode_trans()

read_gate()
read_bulk()

Pa_ptr Ad_ptrDescriptor

Parameter
Area y

Vmaxy

offsetImaxy

Is_dd
Maxcond_dd

Vrev_d d
nVt_dd

Vbrk_d d
Revcond_d d

Irev_d d
invVt_dd
Cjo_dd
fc _dd
inv _dd
isqrt_dd
m_dd
Tt_dd

Cjp1_dd
Cjp2_dd
Cjp3_dd

f3_dd

φ
φ

Model

&V
&V
&J
&J
&q

&c
&J
&J
&J
&J
&q

&c
&J
&J
&J
&J
&q

&c

a

c

ca

cc

c

c

gd

gs

gg

gb

g

g

bd

bs

bg

bb

b

b

Address

Processor #1 Processor #P

device_list

device_list

Figure 3-10: Distributed non-linear device data structures

Unlike the Linear Device and Voltage Source Table, which contains very few entries repre-

senting device types , the device list structure for non-linear devices in each processor contains

entries corresponding to device instances , as the stamping of each instance might be distributed

across processors in di�erent ways. Each entry in the device list contains a descriptor that cor-

responds to a procedure call that is precompiled during the partitioning and scheduling of

device evaluation and stamp tasks, a pointer Ad ptr to a list of addresses related with the pro-

cedure execution, and a pointer Pa ptr to a list of double precision oating point numbers used

during the device evaluation. The procedure call could represent a device evaluation procedure

main xxx(), a local stamping procedure stu� xxx(), a network transmission of the contributions

xxx trans(), or a procedure that reads device contributions from the network and stamps them

locally read xxx().

92

Additional data necessary for non-linear device evaluation is supplied by the Model struc-

ture depicted in Figure 3-10. It is common in integrated circuits that many transistors and

diodes share a common set of parameters like oxide thickness, Fermi level, mobility, etc. Some

operations involving these fundamental parameters can be computed before the execution of

the transient analysis algorithm into a Model that is shared by many devices, thus saving exe-

cution time and memory space. For example, Figure 3-10 depicts the actual model parameters

for a SIMLAB mos1 MOS transistor device present in processor #1, and the actual model pa-

rameters for a SIMLAB diode bipolar junction diode device present in processor #P. Since the

space required by these models is typically very small (usually less than a thousand double

precision oating point words), the precompilation scheme will assign a copy of all models to

each processor.

Following the simulation steps related to Figure 3-10, processor #1 uses the local voltage

vector information during the execution of main mos1() to determine the drain, source, gate

and substrate voltages of the particular transistor instance x depicted in Figure 3-10, along

with its model (e.g. a long channel NMOS) parameters and instance parameters such as �x =
���0
Tox

Wx

Lx
in order to compute all the contributions for the charges and current vectors in all

nodes connected to the transistor, as well as the charge and current derivatives. Assuming the

drain and source nodes are stored locally, stu� drain() and stu� source() will add the charge

and current contributions qd, cd, qs and cs to the right-hand-side vectors, as well as their

derivatives Jd� and Js� to the Jacobian matrix. gate trans() and bulk trans() will transmit

the contributions qg, cg, qb, cb, and their derivatives Jg� and Jb� to processor #P, which in

turn will receive from the network these contributions during the execution of the read gate()

and read bulk() procedures, and add them to the appropriate local entries in the right-hand-

side vectors and in the Jacobian matrix. Similarly, processor #P will execute main diode()

and stu� cathode() locally, and will use anode trans() to transmit the anode contributions to

processor #1, which in turn receives them and adds their contributions appropriately during

the execution of read anode().

3.3 Device Evaluation and Contribution Stamping Multipro-

cessor Performance

In order to simplify the scheduling of the device evaluation and the stamping operations in

a multicomputer, as well as to obtain an estimate of the achievable speedup for a particular

hardware con�guration, one can represent the execution of the di�erent procedures for device

evaluation and stamping mentioned in Section 3.2.2 as the tasks or vertices of a task graph,

and their interdependences as task graph edges, in the same fashion as described in Section 2.3

for the operations related with the sparse matrix decomposition.

Figure 3-11 shows two task graphs that represent the evaluation of the non-linear devices and

93

the stamping process corresponding to the situation shown in Figure 3-10. Both cases represent

the task graph after the assignment of tasks to processors, thus reecting the introduction of new

tasks reecting either the need to replicate some tasks(a) or the need to transmit contributions

across the network(b).

main_
mos1

stuff_
drain

stuff_
source

main_
mos1

main_
diode

 stuff_
cathode

stuff_
gate

stuff_
bulk

main_
diode

 stuff_
anode

Processor #1 Processor #P

(a)

main_
mos1

main_
diode

stuff_
drain

stuff_
source

gate_
trans

bulk_
trans

 stuff_
cathode

anode_
 trans

read_
gate

read_
bulk

read_
anode

#1

#1 #1 #1 #1

#1

#P

#P #P

#P#P

(b)

Figure 3-11: Task graphs associated with the execution of the non-linear device evaluation
and stamping procedures with task replication (a) and with data transmission (b)

Figure 3-11(a) depicts the situation previously described in which absolutely no contribu-

tions are transmitted over the network, thus task main mos1() is replicated in processor #P, as

well as the main diode() task is duplicated in processor #1. In this case, the graph associated

with device evaluation and stamping tasks represents an easy parallel problem since all pro-

cessors can work independently in as many independent tasks as the number of devices. The

height (or number of levels H) of the graph is two. In spite of these advantages, experimental

simulated data (Table 3-1) suggests that using this technique yields very poor multiproces-

sor utilization due to the task replication overhead. The network con�guration in this case is

irrelevant since no data is transmitted.

Figure 3-11(b) depicts the previously described situation in which the contributions of non-

linear devices that have terminal nodes stored in di�erent processors are shipped across the

network using the xxx trans() and read xxx() pair of procedures. Each vertex in the task graph

in Figure 3-11(b) also shows the processor that will execute a particular task. Also in this

case, the associated task graph has the desirable characteristics necessary to achieve a high

degree of concurrency in a multiprocessor system. The graph is very wide, so balancing loads

is simpli�ed by the large number of independent tasks, and the height of the graph is at most

three levels, which implies that the critical path is very short. Experimental simulated data

(Table 3-1) for the Numerical Engine suggests that the usage of this technique yields good

multiprocessor utilization for a moderate number of processors, thus it has been chosen for the

actual behavioral level simulation of the execution of SIMLAB.

Table 3-1 shows the predicted number of Numerical Engine clock cycles required for the

94

Processors Task Replication Data Transmission
Cycles Utilization Cycles Utilization Bus Utilization

1 310,502 1.00 310,502 1.00 0.00

2 221,502 0.70 160,864 0.97 0.06

4 127,673 0.61 82,882 0.94 0.18

8 68,476 0.57 42,100 0.92 0.42

16 37,858 0.51 21,856 0.89 0.85

Table 3-1: Comparison of predicted Numerical Engine performance for device evaluation and
stamping with task replication and with data transmission (shmem)

device evaluation and the contribution stamping of shmem, a static memory read test circuit that

has a total of 1760 linear and non-linear devices. The cost functions for the device evaluation

were generated by counting the total number of oating point instructions. If a particular device

operates in di�erent regions, an average value of the operation counts in the distinct modes

was used. For instance, the mos1 transistor can operate in the saturation, linear , accumulation

or subthreshold regions. The cost functions for data transmission reect the actual number

of elements that needed to be transmitted as well as the message overhead. In Table 3-1,

the �rst column represents the number of processors. The second and third columns show

respectively the number of clock cycles and utilization for the scheme that duplicates when

necessary in multiple processors the evaluation of non-linear devices, while the fourth and �fth

columns represent the results for the scheme that requires the transmission of non-linear device

contributions across the network. The sixth column shows the bus utilization, indicating that

the network will saturate when P � 20.

Assuming that the evaluation and stamping for non-linear devices account for most of the

time spent, the results for total task replication indicate that even for two processors, roughly a

third of the device evaluation tasks had to be replicated in another processor. Also, it seems that

the work involved in the devices evaluation tasks tend to double as the number of processors

increase, or in other words, as the number of processor grows, the average non-linear device

tends to span across two processors, which is reasonably consistent with the characteristics of

the shmem circuit. Many mos1 transistor devices will tend to have two out of four terminals

(substrate and source) pinned to voltage sources, while the remaining that have three terminals

connected to internal circuit nodes are compensated by the mosdiode contributions, which tend

to always be local as the substrate of most transistors is connected to a voltage source, either

V dd or Gnd.

Even though the results listed in Table 3-1 for remote stamping without task replication for

non-linear devices are quite good and undoubtly superior than the results for task replication,

they are quite disappointing in the sense that the utilization results are similar to the sparse

matrix results described in Chapter 2, while obtaining concurrency for device evaluation and

95

stamping is clearly an easier problem than sparse matrix factorization. Aside from the obvi-

ous bus saturation problem previously discussed, that certainly did not happen in any of the

results listed in Table 3-1 as the largest bus utilization was 85%, several factors contributed to

these relatively poor results. These factors include the extra cost of the added xxx trans() and

read xxx() tasks, poor load balance, and poor scheduling due to limited bu�ering.

The poor load balance is related to the fact that in the current version of SIMLAB the

distribution of nodes to processors is solely dependent on the sparse matrix partitioning scheme.

Even worse, according to the current device partitioning scheme, if all nodes that a particular

device is connected to reside in the same processor, this processor will receive the entire load of

that device evaluation and stamping, regardless of its previous load status. Probably, the load

balancing is the single largest cause of performance degradation in Table 3-1.

The poor scheduling problem is related to the lack of bu�ering and consequently, is related

to a severe restriction in the task scheduling freedom. In the current scheme, the device con-

tributions computed in main xxx() are kept in registers, so all tasks of the type stu� xxx() and

xxx trans() related to the same instance must be executed immediately after main xxx(). The

actual task scheduling heuristic is also very simple, scheduling all mos1 devices �rst because

they tend to send across the network most of the contributions, then mosdiode and diode devices

are scheduled next as they tend to send fewer contributions across the network, followed by the

evaluation of linear devices, which do not contribute at all for the network tra�c. However,

only an incremental improvement in performance for the Numerical Engine could be obtained if

the scheduling restrictions are eliminated, as their role on the performance degradation is prob-

ably minimum, since the severe restrictions imposed in the scheduling freedom are diminished

substantially by the extraordinary low height of the task graph.

Perhaps the greatest impact of bu�ering the contributions of the non-linear devices is in

the extension of the methods discussed in this chapter to general purpose multiprocessor ar-

chitectures. Most parallel computers available today have an extremely high message latency

overhead, usually in the order of tens to hundreds of microseconds, or in the order of thousands

of processor cycles. Aside from the fact that a small number of contributions to the same

right-hand-side or Jacobian matrix entries do not need to be transmitted multiple times, lump-

ing together all the messages from processor Porig to processor Pdest to reduce the overhead

represented by the message setup, so that a maximum of P 2 messages are transmitted across

the interconnection network regardless of the size of the problem, will play a very signi�cant

role on the performance of the system.

Having studied in Chapter 2 how to use e�ciently the computational resources of a spe-

cialized parallel computer for the sparse matrix solution, and in this chapter techniques to

distribute amongst several processors the device evaluation and the stamping of their contribu-

tions to assemble the network equations, we intend to discuss in detail in the next chapter the

proposed architecture of the Numerical Engine.

96

4

Numerical Engine Architecture

The Numerical Engine architecture supports the fast parallel factorization of sparse matri-

ces using specialized hardware and the combination of scheduling and storage algorithms, as

described in Chapter 1. The objective of the project was the design of a multicomputer contain-

ing processing elements with added hardware support for fast sparse gaxpy execution. Gaxpys,

de�ned as aij = aij + aik � akj , are the most frequent operations in matrix decomposition.

The Numerical Engine consists of a small number P (4 � P � 16) of Processing Elements

(PEs) interconnected through two high speed synchronous busses as shown in Figure 4-1. Phys-

ically, each PE will be contained in a removable printed circuit board (PCB), and is designed to

operate at 50 MHz, while the backplane contains the properly terminated synchronous busses,

designed to operate at 25 MHz. DBus is a 64-bit wide data bus and can be used to broadcast a

double precision oating point word per clock cycle, corresponding to a total bandwidth of 200

Mbytes/s. IBus is a 32-bit wide data bus and can be used to broadcast either integer data or

addresses in one cycle, corresponding to a total bandwidth of 100 Mbytes/s. A simple interface

system connects the PEs with the host processor via the parallel SBus interface, which has a

32-bit wide data bus and an achievable bandwidth of 36 Mbytes/sec.

In order to achieve high speed for the sparse gaxpys , each PE has multiple interleaved

memories to supply data at high rates for the oating point unit, support for the concurrent

generation of addresses and writeback, and a simple but fast pipeline interlock system. Figure

2-15, in Chapter 2, depicts the dedicated datapath for fast O2SA update, showing the essential

components of each PE. In order to provide high speed control with the smallest possible latency

for the various PE subsystems, the controller is a simple microprogrammed unit, containing

a very wide microinstruction memory tightly coupled with each subsystem. This organization

simpli�es the control design and permits a very exible utilization of the resources.

After power-up reset, the microcontroller is placed in a microprogram boot mode, loading

the microinstruction memory for each PE from the host computer via the Sbus and the Ibus.

Once the microprogram is loaded, execution is started, initializing all internal registers and

97

98

 HOST
WORKSTATION

32

64

 Host
Interface
 System

Processor
 #P

Processor
 #1

DBus
IBus

DBus
IBus

SBus

Figure 4-1: Overview of the numerical engine architecture

putting all PEs in a memory emulation mode that maps their internal memories into the

virtual address space of the host. Also, under host control, the PEs can start the execution

of a microprogram procedure. The advantage of this organization is that it greatly simpli�es

the hardware, and the system debugging, as a debugger program like dbx can ready access any

internal PE memory as part of the virtual memory space of the host.

In the following sections, we will further describe the proposed architecture in detail. Sec-

tion 4.1 will describe in detail system-wide considerations such as timing conventions and the

general operation of the interconnection network. Section 4.2 will describe in detail the ar-

chitecture of a single PE. Section 4.3 will discuss the emulation of the proposed architecture

and some programming tools used to develop the emulator. Finally, Section 4.4 summarizes

the performance results obtained in a detailed RTL simulation and compares them with the

performance measured in general purpose computers.

4.1 System Considerations

4.1.1 Timing Conventions

An essential part of the system design is the set of timing rules, or timing conventions.

Figure 4-2 depicts the basic clocking methodology. Each processor has its own local clock Clk

with a 20 ns period. The rising edge of Clk clocks all PE registers.

The bus is driven by the BusClk signal, which is distributed to all processing elements and

drive all bus input and output registers. BusClk period is 40 ns, and the bus data must be

stable tS (setup time) before the rising edge of BusClk and remain in the same state for at least

tH (hold time) after the clock transition in order to safely capture the data in the bus input

registers. The skew between the rising edges of Clk and BusClk should be kept within a small

percentage of the internal clock period.

Figure 4-2 also depicts the two types of signals issued by the control unit: the lead control

signals come directly from the pins of the microprogram memory and are designed to be stable

99

BusClk

l1 l2 l3

a3a2a1

l4

a4a0

t
H

t

20ns

40ns

t
H

t

tSKEW

S

S

i1,d1 i2,d2

Lead

Align

IBus,
DBus

Clk

Figure 4-2: Timing conventions

tS � 4ns before the rising edge of Clk, and remain in the same state for at least tH � 2ns after

the clock transition, and the align signals, which need a microinstruction register to keep the

value stable throughout the entire cycle de�ned by Clk. Lead signals are used to specify the write

address for the register �le, the integer and oating point instructions that will be executed

during the clock period starting at the rising edge of Clk, clock enable signals for datapath

registers, �nite state machine inputs for various PE subsystems. They also specify constants

for the loop counter, and branch locations for the microprogram instruction pointer. Align

control signals are used to enable various bus tri-state output drivers, specify read addresses

in the register �le, as generic input for slow combinational logic, or as control input for �nite

state machines that have tighter requirements on tS than the usual. The advantages of using

Lead signals, when possible, are to save hardware by avoiding extra microinstruction registers,

and to reduce the overall latency in the execution of microinstructions.

A few registers, specially the microinstruction registers, need special phase synchronization

with the Clk signal. For these critical cases, the scheme proposed in Figure 4-3 can be used

to synchronize the output of a register or a logic gate with the input Clk signal. A dummy

output signal line is added, having the same clock to output register delay as other outputs and

a similar capacitive load. Inside the phase locked loop (PLL), the control voltage of the delay

line will be self adjusted in such way that the total delay from the input Clk signal to the output

dummy line is exactly one clock period. A specially interesting implementation of the PLL is

the Cypress 7B992 Programmable Skew Clock Bu�er . This device allows synchronization of

multiple dummy lines or real output signals with the input clock or with programmable skewed

versions of it.

100

Voltage Cont.
 Delay Line

Low Pass
 Filter

Phase Comp.

Clk

Phase Locked Loop

Output
 Load

Dummy
 Load

Vdd
 Input
Enable

 Input
Enable

Output
 Load

Clk

Driver

Figure 4-3: Synchronization scheme for aligning arbitrary outputs with the clock input signal

4.1.2 Interconnection Network

The interconnection network was designed keeping in mind the results predicted by the

scheduler described in Chapter 2. A fast bus interconnect was a natural choice, as the ability

to broadcast a normalized row to several processors plays a signi�cant role in the sparse matrix

decomposition.

A second consideration for choosing the network topology was the low latency associated

with the bus, as the network latency a�ects directly the size of the critical path in the multitask

graph (DAG) that represents the sparse matrix factorization process. Chapter 2 gives a detailed

description of the parallel sparse matrix factorization and scheduling algorithms.

The usage of a bus for the interconnection network was recommended in face of the relatively

small amount of concurrency that is possible to achieve during the sparse matrix factorization.

According to scheduler predictions for in�nite bandwidth, zero latency networks, as depicted

in Figure 2-17, the maximum achievable speedup for the test matrices is in the neighborhood

of smax � 40. However, in order to keep a reasonably high level of processor utilization, a

good number of processors would be P � 20. If more than P = 16 processing elements were

required, a simple bus interconnect would become impractical, as the overall bus capacitance

grows linearly with P and it becomes increasingly di�cult to drive it at high speed.

Finally, the usage of a bus as network topology has other advantages like simple operation,

and no need for complex routing algorithms. Also, it is easy to physically assemble the system,

as each PE would be in a separate PCB card that could be inserted in the backplane containing

the bus interconnect.

The goal for the bus throughput was also selected in face of the scheduler predicted results.

As indicated in Figure 2-17, there is no substantial di�erence between the predicted performance

for a system containing P � 16 processors and a bus able to broadcast a oating point data

101

and its corresponding column address at the same rate as the gaxpy operations, and another

one with the same number of processors and the bus operating at half that speed. By setting

the target rate of 50 million gaxpys per second per processor, the corresponding demand for a

(64+ 32) bit wide data bus operating at 25 Mhz was considered reasonable, and does not seem

to be very di�cult to achieve.

Figure 4-4 depicts in detail the bus electrical interface, with emphasis on the output circuit

for a generic signal from Processor #1 and the input circuit for that signal to Processor #P. All

signals are both input from and output to the bus in all processing elements, except the Reset

signal, which is driven by the host interface only and is an input in all PEs. The 25 Mhz BusClk

signal is independently driven, and latches input data to the bus or output data from the bus on

its rising edge. All other bus signals comply electrically with the Futurebus+ standard (IEEE

P896.1). These signals feature registered open-collector output drivers with a series Schottky

diode to reduce the capacitive loading to the bus. These drivers and receivers are physically

placed in each processing element board very close to the bus in order to keep the length of

the stubs to a minimum, thus reducing the noise introduced by the reection. A 2-V pullup

is used to terminate the bus in both ends, causing a BTL logic level swing of approximately

1-V, which considerably reduces the power necessary to drive the bus load capacitance. The

receiver input is a di�erential stage, comparing the bus voltage with an internally generated

voltage reference. Using bus interface devices like the Texas Instruments SN74BCT979 , shown

in Figure 4-4, placed physically very close to the bus connector in each PE, it is possible reduce

the total propagation delay in the bus to meet the speed requirements. These devices are able

to drive DC loads as low as 10
, and with proper bus design it is possible to obtain input

switching in the incident wave for very high speed operation.

