Theoretical and Practical Aspects of Parallel Numerical
Algorithms for Initial Value Problems, with Applications
by

Andrew Lumsdaine

Submitted to the Department of Electrical Engineering and Computer Science
on January 2, 1992, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

Theoretical and practical aspects of parallel numerical methods for solving initial value
problems are investigated, with particular attention to two applications from electrical
engineering.

First, algorithms for massively parallel circuit-level simulation of the grid-based analog
signal processing arrays currently being developed for robotic vision applications are
described, and simulation results presented. The trapezoidal rule is used to discretize the
differential equations that describe the analog array behavior, Newton’s method is used
to solve the nonlinear equations generated at each time-step, and a block preconditioned
conjugate-gradient squared algorithm is used to solve the linear equations generated by
Newton’s method. Excellent parallel performance of the algorithm is achieved through
the use of a novel, but very natural, mapping of the circuit data onto a massively parallel
architecture. The mapping takes advantage of the underlying computer architecture and
the structure of the analog array problem. Experimental results demonstrate that a full-
size Connection Machine can provide a 650 times speedup over a SUN-4/490 workstation.

Next, a new conjugate direction algorithm for accelerating waveform relaxation ap-
plied to the semiconductor device transient simulation problem is developed. A Galerkin
method is applied to solving the system of second-kind Volterra integral equations which
characterize the classical dynamic iteration methods for the linear time-varying initial
value problem. It is shown that the Galerkin approximations can be computed iteratively
using conjugate-direction algorithms. The resulting iterative methods are combined with
an operator Newton method and applied to solving the nonlinear differential-algebraic
system generated by spatial discretization of the time-dependent semiconductor device
equations. Experimental results are included which demonstrate the conjugate-direction
methods are significantly faster than classical dynamic iteration methods.

The results from both applications are encouraging and demonstrate that for specific
initial value problems, the largest performance gains can be achieved by using closely
matched algorithms and architectures to exploit characteristic features of the particular
problem to be solved.

11i

iv
Thesis Supervisor: Jacob K. White

Title: Associate Professor

Thesis Supervisor: John L. Wyatt, Jr.
Title: Professor

To Wendy, with all my love

Acknowledgments

It was my profound privilege to have two supervisors, Prof. Jacob White and Prof.
John Wyatt, directing the research contained in this thesis. Not only did they direct my
work to ensure its quality, but, more importantly, they taught me how to direct myself. I
must add that having two supervisors, especially two of the caliber of Profs. White and
Wyatt, has benefited me far more than twice as much as having a single supervisor.

I am grateful to several fellow graduate students without whose help I never would
have finished the work in this thesis. Foremost I must acknowledge the extensive assis-
tance I received from Miguel Silveira. Throughout our three-year relationship, we col-
laborated on several large projects, in particular SIMLAB and cMVSIM. These programs
would never have been completed without him and would certainly not be as elegant
without the refinement they obtained as a result of our constant wrangling over details.
I worked very closely with Abe Elfadel on several vision related projects. Abe was always
a knowledgeable resource for any sort of questions I had of a theoretical nature — and
there were a lot of them. Mark Reichelt gave a large measure of his time in providing
me with access to his WORDS program and in helping me with the implementation and
experiments for the waveform conjugate direction methods. Bob Armstrong was always
available when I needed a software or hardware guru — he developed and provided the
lab with a variety of useful tools, many of which were used in the preparation of this
document.

I would also like to acknowledge Thinking Machines Corporation and Rolf Fiebrich
for the generous contribution of their resources, Prof. Zhengfang Zhou for several helpful
discussions, the MIT Vision Chip group for providing the motivation for the work in
Chapter 3, and all the other students and faculty in the VLSI CAD group for their
support and friendship. '

Finally, completion of this thesis would not have been possible without the love and
encouragement I received from my family, especially from my wife Wendy. I thank her
for being so patient during the course of my graduate program and for supporting me
financially, emotionally, and spiritually during that time. Thanks also to my parents,
Edward and Monika Lumsdaine, who, on top of all the support they have given me over
the years, found the time to proofread this thesis.

This work was supported by a grant from IBM, the Defense Advanced Research
Projects Agency contracts N00014-87-K-825 and MIP-88-14612, the National Science
Foundation, and an AEA/Dynatech faculty development fellowship.

vii

viii

Contents

1 Introduction 1
1.1 Initial Value Problems« i i i i i i i 1
1.2 A Circuit Simulation Problem 00000 3
1.3 A Device Simulation Problem e 4
1.4 OVeIVIEW . . . v v v i e et e 5

2 Review of Numerical Techniques 7
2.1 Introduction« ¢ v i i i e 7
2.2 Linear Solution Methods i . 7

2.2.1 Direct Methods e e e e e e e e e e e e e e e 9
2.2.2 Relaxation Methods e 9
2.2.3 Conjugate Direction Methods 11
2.3 Nonlinear Solution Methods 13
2.3.1 Newton’sMethod v 14
92.3.2 Nonlinear Relaxation v v v 14
2.3.3 Inexact Newton Methods 15
92.3.4 Matrix-Free Methods 16
2.4 Integration Methods 16
25 Waveform Methods o v i i i i it e i s e e e e e 17
2.5.1 Waveform Newton Methods 18
2.5.2 Waveform Relaxation Methods 19
2.5.3 Inexact Waveform Newton Methods 19
2.6 Parallel Techniqueso 20

3 Parallel Simulation Algorithms 25
3.1 Introduction v o v e 25
3.2 Problem Description oo 26

3.2.1 Motivational Problem 26
3.2.2 QGeneral Array Descriptiono 27
3.3 Numerical Algorithms 31
3.4 Implementation e 34
3.4.1 Data to Processor Mapping« ... 35
342 DeviceEvaluation« . e 36
3.4.3 Linear System Solution 36

ix

5

344 Grid Boundaries
3.5 Experimental Results
36 Conclusion v v it e e e e e e e e e e e

Conjugate Direction Waveform Methods

4.1 Inmtroduction
4.2 Description of the Method
4.2.1 Operator Equation Formulation
4.2.2 Classical Dynamic Iteration Methods
4.2.3 Accelerating Dynamic Iteration Methods
4.2.4 Hybrid Methods for Nonlinear Systems
4.3 Device Transient Simulation
4.4 Implementation 0.,
4.4.1 Main WR Routine
4.4.2 Operator Waveform Product
443 InnerProduct
4.4.4 Initial Residual
4.5 Experimental Results
46 Conclusion i

Conclusions

CONTENTS

2-1
3-1

3-3

3-5
3-6

3-8
3-9

3-10
3-11

3-12

4-1
4-2

4-4

List of Figures

A (non-exhaustive) taxonomy of methods for solving IVP’s. 8
Grid of nonlinear resistors. 27
A single subcircuit, shown here as a multiterminal element, and a grid

constructed of such elements. 28
Example graphs for circuits Cand C. 30
Decomposition of the example circuit shown in Figure 3-1. 32
Mapping of subcircuits to processor grid. 35
Definition of P. vt e 38
Example separation of a subcircuit into sub-subcircuits. 42
Linear resistivegrid. e e e e 43
Mead’s Silicon Retina. 45
256 x 256 image of the San Franciscosky line. 46
Output images produced by B-continuation network. 48
(a) Output produced by SB-continuation network, 8=10. 48
(b) Output produced by B-continuation network, 8 = 2x10%. 48
(¢) Output produced by SB-continuation network, = 1x108. 48
Output images produced by As-continuation network. 49
(a) Output produced by As-continuation network, Ay =1. 49
(b) Output produced by As-continuation network, Ay = 1x1073. 49
(c) Output produced by As-continuation network, Ay = 3x105. 49
Convergence comparison between WR and WGCR for eigenvalues {1,10}. 65

Convergence comparison between WR and WGCR for eigenvalues {1,100}. 66
Convergence comparison between WR and WGCR for eigenvalues {1,1000}. 66
Convergence comparison between WR, WRN, WGCR/WGMRES, and

WCGS for jD example. e 79
Convergence comparison between WR, WRN, WGCR/WGMRES, and
WCGS for kD example. 79

x1

xii

LIST OF FIGURES

R T

3-1

3-3
3-4

4-1

List of Tables

Comparison of direct, CG, ILUCG, CGS, and ILUCGS linear system solvers. 34

Experimental result: Linear circuit grid. 42
Experimental result: Nonlinear circuit grid. 44
Experimental result: Mead’s Silicon Retina, constant input image. 45
Experimental result: Mead’s Silicon Retina, random input image. 46
Comparison of WR, WRN, WGCR, WGMRES, and WCGS. 78

xiii

xiv LIST OF TABLES

CD

CG
CGNR
CGS

CM

DAE
GCR
GMRES
GJ

GS
ILUCG(S)
IVP

KCL
KVL
MICCG
MIMD
MOS
MOSFET
NLR
ODE
PDE
QMR
SIMD
VLSI
WCGS
WGCR
WGMRES
WN

WR
WRN

List of Acronyms

Conjugate Direction

Conjugate Gradient

CG Applied to the Normal Equations
Conjugate Gradient Squared

Connection Machine

Differential Algebraic Equation
Generalized Conjugate Residual
Generalized Minimum Residual
Gauss-Jacobi

Gauss-Seidel

Incomplete LU Factorization Preconditioned CG(S)
Initial Value Problem

Kirchoff’s Current Law

Kirchoff’s Voltage Law

Modified Incomplete Cholesky Factorization Preconditioned CG
Multiple Instruction, Multiple Data
Metal-Oxide-Semiconductor

MOS Field Effect Transistor

Nonlinear Relaxation

Ordinary Differential Equation

Partial Differential Equation
Quasi-Minimal Residual

Single Instruction, Multiple Data

Very Large Scale Integration

Waveform Conjugate Gradient Squared
Waveform Generalized Conjugate Residual
Waveform Generalized Minimum Residual
Waveform Newton

Waveform Relaxation

Waveform Relaxation Newton

Xv

LIST OF ACRONYMS

List of Symbols

Vectors ‘

Members of a vector space are denoted with the bold math font, e.g., €. The
vector space in question may be R™, or a function space. Components of a multi-
dimensional vector are denoted in the plain math font, with the appropriate sub-
script, e.g., z;. If the vector space is additionally an inner product space, the inner
product of ¢ and y is denoted by (z,y). Constant vectors are sometimes indicated
with a subscript, e.g., £o. The symbols for some particular vectors used in this
thesis are:

b Right-hand side (as in Az = b).
e Error. The elementary basis vectors for R™ are denoted ey, ..., e,.
p Search direction.
r Residual.
Matrices
Matrices are denoted in upper-case with the bold math font, e.g., A. Components
of a matrix are denoted in upper- or lower-case with the plain math font, using the
appropriate subscript, e.g., A;; or a;;. The algebraic or Hermitian transpose of a

matrix is denoted with a superscript 1, e.g., A!. The identity matrix is denoted by
I.

Operators
Operators are denoted in upper-case with the script font, e.g., A.

Spaces
Spaces are denoted with the blackboard bold math font, e.g., R*. The symbols for
some particular spaces used in this thesis are:

L,([0, T],R") Function space of square-integrable functions (in the Lebesgue sense)
' mapping from the interval [0,T] to R™.