S
ig

na
l

G
nd

+2V

+2V

BUS

D Q

D Q

Input

Output

V
dd

B
us

C
lk

Processor #1

Processor #P

Terminator

Terminator

Figure 4-4: A generic bus signal input and output circuits

Figure 4-5 shows all the bus interface signals. They can be classi�ed into four major groups,

102

DBus, IBus, QuietBus, and WiredBus. DBus is used for broadcasting 64-bit double precision

oating point data, and is connected to the oating point unit in each processor via a bidi-

rectional FIFO. IBus is used to broadcast 32-bit integer or address data, and is connected to

the QBus of each PE through a bidirectional FIFO. The internal architecture of the processing

elements will be further discussed in Section 4.2. Since all bus transactions are pre-scheduled

during the program load time, the handshake is done by only two signals in the QuietBus, which

are issued by the processor that has the bus ownership. The Valid signal indicates that the

data placed on the DBus and on the IBus is valid, while the Done signal indicates that next

scheduled processor can take control over the bus in the next cycle.

32

64

 Host
Interface
 System

Processor #1 Processor #P

DBus
IBus

BusClk

QuietBus

WiredBus

DBus
IBus
Valid
Done

Intrq
Full
Reset

BusClk

Figure 4-5: Bus interface signals

While signals in the three groups previously described can only be asserted by the processing

element (or the host interface system) that has control over the bus, the \emergency" signals in

the WiredBus can be asynchronously asserted by any processor, as these signals form a wired-

or, exploiting the open-collector output structure of the bus interface drivers. The Full signal

can be asserted by any processor whose FIFO receiving data from the bus is almost full. The

processor that has control over the bus monitors the Full signal and has to immediately stop

sending valid data to the others processors, entering in a bus idle state. This state persists

until the Full signal is de-asserted. This mechanism automatically slows down the bus when

some of the processing elements are consuming more time than predicted to perform internal

tasks. A good scheduling algorithm should be able to minimize the number of bus idle cycles. A

watchdog can be set in the Host Interface System to monitor this signal and take some action in

the case no progress is made after a speci�ed amount of time. A special care must be taken by

the scheduling algorithm to insure that a processor will never try to send any data that might

overow the FIFO that outputs data to the bus before making sure that the FIFO that inputs

data from the bus will not overow, which is the only possible source of bus deadlock. The

deadlock analysis is simpli�ed because only the amount of transmitted data and the FIFO sizes

103

are relevant, and not the actual timing. The Intrq signal is issued by a processor to indicate

an error situation that cannot be coped with by the normal processing ow. Upon receiving an

Intrq signal, all processors will execute a microcode trap that usually involve cleaning up all

bus FIFOs and going back to the initial memory-mapped emulation state. The Reset signal

can only be issued by the host interface, and forces all processors to clean all bus FIFOs and

entering in the microprogram boot mode, which is discussed in detail later. The Reset signal

is always asserted after power-on.

Figure 4-6 helps to clarify the bus interface protocol, describing in the detail the passage of

bus control from processor #1 to processor #P. During the �rst three cycles in Figure 4-6, PE

#1 has control over the bus and is transmitting message n, while during the last cycle PE #P

has control over the bus, starting message n + 1. At t = 40ns, PE #1 does not have any valid

data available in the output FIFO and signals that state to the other processors by de-asserting

the Valid signal. The other processing elements will then ignore any data present in DBus and

IBus. In the next cycle, at t = 80ns, processor #1 will place in IBus and DBus the last piece of

data belonging to message n, signaling to the other processors by asserting the Done line. When

Done is asserted, all other processors must watch the bus precisely in the following cycle. In

the next cycle, at t = 120ns, IBus holds the address of the processor that will take control over

the bus for message n+ 2, or srcpr(n+2), and DBus holds a 64-bit boolean vector that contains

a bit set for each processor that will be a recipient of message n+ 1, or destvec(n+1). We shall

refer to the fsrcpr(n+ 2); dstvec(n + 1)g data pair as the message control vector . Processor #P

can start driving the bus with the �rst piece of data for message n+ 1 at t = 120+ tH , exactly

one cycle after the Done signal was detected, because it learned, in the end of message n � 1,

that (srcpr(n+ 1) = P), which informed it to take control over the bus once message n was

�nished.

BusClk

40ns

Valid

Done

DBus

IBus

Processor #1 owns the bus
 (message n)

Processor #P owns the bus
 (message n+1)

invalid

invalid

last(n)

last(n)

dstvec(n+1)

srcpr(n+2)

1st (n+1)

1st (n+1)

t=40 t=80 t=120 t=160

Figure 4-6: Bus protocol for passing control from processor #1 to processor #P

This simple interface mechanism allows messages to be selectively sent to up to 64 processors

and at the same time provides a low overhead in passing the control from one processor to

104

another. These characteristics are very important for sparse matrix computations, as most

messages are very small and transmitted typically to few processors. Using this scheme, only a

single cycle of overhead per message is needed.

Figure 4-7 depicts the bus activity during the microcode boot. In order to load n microcode

words, each 128-bits wide, 4n+2 valid bus cycles are necessary. Upon receiving the Reset signal,

all processors will ush all their FIFOs and enter in a microcode load mode. The �rst valid

32-bit word sent in the IBus (LAddr) speci�es the starting load address. After this word, each

group of four valid IBus words (128 bits) is loaded in sequential addresses of the microprogram

memory, starting from LAddr. The last microcode word (n-th) is executed after the Reset signal

is de-asserted. Typically, the last microcode sent through the IBus contains a datapath NOP (no

operation) and a branch to the starting address of the microprogram (XAddr). Microprogram

execution is immediately started, and typically puts all the processing elements in a memory

mapping emulation mode, as described earlier.

BusClk
Cycle 2 Cycle 4 Cycle 5

IBus LAddr µ 4 µ µ µ3 2 1 µ 2 XAddrcode−1 code−1 code−1 code−1 code−n

Reset

Cycle 1 Cycle 3

Valid

Cycle (4n+1) Cycle (4n+2)Cycle (4n)

Figure 4-7: Microprogram boot sequence after reset

The next section is a detailed description of the internal architecture of a processing element

(PE).

4.2 Processing Element Architecture

4.2.1 Overview

Each processing element contains a oating point unit and register �le, a special purpose

memory system that is tuned for the fast access to sparse matrix data, an external bus interface,

and the microprogrammed control. These blocks are interconnected by �ve internal busses:

HBus, QBus, XBus, YBus, and ZBus. The general block diagram of each processing element is

shown in Figure 4-8, the thicker lines representing 64-bit wide paths.

The system is designed to operate with a system clock of 50 Mhz. The static memories, the

microcontroller, the address generators, the short internal busses, the oating point unit, and

the register �le are designed to operate with a 20ns period. The external bus and the dynamic

memories, which are the slowest components of the system, operate with a 40ns period. The

105

Im

Idx Address

Idx
4M24
DRAM

Idx
4M24
DRAM

Src
4M64
DRAM

Src
4M64
DRAM

FIFO

Dst Address

Dst
64k64
SRAM

FIFO

FIFO

J/CBus

Ix

t RC=20ns
t PC

=100ns
=40ns

t RC

Bit FPU
 (20ns)

Ybus
400MBy/s

QBus
200MBy/s

HBus
150Mby/s

IBus
100MBy/s

Xbus
400MBy/s

Zbus
400MBy/s

Dst
64k64
SRAM

Src Address

t PC

=100ns
=40ns

t RC

Align

Zout

DBus
200MBy/s

Rfile
64x64

 External
 Bus
Interface

 Lead & Align
 Control
 Signals

 Seq
PAL(20ns)

 Prog Memory
8K128 (20ns)

µ µ

Boot/
 Nop

 Index
 Memory
Subsystem

Destination
 Memory
Subsystem

 Source
 Memory
Subsystem

 Main
Control
System

Floating Point
 Subsystem

Figure 4-8: Processing element internal architecture

proposed clock cycle is rather aggressive, especially because it is di�cult to obtain accurate

timing simulations, but not impossible to achieve using the technology available today.

The oating point unit (FPU) is a Bipolar Integrated Technology, Inc. BIT 2130 FPU

operating at 50Mhz. It contains an independently-controlled oating point multiplier, ALU,

and divide/square root unit. The FPU is connected to three, physically very short, high speed

busses (XBus, YBus and ZBus) that have a collective bandwidth of 1.2 Gbytes/second (50Mhz �

3 ports � 8 bytes per port). In each clock cycle, two operands can be read from XBus and YBus

and one can be written to the ZBus in order to achieve the maximum utilization of the FPU

pipeline: 100 MFlops. The oating point register �le holds general purpose temporary oating

point data that can be immediately accessed, as well as important oating point constants,

such as 1, 2, log2 e, and
2
�
. It consists of a three port 64-word by 64-bit wide register �le with

a cycle time of 20ns. The register �le outputs are connected to the XBus and the YBus, while

its input is connected to the ZBus. Using this scheme, the register �le can match the FPU

bandwidth of 1.2 Gbytes/second. The oating point unit and the register �le will be discussed

in detail in Section 4.2.3.

The special purpose memory system is designed to provide fast access to sparse matrix data

in order to keep the oating point pipeline full. There are three major blocks that compose the

106

memory system: the destination, source, and index memories. These three subsystems will be

discussed in more detail in Section 4.2.4.

The destination memory subsystem holds a set of destination rows for a row-update op-

eration, targets for gather-normalize operations, right hand side vectors, voltage and current

vectors, device intrinsic parameters such as V t0 for all NMOS devices, oating point constants

needed in the evaluation of transcendental functions, and small amounts of generic temporary

data. When the data corresponds to the targets for row-update operations, it is stored ac-

cording to the O2SA scheme, as discussed in Chapter 2. The destination memory subsystem

contains a two-way interleaved 128K-word by 64-bit wide separate I/O static RAM array with

a cycle time tRC = 20ns and a special purpose destination address unit. Output data pins

from the memory array are directly connected to the YBus, and input data pins to the memory

array are directly connected to the ZBus, thus reducing signi�cantly the latency of memory

read-operate-write instructions. During the row update operation, in each clock cycle (20ns)

the special purpose destination address unit receives a 24-bit column index from the HBus and

adds it with the o�set provided by the QBus in the beginning of the row update operation

in order to compute the target element address in the destination memory. Combined with

the address previously stored for memory writeback, the address generator provides the static

RAM array two addresses every 20ns, typically one for a read operation in one memory bank

and the other for a writeback operation in the other memory bank. This capability is necessary

to match the bandwidth of the oating point pipeline via the YBus and the ZBus, up to 800

Mbytes/second. The destination memory latency is three clock cycles or 60ns, a period starting

when the address is latched in the Dst Address block from QBus or HBus, and �nishing when

the corresponding read data is available at YBus. If a memory bank conict occurs because a

read or write operation is trying to access the same memory bank that the writeback operation

needs, the memory destination controller will postpone the read or write operation, execute the

high priority memory writeback and request a stall cycle from the main control. The processor

stall scheme is discussed in detail in Section 4.2.2.

The source memory subsystem holds source rows for update operations in sequential ad-

dresses, the task descriptors that represent the instructions in the INST array in the Algorithm

2.6, and device instance parameters as described in Chapter 3, as well as general purpose large

volume data. The source memory subsystem consists of a two-way interleaved 8M-word by 64-

bit wide common I/O dynamic RAM array with a fast page mode cycle time tPC = 40ns and

random access cycle of tRC = 100ns, a 512-word by 64-bit wide descriptor FIFO, an address

unit, and the Zout register. Data is read from the DRAM array into the XBus. The memory

I/O data pins can also be used as inputs for loading the contents of the Zout register, which

in turn can be independently loaded from the ZBus. The address unit is capable of loading

an address from the QBus or incrementing for sequential data access, providing one address

per clock cycle (20ns) for the interleaved memory array. The FIFO can hold up to 512 task

107

descriptors that are sequentially read from the source memory in a single burst. The task de-

scriptor data is sequentially accessed via the QBus. Every 20ns the source memory subsystem

can either supply to, or receive from the XBus one 64-bit word. This capability is necessary

to match the bandwidth of the oating point pipeline via the XBus, up to 400 Mbytes/second.

The source memory latency is three clock cycles or 60ns, measured from the time the address

is loaded from the QBus to the time that the appropriate data is delivered to the XBus. If the

requested data is not readily available because it resides in a di�erent memory page or hits the

wrong interleaved data bank, the source memory subsystem will stall the processor until the

proper data becomes available.

The index memory subsystem holds column indices for row update and normalize operations

in sequential addresses, voltage vector indices, and general purpose memory pointers. The

index memory subsystem consists of a two-way interleaved 8M-word by 24-bit wide common

I/O dynamic RAM array with a fast page mode cycle time of tPC = 40ns and random access

time of tRC = 100ns, edge-triggered tri-state Ix I/O transceivers, and an address unit. The

address unit is capable of loading an address from the QBus or incrementing for sequential data

access, providing one address per clock cycle (20ns) for the interleaved memory array. Every

20ns the index memory subsystem can supply to the HBus one 24-bit word in order to match

the requirements of the destination address generation unit during a row-update operation.

The memory can either supply one 24-bit word to, or receive data from the QBus via a set of

registered tri-state transceivers every 20 ns, matching the bandwidth required by the destination

memory address generator, up to 150 Mbytes/second. The memory latency is two clock cycles

or 40ns, measured from the time the address is loaded from the QBus to the time that the

appropriate data is delivered to the HBus and latched either in the Ix registers or in the Dst

Address input register. The latency is smaller than the source memory latency because the

index address generator has to drive only a third of the capacitive load. If the requested data is

not readily available because it resides in a di�erent memory page, the index memory subsystem

will stall the processor until the data becomes available.

The bus interface controls the data ow between the processing element and the external

DBus and IBus. The datapath contains two bidirectional FIFOs, and a set of registered bus

transceivers. The DBus connects to a 512-word by 64-bit wide bidirectional FIFO that bu�ers

the external data to and from the XBus. Depending on the FIFO's tS , tH and tCO characteris-

tics, it might become necessary to only allow data be loaded in the FIFO from the Zout register

and the output data from the FIFO might only be loaded in the FPU input registers. The

direct exchange of data from the FIFO to or from the DRAM memories will only be possible

if a FIFO with fast I/O interface is available. The IBus connects to a 512-word by 33-bit wide

bidirectional FIFO that bu�ers the external data to and from the QBus. The bus interface

controller can slow down the interconnection network in the case the part of the FIFO that

receives external data becomes full. The bus interface controller will stall the processor when it

108

attempts to read data from an empty FIFO, or in the case the processor tries to write data to a

full FIFO. The system software is responsible for avoiding bus deadlocks. A detailed description

of the network interface is given in Section 4.2.5.

The main control consists of a microprogram address register with sequencer logic, a 8K-

word by 128-bit wide microprogram memory, the Align registers, the Boot/Nop registers, and

the Im registered transceivers. The sequencer receives instructions, status information and

jump addresses, generating a sequence of microaddresses for the microprogram memory. The

sequencer operates with a 20ns period. The microprogram memory feeds back the sequencer

with next state information, supplies immediate data to the QBus via the Im register, speci�es

loop counts, and also contains microinstruction �elds that control all the subsystems previously

described. A detailed description of the main control is given in Section 4.2.6.

Each processing element contains two hundred and twelve ICs and has an estimated power

dissipation of 150 Watts. The following section presents a detailed description of the pipelined

operation and some stall issues.

4.2.2 Pipelined Operation and Stall Issues

Let us consider the sparse matrix row update i ! k that consists of several gaxpys of the

form aij = aij � aik � akj . Figure 4-9 depicts the relevant pipelined execution and stall issues

of the tail end of one short row update, immediately followed by the head of a very long row

update. Figure 4-9 highlights the sequencing aspects of the operation, instead of providing

an accurate timing information. The windows in which the data is stable are actually much

smaller than the depicted regions on Figure 4-9. In order to simplify the analysis, only stall

requests generated by the three memory subsystems are taken in account. The analysis for stall

requests from the external bus interface is analogous.

Upon receiving any of the stall requests stallreq idx, stallreq src, or stallreq dst, the main

control unit issues the stall signal, which forces a programmable no operation (nop) in all

lead microinstruction signals, and holds the last command issued in the align microinstruction

signals. Each subsystem will take di�erent actions upon receiving the stall signal. We should

refer to the cycles in which the main control issues the stall signal as processor stall cycles. All

other cycles are referred to as valid processor cycles. Specifying all latencies in terms of valid

clock cycles simpli�es the control unit design and the overall system programming, as it makes

possible to predict in advance which parts of a particular computation are being executed in

the di�erent units at every valid clock cycle.

The source-row column indices (j � k), corresponding to akj , are read into HBus from the

index memory subsystem, and added to the address of the element aik in order to compute

the address of target element aij in the O2SA array. In Figure 4-9, the index memory address

of the �rst non-zero element akj after the diagonal is si2, loaded from the QBus at the end

of clock cycle 1. Assuming that this memory request is located in a di�erent memory page,

109

1 2 3 4 5 6 7 8 9 10 11 12 13

b

14

QBus

i12 i21 i22 i23 i24 i25HBus

s11 s12 s21 s22 s23 s24XBus

stallreq_dst

stall

c21 r21 c21 c22 c23 c24 c25 c26 c27add_idx

c12 c21 r21 c21 c22 c23 c24 c25 c26add_src

a a+i11 a+i12 b b+i21 b+i22 b+i23 b+i24add_dst

a a+i11 a+i12 a+i11 a+i12 b b+i21 b+i22 b+i21add_dst_even

[a] [a+i11] [a+i12] [b] [b+i21] [b+i22]YBus

[a]s11 [a]s12 [b]s21 [b]s22 [b]s23MUL

[a+i11] [a+i12] [b+i21] [b+i22]ALU

[a+i11] [a+i12] [b+i21]ZBus

stallreq_idx

stallreq_src

si2 si3branch address

Figure 4-9: Processor element pipelined operation and stall issues

the index memory controller will detect this situation and request, using the stallreq idx signal,

a sequence of processor stall cycles. The �rst column index, labeled i21, will be available in

HBus at the end of clock cycle 7. The next column indices in that row, labeled i22, i23, etc.

will be available in the HBus at the end of each valid clock cycle, always two valid clock cycles

after the corresponding request. Since cycles 9 and 10 are processor stall cycles, the index

memory controller will hold the value i23 in the HBus, by keeping the cas signal active. At

the end of clock cycle 1, the last piece of index data from the tail end of a short row update

operation (i12), is present in HBus. The next cycle corresponds to a index memory subsystem

nop operation, always necessary between two row updates, as there is always one more read

data access (multiplier aik) in the destination memory than in the other memory subsystems

per row update operation. Section 4.2.4 presents a complete description of the index memory

subsystem.

The actions in the source memory subsystem in order to retrieve the actual numerical

values of akj are similar to the index memory subsystem. The major di�erence is that the

source memory requires one extra latency cycle since the address generator must drive a much

larger capacitance in the DRAM array. Thus, all output data to the XBus is delayed by one

valid clock cycle relative to the HBus. Since clock cycle 3 corresponds to a processor stall cycle,

the source memory controller postpones the execution of the nop instruction until clock cycle

110

7, driving dummy data out, while during clock cycle 8 the �rst element, labeled s21, is placed

on the XBus. This scheme, which helps reducing the number of requested stall cycles when

nop operations are pending is discussed in detail in Section 4.2.4. In order to properly match

the combined latency of the index memory and destination memory with latency of the source

memory, it is necessary to delay source data by one valid clock cycle, using an internal oating

point unit register. For example, the load of source data s21 in the oating point multiplier

MUL is only done at the end of clock cycle 11. Section 4.2.4 presents a complete description of

the source memory subsystem.

In Figure 4-9, the destination memory address of the sparse matrix row update multiplier

aik is labeled b, and it is loaded from the QBus at the end of clock cycle 2. The �rst destination

memory access in a row update uses the pass operator to generate the address, which appears

in add dst register in the next valid clock cycle, 8. Only a memory read is required for this

access. All the other addresses, generated with the add operator, are of the form b+i21, b+i22,

etc., corresponding to the sum of the address of the multiplier, aik, with the column index

(j � k) to obtain the address of aij . The latter require a read from memory, operate, and

result writeback operations. Memory writeback operations cannot be stopped in the sense that

once the data has been read during a valid processor cycle from the YBus, the proper result

must placed in ZBus within two clock cycles, and the destination memory system must perform

the writeback, corresponding to a self-drained pipelined operation. As a consequence, the

oating point output data register does not follow the stall rules: it can be loaded even during a

processor stall cycle for a writeback operation, using as enable a special signal generated by the

destination memory subsystem. Also, in the case there is a memory bank conict between the

writeback and a read or a write operation in the destination memory, the writeback has higher

priority and is executed immediately, while the stallreq dst line is used to request a processor

stall cycle, thus postponing the other memory operation. Figure 4-9 depicts the worst case in

respect to interleaved memory bank conicts: all destination memory operations use the even

memory data bank. For example, during clock cycles 9 and 10, data is written in the destination

memory addresses a+i11 and a+i12, both in the even memory bank. These writebacks �nish

the execution of the previous row operation and request a processor stall to postpone the read

of the multiplier value aik = [b], which is trying to use the same memory resource as the

writebacks. Once the writebacks are �nished, data corresponding to the multiplier [b] is placed

in YBus at the end of clock cycle 11. A good scheduling algorithm should try to avoid these

situations, choosing a row update operation that contains a multiplier in the odd memory bank.