N Set of natural numbers, i.e., {1,2,...}.

R"™ n-dimensional Euclidean space.

xvii

Introduction

1.1 Initial Value Problems

Many interesting applications can be modeled as an initial value problem (IVP), e.g.,

F(z'(t),2(t),t) = 0

o) = =0 (1.1)

where z(¢) € R® and F : R***! — R". Here, (1.1) can describe an IVP for an ordinary
differential equation (ODE) system or for a differential algebraic equation (DAE) system.
It is assumed that The function F' is such that the solution «(t) exists and is unique on a
simulation interval of interest, say, t € [0,T], and that the initial condition is consistent
~ for the DAE case.

In general, an analytic solution to (1.1) cannot be found, so the problem must be
solved numerically. With the typical approach, (1.1) is first discretized in time with
an integration method. Since DAE and stiff ODE systems require the use of implicit
integration schemes, the time discretization will generate a sequence of nonlinear alge-
braic problems which are solved with an iterative method, usually a modified Newton
method. The sequence of linear algebraic systems generated at each iteration of the non-
linear solution method are then solved with Gaussian elimination. The above process is
the “implicit-integration, Newton, direct method” canon and forms the basis for most
general-purpose codes for solving large-scale IVP’s [1].

The standard approach has two computational bottlenecks (which bottleneck will

dominate depends on the particular problem):

e Function evaluation — computation of F(-) and the associated Jacobian Jp(:).

The cost of evaluating Jr grows with problem size and with the degree of coupling.

1

) CHAPTER 1. INTRODUCTION

For densely coupled problems, evaluating JF costs O(n?) operations; for sparsely

coupled problems, the cost of evaluating Jr can be as low as O(n).

e Linear system solution — solviilg the linear system at each iteration of the nonlinear
solution process. The complexity of direct elimination methods for solving systems
of equations is polynomial in n, typically from O(n'%) for sparse problems to O(n?)

for dense problems.

When using the standard Newton method, the function evaluation and the linear sys-
tem solution are performed at each iteration of each nonlinear system solution at each
timestep. However, certain modified Newton methods recalculate the Jacobian only at
certain intervals (e.g., every third Newton iteration) [2], thereby reducing the work re-

quired, although not the complexity, by a constant factor.

Efforts to improve the computational efficiency for numerically solving IVP’s focus
on improving the efficiency of the function evaluation and the linear system solution.
These efforts fall into two general (overlapping) categories: algorithmic improvement and
hardware improvement. For example, one could use an iterative method for the linear
system solution, or.-implement the solver on a vector or pé,rallel processing machine.
For some problems, such an approach might be highly effective, but for other problems,
such an approach might be a disaster. It seems that general-purpose codes for solving
IVP’s must follow the “implicit-integration, Newton, direct method” canon because such
codes are written to be able to reliably handle the largest possible class of problems.
However, this formula can be quite limiting for specific problems that can benefit from

the application of more specialized algorithms.

Therefore, the following observation is made, which is the theme of this thesis: For
specific initial value problems, one can achieve the largest performance gains by using
closely matched algorithms and architectures to exploit characteristic features of the par-

ticular problem to be solved.

This thesis will examine methods for solving two initial value problems from electrical
engineering — a circuit simulation problem and a device simulation problem. The attacks
on these problems will be two-fold. First, methods suitable for implementation on parallel
machines will be developed. Second, it will be attempted to exploit the problems fully
through the use of sophisticated numerical techniques.

1.2. A CIRCUIT SIMULATION PROBLEM 3

1.2 A Circuit Simulation Problem

The nodal analysis formulation of the circuit transient simulation problem is described

by

Lq(v(t),t)+i(v(t)t) = 0 (12)
‘U(O) = 9o -

where v(t), q (v(t),t),1(v(t),t) € R" are the vectors of node voltages, sums of node

charges, and sums of node resistive currents, respectively, and n is the total number of

nodes in the circuit.

A\

Numerical techniques for solving (1.2) are very well developed — for all practical
purposes, the general circuit simulation problem has been solved [3, 4]. Programs like
SPICE [5] or ASTAP [6] — which follow the “implicit-integration, Newton, direct method”
‘approa,ch to solving (1.2) — are capable of simulating virtually any circuit, given enough
time. Unfortunately, for some types of circuits, “enough time” is too much time for

simulation to be a practical part of a circuit design cycle.

Robotic vision circuits [7, 8] form one such class of circuits which are intractable
for standard analog circuit simulators such as SPICE or ASTAP. The vision circuits are
necessarily very large and must be simulated at the analog level (i.e., one cannot perform
simulations at a switch or gate level as is commonly done with very large digital circuits).
Standard analog circuit simulators are not able to handle vision circuits simply because of
their immense size, since the computation time for these simulators grows super-linearly
with the size of the circuit. This super-linear growth is particularly pronounced for vision
circuits because their structure produces a Jacobian matrix that generates much more fill

during Gaussian elimination than do generic circuits having the same number of nodes.

Although the structure of the vision chips is disadvantageous for a direct-methods
solver, it is advantageous for other algorithms and for certain parallel architectures. In
particular, the regular structure of the problem implies that the simulation computations
can be accelerated by a massively parallel SIMD computer, such as the Connection
Machine®[9]. Moreover, the coupling between cells in the analog array is such that
a block-iterative scheme can be used to solve the equations generated by an implicit

time-discretization scheme.

Connection Machine is a registered trademark of Thinking Machines Corporation.