Scheduling algorithms are discussed in detail in Section 2.3.

An important pipelined operation issue is the operand bypass detection. This detection was

left to the system software, and it is discussed in detail along with the destination memory

subsystem speci�cation in Section 4.2.4.

Assuming that b+i21, b+i22, and b+i23 correspond to even memory addresses, the write-

111

backs of [b+i21] and [b+i22] to the even memory bank will also postpone the execution of the

read from address b+i23. This situation could be avoided in many cases by reordering the ele-

ments after the diagonal of a source row for e�cient interleaving. The impact of this reordering

in the single processor performance was discussed in detail in Section 2.2.1.

Each of the processing element subsystems is discussed in detail in the following sections.

4.2.3 Floating Point Subsystem

The oating point subsystem consists of the oating point unit and the oating point register

�le. All the operands for oating point operations are double precision oating point numbers

that conform with the ANSI/IEEE 754 standard. The oating point unit also supports a wide

variety single precision oating point, 32-bit and 64-bit integer operations. The current version

of the emulator software supports only double precision oating point instructions and 32-bit

integer operations.

As discussed in Chapter 2, the oating point unit (FPU) should contain as many pipeline

stages as possible to increase the FPU throughput. In that discussion, we have shown that

the amount of concurrency for solving sparse matrices is not very sensitive to the number of

pipeline stages in the oating point unit. However, there are commercially available FPUs

that can operate at such high frequencies that demand data rates substantially higher than

achievable with two-way interleaved memory systems using commercially available high density

memories. Also, the design of a highly pipelined FPU is beyond the scope of this thesis.

In selecting a commercially available FPU, the units taken in consideration were the Bipolar

Integrated Technology, Inc. BIT 2130 and the Weitek 3364. The BIT part was chosen for

several reasons:

� For the same bus clock rate, the BIT part has twice the bandwidth, since it has twice

as many I/O pins. The Weitek part has three 32-BIT ports and needs multiplexing and

bu�ering for accessing 64 BIT oating point data. The BIT part doesn't require any

multiplexing, providing three 64-bit ports.

� The setup and hold times for the BIT part are much smaller, thus eliminating complex

I/O bu�ering and reducing the memory latency.

� The BIT part supports multiple shifts for integer operands, which is very important in

the implementation of transcendental functions such as ex.

� Regarding owthrough, the BIT part provides 20ns latency and 10ns throughput for ALU

and MPY operations, resulting in up to 200 MFlops for vector operations and 100 MFlops

for scalar operations. Since it is very di�cult to operate the system with a 10ns clock

period, we decided to use the BIT part in the scalar mode, with a clock period of 20ns.

112

The Weitek part presents 100ns latency and 50ns throughput, resulting in only 40 MFlops

for vector operations.

� The BIT part DIV and SQRT times are 250ns and 450ns respectively. The Weitek part

DIV and SQRT times are 850ns and 1500ns respectively. For many computations, the

DIV and SQRT times are a limiting factor in the overall execution time.

The internal architecture of the BIT part and the microinstructions speci�ed for its control

are depicted in Figure 4-10. All internal registers of the BIT part are clocked by the Clk

signal. The functional blocks of the BIT 2130 include an arithmetic and logic unit ALU, a

multiplier MUL, a divide/square root DIV/SQRT element, internal datapath multiplexers, and

temporary storage registers. Externally the oating point unit connects to three 64-bit wide

busses, XBus, YBus, and ZBus, the various microprogram control signals, the Zen signal, and

the ags. The Zen signal, active low, is generated by the destination memory subsystem to

enable the Z output register load. In normal operation, load is enabled except in the case of a

stall. The destination memory controller might override this situation in the case of a memory

writeback, which cannot be stalled, as described in Section 4.2.2. Only two ags from the FPU

are supported in the current implementation of the architecture emulation, FlagN, indicating a

result smaller than zero, and FlagZ, indicating a result equal to zero.

The ALU is a combinational circuit that performs integer and oating point addition, sub-

traction, conversion, shift, compare and other operations. The ALU is controlled by the bitalu l

microinstruction. bitalu l is a lead control signal, and it speci�es:

Axsel Multiplexer select for the ALU input operand X. Selects between one of the four sources:

00 XBus

01 Areg

10 ALU feedback

11 MUL/DIV/SQRT feedback

Aysel Multiplexer select for the ALU input operand Y. Selects between one of the four sources:

00 YBus

01 Areg

10 ALU feedback

11 MUL/DIV/SQRT feedback

AXen Active low, enables the Ax operand register load.

AYen Active low, enables the Ay operand register load.

AIen Active low, enables the ALU instruction Aop register load from the bitinst l microinstruc-

tion.

113

MXen
DVen

TselTsel

Asel

Aysel MxselAxsel Mysel

Msel Msel

F Z

MULALU

Ax Ay Mx

Aop Mop

My Dx

Dop

Dy

Areg

Instruction

XBus YBus

ZBusflags

Aysel Axsel

Instruction

Mysel Mxsel

Asel

MselTsel

bitalu_l

bitmul_l

bitinst_l

bitz_l

bitz_a

 DIV/
SQRT

AXen AYen

Aen

AIen

Fen Zen

AIen AYen AXen

MXenMYenMIen

AenFenLhxLhy

DVen

MXen
DVen

MYen
DVen

MIen
DVen

MIen
DVen

MYen
DVen

Figure 4-10: Floating point unit internal architecture

The multiplier is a combinational circuit that performs oating point and integer multi-

plications. The DIV/SQRT is a synchronous �nite state machine that executes division and

square root operations. Both units are controlled by the bitmul l microinstruction. bitmul l is a

lead signal, and it speci�es:

114

Mxsel Multiplexer select for the MPY/DIV input operand X. Selects between one of the four

sources:

00 XBus

01 Areg

10 ALU feedback

11 MUL/DIV/SQRT feedback

Mysel Multiplexer select for the MPY/DIV input operand Y. Selects between one of the four

sources:

00 YBus

01 Areg

10 ALU feedback

11 MUL/DIV/SQRT feedback

MXen Active low, enables the MPY/DIV X (either Mx or Dx) operand register load.

MYen Active low, enables the MPY/DIV Y (either My or Dy) operand register load.

MIen When active, enables the MPY/DIV instruction (either Mop or Dop) register load.

DVen When low, MXen, MYen, and MIen signals are used to individually enable the DIV/SQRT

Dx, Dy and instruction registers Dop, while the corresponding MPY registers are disabled.

When high, the DIV/SQRT registers are disabled, and the control signals enable the

multiplier's Mx, My and Mop registers.

bitinst l is a lead control signal that speci�es the instruction executed by the internal com-

putational elements. The value of bitinst l can be internally stored in the Aop, Mop, and Dop

registers, depending on the status of the AIen, MIen, and DVen control signals. A wide variety of

32-bit and 64-bit oating point and integer operations are available. The BIT B2130 literature

has a complete list of the instructions [Bit90].

bitz l is a lead control signal, which controls the Areg and ag output registers. This mi-

croinstruction speci�es:

Asel Multiplexer select for the Areg register input. Selects between one of the four sources:

00 XBus

01 YBus

10 ALU feedback

11 MUL/DIV/SQRT feedback

Aen Active low, enables the Areg register load.

Fen Active low, enables the ag output register F load.

115

Lhx When high, copy the XBus operand LSW to its MSW. Internally, the MSW is used for

single precision operations.

Lhy When high, copy the YBus operand LSW to its MSW. Internally, the MSW is used for

single precision operations.

bitz a is an align control signal, which controls the M- and T- multiplexers. This microin-

structions speci�es:

Msel Multiplexer select for the output result and ags from the multiplier MUL and the

DIV/SQRT unit. When low, selects the multiplier output result and ags; otherwise

selects the DIV/SQRT unit output result and ags.

Tsel Multiplexer select for the Z and F output registers. When low, selects the ALU output

and ags as inputs; otherwise selects the operands selected by Msel.

Figure 4-11 shows the internal structure of the oating point register �le and the microin-

structions speci�ed for its control.

XBus YBus

Xaddr

Yaddr

ZaddrWren

rfilex_a

rfilez_l

rfiley_a

write
enable

data
 in

 write
address

x data
 out

y data
 out

x read
address

y read
address

Register
 File

ZBusWren Zaddr

Clk

Xaddr Yaddr

disxreg disyreg

Figure 4-11: Floating point register �le

The register �le is implemented with two Texas Instruments 74ACT8832A parts, which are

actually 32-bit registered ALUs. Since the ALU portion is not necessary, only the internal

register �les are used. The register �le outputs are connected to the XBus and the YBus, while

the register �le input port is connected to the ZBus. The output to the XBus is enabled by the

external signal disxreg, generated by the source memory subsystem, while the output to the YBus

is enabled by the external signal disyreg, generated by the destination memory subsystem. The

register �le is clocked at 50Mhz by Clk, allowing a maximum bandwidth of 1.2 Gbytes/second.

116

The TI 74ACT8832A parts were used instead of the standard Bipolar Integrated Technology,

Inc. BIT 2210A parts because they exhibit less latency. Additionally, they reduce the chip

count by half, thus reducing board space, and dissipate 20 times less power.

The register �le is controlled by three microinstructions, r�lex a, r�ley a, and r�lez l. r�lex a

is an align control signal, which speci�es:

Xaddr Register �le address. The addressed register contents can be transferred to the XBus,

depending on the value of the external line disxreg.

r�ley a is an align control signal, which speci�es:

Yaddr Register �le address. The addressed register contents can be transferred to the YBus,

depending on the value of the external line disyreg.

r�lez l is a lead control signal, which speci�es:

Zaddr Register �le address. The contents of the register �le input from the ZBus can be stored

in the speci�ed register in the rising edge of Clk if Wren is enabled.

Wren Register �le write enable. Active low, allows data from the ZBus to be stored in the

register speci�ed by Zaddr.

Figure 4-12 illustrates the most relevant timing relationships for the oating point unit

(FPU), the register �le, and their interaction with the microprogrammed control. The �Address

register speci�es the current microinstruction being executed. bitinst l and r�lex a are shown

as examples of generic lead and align control signals. There are two basic constraints in the

interaction between the register �le and the oating point unit, and both must be smaller than

the clock cycle period: the register �le to XBus, YBus output data access time (tXOD � 16ns)

plus the setup time for the data input in the FPU (tSX � 3ns), and the FPU to ZBus output

data delay (tZOD � 12ns) plus the setup time for the register �le data input (tSZ � 4ns). In

terms of the microprogrammed control and the FPU interaction, it is important that all lead

signals issued by the control unit arrive to the FPU at least tSX � 3ns before the rising edge

of the Clk. Since the setup time for the Tsel and Msel signals is substantially higher than the

other FPU setup times, it was necessary to change these signals into align type signals, and

advance the generation of these control signals in the microprogram by one cycle.

One system timing constraint that deserves special attention is the main control's branch

decision logic input from the FPU. It is important that the sum of the FPU to ags output data

delay (tFOD � 12ns) plus the setup time for the microcontrol address register selection logic

(tS� � 3ns) be smaller than the clock period minus the small skew between Clk and �Clk. This

constraint is part of the critical path represented by the time required by the controller to issue

an FPU compare instruction and execute or not a branch that depends on the instruction's

117

20ns

Clk

u1 u2 u3 u4 u6u5Addressµ

Ax,Ay

flags,ZBus

XBus,YBus
t

>t
SX

>t
Sµ

bitinst_l

a3a2a1a0 a4 a5rfilex_a

Aop

XOD

>t
SZ

t F,ZOD

i1 i2 i3 i4 i5

op1 op2 op3 op4 op5

xy0 xy1 xy2 xy3 xy4

xy0 xy1 xy2 xy3 xy4

fz3 fz4fz2fz1fz0

>t
SX

µClk

Figure 4-12: Floating point unit and register �le timing

result. This situation is highlighted by the heavy arrows in Figure 4-12. Microinstruction

address u2 speci�es a oating point compare instruction i2. This instruction will be executed in

the next clock cycle and its results will become available (fz3) in the FPU ag output pins after

two clock cycles, thus permitting the execution of a conditional branch to the microinstruction

address u5. An extra latency cycle is necessary if the compare instruction operands are kept in

the register �le, as highlighted by the heavy arrows in the path from the �Address register to

r�lex a, then to the XBus, YBus, and then to the Ax, Ay registers, and �nally to the ags.

All the timing constraints in this section can be satis�ed if the suggested parts are used

and the clock period is at least 20ns. For simplicity, the hold time constraints are not shown

in Figure 4-12, but can also be met with the proposed clock cycle period.

Floating point units with speeds up to 200 Mhz have been reported in the literature

[Dobberpuhl92], representing an immediate opportunity to quadruple the oating point sub-

system speed. By the end of the decade, oating point units operating at 500 Mhz or beyond

would be able to achieve a tenfold increase in the FPU speed.

The IC count for the oating point system is one 395-pin PGA package and two 208-pin

PGA packages, with an estimated power dissipation of 28 Watts, which will require a large heat

sink for qthe BIT 2130 part and forced ventilation.

118

4.2.4 Memory System

The memory system consists of the three major components: the index memory, the source

memory and the destination memory subsystem. In the following, each of these subsystems

will be discussed separately.

Index Memory Subsystem

The index memory subsystem consists of the address generator, memory array, bidirectional

transceivers between QBus and HBus, and the memory controller. Figure 4-13 depicts in detail

the major components of the index memory subsystem and the associated microprogram control

�elds.

LdIx

StIx

D4M24

+1

Col

11−1

add

D4M24

QBus

 Index
Memory
Control

HBus

!=?

+1

Row

22−12

023−1

23−0

31−24

i/o

add

i/o ras

cas

we

oe

ras

cas

we

oe

enqi

icont_a

icont_l

Iop

StIx LdIx

StIx

LdIx

scm

q0

orenld

inc

enq

eoe

ewe

ecas

eras

ooe

owe

oras

ocas

Iop

Iwr

Iwr

iwriop

0 1 1 0

Figure 4-13: Index memory subsystem and its associated microinstruction �elds

119

The address generator consists of two address registers, Row and Col, and their associated

logic. Each register holds eleven address bits. The peripheral logic provides these registers

parallel load from the QBus and Row-Col pair cascaded increment under control of the ld and

inc signals. The associated logic also includes a comparator that checks if a memory page miss

happened in the case the address being loaded in the Row register di�ers from the previous

contents, or if there is a carry propagating from the Col register into the Row register during

an increment operation. These registers and the peripheral logic can be implemented with

three Cypress PAL22V10C devices. The tri-state outputs of the PAL devices can be directly

connected to the memory array address lines, as they only have to drive a capacitance in the

order of 60 pF. This structure reduces the memory access latency to two valid clock cycles,

which is required in the implementation of the high-performance sparse matrix row update

operation, as discussed in Section 4.2.2.

The two-way interleaved memory array consists of two groups of six 4 Mword by 4-bit

common I/O DRAM devices, such as the Texas Instruments TMS416400 . These twelve devices

account for a total of 8M 24-bit words. All DRAM devices share the same address and ras

control lines, while other DRAM control lines are driven independently for the even and odd

memory banks.

The registered bidirectional transceivers between QBus and HBus can be implemented with

three Texas Instruments 74ABT2952 devices. The tri-state output enable for the LdIx register

is provided by the memory controller, and is activated when a memory write cycle is executed.

The tri-state output enable for the StIx register is an external signal enqi, supplied by the QBus

decode logic. The register load is independently enabled by the icont l microinstruction �eld,

as follows:

StIx Active low, enables loading data from the HBus into the StIx register on the rising edge

of the Clk signal.

LdIx Active low, enables loading data from the QBus into the LdIx register on the rising edge

of the Clk signal.

The memory controller consists of two tightly coupled synchronous �nite state machines

that take as input the icont a microcontrol commands, the least signi�cant bit of the QBus,

and the scm ag indicating a memory page miss. It generates the appropriate control signals

for the memory array, inc and ld signals for the address generator, a row/column address

bu�er selection signal (oren), a stall request signal stallreq, and a signal enabling LdIx register

to drive the HBus during a memory write operation, enq. The index memory control block can

be implemented with three Cypress PAL22V10C devices.

The icont a microinstruction speci�es:

Iwr Used in conjunction with Iop, speci�es the type of the access, in case of a valid memory

120

cycle. When low, indicates an index memory write operation, and when high indicates

an index memory read operation.

Iop Speci�es the memory operation to be executed, along with the type of address to be used:

00 No memory operation (nop).

01 Valid access to current Row, Col address.

10 Valid access to the address to be loaded in the Row, Col from the QBus. (ld)

11 Valid access to the address obtained by incrementing the Row-Col pair. (inc)

Figure 4-14 illustrates a sequence of index memory cycles that highlights the most relevant

aspects of the memory controller. Figure 4-14 provides a fuzzy idea of timing information,

focusing on the sequencing aspects of the memory operation. Control instructions labeled inc2*

and ld4* in Figure 4-14 cause a memory page miss.

HBus

1 2 3 4 5 6 7 8 9 10 11 12 13

QBus

icont_a

Row

Col

scm

stallreq

stall

add

ld1 nop3 inc5 inc6 inc7

r1

c1

r2

c2

r4

c4 c5

r5 r6

c6

c1 c2 r2 c2 c4 r4 c4 c5 c6

[1] [4] [5]

ocas

ecas

ras

14

inc2* ld4*

1(o) 4(e)

[2]

[2]

Figure 4-14: A relevant sequence of operations in the index memory subsystem

As mentioned earlier, the index memory latency is two valid cycles. For instance, the data

[1], corresponding to the memory operation ld1 is available at the end of the clock cycle 3, two

valid cycles after the memory access was requested. By the same token, data [2] is only written

to the memory on the next valid cycle, 8, as cycles 4 through 7 correspond to processor stall

cycles. During cycle 8, the data loaded in the LdIx register at the end of cycle 3, is written

to memory. For write operations, data to be written in memory should be loaded in the LdIx

register one valid clock cycle after the memory operation is requested.

The second memory request, inc2* causes the Col counter to overow, requiring a memory

access cycle to a di�erent memory page. This situation is detected by the !=? block in Figure

121

4-13 and corresponds to the scm line driven high during cycle 3 in Figure 4-14. The index

memory controller will detect the memory page miss and in response will issue a stallreq signal

for four cycles, which in turn causes the main control to stall the processor during cycles 4

through 7. Since cycle 3 is valid, the memory controller considers the �rst operation (ld1)

�nished, and starts to service the second memory request. In order to access data in a di�erent

memory page, the ras line must be pulsed high for writing back the current memory page into

the array and precharging the sense bitlines. The pulse duration is two clock cycles, and the

falling edge of the ras signal in end of clock period 5 will strobe the row address r2 in the

DRAM internal address registers. The inc2* operation is then completed at the end of clock

cycle 8.

It is important to notice that the index memory controller must accept and store for future

use whichever instruction is issued at the end of clock cycle 3, along with the relevant data.

Since nop3 was requested, no action would be taken. However, if a ld3 was requested at the end

of clock cycle 3, there would be no address register to hold the extra address. For this reason,

the system software must make sure that a ld request can only follow a nop request, which

is the only safe way of preventing data loss without adding extra hardware. Even though inc

requests can cause memory page misses, they can be easily handled by keeping one extra ag

in the controller that postpones the requested increment until the current operation is �nished.

An interesting ability of the controller is the handling of nops and memory page misses,

which can actually reduce the number of processor stall cycles. During clock cycle 8, the

controller has knowledge that in order to honor the ld4* request it will be necessary to start

a memory page miss cycle, and that the next valid cycle would be devoted to output dummy

data, thus completing the nop3 request. Instead of completing the nop3 service, the index

memory controller issues a stallreq immediately, causing cycles 9 through 11 to be processor

stall cycles. The controller also proceeds with the memory page miss protocol as discussed

before, but instead of requesting four stall cycles as usual, it will only request three stall cycles,

as shown in Figure 4-14. The data present in HBus at the end of the cycle 12 is irrelevant,

�nishing the nop3 task service. The data corresponding to the ld4* request, [4], is available at

the end of cycle 13.

The last two cycles in Figure 4-14 represent the most e�ective way of accessing index memory

data. Typically, in the beginning of a sparse matrix row update operation, the initial address of

the column indices for the source row would be loaded in the Row, Col registers, and increment

operations would be requested for scanning all row indices in sequence. In this mode, there

would be very few memory page misses, as statistically there is only one chance in 4096 of

a memory page miss occurring during an increment operation, and data can be read from

alternate memory banks in each clock cycle. Every clock cycle the contents of the Col register

would be incremented and placed in the add address lines. The memory controller would then

alternate issuing ecas and ocas. The falling edge of each cas signal will strobe the column

122

address in the DRAM internal address registers. The controller would also issue eoe and ooe in

alternate cycles to read data through HBus at the maximum rate of one 24-bit word per clock

cycle.

Figure 4-15 depicts in detail the most critical signal timing constraints that must be satis�ed

for the proper operation of the index memory system. The ras signal is assumed low throughout

the time period shown, so only column addresses (address & 0x7fe) are present in the add address

lines. The �rst and second memory cycles correspond to a write to the even memory bank,

address b. During the second and third cycles there is a data read from the odd memory bank,

address b+1.

t

20ns

>t

t

SC COD

PC

t

>t
ASC

t AA

t CPA

t CAC

t CAH

t CAS

CWL

t WP

t OEA

DH>t

>t DS

(b+1) & 0x7feb & 0x7fe (b+2) & 0x7fe

b(e)

[b+1]−>

write to even
memory bank

read from odd
memory bank

Clk

QBus

add

HBus

ooe

ocas

ewe

ecas

t CP

>t SI

−>[b]

t IOD

Figure 4-15: Index memory subsystem timing

Table 4-1 summarizes the index memory subsystem switching characteristics and timing

requirements depicted in Figure 4-15 for the devices previously mentioned. Using the notation

of Figure 4-15 and Table 4-1, and denoting the clock period as TClk, the following set of

constraints must be satis�ed for the proper operation of the index memory subsystem:

tPC � 2� TClk (4.1)

tCOD + tAA + tSI � 2� TClk (4.2)

tCPA + tSI � 2� TClk (4.3)

tCOD + tASC + tCAH � TClk (4.4)

123

Symbol Description Min(ns) Max(ns)

tAA Access time from column address 30

tCAC Access time from cas low 15

tCPA Access time from column precharge 35

tOEA Access time from oe low 15

tCOD Clock to Col register output delay 6

tIOD Clock to LdIx register output delay 5

tSC Col register input setup 3

tASC Column address setup before cas low 0

tCWL oe low setup before cas high 15

tDS Data setup time 0

tSI StIx register input setup 2

tPC Page-mode read or write cycle time 40

tCP Pulse duration, cas high 10

tCAS Pulse duration, cas low 15

tWP Write pulse duration 15

tCAH Column address hold time after cas low 10

tDH Data hold time 10

Table 4-1: Index memory subsystem switching characteristics and timing requirements

tOEA + tSI � TClk (4.5)

tIOD + tDS + tCWL � TClk (4.6)

Constraints 4.1 through 4.3 refer to cas precharge and access time constraints. Constraint

4.4 is linked with the setup and hold times of the address lines add in respect to the cas signal.

Constraint 4.5 is related with data read and output enable access. Finally, constraint 4.6 is

related to the setup and hold times of the data to be written in respect to the write enable

signal we. All conditions can be satis�ed if TClk � 20ns.

Experimental synchronous and cached dynamic RAMs have been reported operating at 100

Mhz [Dosaka92], and promise to operate at frequencies up to 500 Mhz by the end of the decade.

Using interleaving and other techniques described in this section, one can envision the feasibility

of a tenfold increase in the index memory subsystem speed by the end of the decade.

The IC count for the index memory subsystem is nine 24-pin DIP packages accounting for

the PALs and the registers, and twelve 28-pin plastic ZIP packages that compose the DRAM

array. The estimated power dissipation is 12 Watts.

Source Memory Subsystem

The source memory subsystem consists of the address generator, memory array, the SrcZ

register, two FIFOs, and the memory controller. Figure 4-16 depicts in detail the major com-

ponents of the source memory subsystem and the associated microprogram control �elds.

124

SrcZ

scont_a

add

i/o

+1

Col

11−1

QBus

Source
Memory
Control

oe

we

cas

ras

!=?

+1

Rp1

Row

22−12

scont_l

Cp1

0

ZBus

Rp2 Cp2

XBus disxreg

0 1 1 0

D4M64 D4M64

oe

we

cas

ras

add

i/o

enfx

eoe

ewe

ooe

owe

ecas

eras oras

ocas

scm

q0

enzdx

oren oren

inc

enfx

ldsel

32 3 2

SrcX Sop

SliSwr

srcx

swr

sop

sli

SrcX Sop Swr

LdZ

LdZ

2xIDT29FCT520 2xIDT29FCT520

fzcont_a

8−1 031−063−32

256x32
 FIFO

waddr

raddr

8−1 0

+1

Rst

PopPush+2

10 10

00

Head Tail

enqz

Rst Pop Push

256x32
 FIFO

Figure 4-16: Source memory subsystem and its associated microinstruction �elds

The address generator consists of the address registers Row, Col and their associated logic;

and the pipeline bu�er registers that drive the large DRAM array capacitance. The Row, Col

register pair has the same capabilities as the equivalent set of registers in the index memory

subsystem. The major di�erence between these sets of registers is the direct control by the Sop

instruction �eld | as long as the current processor cycle is valid, the Row, Col registers will

accept random data ld and inc requests without any sequencing restriction. This is possible

because the pipeline registers can store pending requests and addresses in the case of a memory

page miss. The Row, Col registers and associated logic can be implemented with three Cypress

PAL22V10C devices. The DRAM array address lines add have a capacitive load of 160 pF,

125

and must be driven by devices that can handle high output currents such as the Integrated

Device Technology, Inc. IDT29FCT520. The source memory latency is three valid clock cycles,

meeting the address driving requirements and still providing high speed in the implementation

of the sparse matrix row update operation, as discussed in Section 4.2.2.

The two-way interleaved memory array consists of two groups of sixteen 4 Mword by 4-bit

common I/O DRAM devices, such as the Texas Instruments TMS416400 . These thirty-two

devices account for a total of 8M 64-bit words. All DRAM devices share the same address and

ras control lines, while other DRAM control lines are driven independently for the even and

odd memory banks.

The registered bu�er from the ZBus to the XBus can be implemented with eight Texas

Instruments 74ABT2952 devices. The tri-state output enable for the SrcZ register is provided

by the memory controller, and is activated by the SrcX decode logic. The register load is

independently enabled by the scont l microinstruction control, as follows:

LdZ Active low, enables loading data from the ZBus into the SrcZ register on the rising edge

of the Clk signal.

The FIFOs can be implemented with four Texas Instruments 74ACT7803 devices, and its

associated control can be implemented with one Cypress PAL22V10C device. The PAL22V10C

holds only the the least signi�cant bit of the Tail register and some output enable and read en-

able decode logic, while the remaining functionality is implemented within the four 74ACT803

devices. The tri-state output enable of these devices is activated by the enqz external sig-

nal, generated by the QBus decode logic. The FIFO operation is controlled by the fzcont a

microinstruction, speci�ed as follows:

Push When high, pushes the contents of the ZBus into two consecutive FIFO memory positions,

thus e�ectively incrementing the Head register by two.

Pop When high, pops one 32-bit word from the FIFO address speci�ed by the Tail register,

thus e�ectively incrementing it by one.

Rst When high, resets both FIFOs, thus ushing out all FIFO data and e�ectively loading

zero on both Head and Tail registers.

In fact, when Push is active, 64-bit data from the ZBus is pushed simultaneously in all FIFO

inputs, while the activation of Pop will only pop 32-bit data from the FIFO devices that are

selected by the least signi�cant bit of the Tail register, kept in the FIFO control logic. Typi-

cally, the FIFOs will be used to read in descriptor data from the source memory through the

oating point unit in a single burst, acting as a cushion for the task descriptor access. With

this mechanism, the memory page misses that would incur by switching between source data

access and descriptor access before each row update operation is eliminated, thus substantially

126

improving the system performance. In spite of its pivotal importance, the added cost of the

FIFOs in terms of board space and power dissipation is minimal: a registered bu�er from the

source memory or oating point unit to the QBus would be required in any case, and the board

area taken either by FIFOs or by common registers with tri-state output bu�ers is comparable.

The source memory controller consists of pipeline registers that store pending values of the

least signi�cant bit of QBus, and the scont a microinstruction, feeding these values directly

into the inputs of two tightly coupled �nite state machines (FSMs). The FSMs generate the

appropriate control signals for the memory array; inc, ld, and sel signals for the address

generator; and a pair of row/column pipelined address bu�er select lines (oren and oren).

Some additional decode logic linked with the FSMs generates the enz signal that enables the

contents of the SrcZ register to drive the XBus; the disxreg signal that disables the oating point

register �le tri-state drivers to the XBus, as discussed in Section 4.2.3; and the enfx that enables

the FIFO output drivers to the XBus in the external bus interface, which will be discussed

in detail in Section 4.2.5. The source memory control can be implemented with four Cypress

PAL22V10C devices and a Texas Instruments 74ABT2952 device that provides enough output

current for driving capacitances up to 200 pF in the memory array control lines.

The scont a microinstruction speci�es:

Swr Used in conjunction with Sop, speci�es the type of the access, in case of a valid memory

cycle. When low, indicates a source memory write operation, and when high indicates a

source memory read operation.

Sop Speci�es the memory operation to be executed, along with the type of address to be used:

00 No memory operation (nop).

01 Valid access to current Row, Col address.

10 Valid access to the address to be loaded in the Row, Col from the QBus. (ld)

11 Valid access to the address obtained by incrementing the Row-Col pair. (inc)

SrcX Speci�es which device will be driving the XBus in the valid cycle that the instruction

speci�ed by Sop is executed, according to the following table:

00 XBus is driven by the DRAM array.

01 XBus is driven by the SrcZ register.

10 XBus is driven by the oating point register �le.

11 XBus is driven by the external bus interface FIFO.

Figure 4-17 depicts a sequence of source memory cycles that highlights the most relevant

aspects of the memory controller. Like Figure 4-14, it provides a fuzzy representation of the

timing information, focusing on the aspects of sequencing. In order to highlight the di�erences

with the index memory system, the same sequence of addresses is presented to the controller.

inc2* in Figure 4-17 corresponds to a read operation, in order to exemplify extended stall cycles

caused by other units.

127

1 2 3 4 5 6 7 8 9 10 11 12 13

QBus

Row

Col

scm

stallreq

stall

add

ld1 nop3 inc6 inc7

r2

c2 c5

r5 r6

c6

c1 c2 r2 c4 r4 c4 c5 c6

[1] [4] [5]

ocas

ecas

ras

14

inc2*

1(o)

ld4*

4(e)

r1

c1

r7

c7

r1,c1

r1,c1

r2,c2 r4,c4 r5,c5

r5,c5r4,c4

r6,c6

XBus

Rp1,Cp1

Rp2,Cp2

sel select Rp1,Cp1 select Rp2,Cp2

inc8scont_a

15

r3

c3

r3,c3

c2

inc5

r2,c2

r3,c3

c4

r4

c3

select Rp1,Cp1

[2]

16

Figure 4-17: A relevant sequence of operations in the source memory subsystem

In contrast to the index memory, the source memory latency is three valid cycles, so the

data [1], corresponding to ld1 is available in the end of the clock cycle 4. This extra delay

requires additional address registers for holding addresses for pending operations.

The sel signal will be selecting the contents of Rp1,Cp1 during normal memory operation.

However, in the case of a memory page miss, sel normally selects the contents of Rp2,Cp2, as

is the case in cycles 5 through 8 in Figure 4-17. During cycles 11 through 14 the controller

selects the contents of Rp1,Cp1 to drive the address lines because the contents of Rp2,Cp2 do

not correspond to a valid operation.

It is important to notice that the address generated by whichever operation was requested

on cycle 3 is stored in the Rp1,Cp1 register pair, and the address generated on cycle 4 is kept in

the Row, Col register pair. Even in the extreme case both these instructions were lds and caused

memory page misses, the memory system would still be able to properly handle the requests

by slowing down the processor and handling each operation separately.

Clock cycle 9 is a processor stall cycle, but the stall was not caused by the source memory

system, as data [2] is available at the end of the cycle. In these cases, called extended stall

cycles, the memory controller monitors the status of the stall line and will keep either or both

cas signals in low state, depending on state of the access. Also, the oe signal will be asserted

selecting the appropriate memory bank. The extended stall will continue until a valid processor

cycle is executed, in which case the controller will consider the current task �nished and will

128

proceed to the next task. The index memory controller is also able handle these extended stall

cycles.

The timing constraints that must be satis�ed for the proper operation of the source memory

system are the almost the same as the index memory system constraints. Referring to Figure

4-15, the di�erences between these systems are the additional latency cycle between the address

load from the QBus and its output in the add address lines, and slight setup times tSI and tSX

discrepancies.

Like the index memory subsystem, the source memory can also bene�t from synchronous

and cached dynamic RAMs operating at higher frequencies, and it is also possible to obtain a

tenfold speed increase by the end of the decade.

The IC count for the source memory subsystem is twenty 24-pin DIP packages accounting

for the PALs and registers, and the thirty-two 28-pin ZIP packages that compose the DRAM

array. The estimated power dissipation is 28 Watts.

Destination Memory Subsystem

The destination memory subsystem consists of the ALU-based address generator, memory

array, and the controller. Figure 4-18 depicts in detail the major components of the destination

memory subsystem and its associated microprogram control �elds.

The address generator is based on the Integrated Device Technology, Inc. IDT7383L20

16-bit ALU, handling address bits 1 through 16. Since the destination memory is two-way

interleaved, special logic and registers with functionality similar to the ALU are provided for

address bit 0, and could be implemented with one Cypress PAL22V10C device. The ALU

contains two input registers Al and Af, and one output register Af that can be independently

loaded under the microprogram control �eld dcont l, as follows:

Enal Active low, enables loading data from the QBus into the Al input register on the rising

edge of the Clk signal.

Enah Active low, enables loading data from the HBus into the Ah input register on the rising

edge of the Clk signal.

Enaf Active low, enables loading data from the ALU into the Af output register on the rising

edge of the Clk signal.

The ALU is a combinational block that under control of the six-bit Aop microinstruction

�eld of dcont a can perform a variety of simple 16-bit integer arithmetic and logic operations

such as pass, add, subtract, bitwise and, bitwise or, etc. on its input operands, which can be

any Al, Ah, or Af registers. The Integrated Device Technology, Inc. High Performance Logic

Databook [IDT92] contains a detailed description of all ALU operations.

129

0xffff

3

31−17

QBus HBus

Al Ah

ALU

Af

016−1

C0

ah0al 0

y0

add

i

S64K64 S64K64

rd wr b0

we

ce

YBus ZBusdisyreg

0xffff

IDT7383L20

16−1 023−17

Zen

add

io o

we

ce

se co wo sody we ce dz

Dest Memory
 Controller

Drd Dwr

21 321

Aop

Ep1

Ep2

Ep3

Op1

Op2

Op3

ALU
Bit 0

Clk Clk

Clk

PClk

PClk

PClk

PClk

PClk

PClk

Enaf

EnahEnal

Aop

Enaf Enah Enal

2xIDT29FCT5202xIDT29FCT520

dcont_a

dcont_l

Dop

Figure 4-18: Destination memory subsystem and its associated microinstruction �elds

Pipelined registers with bu�ered output such as the Integrated Device Technology, Inc.

IDT29FCT520 are necessary to hold writeback addresses and provide enough output drive

current for the 160 pF capacitive load of each memory array. A total of four devices are used.

A skewed version of the main processor clock, PClk, clocks the pipelined registers in order to

align the SRAM array address transitions with the Clk signal, using the technique discussed in

Section 4.1.1. A detailed description of the destination memory subsystem timing is depicted

in Figure 4-20.

The two-way interleaved memory array consists of two groups of sixteen 64 Kwords by 4-bit

separate I/O SRAM devices, such as the Cypress CY7C192 devices. These thirty-two devices

account for a total of 128K 64-bit words. The memory input pins of both data banks are

130

directly connected to the Zbus, while the output pins are directly connected to the YBus in

order to reduce the overall system latency. Separate address and control lines are provided for

each memory bank.

The destination memory controller consists of pipeline registers that store pending values

of the least signi�cant bit of the address generated and the Dop microinstruction �eld, feeding

these values directly into the inputs of a simple �nite state machine (FSM). The FSM generates

the appropriate control signals for the memory array; select signals for the pipelined address

registers; the disyreg signal that disables the oating point register �le tri-state output drivers to

the YBus, as discussed in Section 4.2.3; and the Zen signal, which controls the Z oating point

unit output register load, also discussed in Section 4.2.3. The destination memory controller can

be implemented with three Cypress PAL22V10C devices and a Texas Instruments 74ABT2952

device the provides enough output current for driving capacitances up to 160pF in the memory

array control lines. The Dop �eld of the dcont amicroinstruction speci�es the memory operation

to be executed, according to the following table:

00 No operation (nop)

01 Memory read (r)

10 Memory write (w)

11 Memory read and result writeback in precisely two clock cycles. (rw)

In any clock cycle that neither memory bank is being read, the YBus will be driven by the

oating point register �le, as the destination memory controller issues a low output voltage in

the disyreg signal.

Figure 4-19 depicts a sequence of destination memory cycles that highlights the most relevant

aspects of the memory controller and ALU operations, using as an example the events related

to a sparse matrix row update operation. Like 4-14 and 4-19, it focuses on the aspects of

sequencing rather than representing precise timing information. The dcont a depicted includes

information on the Dop,Aop control pair. p speci�es an ALU pass Al operation, while + speci�es

an ALU add Al Ah operation.

On the beginning of the �rst cycle, the base address b, or the multiplier aik of the sparse

matrix update, as described in Section 4.2.2, is loaded in the Al register from the QBus, and

a ALU pass Al operation is executed. The label b(e) on the QBus data means that b in this

example is an address in the even memory bank. Only a read operation is requested for this

address.

All other ALU operations depicted are sums of b and several indices i1, i2, etc. read from the

HBus and used to compute the addresses of the data pertaining to the target row, or aij = [b+ i],

as described in Section 4.2.2. A memory read with corresponding writeback operation (rw) will

be speci�ed for all addresses computed in this fashion. Likewise QBus, data in the HBus is also

labeled with either (e) or (o) to indicate an even or odd column index. In this example, the

�nal address computed and stored in Af, will have the same even/odd pattern as the incoming

131

1 2 3 4 5 6 7 8 9 10 11 12 13

Ewrback

Owrback

Stall

wo

Zen

we

disyreg

r,+nop,pdcont_a

b+i3 b+i4 b+i3 b+i4 b+i5 b+i6 b+i5 b+i6SRAM
OAddr

Op1 Op1 Op3 Op2 Op1 Op1 Op2 Op1so

b b+i4b+i3b+i2b+i1Ep3,Op3

b b+i6b+i5b+i4b+i3b+i2b+i1Ep1,Op1

b b+i5b+i4b+i3b+i2b+i1Ep2,Op2

b b+i1 b+i2 b+i1 b+i2SRAM
EAddr

Ep1 Ep1 Ep1 Ep3 Ep3se

b b+i1 b+i2 b+i3 b+i4 b+i5 b+i6 b+i7Af

b(e)QBus

8(e)i1(e) i2(e) i3(o) i4(o) i5(o) i6(o) i7(e)HBus

YBUs [b] [b+i1] [b+i2] [b+i3] [b+i4] [b+i5](rf) (rf) (rf) (rf) (rf) (rf)

ZBus [b+i1] [b+i2] [b+i3] [b+i4] [b+i5]

ce rrr w w

co r r r rw ww

rw,+ rw,+ rw,+ rw,+ rw,+ rw,+ rw,+

[b+i6]

"r"

stallreq

Figure 4-19: A relevant sequence of operations in the destination memory subsystem

column indices, as the base address was an even number.