4 ' CHAPTER 1. INTRODUCTION

1.3 A Device Simulation Problem

The second problem to be examined is the semiconductor device transient simulation
problem. For this problem, a new class of waveform methods, waveform conjugate direc-
tion methods, will be developed and applied. This approach is somewhat more general
than that used for the circuit simulation problem, but there are specific features of this
problem which make application of the new method effective. Moreover, details of im-
plementation exploit other aspects of this problem in order to increase efficiency.

After standard spatial discretization on an n-node rectangular mesh, the semiconduc-
tor device transient simulation problem is modeled by a differential-algebraic system of

3n equations in 3n unknowns denoted by

Fi(u(t),n(),p(t)) = 0
Fa(u(@),n(t),p(t)) = Zn() |
f3(u(t),n(t),p(t)) = %p(t)
n(0) = mny
p(0) = po
£1(w(0),7(0),p(0)) = 0
where ¢ € [0,T], and u(t),n(t),p(t) € R™ are vectors of normalized potential, electron
concentration, and hole concentration, respectively, and f,, f,, f5 : R® — R”® are the
Poisson, electron current continuity and hole current continuity equations, respectively.

The device transient simulation problem is studied in much detail in [10]. The ap-
proach used is to discretize the problem in time with a low-order implicit method, apply
Newton’s method, and use a direct-methods solver for the linear system solution. The
use of iterative methods for the linear system solution is discussed in [11], but the re-
ported results are discouraging. For two-dimensional simulations, the authors claim that
direct methods are superior to iterative methods, but that iterative methods may be
more effective with three-dimensional simulations.

A waveform relaxation (WR) based approach to the device transient simulation prob-
lem was introduced in [12]. This approach was shown to be computationally efficient
compared to the traditional “implicit-integration, Newton, direct method” approach.
However, the WR algorithm typically requires hundreds of iterations to achieve an ac-
curate solution,- which suggests that further performance gains can be realized by the
application of methods for accelerating the convergence of the WR algorithm.

In this thesis, waveform conjugate-direction methods are developed for accelerating
waveform relaxation applied to solving the linear, but possibly time-varying, initial value

problem. The development of the waveform conjugate-direction methods proceeds in a

1.4. OVERVIEW 3

few key steps. First, the linear initial value problem is converted to a system of second-
kind Volterra integral equations through the use of a dynamic preconditioner. It is then
shown that a Galerkin method can be used to solve this integral equation system and that
certain conjugate direction methods can be used to generate the Galerkin approximations.
The resulting method is combined with the waveform Newton method to produce a hybrid
algorithm for solving nonlinear initial value problems. The hybrid method is then applied
to solving the differential-algebraic system of equations that describe the device transient

simulation problem.

1.4 Overview

A review of some of the most popular techniques for solving initial value problems is
given in Chapter 2. In Chapter 3, algorithms are developed for CMVSIM, a program
for simulating grid-based analog signal processor chips on the Connection Machine. The
waveform conjugate direction methods are studied in Chapter 4, where the waveform
generalized conjugate residual algorithm is developed and analyzed as a particular wave-
form conjugate direction method. The device transient simulation problem is described,
and simulation results comparing conjugate direction algorithms with standard waveform

techniques are presented.

References

(1] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial- Value
Problems in Differential-Algebraic Equations. New York: North Holland, 1989.

[2] J. M. Ortega and W. C. Rheinbolt, Iterative Solution of Nonlinear Equations in Sev-
eral Variables. Computer Science and Applied Mathematics, New York: Academic
Press, 1970.

[3] L. O. Chua and P.-M. Lin, Computer-Aided Analysis of Electronic Circuits. Engle-
wood Cliffs, New Jersey: Prentice Hall, 1975.

[4] J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design. Berk-
shire, England: Van Nostrand Reinhold, 1983.

[5] L. W. Nagel, “SPICE2: A computer program to simulate semiconductor circuits,”
Tech. Rep. ERL M520, Electronics Research Laboratory Report, University of Cal-
ifornia, Berkeley, Berkeley, California, May 1975.

[6] W. T. Weeks, A. J. Jimenez, G. W. Mahoney, D. Mehta, H. Quasemzadeh, and T. R.
Scott, “Algorithms for ASTAP - A network analysis program,” IEEE Transactions
on Circuit Theory, pp. 628-634, November 1973.

6 CHAPTER 1. INTRODUCTION

[7] C. Mead, Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley, 1988.

(8] J. L. Wyatt Jr., et al, “Smart vision sensors: Analog VLSI systems for integrated im-
age acquisition and early vision processing.” Massachusetts Institute of Technology.
Unpublished, 1988.

[9] W. D. Hillis, The Connection Machine. New Haven, CT: MIT Press, 1985.

[10] R. Bank, W. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose, and R. Smith, “Tran-
sient simulation of silicon devices and circuits,” IEEE Trans. CAD, vol. 4, pp. 436—
451, October 1985.

[11] C. Rafferty, M. Pinto, and R. Dutton, “Iterative methods in semiconductor device
simulation,” IEEE Trans. CAD, vol. 4, pp. 462471, October 1985.

[12] M. Reichelt, J. White, and J. Allen, “Waveform relaxation for transient two-
dimensional simulation of MOS devices,” in International Conference on Computer
Aided-Design, (Santa Clara, California), pp. 412-415, November 1939.

Review of Numerical Techniques
for Initial Value Problems

2.1 Introduction

There exist a myriad of approaches-for solving initial value problems — a non-exhaustive
taxonomy is presented in Figure 2-1. To solve the IVP, the system is first decomposed in
time (for point-wise solution methods) or space (for waveform methods). The point-wise
solution is computed with the application of an integration method, possibly followed by
a nonlinear algebraic and linear algebraic solution step. The waveform methods treat the
nonlinear IVP as a nonlinear problem on a function space — note the similarity of the
taxonomies above and below “Discretize”.