During cycle 3, as well as in all valid clock cycles that do not correspond to a writeback

operation, Ep1 and Op1 will be selected for the SRAM address lines. For normal operation,

when a writeback is scheduled, either Ep3 or Op3 will be selected, depending on the memory

bank that is the target of the writeback. For instance, cycles 6 and 7 correspond to writeback

cycles in the even memory bank, and consequently Ep3 is selected, repeating b+i1 and b+i2 as

132

even memory addresses. Correspondingly, the results of the gaxpy operations ([b+i1]= [b+i1]

- [b] � s1) and ([b+i2]= [b+i2] - [b] � s2) will be present in the ZBus for writeback, and the

we control line will be active. During these same clock cycles, new data is being read from the

odd memory bank, thus achieving the maximum destination memory bandwidth. Usually, it

is necessary to reorder the access to even and odd column indices in a sparse matrix in order

to achieve the maximum destination memory bandwidth. A detailed discussion of how this is

this reordering is implemented, and its impact on the overall performance of the system was

presented in Section 2.2.1.

Sometimes it is not possible to reorder all column indices in order to achieve the maximum

destination memory bandwidth. For instance, during clock cycle 8 in Figure 4-19, the data

read for [b+i5] conicts with the writeback for [b+i3], and during cycle 9 it conicts with the

writeback for [b+i4]. Since the writebacks cannot be delayed, they will be executed and these

cycles will correspond to processor stall cycles, delaying the data read for clock cycle 10. It is

also important to note that Op2 is selected during clock cycle 9 to accommodate for the stalled

address pipeline during clock cycle 8.

Clock cycle 11 is a processor stall cycle, but the stall is not caused by the destination

memory system, as data [b+i6] is available in the end of the cycle. Using the same strategy of

source and index memory controllers in respect to extended stall cycles, the memory controller

will monitor the stall line and will keep repeating the same read or write cycle until a valid cycle

happens. However, clock cycle 12 corresponds to a writeback operation that cannot be delayed,

so the extended stall cycle is aborted, the destination memory controller forces cycle 12 to be a

processor stall cycle, the writeback is performed, and the system returns to the extended stall

state during clock cycle 13, but it is broken immediately as it corresponds to a valid clock cycle.

Another important issue that must be dealt by the system software, otherwise expensive

hardware would be required is the operand bypass detection. Considering the sequence of events

on Figure 4-19, let us assume that in a generalized task with writeback operations, the situation

i2= i1 could happen, so that data read from [b+i2] at the end of clock cycle 5 was actually

supposed to be the data resulting from the writeback operation that started a cycle earlier, which

is only going to be written back to memory during clock cycle 6. This situation can actually

occur if the last gaxpy operand aij of one sparse matrix row update is the same element as the

multiplier aik of the next row update. The operation could actually be correctly performed,

assuming that the data present at the end of cycle 5 in the YBus was ignored, and the contents

of the oating point unit ALU output were fed back to the input register My instead. This

case can be predicted in the precompilation phase and the correct bypass scheduled in advance

for sparse matrix factorization. Otherwise, extra hardware would be needed for detecting the

address collision and taking the appropriate action.

Figure 4-20 depicts the most critical signal constraints that must be satis�ed for the proper

operation of the destination memory system. During the �rst cycle, a memory read from address

133

d1 is performed, while in the second cycle, a memory write to address d2 is performed.

AFODt

t
H

20ns

Clk

Af

PClk

 SRAM
Address

CE

WE

YBUs

ZBus

SP
>t

t POD

t AA

>t
SY

t ZOD t DS

read from memory write to memory

t SCE

d1 d2

d1 d2

(rf) [d1]

to (rf) to (rf)

(rf)

[d2]

Figure 4-20: Destination memory subsystem timing

Table 4-2 summarizes the destination memory subsystem switching characteristics and tim-

ing requirements depicted in Figure 4-20, for the devices previously mentioned. Following the

notation of Figure 4-20 and on Table 4-2, and denoting the clock period as TClk, the follow-

ing set of constraints must be satis�ed for the proper operation of the destination memory

subsystem:

tAFOD + tSP + tPOD + tAA + tSY � 2� TClk (4.7)

tZOD + tDS � TClk (4.8)

Constraint 4.7 is related to the read latency, from the moment the desired address is latched

in the ALU output Af register until the output data is latched in the FPU unit input registers

via the YBus. The skew between PClk and Clk must be tuned carefully to match the setup time

of the pipeline register. Constraint 4.8 is related to the write cycle, representing the setup time

constraints of the data to be written.

All the timing constraints in this section can be satis�ed if the suggested parts are used

and the clock period is at least 20ns. For simplicity, the hold time constraints are not shown

in Figure 4-20, but can also be met with the proposed clock cycle period.

Experimental pipelined static RAMs have been reported operating at 500 Mhz [Chappell91].

Using interleaving and other techniques described in this section, it is possible to attain a tenfold

speed increase in the destination memory subsystem.

134

Symbol Description Min(ns) Max(ns)

tAA Address to valid data 15

tAFOD Clock to Af register output delay 11

tZOD Clock to Z register output delay 12

tPOD PClk to add output delay 7

tSP Pipeline register setup time 2

tSY FPU register setup time 3

tDS Data setup to write end 8

tSCE CE low to write end 10

Table 4-2: Destination memory subsystem switching characteristics and timing requirements

The IC count for the destination memory subsystem is one 68-pin PGA package containing

the ALU, nine 24-pin DIP packages accounting for the PALs and registers, and the thirty-two

28-pin DIP packages that compose the SRAM array. The estimated power dissipation is 35

Watts.

4.2.5 Network Interface

The bus interface subsystem consists of four FIFOs bu�ering the ow of integer and double

precision oating point data to and from IBus and DBus, registered bus transceivers that comply

with the electrical bus interface protocol discussed in Section 4.1.2, and the control logic. Figure

4-21 depicts the overall organization of the bus interface.

The IOUT bu�er is a 512-word by 33 bit FIFO that receives integer data from the QBus

under microprogram command and sends it to the IBus under control of the transmit logic.

Thirty-two bits from the QBus are used for data, and an extra bit from the microprogram

control word is used for the generation of the Done signal during transmission. The IIN bu�er

is a 512-word by 33 bit FIFO that selectively receives data from the IBus under control of

the receive logic. Thirty-two bit integer data can be read into the QBus under microprogram

command, while the data corresponding to the incoming Done signal is the do ag, sent to the

main control unit. The two FIFOs can be implemented with four Texas Instruments 74ACT803

devices.

The DOUT bu�er is a 512-word by 64 bit FIFO that receives double precision oating point

data from the XBus under microprogram command and sends it to the DBus under control of the

transmit logic. The DIN bu�er is a 512-word by 64 bit FIFO that selectively receives data from

the DBus under receive logic control. The data can be read into the XBus under microprogram

control. These FIFOs can be implemented with eight Texas Instruments 74ACT803 devices.

The registered bus transceivers depicted in Figure 4-21 latch signals coming to and from the

interface network and translate between CMOS and BTL voltage levels, as discussed in Section

135

BusClk

TR

BusClk

TR 0

BusClk

TR

32

BusClk

TR

64

RE

OR

WE

OR

AF

IR

RE

WE

OR

RE

WE

OR IR

fin

txen

din

vout

dout

vin

wren

af

done

de

ie

rden

addr

31−6 5−0

63−(p+1) (p−1)−0

sel

512 x 33
IIN FIFO

Done

 Bus Flags
(to uControl)

p*

p* => indicates the bit
number corresponding to
 the processor number.

XCVR

XCVR

XCVR

buscont_a

de df ie if

HF

hf

RECEIVE
CONTROL
&SELECT

prid

hdwired
proc id

XCVR

vin

REWE

do

0

Quietbus

Ibus

Wiredbus

Dbus

TRANSMIT
CONTROL&
 SELECT

QBus

XBus

enqb

enfx

fout

Valid

Done

IBus

Intrq

Full

Reset

DBus

reset intrq

 512 x 64
DIN FIFO

 512 x 64
DOUT FIFO

 512 x 33
IOUT FIFO

R

R

R

R

Rst

PuI

PoI

PuD

PoD

PoIPuI

din

ContPoDPuD

Figure 4-21: Interconnection interface and its associated microinstruction �elds

4.1.2. Fourteen Texas Instruments 74FB2033 devices are required for driving all the data and

control signals.

The control section is divided into the transmit and receive control subsections. The trans-

mit controller monitors the status of the Valid and Done input signals. Exactly one cycle after

both signals become active, the message control vector is placed on the bus, as discussed in

Section 4.1.2. The controller will then compare the six least signi�cant bits of the IBus input

with the hardwired process identi�cation. If there is a match, the controller will then wait for

the next occurrence of the Done and Valid signals, and a cycle later it will become the bus

master. As soon as a processor gains bus ownership, the controller will start popping data from

the IOUT and DOUT FIFOs, while watching the status of both ie and de signals to control

136

the Valid signal output. Upon detecting the done signal from the IOUT FIFO, it will make

sure that the output FIFOs are not empty, and then assert the vout signal along with dout. In

the next cycle the message control vector will be transmitted, and the processor will relinquish

bus control. If either IOUT or DOUT FIFO becomes empty when the done signal from IOUT

is detected, the controller will not assert the Valid signal, as it is necessary to send the mes-

sage control vector on the bus exactly one cycle after both Valid and Done signals are asserted.

The transmit control logic is relatively simple and can be implemented with a single Cypress

PAL22V10C device.

The receive controller also monitors continuously the status of the Valid and Done bus

signals. Exactly one clock after both signals become active, the receiver controller fo the p-th

processor will examine the p-th bit of the DBus to determine if the speci�c processor will be

enabled to receive the next message data. If not, the processor will ignore all incoming data. If

the processor is enabled, the receiver controller will push incoming data from the bus on both

IIN and DIN FIFOs provided the vin signal is active. The receive control logic is very simple

and can be implemented with a single Cypress PAL22V10C device.

The buscont a microprogram instruction speci�es:

Cont Contains the Rst (lsb) and the Done (msb) microcontrol signals. These two bits are used

together to specify:

00 No operation (nop)

01 Resets all bus controllers and ushes all FIFO data (Rst)

10 Assert Done signal, agging the last data in a message (Done)

11 Resets bus controllers, ushes all FIFO data and asserts the Intrq signal.

PoI Active low, pops one 33-bit word from the IIN bu�er so that it could be read during the

subsequent cycles to the QBus and the do ag.

PuI Active low, pushes into the IOUT bu�er one 33-bit word formed by the juxtaposition of

32-bit data from the QBus and the Done microcontrol signal in buscont a.

PoD Active low, pops one 64-bit word from the DIN bu�er so that it could be read in the

subsequent cycles to the XBus.

PuD Active low, pushes one 64-bit word from the XBus into the DOUT bu�er.

It is important to emphasize that the system software is responsible for pushing into the

IOUT, DOUT FIFO pair the correct message control vector after the last piece of data in the

message, along with the Done control asserted, is pushed. Even though the hardware is designed

in such way that bus conicts will never happen, it is very likely that an irrecoverable error

condition will be established if the the wrong message control vector is sent to the bus.

Figure 4-22 depicts in detail the most critical signal timing constraints that must be satis�ed

for the proper operation of the bus interface subsystem.

137

Clk

20ns

QBus

bus_stallreq

BusClk

PoI

ie

if

Valid

to fifo from fifo from fifo

t FDOD

t FFOD

t FFOD

t FDOD

t FFOD

t BOD

data to be transmitted when enabled

t FDS

t FRS

t SS

t

FDS

FWS

SB

> t

PuI

t FWS

IBus,DBus

IIN, DIN
Fifo Input

IIN, DIN
WEFifo

i1,d1

i1,d1

t L

i0,d0

FDS>t

1st 2nd 3rd

>t

DOUT Fifo
 Output

DOUT Fifo
 OR Flag

Figure 4-22: Network interface system timing

Let us �rst consider the interactions between the processor and the bus interface. In the

�rst rising edge of the Clk signal data from the QBus is pushed into the IOUT Fifo under the

command of the PuI microinstruction. This data push causes the IOUT FIFO to become almost

full, as indicated by the assertion of the if ag. Any attempt to write extra data into this

FIFO will cause the processor to stall. Also, data is successfully popped out of the IIN FIFO

and read to the QBus during the �rst and second clock cycles, emptying it, as indicated by the

assertion of the ie ag. The attempt to pop data from the empty FIFO, to be read during the

third cycle causes the processor to stall, indicated by the assertion of the bus stallreq signal.

Considering the interactions of the external bus and the interface, the �rst piece of data to

be transmitted becomes available a few clock cycles after the �rst data was pushed into the

138

Symbol Description Min(ns) Max(ns)

tFFOD Fifo clock to valid output ags 10

tFDOD Fifo clock to valid output data 15

tBOD Bus transceiver output delay 8

tL PAL logic propagation delay 7

tSB Bus input setup time 5

tSS Stall request setup time 3

tFWS Fifo write enable setup time 5

tFRS Fifo read enable setup time 5

tFDS Fifo data input setup time 5

Table 4-3: Network interface system switching characteristics and timing requirements

DOUT FIFO from the XBus. Since the IOUT FIFO is full, the �rst piece of data from the QBus

must be long waiting to be transmitted. The valid data will be transmitted as soon as the

processor acquires bus ownership. Assuming that the data read from the bus is valid, and the

processor is enabled to receive the contents of the current bus message, the data pair fi0; d0g

is pushed in the IIN and DIN FIFOs at the second rising edge of the Clk signal. Likewise, valid

data fi1; d1g was available in the bus and will be pushed into the FIFOs at the fourth rising

edge of the Clk signal.

Table 4-3 summarizes the network interface system switching characteristics and timing

requirements depicted in Figure 4-22 for the devices previously mentioned. Assuming that TClk

is the clock period and using the notation of Table 4-3 and Figure 4-22, the most di�cult

constraint to satisfy is:

tFFOD + tL + tSS � TClk (4.9)

Constraint 4.9 can be satis�ed if TClk � 20ns. All other constraints are easily satis�ed.

The IC count for the network interface system is twelve 56-pin SSOP packages accounting

for the FIFOs, fourteen 48-pin SSOP packages for the BTL transceivers, and two 24-pin DIP

packages accounting for the PALs. The estimated power dissipation is 18 Watts.

4.2.6 Microprogrammed Controller

The microprogrammed controller consists of the microprogram program counter PC and as-

sociated branch logic, the microprogram memory, the Nop and Align registers, the Im registered

transceivers, the Count loop counter, the ag multiplexers, and the main control logic. Figure

4-23 depicts in detail the components of the microprogrammed controller and the associated

microprogram control �elds.

139

PC

i/o i/o

15−0

+1

Qbus

S8K16S8K16

31−16

i/o

S8K53

i/o

S8K43

LdIm

StIm

NopL

Align

Jbus Cbus

Bootstrap
 Path

Count

+1

12−0 14−13

addw oeaddw oe addw oe addw oe

stall

EnIm

EnQ

EnC

Botw

PCall

Zsel Nsel

Z Flag Set N Flag Set

EnP

15

SILO

EnJ

Clk

Clk

Clk

NopA

stall

Clk

Clk

LdIm

StIm

LdC

InC

Clk

PClk

Branch
 Logic

ZF NF
IncPC

LdPC

Op

Cin

SILO

Call

 Main
Control

stall

(53) (43)
Lead Align

stall stall

stallstall

SrcJ

src_sreq

idx_sreq
dst_sreq

reset
intrq

bus_sreq

SrcQ

enqi enqz enqb

enqi

enqz

enqb

LdEn

StEn

SrcJ

src_sreq

idx_sreq

dst_sreq

reset

intrq

bus_sreq

SrcQ

LdIm

StIm

stall

Zsel Nsel

SrcQ SrcJ InC LdC

Call Op

StIm LdIm

ucont_a

ucont_l

uop_l

µ

µ

Figure 4-23: Microprogrammed controller and its associated microprogram control �elds

The microprogram counter PC is a thirteen bit register that points to the current microin-

struction being executed. The PC register can either be incremented or load an address from

the thirteen least signi�cant bits of the JBus under control of the branch logic. The branch logic

takes as input the two bit SILO signals from the main control, the two bit Op opcode from uop l

(bits 13 and 14 in the JBus), and two generic ags ZF and NF. The SILO signals are interpreted

as:

140

00 Stall. No change is allowed in the contents of the PC register.

01 Force an increment, regardless of Op or ag status.

10 Force a load from JBus, regardless of Op or ag status.

11 Operate. If the condition selected by the Op is true, load, else increment.

In the operate mode of the SILO, the Op microcontrol instruction will select a condition

based on the contents of the ZF and NF ags. The Op speci�es:

00 NF � ZF

01 NF � ZF

10 NF � ZF

11 NF� ZF

By carefully selecting the values of Zsel and Nsel in conjunction with Op it is possible

to select various branch conditions that include but are not limited to the traditional <, >,

=, 6=, �, and � oating point comparison operators, as well as detecting zero in the Count

register, and testing the status of various bus interface FIFO signals. The PC register and its

associated branch logic could be implemented with two Cypress PAL22V10C devices, but for

speed it would probably require four devices using two identical sets, each driving half of the

96pF capacitive load in the microprogram memory address lines.

The microprogram memory consists of sixteen 8Kword by 8-bit fast common I/O SRAM

devices, such as the Cypress CY7B185 . These devices generate simultaneously the 128 control

signals for the various processor subsystems. All SRAM devices share the same address lines,

but their control signals are independently generated. The 128 memory data signals can be

divided in three groups: the �rst group has sixteen bits connected to the JBus; the second group

has sixteen bits connected to the CBus; and the third group contains the remaining 96 signals

which can be further subdivided into 53 Lead and 43 Align control signals.

The NopL and NopA registers consist of 96 bits that will drive a programmable no op

microinstruction to the various processor subsystems in the event of a processor stall. As

shown in Figure 4-23, the stall signal will disable the memory output corresponding to Align

and Lead , while enabling the NopL and NopA registers to drive these control lines. The input

of these registers is tailored in such way that they form along with LdIm a four stage serial-to-

parallel shift register that will be used during the microcode boot phase to hold the data to

be written into the microprogram memory. During the microcode boot phase, data is loaded

so that four 32-bit words coming serially from the QBus are shifted into a single 128-bit word

that can be written simultaneously to the microcode memory by asserting both PCall and

Botw write signals. While Botw can only be asserted during the microcode boot phase, PCall is

activated any time a non-leaf procedure call is entered. Procedure calls will be further discussed

later in this section. The last data written to the microprogram memory during the boot phase

should be a no op microinstruction, as this is the value present in the NopL and NopA registers

during the normal operation and will be microinstruction issued during a processor stall cycle.

The NopL and NopA registers can be implemented with twelve Texas Instruments 74ABT2952

141

devices.

The Align registers hold the set of forty-three align control signals, which must remain stable

for the entire clock period. These registers are loaded every valid clock cycle, and they will hold

the last valid value during processor stall cycles. These registers can be implemented with six

Texas Instruments 74ABT2952 devices.

The LdIm register can hold a branch address and instruction, along with a loop count. The

register can be loaded from the QBus, and its data can be selected to drive simultaneously the

JBus and CBus under microprogram control. The LdIm register can also be used during the

microcode boot phase to shift in data from the external bus into the NopL and NopA registers.

The StIm register is used to insert 32-bit immediate data into the QBus. The register holds data

formed by juxtaposing sixteen bits from the JBus (upper word) and sixteen bits from the CBus

(lower word). The 32-bit data can be driven by the microprogram memory or by other sources

such as the LdIm register. These registers can be implemented with four Texas Instruments

74ABT2952 devices.

Count is a sixteen bit register which can be used in \increment and branch on carry"

operations for loop control, and for holding a branch address to be driven into the JBus for

handling procedure calls. The Count register can be loaded from CBus or incremented under

microprogram control, while the carry output can be used as a ag for conditional branches.

The Count register and associated logic can be implemented with two Cypress PAL22V10C

devices.

The two ag multiplexers are independently controlled by the Zsel and Nsel align microin-

struction �elds, which are part of the ucont a microinstruction. The ag multiplexers can be

implemented with two Integrated Device Technology, Inc. 74FCT151CT devices. The Nsel

�eld selects as NF one of the following input signals:

000 False (always zero)

001 Floating point negative result ag

010 Count register carry out ag

011 Done output signal from the IIN FIFO (do)

100 Reserved

101 Reserved

110 Reserved

111 Reserved

The Zsel �eld selects as ZF one the following input signals:

142

000 False (always zero)

001 Floating point zero result ag

010 Count register carry out ag

011 Reserved

100 Empty output signal from the DIN FIFO (de)

101 Full output signal from the DOUT FIFO (df)

110 Empty output signal from the IIN FIFO (ie)

111 Full output signal from the IOUT FIFO (if)

The main control is a FSM that takes as input reset and intrq from the network interface, the

four stall request signals generated by the various memory subsystems and bus interface, part of

the ucont l microinstruction, and the Call microinstruction from uop l (JBus bit 15). This FSM

uses these inputs and the internal state to generate the stall signal and its complement, various

enable signals for QBus and JBus drivers, the SILO signal to control the microinstruction branch

logic, the StEn and LdEn signals to enable respectively the load of the StIm and LdIm registers,

and the microprogram memory write enable signals Botw and PCall. The main control can

be implemented with three Cypress PAL22V10C devices. The ucont l speci�es the following

instructions:

LdIm Active low, it will enable data from the QBus to be loaded in the LdIm register in the

rising edge of the Clk signal at the end of the following valid clock cycle by asserting

the LdEn signal. The LdEn will also be asserted automatically by the main control FSM

during the microprogram boot phase.

StIm Active low, it will enable data formed from the juxtaposition of JBus and CBus to be

loaded in the StIm register in the rising edge of the Clk signal at the end of the following

valid clock cycle by asserting the StEn signal. The main control will also use the SILO

signal to force the microprogram counter to increment, ignoring the contents of JBus so

that generic 32-bit data could be inserted in the StIm register from the microprogram

memory.

LdC Active high, will load the Count register with the contents of the CBus in the rising edge

of �Clk at the end of the current valid clock cycle.

InC Active high, will increment the Count register in the rising edge of �Clk at the end of the

current valid clock cycle.

SrcJ Selects one of the following sources for JBus and CBus data during the next clock cycle:

00 LdIm register drives JBus and CBus (EnQ active)

01 Microprogram memory drives JBus and CBus (EnJ and EnC are active)

1x Count register drives JBus, memory drives CBus (EnP and EnC are active)

143

SrcQ Selects one of the following sources for the QBus data during the next clock cycle:

00 IIN FIFO in the network interface drives QBus (enqb active)

01 StIm register drives QBus (EnIm active)

10 StIx register (index memory subsystem) drives QBus (enqi active)

11 ZBus FIFO (source memory subsystem) drives QBus (enqz active)

Figure 4-24 illustrates a sequence of microprogrammed control unit cycles that highlights

the most relevant aspects of its functionality, and in special, the handling of procedure calls.

Figure 4-24 provides a fuzzy idea of timing information as the windows in which data is stable

are exaggerated, focusing on the sequencing aspects of the main control operation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

stall

op f,inc f,inc op f,inc opSILO

PCall

EnQ

EnC

n−1 n p p+1 p+2 l+1 l+2 l+2 l+3l+2 n+1l pp+3Addressµ

qStIm

LdIm

qQBus

q,msw inccall pJBus b,n+1 b,p b,n+1b,l b,p+3 b,p+3cj,l+2 cj,l+2 cj,l+2

q,lsw 0xfffeCBus xb,n+1 b,p+3 zzx

0xfffe 0xffff 0x0Count b,n+1 b,p+3

[b,p+3]* 0x10000 + z

[b,p+3]* 0x10000 + z

[b,p+3]* 0x10000 + z

Figure 4-24: A relevant sequence of operations in the microprogrammed control unit

During the second cycle, the current uop l instruction being executed at address n is a

procedure call to the microcode address p. At the same time, sixteen bit immediate data that if

present in the JBus would execute the instruction branch to address n+1 is stored in the Count

register. During the third cycle, the main control actions in response to a procedure call request

includes automatically generating stall signal for the next cycle, writing the contents of JBus

into the microcode memory at address p, and forcing the microprogram counter to increment

using the SILO signals. The system software is responsible for properly choosing the source

for JBus during the third cycle, in this case with the contents of the Count register (or the

microinstruction \branch to n+1"). During the fourth clock cycle, the SILO will again force the

microprogram counter to increment, this time due to the StIm request during the execution of

the previous instruction. The contents of JBus and CBus will be written into the StIm register

144

(this data is labeled q), while the branch logic and the main control will ignore whichever values

are present in the JBus.

During the �fth cycle, a leaf procedure call to address l is executed. The di�erence to normal

procedure call is that the return address can be left in the Count register without writing it to

the microcode memory, as a leaf procedure will never call other procedures. In this particular

case, however, the Count register will be needed for a controlled loop. During the sixth clock

cycle the StIm instruction is executed again, writing the pair f branch to address p+3, z g into

the StIm register, which drives the QBus during the seventh cycle, and is read back into the

LdIm register. During the seventh cycle the value �2 (0x�fe) is loaded into the Count register.

The microinstruction at address l+2 is a conditional jump (cj, l+2) if no carry from the count

register to the same address l+2, and it includes also an increment to the Count register. The

loop instruction is repeated three times (as the Count register was initialized with �2). In the

eleventh cycle, the contents of the LdIm register will drive JBus, executing a return instruction

to address p+3, thus �nalizing the execution of the leaf procedure.

In the twelfth cycle, a branch to �rst address p of the procedure is executed, which is the

standard way in this system for returning from a non-leaf procedure. In the thirteenth cycle,

the actual microcontrol instruction resident at p is executed, and the control returns to its caller

by executing the \branch to address n+1" instruction that has been written at address p. Using

this scheme for procedure calls, the number of nesting levels is limited only by the microprogram

memory size, and no extra hardware is required. Stacks for procedure calls, which are di�cult

to implement with o�-the-shelf parts are not necessary. A similar scheme was used in other

machines, like the PDP-8. Perhaps a shortcoming of this method of procedure nesting is that

recursive or reentrant code is not supported. This limitation is not very serious as there are

only a small number of numerically intensive codes that use recursive procedure calls.

Figure 4-25 depicts in detail the most critical signal timing constraints that must be satis�ed

for the proper operation of the microprogrammed controller. Data is read from the microcode

memory to JBus during at addresses u1 and u2, and is written to the microcode memory at

address u3.

Table 4-4 summarizes the microprogrammed control system switching characteristics and

timing requirements depicted in Figure 4-25 for the devices previously mentioned. Using the

notation of Figure 4-25 and Table 4-4, and denoting the clock period TClk, the following con-

straints are the most di�cult to be attained for the proper operation of the controller:

t�OD + tAA1 + tS� � TClk (4.10)

tCOD + tAA1 + tSL � TClk (4.11)

tCOD + tAA2 + tSA � TClk � tAOD (4.12)

Constraint 4.10 refers to the loop path from the PC register through the microprogram

145

Lead

JBus

Align Reg In

Clk

PClk

Clkµ

Addressµ

PCall

Align

20ns

>t

t

SA

AOD

t ODµ

t AA2

Sµ
t

t

t

u1 u2 u3 u4

l1

a0 a1 a2 a3

t AA1

−>J[u3]
Sµ

t

l2 l3

J[u2]−>J[u1]−>

a1 a2 a3

>t SL

H
t

t COD

SD

PWE

Figure 4-25: Microprogrammed controller system timing

Symbol Description Min(ns) Max(ns)

tCOD Clk to microaddress valid delay 4

t�OD �Clk to microaddress valid delay 6

tAOD PClk to Align register output delay 5

tAA1 Microprogram memory access time (slow) 10

tAA2 Microprogram memory access time (fast) 9

tH Generic Lead signal hold time 2

tSL Generic Lead signal setup time 4

tS� Microprogram counter PC setup time 3

tSA Align register setup time 2

tSD Data setup time to write end 5

tPWE Write pulse width 8

Table 4-4: Microprogrammed controller switching characteristics and timing requirements

memory and back to guarantee a single cycle latency in all branch and loop instructions.

Constraint 4.11 refers to the amount of skew between Clk and �Clk in order to meet the minimum

setup time requirements of all lead microcontrol signals in the other subsystems. Finally,

the most di�cult constraint to be satis�ed is 4.12, which refers to the amount of delay from

the rising edge of Clk through the microprogram address register PC, and then through the

146

memory to stable data in the input of the Align registers, or the rising edge of PClk. For the

proper operation of the system it is necessary �rst to adjust the skew �t(Clk; PClk) between

PClk and Clk so that it matches the Align register output delay �t(Clk; PClk) = tAOD . The

adjustment requires the usage of the techniques described in Section 4.1.1. The second step is

the adjustment of skew �t(Clk; �Clk) between �Clk and Clk so that both constraints 4.12 and

4.11 are satis�ed.

Using extremely fast static memories [Chappell91] and VLSI techniques, it is possible to

obtain a tenfold speedup in the microprogrammed control unit at the expense of increased

operation latency.

The IC count for the microprogrammed control system is thirty-one 24-pin DIP packages

for the PALs and registers, sixteen 28-pin DIP packages accounting for the fast SRAMs, and

two 16-pin DIP packages accounting for the multiplexors. The estimated power dissipation is

27 Watts.

4.3 Architecture Emulation

The architecture emulation formally describes the system hardware. The objectives of such

representation are documentation, global system veri�cation, and design tradeo� analysis. The

machine architecture emulation was performed at two levels, �rst at behavioral level, and then

RTL (register transfer level). After a brief introduction of the behavior level emulation of the

proposed multiprocessor architecture, we will discuss the RTL emulation.

4.3.1 Behavioral Level Emulation

Figure 4-26 illustrates the organization of the behavior level emulation of the multiprocessor.

Each processor was modeled as having its own local index, source and destination memory, an

input queue, and an output queue. The communications between processors are modeled by

a queue representing the bus, and a list of message control vectors, which are discussed in

Section 4.1.2. All the code executed by the target multiprocessor is written in C, compiled, and

executed by the host machine performing the emulation.

A comprehensive simulation of the execution of SIMLAB (a circuit simulator similar to SPICE,

but with much simpler device models) in a multiprocessor environment was executed at behav-

ioral level. The objective of the simulation at this level was to prove the correctness of the

proposed computation model both for the sparse matrix solution and the device evaluation

phase. A modi�ed version of SIMLAB would �rst parse the description of the circuit to be simu-

lated, external input voltages and initial conditions, and reorder the associated sparse matrix in

order to minimize �llin. A special precompiler using the techniques discussed in Chapters 2 and

3 partitions the sparse matrix and the device description, distribute their data into the memory

image of the di�erent \processors" in Figure 4-26, schedule the di�erent tasks required for both

147

src

dst

idx

Processor #1

 out
queue

 in
queue

src

dst

idx

 out
queue

 in
queue

src

dst

idx

 out
queue

 in
queue

 bus
queue

Processor #2 Processor #P

message control vectors

srcpr(1)
srcpr(2)
srcpr(3)

srcpr(n)

dstvec(0)
dstvec(1)
dstvec(2)

dstvec(n−1)

Figure 4-26: Behavioral level simulation of the proposed architecture

the device evaluation and sparse matrix solution in the form of a long list of task descriptors,

load the task lists in the source and index memory of each \processor", and generate the list

of message control vectors.

In the inner step of the Newton-Raphson iteration, described in detail in Chapter 3, SIMLAB

would pass the control to the behavioral simulator. The simulation consists of visiting each

\processor" and execute all tasks from the descriptor list until the list is exhausted, or there

is an attempt to read from an empty input queue. After all processors are visited, the \bus

processing" involves removing one message from the outgoing queue of the processor speci�ed

by the srcpr �eld of the next message control vector, and placing a copy of the message in the

input queue of all the processors corresponding to set bits in the dstvec �eld of the message

control vector. The loop is repeated until all the processors have exhausted all the tasks in the

descriptor lists. After all processors have executed all tasks, the control returns to SIMLAB.

The perfect match between the output results of the modi�ed for behavioral level simulation

version of SIMLAB and the original version of SIMLAB proves the correctness of the partition,

scheduling, and message passing schemes, as well as the correct generation of the local processor

memory addresses. The results from the behavioral level emulation open the path for a more

detailed emulation of the architecture, using the RTL model.

4.3.2 RTL Emulation

The RTL model describes the ow of data between registers and how data is modi�ed

in pure combinational logic. We are initially interested in obtaining accurate information on

the number of clock cycles required for the completion of some computational task. Accurate

timing information is not essential for this model, provided that we limit the maximum amount

of delay in a combinational logic block to some value that is consistent with our target physical

clock period.

148

The basic idea behind the RTL simulation model is the representation of relevant internal

registers in the form of a consistent data structure, and the activation of a procedure that

represents the rising edge of Clk. The procedure execution will update all the registers in a

particular block by evaluating a function of the previous state and external inputs. This model

is a valid representation of the actual hardware provided that the clock period is larger than

tCO+ tPD+ tSU , where tCO represents the register's clock to output delay, tPD is the maximum

propagation delay through the combinational logic, and tSU is the register setup time.

Modularity and hierarchical representation of the system were the key issues in the software

design. The usage of these concepts greatly simplify the programming, help the documentation,

and eases the debugging. Eachmodule consists of a data structure, and a set of procedures, which

represent its structure and functionality. Figure 4-27 depicts the hierarchical organization of

the hardware and a simpli�ed version of the C language data structures that represent the

internal organization of each module.

p1 p2 pn

System

Processor

Destination

useq if

df

src

bit

idx

dst

adgen

ev odd

IBus

DBus

IBus

QBus
HBus

DBus

YBus

ZBus

XBus

typedef struct {

 int QBus;
 int HBus;
 double XBus;
 double YBus;
 double ZBus;
 Source *src;
 Destination *dst;
 Index *idx;
 DFifo *df;
 IFifo *if;
 Fpu *bit;
 Microseq *useq;

 } *Processor;

QBus

HBus

Af

OpipEpip

ZBus YBus

typedef struct {

 int Af;
 Address *adgen;
 Pipeline *Epip;
 Pipeline *Opip;
 Memory *ev;
 Memory *od;

 } *Destination;

typedef struct {

 int IBus;
 double DBus;
 int n;
 Processor *proc_array[];

 } *System;

Figure 4-27: Modular hardware representation of the numerical engine and its corresponding
software data structures

In this representation, not only the registers, but also tri-state busses and some \debug"

149

internal wires are all part of the data structure de�nition. Tri-state bus data must be kept across

procedure calls in order to represent its physical behavior | when a bus is not driven, it keeps

the last data for a certain period of time. The basic set of procedure calls that are connected with

a certain module are: make module(), which allocates the data structures; clk module(), which

actually performs the RTL simulation; and a set of particular output module() procedures,

which are used for setting the state of the external interfaces before any calls to clk module()

are made.

Each module representing a block previously discussed in this chapter is contained in a

module.c and a module.h �le. All modules are linked together and with the modi�ed version

of the SIMLAB program which contains the precompiler for partitioning, scheduling, address and

microcode call generation. The precompiler also binds the internal code generation database

with microcode external symbols to determine microcode branch destinations. Also imple-

mented is a mechanism that mimics microcode boot, and a microcode debugger. This organi-

zation, along with the microcode emulation of a memory-mapped device in the actual hardware

would allow, in the future, the usage of this tool with minimal modi�cations for debugging the

actual hardware.

In order to simplify the development of the microcode, and the binding of microcode symbols

with the scheduler and code generation mechanism inside the modi�ed version of SIMLAB, a

rather sophisticated microassembler with relocation and external symbol handling capabilities

was written. The relocatable object code generated by the microassembler is linked and loaded

into the microcode memory of all processors modeled at RTL level prior to the execution of the

RTL emulation. An example of the microassembler code for the evaluation of the exponential

function ex is provided in Appendix A.

Three thousand lines of microassembler code corresponding to some three hundred microin-

structions were written and fully debugged for the implementation of the solver for sparse sets

of linear equations. The results were checked by introducing random solution vectors, multi-

plying them by the original matrix to obtain the right hand side vectors, compute the solution

of the sparse set of linear equations, and compare the solution with the original randomly gen-

erated vectors. The relative norm of the errors obtained were in the order of 1 � 10�13. The

results of the architecture emulation of the sparse matrix solver in a single processor using the

RTL model, and a comparison with general purpose platforms commercially available today

are described in detail in the next section.

4.4 Architecture Emulation Results

Table 4-5 compares for the test matrices described in Chapter 2 the sparse matrix factor-

ization times measured on several general purpose machines and the RTL simulation results

for a single processing element of the Numerical Engine described in this chapter. All times

150

matrix SPARC2 MIPS3000 RS6000/540 AXP ALPHA Numerical Engine
40Mhz 40Mhz 50Mhz 150Mhz (RTL) 50Mhz

dram 5300 3511 780 666 26

feb 867 836 340 300 22

iir12 3433 3676 1430 1350 53

iir123 5033 5410 2030 1917 78

mesh 567 559 180 183 10

omega 217 215 90 67 7

mfr 817 809 290 267 19

Average 742 728 274 232 17

Table 4-5: Sparse matrix factorization times

are in miliseconds. The code executed in the other architectures is the sparse matrix package

Sparse 1.3b [Kundert88]. The Numerical Engine results are obtained by multiplying the total

number of cycles necessary to decompose the sparse matrix by the 20ns clock period, using the

scheduling, memory allocation and data reordering algorithms discussed in Chapter 2. Table

4-6 presents the same results for processor speed in terms of million of oating point operations

per second (MFlops).

The measurements for the SPARC2 and MIPS3000 are very similar, as their architectures

have comparable performance and they operate at the same clock speed. These processors

have a rather slow oating point unit, and the simple scalar integer architecture poses a large

overhead for address calculation and oating point data access.

The comparison between the performance of the RS6000 and the AXP ALPHA is rather

puzzling. Both processors have a very high performance oating point unit that can execute one

oating point multiply or add per clock cycle, and the advanced superscalar (or superpipelined

for the ALPHA) architecture can reduce substantially the data access overhead by executing

several instructions concurrently. However, instead of an expected 3� speed up for the AXP

ALPHA due to the clock speed ratio, empirical data shows speedups in the order of 15%

only. This e�ect seems to be related with the main memory bandwidth. Since both systems

have a similar main memory structure, and use DRAMs devices of the same speed, the results

from Table 4-5 and 4-6 help support the hypothesis that the main memory bandwidth is the

performance bottleneck for sparse matrix decomposition in general purpose machines. The

largest improvement for the AXP ALPHA, which occurred for the omega test case, might also

be explained by a better utilization of the cache mechanism, as omega is one of the smallest

test matrices.

The Numerical Engine architecture overcomes the memory bandwidth bottleneck by pro-

viding simultaneous access to index, source, and destination data through di�erent paths and

accelerating these accesses by interleaving. The RTL simulated results show that at least one

151

order of magnitude speed improvements over the other architectures can be achieved for the

test matrices discussed. The memory address computation overhead has also been reduced by

the usage of concurrent address computation units. The smallest speed improvements obtained,

for omega and feb matrices, are probably linked with the task initialization overhead, given the

relatively small average size of the row-wise tasks for these two matrices and the relatively large

pipeline latency.

The predicted results are very encouraging. Even if the target clock period of 20ns cannot be

achieved, the combined usage of the hardware and software techniques discussed in this thesis

are still expected to provide a large amount of speedup compared with other architectures.

matrix SPARC2 MIPS3000 RS6000/540 AXP ALPHA Numerical Engine

Peak 4MFlops 4MFlops 50MFlops 150MFlops (RTL)100MFlops

dram 0.36 0.54 2.43 2.85 73.0

feb 0.98 1.01 2.49 2.82 38.5

iir12 1.07 1.00 2.58 2.73 69.6

iir123 1.04 0.97 2.58 2.73 67.0

mesh 1.21 1.23 3.81 3.74 68.5

omega 0.98 0.99 2.36 3.18 30.4

mfr 1.12 1.13 3.14 3.41 48.0

Average 0.97 0.98 2.77 3.06 56.4

Table 4-6: Sparse matrix factorization performance (MFlops)

152

5

Conclusion and Future Work

5.1 Major Contributions

This thesis presents hardware and software techniques for the fast numerical solution of

di�erential equations, focusing on the execution of a modi�ed version of a circuit simulation

program, SIMLAB. The components that comprise most of SIMLAB execution time are the as-

sembly of the circuit equations and its associated sparse matrix solution.

In SIMLAB, the assembly of circuit equations involves the evaluation of the circuit devices

and the stamping of their contributions in the Jacobian matrix and in the right-hand-side

current and charge vectors. While the device evaluation can be done independently in di�erent

processors, the stamping of their contributions requires either the replication of the device

evaluation e�ort or the transmission of the contributions across the network. For linear devices

and voltage sources, we have proposed a scheme that divides these devices into local and shared .