In this chapter, techniques for solving initial value problems are reviewed. Although
the techniques are applied in top-down fashion (e.g., integration, nonlinear solution,
linear solution), the techniques are presented in somewhat of a bottom-up order since
the “top” algorithms generally build upon the “bottom” algorithms. The reader should
refer to Figure 2-1 as a roadmap to keep the different algorithms in their proper context

within the framework of solving initial value problems.

2.2 Linear Solution Methods

In this section, methods are reviewed for solving the n-dimensional linear system of

equations
Az =10 (2.1)

where ,b € R® and A : R* — R” and is assumed to be non-singular.

7

8 CHAPTER 2. REVIEW OF NUMERICAL TECHNIQUES

IvP

() |) G

e Sy

A

Dis-
cretize

Figure 2-1: A (non-exhaustive) taxonomy of methods for solving IVP’s. To solve the
IVP, the system is first decomposed in time (for point-wise solution methods) or space
(for waveform methods). The point-wise solution is computed with the application of
an integration method, possibly followed by a nonlinear algebraic and linear algebraic
solution step. The waveform methods treat the nonlinear IVP as a nonlinear problem on
a function space — note the similarity of the taxonomies above and below “Discretize”.

2.2. LINEAR SOLUTION METHODS 9

2.2.1 Direct Methods

The classical direct method for solving linear systems is Gaussian elimination, typically
implemented with LU-factorization techniques. This algorithm decomposes the matrix
A into lower and upper triangular factors L and U, respectively, such that A = LU.
The solution « to (2.1) is computed by first solving Ly = b with a forward elimination
process and then solving Uz = y with backward substitution. A discussion of direct
methods can be found in most linear algebra or numerical methods texts — see [1, 2] for
dense matrix problems and [3] for sparse matrix problems.

The chief advantage of direct methods is reliability. With exact arithmetic, the so-
lution @ can be computed exactly in a fixed number of steps. However, direct methods
have two major disadvantages: computational complexity and storage. The complexity
of direct elimination methods for solving linear systems of equations is polynomial in NV,
typically from O(N'%) for sparse problems to O(N?) for dense problems'. For direct
methods, the matrix itself must be stored in memory. This might not be particularly dis-
advantageous for the matrix itself, if the matrix is sparse. However, direct methods also
require storage for the fill-in elements, i.e., matrix zero locations which become non-zero
as the elimination process proceeds. Most iterative methods for solving linear systems
only require that the matrix itself be stored, so the fill-in storage, which can be quite
substantial, is not needed. Moreover, certain nonlinear solution methods, e.g., the so-
called “matrix-free methods” do not even require an explicit representation of the matrix
at all.

Relaxation and conjugate direction iterative methods for linear systems are presented

in Sections 2.2.2 and 2.2.3. Matrix-free methods are discussed in Section 2.3.4.

2.2.2 Relaxation Methods

Linear relaxation methods seek to solve (2.1) by first decomposing the problem in space
(i.e., pointwise) and then solving the decomposed problem in an iterative loop. The
simplest relaxation method is the Richardson iteration [5, 6] which solves (2.1) by solving
the following equations

n
k+1 _ K . K
;T =] 4 b; E ai;T;

=1

1O(N3) is the commonly cited complexity for dense matrix problems. However, it is known that
Gaussian elimination is not an optimal direct method. For instance, in [4], Strassen describes an algo-
rithm for dense matrix problems having O(N?#) complexity.

10 CHAPTER 2. REVIEW OF NUMERICAL TECHNIQUES

k+1

i

ods are the Gauss-Jacobi and Gauss-Seidel algorithms which solve (2.1) by solving the

for each z;™", i.e., component ¢ of at iteration k. Two other popular relaxation meth-

equations
k+1 __ k
a;:T; = b,‘ — Z a,'j.'l:j
i#]
and

k+1 __ k+1 k
a,-,-:z:,-*' = b,’ — Za,-ja:j - E a,-jxj,
>j i<j

respectively, for z¥*? [6]. The above iterations can be described compactly in matrix
form. Let L, U, and D be the strictly lower triangular, strictly upper triangular, and
diagonal of A, respectively. Then, the Richardson iteration can be expressed compactly

as
et = 2F 4+ b — AF,

and the Gauss-Jacobi and Gauss-Seidel algorithms as
Dz**' = b — (L + U)z*,
and
(L + D)2**' = b — U2, !

respectively.

It is interesting to note that the Gauss-Jacobi and Gauss-Seidel algorithms are essen-
tially the Richardson iteration applied to a preconditioned form of (2.1). Consider the
system of equations:

D 'Ax =D
to which the Richardson iteration is applied:

! = 2F 4 Db — D 'AX*
= D%b-D YL +U)z*
which is precisely Gauss-Jacobi relaxation. Preconditioniﬁg with (L 4+ D)™! similarly
yields the Gauss-Seidel algorithm. ‘
In general, splittings of A can be described by letting A = M — IN so that the generic

relaxation method can be written as:
Mz = NzF 4+ b

or that
2" = M Nz*F + M~

2.2. LINEAR SOLUTION METHODS 11 .

Let «* be the exact solution to (2.1) and define the error at the kB jteration by e* =

k

" — z*. The error equation for the relaxation method is given by:

eft = MINeF = (M_IN)Ic+1 e’

The asymptotic convergence rate of linear relaxation is determined by the spectral radius
of M~ N. In order to guarantee convergence of the method for arbitrary €°, the spectral
radius of M~ N must be strictly less than unity (see [6]).