Since the evaluation cost for these devices is usually very small, shared devices are replicated in

di�erent processors. In the case of non-linear devices, if task replication is used, the empirical

results in Table 3-1 show that the multiprocessor utilization tends to 50% as the number of

processors grow. In contrast, if the contributions for stamping are transmitted over the network,

the multiprocessor utilization will be around 90%, provided the network is not saturated. Given

simple cost functions, the behavioral level emulation of the Numerical Engine shows that the

bus saturation happens when the number of processors P � 20.

This thesis introduces the O2SA technique, which combines scheduling and storage alloca-

tion algorithms for the fast parallel sparse matrix decomposition. The essence of this technique

is to keep in the cache an active data subset, necessary to attain a high degree of parallelism.

The superiority of the O2SA scheme in terms of multiprocessor utilization over the Scatter-

Gather technique becomes evident by comparing Figures 2-13 and 2-14. In fact, the degree

of multiprocessor utilization using the O2SA technique is comparable with the utilization that

can be attained using the OSA technique, even with a modest cache size. The major advantage

153

154

of the O2SA technique over OSA is the great speed improvement achievable in each processing

element. The results of register transfer level (RTL) emulations of a single processor presented

in Table 2-9 indicate that the O2SA-based hardware can deliver on average 2:6� the speed of

an OSA-based hardware with comparable technological constraints by properly exploiting the

locality of reference.

It is possible to exploit the properties of sparse matrices and scattered arrays by reordering

the data to e�ciently use memory interleaving as a general technique for increasing processor-

memory communication bandwidth. Besides the obvious improvement in the sequential access

to the source and index elements in a row update operation, it is possible to achieve up to 90%

interleaving e�ciency in the access of a 2-way interleaved memory holding destination data,

as shown in Table 2-2. The RTL emulation results presented in Table 2-3 indicate that the

number of static column misses are reduced by reordering on average 5�. The total number of

stalled cycles was reduced to a third of the original �gure, yielding global improvements in the

order of 25%.

The Numerical Engine has specialized datapath and control in each processing element that

permits the execution of several tasks per clock cycle. During the sparse row update execution,

the most frequent operation in sparse matrix decomposition, ten operations are started in each

processing element per clock cycle | three integer operations, two oating point operations, four

memory accesses, and a conditional jump. These operations are described in detail in Section

2.5.2. Experimental data presented in Table 4-5 and Table 4-6 indicates that the bandwidth

between the main memory and the oating point unit is the performance bottleneck for sparse

matrix decomposition in general purpose machines. For instance, the AXP Alpha platform,

a state-of-the-art superscalar computer with a peak performance of 150 MFlops, achieves on

average only 3 MFlops during the sparse matrix decomposition, corresponding to a oating point

unit utilization of 2%. The Numerical Engine architecture overcomes the memory bandwidth

bottleneck by providing simultaneous access to index, source, and destination data through

di�erent paths and accelerating these accesses by interleaving. The RTL simulations for a single

Numerical Engine processor show at least one order of magnitude speed improvement over the

other architectures during the execution of the sparse matrix decomposition. Correspondingly,

the utilization of the oating point unit in the Numerical Engine is very high, up to 73% in the

case of the dram matrix.

5.2 Future Work

Perhaps the most serious shortcoming of precompilation techniques for sparse matrix decom-

position is related with numerical pivoting. The robustness of a circuit simulator is strongly

connected with its ability to perform numerical pivoting, which consists of reordering rows

and/or columns of the matrix, when a pivot, also called divider in a row normalize operation,

155

becomes too close to zero in the course of the simulation. With the current precompilation

scheme, if such event happens, it would be necessary to stop the decomposition, ush all ma-

trix data from all processors and restart again all the precompilation steps to deal with a

new symbolic matrix. An interesting research topic is an extension of these precompilation

techniques to accommodate alternate paths that would be executed in these situations, thus

avoiding a new precompilation step.

Another important research path is the extension of the precompilation techniques discussed

in this thesis for general purpose parallel processors, involving the implementation of O2SA-

based schemes on sequential machines and the implementation of the overall multiprocessor

scheme in a general-purpose parallel machine. As discussed in Section 2.5, the O2SA storage

and scheduling scheme can be applied with some modi�cations to a system with a block-

oriented main memory system (DRAM), and a small cache (SRAM), which are found on most

computers today. The implementation of a new sparse matrix package based on the O2SA

strategy might improve substantially the oating point utilization of modern general purpose

computers. Also, as discussed in Section 3.3, most general purpose parallel computers available

today have a long message latency, and a large overhead in order to set up a message. Even if

the message latency and setup times could be shortened, it is unlikely that the ratio between

the latency for message passing and the oating point unit bandwidth will change substantially

for general purpose multicomputers. Given these constraints, the sparse matrix factorization

code will still be very di�cult to parallelize on a general purpose machine, as it is very di�cult

to �nd a way of partitioning the data amongst the processors to properly balance the load and

at the same time to minimize the impact of the network latency on the critical path of the

solver.

156

A

Fast Evaluation of Transcendental

Functions

A.1 Background

We will describe in this appendix the implementation of e�cient routines for the evaluation

of transcendental functions. The algorithm chosen for these functions is the Chebyshev series

expansion method [Clenshaw63].

There are several reasons to choose Chebyshev's method rather than other more familiar

methods, like Taylor series and Newton-Raphson successive approximation. The primary ad-

vantage of Chebyshev's method is that it exhibits uniform convergence in a speci�ed number of

terms, so that the range of input value will have little inuence on the accuracy of the result.

Another advantage is that it is an economical method, in the sense that the number of terms

required to achieve a given precision is relatively small, which in turn provides for fast execu-

tion. Also, the bounds of the error are easily accessed. Lastly, it is widely applicable, as any

continuous function of bounded variation has a convergent Chebyshev series expansion.

The in�nite Chebyshev series for the function f(x) in the range �1 � x � 1 takes the form

f(x) =
1

2
c0 + c1T1(x) + c2T2(x) + ::: (A.1)

where Tr(x) is the Chebyshev polynomial of degree r, de�ned by

Tr(x) = cos (r arccosx) (A.2)

and cr is the Chebyshev coe�cient. By truncating the series (A.1) after the term cnTn(x)

we obtain an approximation to f(x) of the n-th degree. Since jTr(x)j � 1 for all r, the approx-

imation error cannot exceed
P
1

r=n jcrj, for which a bound can be obtained by inspection.

The form shown in (A.2) is quite cumbersome to use directly. An easier way of computing

the Chebyshev polynomials of a degree r is by using the following properties:

157

158

Tr+1(x)� 2Tr(x) + Tr�1(x) = 0

T0(x) = 1 (A.3)

T1(x) = x

Sometimes it is better to evaluate the Chebyshev series in terms of polynomials T �r (x). Since

T �r (x) = Tr(2x� 1) we have only to replace x by 2x � 1 in Equation (A.1). In this case, the

range of x is restricted to 0 � x � 1.

Other cases of Chebyshev series of common occurrence are the even and odd series, in which

the alternate coe�cients vanish. Although we could use (A.1) directly, it is easier, using the

properties of Chebyshev polynomials, to simultaneously replace x by 2x2�1 and cr by c2r, and

writing:

T2r(x) = Tr(2x
2 � 1) (A.4)

Odd functions can be dealt by �rst removing the factor x. This factor is replaced after the

evaluation of the resulting even function. This simple modi�cation has the incidental advantage

of preserving the accuracy for x very close to zero.

With these properties in mind, we can devise a simple method for computing the value of

f(x) for any given x. The routine �rst transforms the argument in a manner appropriate to the

function in order to obtain a new variable which lies in the standard range [�1; 1] (or sometimes

[0; 1]). The Chebyshev series, truncated to the degree n depending on the accuracy desired,

is then evaluated for the given value of the new variable. Tables containing the Chebyshev

coe�cients for a wide range of trigonometric, exponential, hyperbolic and many other functions

found in standard mathematical libraries are available [Clenshaw62].

The computation of the �nite series may be evaluated in two ways. The �rst, is by recurrence

directly from the Chebyshev coe�cients ci. We form successively bn; bn�1; :::; b0, from

br = 2xbr+1 � br+2 + ar; bn+1 = bn+2 = 0 (A.5)

and then f(x) = 1
2(b0� b2), a result that can be proved with the aid of (A.3). The second,

is by reordering the series in the form

f(x) = a0 + a1x+ a2x
2 + a3x

3 + :::+ anx
n (A.6)

Even though the literature presents many arguments in favor of the recurrence (A.5) directly

from the Chebyshev coe�cients [Clenshaw62], the form (A.6) is computationally cheaper if the

series is always truncated to a �xed n. The coe�cients ar can be precomputed only once, and

stored for posterior usage. The direct application of Horner's Rule to (A.6) yields

159

f(x) = (((((anx+ an�1)x+ an�2)x+ an�3)x+ :::+ a2)x+ a1)x+ a0 (A.7)

The form (A.7) is ine�cient for a oating point unit with concurrent adder (ALU) and

multiplier(MPY). The ine�ciency is caused by the interdependencies of add and multiply oper-

ations: each add requires the result from the previous multiplication and vice-versa. Assuming,

in the best case, that the latency is one cycle for both multiply and add, the FPU utilization

is only 50%. By rearranging (A.7) in even and odd terms we can write, assuming n even,

f(x) = (((anx
2 + an�2)x

2 + an�4)x
2 + :::+ a2)x

2 + a0 + (A.8)

(((an�1x
2 + an�3)x

2 + an�5)x
2 + :::+ a1)x (A.9)

The same type of reorganization can be done for n odd. In any case, we keep x2 multiplying

successively the previous results of the ALU, while the ALU adds the previous results of the

MPY to a new input coe�cient. The net result is an interleaved multiply-add operation: in

a given cycle, the ALU handles an even term and the MPY an odd term, and in the next

cycle they switch roles. This mechanism takes full advantage of oating point hardware with

separate functional units. We shall describe in detail this operation through an example for the

Numerical Engine in Section A.2.

Even though tables containing the values of the Chebyshev coe�cients cr are available, the

task for obtaining ai from ci is tedious. This task can be automated using Algorithm A.1. This

algorithm has been implemented in bc language, which provides arbitrary precision arithmetic.

The algorithm builds iteratively the Ti polynomial coe�cients Ti[j] using (A.3), multiplies

these coe�cients by ci and accumulate in a[j], the corresponding coe�cient of xj in Equation

(A.6).

A.2 Evaluation of Transcendental Functions in Multiple Func-

tional Units

We shall demonstrate the usage of the Chebyshev series expansion in a real example, the

evaluation of the exponential function ex, which also illustrates the interaction of the algorithm

with the oating point hardware. In order to e�ciently compute ex we intend to use the

Chebyshev Series expansion, properties of IEEE oating point numbers, and reorganization of

the polynomial evaluation, as described by Equations (A.8) - (A.9).

We start by transforming the problem of computing ex into a problem of computing 2y,

using

ex = 2x log2 e = 2y; if y = x log2 e (A.10)

160

Algorithm A.1 (Obtains Polynomial Coe�cients from Chebyshev).

/* c vector contains input Chebyshev recurrence coefficients */

a[0]= c[0]/2

a[1]= c[1]

Tr�1[0]= 1

Tr[0]= 0

Tr[1]= 1

i= 2

while i � n f
j= 0

while j < (i� 1) f
Tr+1[j]= -Tr�1[j] /* copy Tr�1 into Tr+1 */

j= j + 1

g

Tr+1[j]= 0

Tr+1[i]= 0

j= 0

while j < i f
Tr+1[j+1]= Tr+1[j+1] + 2 * Tr[j] /* add 2Tr */

Tr�1[j]= Tr[j] /* copy Tr into Tr�1 */

j= j+1

g

j= 0

while j � i f
a[j]= a[j] + c[i] * Tr+1[j] /* accumulate ciTi */

Tr[j]= Tr+1[j] /* copy Tr+1 into Tr */

j= j+1

g

i= i + 1

g

/* a vector contains output polynomial coefficients */

In order to reduce the range, we can write y = N � t, where N = dye. In this case,

ex = 2N2�t, and t � 1. t is the new argument of the Chebyshev series expansion, in terms of

T �r (x). 2
N can be easily computed, using the IEEE representation of oating point numbers,

by shifting 1023+N to the exponent �eld of a double precision oating point number. In fact,

the Bipolar Integrated Technology, Inc. BIT 2130 FPU hardware used in the Numerical Engine

provides a scale operation, which computes directly 2N , given N . We are left to compute 2�t

using the Chebyshev Series expansion

161

Cycle �Address ALU MPY XBus YBus

previous previous previous x log2 e

1 exp - y = x log2 e 2.0 -

2 exp 1 N = ceil(y) 2y 1.0 -

3 exp 2 2y + 1 2N - -

4 exp 3 z = 2N � 2y � 1 - - a9

5 exp 4 int(N) z2 1.0 a11

6 exp 5 2N o = z2a11 - a10

7 exp 6 o = o+ a9 e = z2a10 - a8

8 exp loop e = e+ a8 o = z2o - a7

9 exp loop o = o+ a7 e = z2e - a6

10 exp loop e = e+ a6 o = z2o - a5

11 exp loop o = o+ a5 e = z2e - a4

12 exp loop e = e+ a4 o = z2o - a3

13 exp loop o = o+ a3 e = z2e - a2

14 exp loop e = e+ a2 o = z2o - a1

15 exp loop o = o+ a1 e = z2e z a0

16 exp 8 e = e+ a0 o = zo - -

17 exp 9 2�t = e+ o - - -

18 exp 10 - ex = 2N2�t - -

Table A-1: Computation of ex on a FPU with concurrent ALU and MPY

2�t =
1

2
c0 +

1X
r=1

crT
�

r (t) (A.11)

By using T �r (x) = Tr(2x � 1), we replace t by z such that z = 2t � 1, or z = 2N �

2x log2 e � 1. We have chosen to use eleven terms of the Chebyshev series c10:::c0, in order to

obtain a maximum error smaller than 2�10�16, which is the IEEE 754 double precision oating

point machine precision. The eleven Chebyshev coe�cients ci from a table [Clenshaw62] were

transformed to ai using Algorithm A.1. The numerical value of these coe�cients is listed in the

data section of the microcode shown in Figure A-1. We are left with the evaluation of

2�t = (:::(((a11z + a10)z + a9)z + :::) + a1)z + a0 (A.12)

or, applying the result in (A.8 - A.9)

2�t = (:::((a11z
2 + a9)z

2 + ::::)z2 + a1)z +

(:::((a10z
2 + a8)z

2 + ::::)z2 + a2)z
2 + a0 (A.13)

162

/**
*** ***
*** exp.u contains the procedure for solving y= exp(x) ***
*** Given x, the system computes exp(x) in 18 machine cycles ***
*** (360ns at 50Mhz). ***
*** ***
*** Author: Ricardo Telichevesky ***
*** RLE - LCS - Massachusetts Institute of Technology ***
*** Version 3.0 of Jan 04, 1993 ***
*** ***
*** input: everything should be set in such a way that the xbus ***
*** will contain x (the input) and the ybus will contain ***
*** log2e. Also, it is required the request for imm32 ***
*** data in the jbus/cbus (stim). Also, in the call inst ***
*** one should have xbus <- fregs because in _exp+1 ***
*** we use it. Of course, normal leaf procedure call ***
*** organization applies here ***
*** ***
*** output: mul contains y= exp(x) ***
*** ***
**/

bind _exp /* bind program entry point */

number_iterations= 8-1 /* internal loop counts 8 times */

text

_exp:

imm32 sram_exp_constants
mx <- xbus, my <- ybus
mop, dmult /* m1 <- xlog2e (=y) */
xregsel _register_two
stim /* request next cycle jbus/cbus imm32 */
qbus <- im /* next cycle qbus <- sram_exp_constants */
jbus <- count /* next cycle jbus comes from count register */
xbus <- fregs /* two cycles from now xbus <- fregs */

exp_1:
 cont /* ignored */

aop, dffi
mx <- xbus, my <- mul /* m2 <- m1 * 2.0 (=2y) */
ax <- mul /* a2 <- double ceil(m1) (=N) */
xregsel _register_one
enal, passl /* next cycle execute af= al(=sram_exp_const) */
qbus <- im /* next cycle qbus <- return address */
ldim /* in the end of next cycle ldim <- ret addr */

exp_2:
 cont
 ax <- xbus, ay <- mul /* a3 <- (1 + 2m1) (=2y+1)*/

aop, dadd
my <- alu, /* m3 <- 2a2 (=2N) */
areg <- alu /* areg <- a2 (=N) */
enaf, incf /* next cycle execute af++ */
dr /* next cycle start dest read cycle (c9) */

exp_3:
cont
ax <- mul, ay <- alu /* a4 <- m3 - a3 (=2N-2y-1=z) */
aop, dsub
xbus <- fregs /* two cycles from now xbus <- fregs */
enaf, incf /* next cycle execute af++ */
zreg <- alu /* zreg <- a4 (=z) */
dr /* start read cycle (c11) */

exp_4:
 cont

ax <- areg
aop, dfcsi /* a5 <- int ceil(a2) (=int(N)) */
mx <- alu, my <- alu /* m5 <- a4 * a4 (=z^2) */
areg <- ybus /* areg <- c9 */
xregsel _register_one
enaf, incf /* next cycle execute af++ */
dr /* start read cycle (c10) */

exp_5:
cont
ax <- xbus, ay <- alu /* a6 <- 1.0 * 2**a5 (=2^N) */
aop, dscale
mx <- mul, my <- ybus /* m6 <- c11 * m5 (=c11*z^2=odd) */
ldz /* srcz register <- a4 (=z) */
enaf, incf /* next cycle execute af++ */
dr /* start read cycle (c8) */

exp_6:
 cont

csel -number_iterations /* set up to count number_iterations */
cld
ax <- areg, ay <- mul /* a7 <- m6 + c9 (=c9+odd=odd) */
aop, dadd
my <- ybus /* m7 <- c10 * m5 (=c10*z^2=even) */
areg <- alu /* areg <- a6 (=2^N) */
enaf, incf /* next cycle execute af++ */
dr /* start read cycle (c7) */
zflag <- tc /* don’t forget that ucont_a applies to next */

exp_loop:
bne exp_loop, zflag <- tc /* do this number_iterations */
cinc
ax <- mul, ay <- ybus /* a14 <- m13 + c2 (=c2+even=even) */
aop, dadd
my <- alu /* m14 <- a13 * m5 (=odd*z^2=odd) */
xbus <- srcz /* two cycles from now xbus <- srcz */
enaf, incf /* next cycle execute af++ */
dr /* start read cycle (c0) */

exp_8:
cont /* will continue because force false cond */
ax <- mul, ay <- ybus /* a16 <- m15 + c0 (=c0+even=even) */
my <- alu, mx <- xbus /* m16 <- a15 * a4 (=odd*z=odd) */

exp_9:
 cont

ax <- alu, ay <- mul /* a17 <- a16 + m16 (=even+odd=2^-t)*/
jbus <- im /* next cycle return instruction is executed */

exp_10:
cont /* bogus - not used it is actually a branch */
mx <- alu, my <- areg /* m18 <- a17 * a6 (=2^(-t)*2^N=y= exp(x))*/
zreg <- mul /* in the next cycle z reg has output */

/* these are the constants that are resident on SRAM */

ddata

sram_exp_constants:
word 0xbde351b8 0x21ac16d5 /* -1.4056579584000002e-10 (a9) */
word 0xbd45a7fc 0x05d3b501 /* -1.5387648e-13 (a11) */
word 0x3d957bfd 0x2dbf487c /* 4.8849715200000002e-12 (a10) */
word 0x3e2f5b0e 0x17440879 /* 3.6502820159999996e-09 (a8) */
word 0xbe769e51 0xee631e87 /* -8.4260246421760012e-08 (a7) */
word 0x3ebc8d75 0x30548dd5 /* 1.70186575704992e-06 (a6) */
word 0xbefee4fd 0x234a4926 /* -2.9463279320804e-05 (a5) */
word 0x3f3bdb69 0x6e8987ac /* 0.000425065269643916 (a4) */
word 0xbf741839 0xeb88156e /* -0.0049059164525763043 (a3) */
word 0x3fa5be29 0x8adf0369 /* 0.042466448022884525 (a2) */
word 0xbfcf5e46 0x537ab906 /* -0.24506453586713678 (a1) */
word 0x3fe6a09e 0x667f3bcc /* 0.70710678118654746 (a0) */

Figure A-1: Microcode assembler source for the evaluation of ex

Once we obtain 2�t, we just multiply it by 2N to obtain ex. Table A-1 shows the sequence of

operations executed in the oating point unit ALU and multiplier, as well as the corresponding

microcode address and the data ow in the XBus and YBus. Chapter 4 contains a detailed de-

scription of the Numerical Engine architecture and its oating point unit. Figure A-1 illustrates

the microcode assembler source exp.u, used for the evaluation of ex.

Assuming a FPU clock cycle of 20ns, the computation of ex takes 18 cycles or 360ns. In

this period, 32 oating point operations were executed, which corresponds to 89% utilization of

the FPU, or 89 MFlops. For the sake of comparison, the IBM 3090 mainframe can compute ex

in 3:03�s, while a 16 Mhz version of the 68881 oating point accelerator requires 31:3�s. These

results help support the hypothesis that a single Numerical Engine processor could attain a

high degree of oating point utilization for the device evaluation tasks described in Chapter 3.

B

Emulation Tools

We will describe in this appendix the tool suite developed for the architectural emulation.

The objective of these tools are providing documentation, system veri�cation, and design trade-

o� analysis. As discussed before, the tool suite was built around SIMLAB, a circuit simulator

similar to SPICE.

Figure B-1 shows the modi�ed SIMLAB emulation environment. In addition to the original

SIMLAB core, shown in dashed lines, several modules were incorporated to parse the architectural

description of the system; perform behavioral and register-transfer emulations; schedule the

multiprocessor operations; link, and load into the emulated microprogram memory, relocatable

microcode modules.

A separate Microassembler program was developed for simplifying the generation of relo-

catable microcode object modules for the RTL emulation. The behavioral level emulation can

incorporate new procedures by simply compiling and linking (with the host cc compiler) into

the SIMLAB library.

Figure B-2 depicts a typical session of the modi�ed SIMLAB program, in which the user con�g-

ures the architectural database (=> configuration hardware), reads in the circuit netlist of a

PLA circuit (=> circuit decpla.rel) to be simulated, and performs the simulation (=> run).

The configuration command invoked the architectural parser for reading in the user-

selected �le named hardware, containing a description of the architecture to be emulated. The

parser �rst reads information contained in the architectural description �le such as the number

of processors, the size of the di�erent memory subsystems in each processor, cost functions for

the scheduling such as the latency of the oating point unit, and other environment variables.

Then, the parser will set up a common database for both behavioral (BLS) and register-transfer

(RTL) levels of emulation, con�gure the scheduler cost function database, and link and load in

the microprogram memory of all processors that will be emulated.

Figure B-3 depicts a part of the architectural description �le \hardware", loaded by the user

in the beginning of the session shown in Figure B-2. The �rst set of bindings (t_normalize,

163

164

Netlist

SIMLAB parser

Scheduler

SIMLAB init

SIMLAB device

SIMLAB solve

SIMLAB
check

C−Compiler

 Device
Code (C)

SIMLAB output

 Common
Database

P1 P2 P3Adaptor Pp

Microassembler

Linker−loader

Sparse Matrix
Microcode Src

Relocatable
Microcode

 Bootstrap
Microcode

Debug

Architecture
 parser

Architecture
 Descriptor

Behavioral
 Level
 Emulator

RTL Emulator

Figure B-1: The SIMLAB emulation environment

etc.) indicate special cost functions that are applied during the scheduling. For instance, when

trying to determine the cost of the normalization of row i, the scheduler will �rst set the value

of size_source to the number of elements after the diagonal of row i, and then call a system

routine that uses the user-supplied 14 + 2 * size_source cost function applied to the size of

row i to compute the value of t_normalize to be returned to the scheduler. The second set

of bindings are simpler, they just specify the numerical values of system-dependent variables

like the number of processors (processors), the cost for evaluating a shared current source

165

< SIMUGLY 1.0 >

(c) 1990 Massachusetts Institute of Technology

Research Laboratory of Electronics

All Rights Reserved 15 Sep 93

=>

=> configuration hardware % parses ``hardware'' for setting up emulation

Loading Microprogram Modules:

======= ============ ========

/home/gn/guest/ricardo/demos/microprogram/main.m

/home/gn/guest/ricardo/demos/microprogram/libsparse.a

......

=> circuit decpla.rel % reads in the circuit netlist

Reading decpla.rel

stop = 2.500000e-07

cmin = 1.000000e-12

dodc = 0

=> run % starts circuit simulation

Simulating circuit decpla.rel

14 models, evaluation requires 164 memory words (1312 bytes)

LU + FB 27 levels, 323 tasks which cost 2043, maximum is 121

LU + FB needs 728 mults, 549 adds and 56 divs

Critical path costs 280

1 processors, time= 2043, speedup= 1 ut= 1 (real= 1)

Processor 1 device evaluation cost: 32263

Transient Simulation Results

Wed May 26 13:48:23 1993

Host: grits

Simulation Method: Pointwise Solution

Transient Solution Time: 46.7

Integration Method: Trapezoidal

Timesteps: 100

Nonlinear Solution Method: Newton

Newton Iterations: 306

Linear Solution Method: Direct

Initial Decomposition Time: 0

Linear Solution Time: 34.3167

Total RTL simulated LUDec: 14

Total BLS simulated LUDec: 118

Total R+B simulated LUDec: 132

Total RTL simulated FEBS: 31

Total BLS simulated FEBS: 275

Total R+B simulated FEBS: 306

LU Decomp: 38880 cycles, 0.0007776 (each: 2777 cycles, 5.55429e-05)

FE-BS: 29822 cycles, 0.00059644 (each: 962 cycles, 1.924e-05)

Solve: 68702 cycles, 0.00137404

=> quit % exits the simulation

Figure B-2: A Typical SIMLAB session

166

(evs_isrc) or a local piecewise-linear voltage source (evl_pwlsrc) as described in Section 3.2.1,

the size of the index memory and its static column size (index_memory_size and page_size)

as described in Chapter 4, or parameters like the � (elasticity) as described in Section 2.3

and the size of the O2SA structure, speci�ed in multiples of the n, as described in Section 2.5.

Finally, the architectural description �le executes rtl_init to create the common database

shown in Figure B-1 and to link-load the three user-selected relocatable microcode object �les

into the microprogram memory of the processors that will be emulated.

When the user starts the simulation, the scheduler will use the parameters and cost functions

set by the user to generate a sequence of instructions for device evaluation and sparse matrix

decomposition on the target multiprocessor. It also uses the global address entries speci�ed

in the relocatable microcode during the link-load phase to bind the microcode procedure call

addresses with the code being generated. The log messages specifying the number of device

models, the size of the DAG, the number of tasks, and the expected speedup printed in the

beginning of the simulation are generated by the scheduler. Control is then passed to the

main SIMLAB core, which will execute the circuit simulation. During the circuit simulation, the

SIMLAB core will call the behavioral level emulator for assembling a system of network equations

by computing the device contributions, and the RTL emulator for solving it using the microcode

sparse matrix package. In order to save time, the parameter hardware_usage was set to ten

in this particular simulation to substitute the rather costly RTL emulation of the solver by

a faster behavioral emulation nine out of 10 times it is invoked. During the development of

the sparse matrix solver, a simple microcode debugger with breakpoint and trace capabilities

was extensively used inside the main loop of the circuit simulation to �x the sparse matrix

microcode.

At the end of the simulation, SIMLAB will print the resulting waveforms to a �le and will

print a summary of the transient simulation results, with some statistics of RTL and BLS usage.

167

#include "../../home"

/* special scheduler, size-source dependent bindings */

t_normalize <- 14 + 2 * size_source;

t_update <- 2 + size_source;

t_forwelim <- 1 + size_source;

t_backsub <- 1 + size_source;

t_scatter <- size_source;

t_busno <- size_source;

/* normal, fixed bindings for cost functions and settting variables */

processors= 1;

o2sa_density= 0.8;

o2sa_size= 3;

elast= 10.0;

t_busfe= 1;

t_busbs= 1;

p_normalize= 12;

p_febs= 1;

p_bus= 1;

evl_isrc= 4;

evs_isrc= 2;

evl_pwlsrc= 30;

main_diode= 80;

stuff_diode= 8;

trans_diode= 6;

main_mos1= 100;

stuff_mos1= 10;

trans_mos1= 12;

bus_fifo_size= 512.0;

almost_full_size= 250.0;

destination_memory_size= 131072.0;

fifoz_size= 512.0;

index_memory_size= 524288.0;

memory_page_size= 2048.0;

rfile_memory_size= 64.0;

source_memory_size= 524288.0;

useq_memory_size= 4096.0;

hardware_usage= 10;

u1= HOME + "microprogram/main.m";

u2= HOME + "microprogram/libsparse.a";

u3= HOME + "microprogram/libsys.a";

rtl_init(u1,u2,u3,3);

Figure B-3: Architectural description �le used in the SIMLAB session

168

Bibliography

[Agrawal92] P. Agrawal, J. Trotter, and R. Telichevesky, \PACE: A Multiprocessor Sys-

tem for VLSI Circuit Simulation," AT&T Conference on Electronic Testing,

ACET 92, pp. 1031-1036, Princeton, October 1992.

[Bit90] BIT 2130/3130/4130 Floating Point Unit, Advance Information, Bipolar

Integrated Technologies, Inc. 1990.

[Chang88] M. Chang and I.N. Hajj, \iPRIDE: A Parallel Integrated Circuit Simulator

Using Direct Method," IEEE International Conference on Computer Aided

Design, pp. 304-307, Nov. 1988.

[Chappell91] T.I. Chappell, B.A. Chappell, S.E. Schuster, J. W. Allan, S. P. Klepner, R. V.

Joshi, R. L. Franch, \A 2-ns Cycle, 3.8-ns Access 512-kb CMOS ECL SRAM

with a Fully Pipelined Architecture,", IEEE J. of Solid-State Circuits, Vol

26, No. 11, pp. 1577-1585, November 1991.

[Clenshaw62] C. W. Clenshaw, Chebyshev series for mathematical functions, Mathematical

Tables Vol 5., National Physical Laboratory, H.M. Stationery O�ce, London,

1962.

[Clenshaw63] C. W. Clenshaw, G. F. Miller and M. Woodger, \Algorithms for Special

Functions I", Numerische Mathematik 4, pp. 403-419, 1963.

[Dhillon91] I. S. Dhillon, N. K. Karmakar, K. G. Ramakrishnan, \An Overview of the

Compilation Process for a New Parallel Architecture," Proceedings of the

Fifth Canadian Supercomputing Conference,, Fredericton, N.B., Canada,

June 1991.

[Dobberpuhl92] D. W. Dobberpuhl, R.T. Witek, R. Allmon, R. Anglin, D. Bertucci, S. Brit-

ton, L. Chao, R. A. Conrad, D.E. Dever, B. Gieseke, S.M.N. Hassoun, G.W.

Hoeppner, K. Kuchler, M. Ladd, B.M. Leary, L. Madden, E.J. McLellan,

D.R. Meyer, J. Montanaro, D.A. Priore, V. Rajagopalan, S. Samudrala, and

S. Santhanam, \A 200-MHz 64-b Dual-Issue CMOS Microprocessor," IEEE

169

170

Journal of Solid-State Circuits , Vol. 27, No. 11, pp. 1555-1567, November

1992.

[Dosaka92] K. Dosaka, Y. Konoshi, K. Hayano, K. Himukashi, A. Yamazaki, H. Iwamoto,

M. Kumanoya, H. Hamano, and T. Yoshihara, \A 100-Mhz 4-Mb Cache

DRAM with Fast Copy-Back Scheme," IEEE Journal of Solid State Circuits,

pp. 1534-1539, November 1992.

[Du�86] I. S. Du�, A. M. Erisman, J. K. Reid, Direct Methods for Sparse Matrices,

Clarendon Press, Oxford, England, 1986.

[Efe82] K. Efe, \Heuristic Models of Task Assignment Scheduling in Distributed

Systems," IEEE Computer, 15(6), 1982 pp. 50-56.

[Eisenstat77] S. C. Eisenstat, M. C. Gursky, M. H. Schultz and A. H. Sherman, Yale Sparse

Matrix Package II: The Nonsymmetric Codes, Yale University Computer

Science Department Research Report 114, 1977.

[Ellis85] J. R. Ellis, Bulldog: A Compiler for VLIW Architectures, ACM Doctoral

Dissertation Award 1985, MIT Press, Cambridge, Mass 1986.

[Gerasoulis90] A. Gerasoulis, S. Venugopal, T. Yang, \Clustering Task Graphs for Message

Passing Architectures," 1990 ACM International Conference on Supercom-

puting, June 11-15, Amsterdam, 1990.

[Ginosar85] R. Ginosar and N.G. Jacobson, \The Simulation Machine: A VLSI Architec-

ture for Circuit Simulation," IEEE International Conference on Computer

Design, pp. 590-594, 1985.

[Golub89] G. H. Golub and C. F. van Loan, Matrix Computations , 2nd Edition, The

Johns Hopkins University Press, Baltimore, Maryland 1989.

[Graham66] R. L. Graham, \Bounds for Certain Multiprocessing Anomalies," Bell Sys-

tem Tech. J. 45, pp. 1563-1581, 1966.

[Graham79] R. L. Graham, E. L. Lawler, J. K. Lenstra, A.H.G. Rinnooy Kan, \Opti-

mization and Approximation in Deterministic Sequencing and Scheduling:

A Survey," Annals of Discrete Mathematics, 5, pp. 287-326, North Holland

Publishing Company, 1979.

[Greengard87] L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems,

PhD. thesis, Yale University, April 1987. MIT Press, Cambridge, Mass. 1988.

171

[Gyurcsik85] R. S. Gyurcsik, D. O. Pederson, \A MOS Transistor Model-Evaluation

Attached Processor for Circuit Simualation," IEEE International Conference

on Computer Aided Design, pp. 234-236, 1985.

[Hu61] T. C. Hu, \Parallel sequencing and assembly line problems", Operations

Res., Vol 9, pp. 841-848, 1961.

[IDT92] Integrated Device Technology, Inc. \High Performance Logic Data Book,"

Integrated Device Technology, Inc., 1992.

[Intel90] Intel \Intel i860 64-bit Microprocessor (Data Sheet)," Intel, 240296-002,

April 1990.

[Jackson55] J. R. Jackson, \Scheduling a Production Line to Minimize Maximum Tardi-

ness," Research Report 43, Management Science Research Project, Univer-

sity of California, Los Angeles, 1955.

[Huang79] J. W. Huang, O. Wing, \Optimal Parallel Triangulation of a Sparse Matrix,"

IEEE Trans. on Circuits and Systems, pp. 726-732, Sept. 1979.

[Kelley61] J. E. Kelley, \Critical-Path Planning and Scheduling: Mathematical Basis,"

Operations Res. 9, No. 3, May 1961

[Kernighan70] B. W. Kernighan, S. Lin, \An E�cient Heuristic Procedure for Partitioning

Graphs," Bell Systems Technical Journal, pp. 291-307, Feb. 1970.

[Kim88] S. J. Kim, J. C. Browne, \A General Approach to Mapping of Parallel Com-

putation upon Multiprocessor Architectures," International Conference on

Parallel Processing, 3, pp. 1-8, 1988.

[Kundert86] K. S. Kundert, \Sparse Matrix Techniques," Circuit Analysis, Simulation

and Design, A.E. Ruehli (Editor), Elsevier Science Publishers B.V., North-

Holland, pp. 281-324, 1986.

[Kundert88] K. S. Kundert, A. Sangiovanni-Vincentelli, Sparse User's Guide, Depart-

ment of Electrical Engineering and Computer Sciences University of Califor-

nia, Berkeley, CA, April 1988.

[Lewis86] D. M. Lewis, \A High Performance Hardware Accelerator for Circuit Level

Simulation of VLSI Circuits," IEEE International Conference on Computer

Aided Design, pp. 386-389, 1986.

[Lumsdaine90] A. Lumsdaine, M. Silveira and J. White, SIMLAB User's Guide, Research

Laboratory of Electronics, Massachusetts Institute of Technology, 1990.

172

[Malcolm59] D. G. Malcolm, J. H.Roseboom, C. E. Clark, W. Fazar, \Applications of a

Technique for Research and Development Program Evaluation," Operations

Res. 7, No. 5, September 1959.

[Markowitz57] H. M. Markowitz, \The Elimination Form of the Inverse and its Application

to Linear Programming", Management Science, Vol 3, pp. 255-269, April,

1957.

[Nagel75] L. W. Nagel, \SPICE2: A Computer Program to Simulate Semiconductor

Circuits", Memorandum no. ERL-M520, Electronics Research Laboratory,

University of California, Berkeley, May 1975.

[Nakata87] T. Nakata, N. Tanobe, H. Onozuka, T. Kurobe, N. Koike, \A Multiprocessor

System for Modular Circuit Simulation," IEEE International Conference on

Computer Aided Design, pp. 364-367, 1987.

[Press92] W. H. Press, W. T. Vetterling, S. A. Teukolsky, B. P. Flannery, Numerical

Recipes in C | The Art of Scienti�c Computing, Cambridge University

Press, 1992.

[Rao88] Rao S., Ackland B., London T. and Hatamiam M., \Perfect Hashing for

Sparse Matrix Elimination," Private Communication, July 1988.

[Rose78] D. J. Rose and R. E. Tarjan, \Algorithmic Aspects of Vertex Elimination on

Directed Graphs", SIAM J. Appl. Math. 34, pp. 176-197.

[Sadayappan88] P. Sadayappan and V. Visvanathan, \Parallelization and Performance Eval-

uation of Circuit Simulation on a Shared Memory Multiprocessor", IEEE

Trans. Comp, Vol. 37, No. 12, Dec. 1988

[Sadayappan89] P. Sadayappan and V. Visvanathan, \E�cient Sparse Matrix Factorization

for Circuit Simulation on Vector Supercomputers," IEEE Trans. on Com-

puter Aided Design, pp. 1276-285, Vol. 8, No. 12, Dec. 1989

[Sarkar89] V. Sarkar, Partitioning and Scheduling Parallel Programs for Execution on

Multicomputers, MIT Press, Cambridge, Mass, 1989.

[Smart89] D. Smart and J. White, \Reducing the Parallel Solution Time of Sparse

Matrices using Reordered Gaussian Elimination and Relaxation,", Private

Communication

[Stager87] L. K. Stager, \Vectorization of the LU-Decomposition for Circuit Simula-

tion", Proc. VLSI 87, pp. 353-362, Vancouver, Canada, August 1987.

173

[Tarjan79] Tarjan, R. and Yao, A. \Storing a Sparse Table", Comm ACM, pp. 606-611,

No. 11, Vol 22, November 1979.

[Telichevesky91a] R. Telichevesky, P. Agrawal, J. A. Trotter, \Partitioning Schemes for Circuit

Simulation on a Multiprocessor Array", International Conference on Appli-

cation Speci�c Array Processors, pp. 177-182, Barcelona, Spain, September

1991.

[Telichevesky91b] R. Telichevesky, P. Agrawal, J. A. Trotter, \A New O(nlogn) Scheduling

Heuristic for Parallel Decomposition of Sparse Matrices", Internation Con-

ference on Computer Design 91, pp. 612-616, Cambridge, MA, October 1991.

[Touzeau84] R. F. Touzeau, \A Fortran Compiler for the FPS-164 scienti�c computer",

Proceedings of SIGPLAN 84 Symposium on Compiler Construction,, pp. 48-

57, ACM, June 1984.

[Trotter90a] J. A. Trotter and P. Agrawal, \Matrix Factorization Algorithms for a Dis-

tributed Memory Multiprocessor Architecture," Private Communication,

May 1990.

[Trotter90b] J. A. Trotter and P. Agrawal, \Fast Overlapped Scattered Array Storage

Schemes for Sparse Matrices," IEEE International Conference on Computer

Aided Design, pp. 450-453, Nov. 1990.

[Vlach83] J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design,

Van Norstrand Reinhold Company, New York, 1983.

[Wing80] O. Wing, J. W. Huang, \A Computation Model of Parallel Solution of

Linear Equations", IEEE Trans. on Computers, pp. 632-638, July 1980.

[Yannakakis81] M. Yannakakis, \Computing the minimum �ll-in is NP-complete", SIAM J.

Alg. Disc. Meth. 2, pp. 77-79

[Ziegler77] Ziegler S., \Smaller Faster Table Driven Parser", Madison Academic Com-

puter Center, University of Wisconsin, Madison, WI, 1977. Unpublished

work.