2.2.3 Conjugate Direction Methods

The Richardson iteration produces updates of the form
A
where gk(A) is a polynomial of order k given recursively by
r(A) =TI+ (I - A)gi'(A)

with ¢°(A) = I, and where 7 = b — Az is the initial residual. Considering the
Richardson iteration as a polynomial method highlights the weakness of the method: the
Richardson iteration always generates the same sequence of polynomials, regardless of
the particular problem to which the method is applied. One implication of this is that,
generically, the iteration will not terminate in a finite number of iterations. However, by

th

the Cayley-Hamilton theorem, there exists an n"™ order polynomial in A which is exactly
"A”!, but in general, the polynomial of order n generated by Richardson iteration will
not correspond to the Cayley-Hamilton polynomial. One way of considering conjugate
direction methods is that they are methods which at each iteration generate an optimal
polynomial for calculating ¥+ (optimal in the sense that #**! minimizes a pre-defined
cost functional). |

As an example, consider the conjugate gradient (CG) method [7], used to solve (2.1)
for the case of symmetric and positive-definite A. This method again generates z**!
with polynomials of A:

2" = 2% + gpg(A)r°
but does so by seeking to minimize the cost functional

1
é(x) = (=,b — §A:c}.

12 CHAPTER 2. REVIEW OF NUMERICAL TECHNIQUES

Here, the inner product < @,y > is the standard Euclidean inner product on R*. The
relation «* = a° + g5 (A)r? implies that ¥ € =0 4+ K*(#%, A), where K¥(r?, A) is the

k-dimensional Krylov space:
K*(r°, A) = span{r°®, Ar°, ..., AF 150}

The minimization of ¢ can be accomplished for each iteration k by enforcing the Galerkin
condition that the gradient of ¢ be zero on K¥(¢°, A), i.e.,

(V(e*),y) =0 Vy € K5, 4).

It is sufficient to enforce the Galerkin condition on any basis of K¥(r°, A) that might be
chosen. In particular, by choosing {p%,...p™} as a basis for K™+1(°, A), such that

(Ap',p') =0 i#j,

and by using the update

the sequence {@!,2?,...} can be generated iteratively so that z**' minimizes ¢ on
K**1(7°, A) for each k = 0,...,m (see [8, pp. 271-273]).

Since the largest amount of work in the CG iteration is in the matrix-vector product,
the CG algorithm requires only a modest increase in work per iteration when compared
to Richardson-based iteration methods. However, the optimality of the CG algorithm
provides a guarantee of finite termination (by Cayley-Hamilton) plus much better con-
vergence properties prior to termination [9]. In fact, the convergence rate of the CG

algorithm is bounded by:

letla < 2 (—V(AH) el (2.2)

k(A)+1

where |le||4 = (Ae,e)? is the A-norm of e and x(A) is the condition number of the
matrix A. In practice, the bounds given in (2.2) are not necessarily sharp, particularly
when A has clustered eigenvalues.

For non-symmetric matrices, the CG algorithm cannot be directly applied. Krylov-
space methods which are appropriate for non-symmetric systems include CG applied to
the normal equations (CGNR) [7], generalized conjugate residual (GCR) algorithm [10],
the generalized minimum residual (GMRES) algorithm [11], and the conjugate gradient
squared (CGS) algorithm [12]. These methods are quite powerful and are widely used,

2.3. NONLINEAR SOLUTION METHODS 13

but none completely preserves the elegance of the original CG algorithm (see [13] for a
discussion of necessary and sufficient conditions for the existence of a conjugate gradient
method).

The CGNR algorithm solves (2.1) for non-symmetric A by applying CG to the equiv-

alent symmetric system

AtAz = A'b,

where the superscript } denotes algebraic transposition. However, convergence of CGNR
can be drastically slower than convergence of CG. Convergence of CG-is bounded by
(2.2), so convergence of CGNR is bounded by

. B k(ATA) -1 * o _ o f8(A)=1 L
e ||A1A—||1'kl|S2(m“) =2 (2 1ol

For large x(A), the convergence of CG is essentially a function of \/k(A), whereas con-
vergence of CGNR is essentially a function of x(A). ‘

The GCR and GMRES algorithms are theoretically equivalent algorithms which seek

to minimize ||r||? at each iteration. To do this, the basis for the Krylov space must be

formed explicitly with an orthogonalization scheme at each iteration so that the work at
each iteration grows linearly with the iteration number. Restarted and incomplete orthog-
onalization versions of these methods seek to bound the length of the orthogonalization
process, but in so doing also tend to corrupt the effectiveness of the full orthogonalization
versions of the algorithms.

The CGS algorithm [12] uses a low-order recurrence relation at each iteration and
abandons guaranteed minimization properties altogether. This is a theoretical drawback,

but in practice, CGS seems to work quite reliably.

2.3 Nonlinear Solution Methods

In this section, some methods are discussed for solving systems of nonlinear equations
F(z)=0 (2.3)

where £ € R* and F : R* — R"™.

14 CHAPTER 2. REVIEW OF NUMERICAL TECHNIQUES

2.3.1 Newton’s Method

The most popular method for solving (2.3) is undoubtedly Newton’s method, where the

n-dimensional linear system of equations
Jr(z™)e™! = Jp(z™)e™ — F(z™)

™+l in an iterative loop. Here, Jp(z) = 3E(®) i the Jacobian of F.

is solved for = 52

Typically, the iteration is performed in two steps:

Jr(z™)Az™ = —F(z™)

2.4
™l = 2™ 4 Az™. 24)

0 is sufficiently

Newton’s method converges quadratically, provided the initial guess, @
close to the exact solution [8].

The standard Newton method has some drawbacks. First, a linear system solution
step is required at each iteration. This can be expensive in terms of computation and
in terms of storage, especially if a direct factorization method is used. Second, global
convergence can be problematic if the initial guess is not close enough to the exact solu-
tion. Alternative nonlinear solution methods seek to improve the computation, storage,

and/or convergence properties of the standard Newton method.

2.3.2 Nonlinear Relaxation

As an alternative to the standard Newton method, (2.3) can be decomposed into smaller
sub-problems, each of which is solved independently in an iterative loop, using fixed
values from previous iterations for the variables from other sub-problems. Two com-
mon decompositions produce the Jacobi-Newton and Seidel-Newton algorithms (see {8]).
These methods can be considered to be generalizations of the corresponding linear Gauss-
Jacobi and Gauss-Seidel relaxation methods.

The Jacobi-Newton algorithm solves (2.3) by solving the equations

m m m+1 m my __
filzl, .zl el e, 2y) =0

for z+1, usually with a scalar form of Newton’s method. Similarly, the Seidel-Newton
algorithm solves (2.3) by solving the equations

m+1 _m+1 m+1 m my __
Filzy, e 2T e, 2) = 0

for z™*1. The essential difference between Jacobi-Newton and Seidel-Newton is that,

i

when computing 7% Seidel-Newton uses the values of a:;-""'l for the jth subsystem

2.3. NONLINEAR SOLUTION METHODS 15

if it has already been computed, otherwise z7* is used. In some sense, Seidel-Newton
uses the most recently computed information that is available. The class of nonlinear
solution algorithms to which Jacobi-Newton and Seidel-Newton belong are referred to as

relaxation-Newton algorithms.

Each iteration of a relaxation-Newton method requires solving a scalar nonlinear
m+41

problem to determine z*! — usually with a scalar form of Newton’s method. Even if

the scalar nonlinear solution method is iterated until convergence, the outer loop will
generally not be converged for . This suggests that in the early iterations, z™* does
not need to be determined very precisely. The n-step relaxation-Newton methods take a

predetermined fixed number, n, of scalar Newton iterations — often as few as one [8].

2.3.3 Inexact Newton Methods

The class of nonlinear solution methods known as inexact Newton methods are obtained
by combining Newton’s method with a linear solution method that only solves the linear
system approximately. As in [14], the linear system that is solved with an inexact Newton

method can be specified as

Jp(z™)Az™ = —F(z™)+r™

™t = ™+ Az™

where r™ is the residual and represents the difference between Jr(2™)Az™ and F(z™).

One common context in which inexact Newton methods arise is when an iterative
linear solver is used to solve (2.4). In this case, the linear system is only solved ap-
proximately to within the convergence criterion of the particular iterative method. Here,
methods combining Newton with linear relaxation are referred to as Newton-relaxation
methods; methods combining Newton with a conjugate direction method are referred to

as Newton-Krylov methods.

A typical Newton-relaxation or Newton-Krylov method has the form shown in Al-
gorithm 2.3.1. Using this formulation, convergence of the iterative linear solution is
determined by ||r¥]|/||7°||, i.e., the ratio of the linear residual at iteration & to the initial
linear residual. As discussed in [14], choosing a fixed convergence criterion 0 < e <1 for
all m will result in linear convergence of the nonlinear iteration. However, by scheduling
a sequence {€%,€!,...} so that €* < 1 for all m and €™ — 0 as m — oo, the nonlinear

iteration will converge superlinearly.

/

16 CHAPTER 2. REVIEW OF NUMERICAL TECHNIQUES

Algorithm 2.8.1 (Inezact Newton for solving F(z) =0).

Choose z°, €°.

For m = 0,1,... until converged
Pick Az™?°
Set r° = —F(2™) — Jp(z™)Az™°
For k=0,1,... until ||»¥||/|[r°]| < €™
Perform relazation or Krylov linear iteration steps
Set ™! = g™ + Az™F

2.3.4 Matrix-Free Methods

One modification that can be made to Newton-relaxation or Newton-Krylov methods is to
dispense with the explicit formation of the Jacobian. The iterative linear solvers require
only the result of a matrix-vector product, not the matrix itself. Since the matrix for
the linear system in question is the Jacobian of a nonlinear function F', an approximate

matrix-vector product can be calculated according to

oF(z 1
@),

Tr(2)p = =5 [F(z +0p) - F(=)]

o
where o is a small scalar parameter.

The use of matrix-free Newton-Krylov methods within the context of solving stiff
systems of ODE’s was first studied by Gear and Saad in [15] and subsequently studied
by Brown and Hindmarsh [16, 17] and Chan and Jackson [18]. Matrix-free Newton-Krylov

methods with global convergence properties are examined in [19].

2.4 Integration Methods

Many initial value problems admit an explicit representation as

Fe(t) = F(=(8),1)

2(0) = % (2.5)

where (t) € RV and F : RN *! — RY.
A linear multistep integration formula applied to solving (2.5) is expressed by:
S s
Z CVim(tm+1—-i) - hm Z,BiF(m(tm+1—£),tm+1—s)
i=0 1=0
where A = tmy1 — tm is the discretization timestep, x(tn) is the estimated value of the

solution at time t = t,., F(x(t),t) represents the dynamics of the equation at the given

2.5. WAVEFORM METHODS 17

timepoint using the estimated value, the parameters o; and 3; are chosen for accuracy
within stability limits, and s is the order of the formula [20, 21]. If 8y = 0, (¢;41) can
be found explicitly as a function of previous values of and F(-) evaluated at previous
values of . For f # 0, an implicit equation in terms of @(tm+1) and F(z(tmt1),tm+1)
must be solved for @(¢,41). Hence, one obtains the denotation “explicit method” for
Bo = 0 and “implicit method” for By # 0.

For problems such as (2.5), explicit methods have a potentially significant advantage
over implicit methods because there is no need to perform a nonlinear system solution.
Without a nonlinear system solution step, the system Jacobian and linear system solu-
tion are obviated, resulting in a substantial reduction in computation as well as storage.
However, explicit methods are far less stable than their implicit counterparts. For prob-
lems having eigenvalues that differ by several orders of magnitude (i.e., stiff problems),
implicit methods are computationally superior to explicit methods. The stability of the
implicit methods allows for substantially larger timesteps, resulting in lower overall com-
putational work for the simulation.

Explicit integration methods also lose their advantages when the differential portion

of the initial value problem is itself implicit. e.g., the circuit transient simulation problem

L (v(t),t) +i(v(t),t) = 0

2.6
’U(O) = 9%pyp. ()

A linear multistep integration formula applied to solving (2.6) is expressed by:
> iq(V(tmr1=i) = b D Bid(V(Ema1-i)s tmt1-s) (2.7)

=0 =0

Even if an explicit integration method is used, i.e., by choosing 8, = 0, (2.7) is still
implicit in v(tm41). Therefore, a nonlinear solution step is still required, but the sta-
bility inherent to an implicit integration method is not retained. In special cases, some
advantage can be gained because ¢ may be easier to invert than ¢, but in general this
advantage is not enough to compensate for the lack of the strong stability properties of

implicit integration methods.

2.5 Waveform Methods

The discussion in the previous sections concentrated on different methods that could
replace the three components of the “implicit-integration, Newton, direct method” ap-

proach. Another means of obtaining a computational advantage in solving (1.1) is in

18 CHAPTER 2. REVIEW OF NUMERICAL TECHNIQUES

selecting an alternative decomposition of the original problem. It has already been shown
how alternative decompositions applied to the nonlinear and linear systerh solution steps
produced nonlinear and linear relaxation algorithms. If this type of decomposition is
applied at the ODE level, one obtains waveform methods.

One approach to studying waveform methods is to consider the IVP to be an operator
equation on some function space. The traditional waveform methods can then be derived
as extensions of nonlinear solution methods to that space. It is this point of view which
leads to the derivation of the waveform conjugate direction methods in Chapter 4, for
instance.

The operator formulation of the IVP can be written as
Fe=0 (2.8)

where & is now a member of some function space and F is a nonlinear differential operator.

An example definition of F is
Fz(t) = $2(t) + F(2(t),1) (2.9)

with @ € Cl(zo, [0, T],R?), F : C(z0,[0,T],R*) — C'(o,[0,T],R") and the function
space C(zo, [0,T],R"™) defined as

Cl(“’O’ [O,T]’Rn) = {f € Cl([O,T],R"’)If(O) = wO}'

Note that F is at best densely defined on C(zo, [0,T],R").
Given the formulation of the IVP in (2.8) one can apply abstracted forms of the
methods described Section 2.3 to obtain various nonlinear waveform methods. These

abstracted nonlinear methods are discussed in the following sections.

2.5.1 Waveform Newton Methods

The waveform Newton method is obtained by applying an abstracted form of Newton’s
method to (2.8). This method is discussed in [22] and applied to the circuit simulation

problem in [23] and [24]. The waveform Newton method is expressed as

Jr(e™)Az™ = —F(z™)

wm+1 = ™ + Az™.
where Jr is the Frechet derivative of F defined by

Jrz(t) = La(t) + Tr(2(t), t). (2.10)

2.5. WAVEFORM METHODS 19

Using (2.9) and (2.10), the waveform Newton method can be expressed as

(£ + Tp(z™(1),1)) Az™(t) = —Zam(t) — F(z™(1),1)
z™(0) = o

which can be rearranged to remove the 2 from the right-hand side to obtain the linear

IVP
(£ +7p@m)em = Jr(@m)em - F(am)

z™1(0) = .

This linear IVP can be solved with a variety of methods, as can be seen in Figure 2-1.
For instance, the problem can be immediately discretized and a linear system solver can
be used to solve the resulting sequence of matrix problems?. Alternatively, the linear IVP
can be solved iteratively with a linear waveform relaxation method or with a conjugate
direction waveform method. In this case, the problem is discretized (and the resulting
linear systems solved) within the main iterative loop.

A discussion of the convergence properties of the waveform Newton method can be
found in [23].

2.5.2 Waveform Relaxation Methods

As with the linear and nonlinear relaxation methods, the nonlinear IVP can be decom-
posed in space and solved iteratively. The Jacobi waveform relaxation algorithm solves
(1.1) by solving the scalar IVP’s

#25@) + filzh @), -, @b, (8), 2EF (1), 2 (1), 2k (8),8) = 0
zf(0) = o,

t

for each ¥+ (¢) with a scalar integration scheme. The historical basis for waveform relax-
ation methods is the Picard-Lindeldf iteration, used to demonstrate existence and unique-
ness of solutions to IVP’s [25]. Waveform relaxation has been used very successfully for
simulating VLSI circuits [26, 27]. Convergence theory for the linear time-invariant case
is studied in [28] for ODE’s and in [29] for DAE’s.

2.5.3 Inexact Waveform Newton Methods

One can continue to maintain the analogy between nonlinear solution methods and wave-
~ form methods and construct the class of inexact waveform Newton methods. These meth-

ods would result from the combination of the waveform Newton method and an iterative

20r, as in [24], an n-dimensional linear IVP discretized with m timepoints can be treated as one
mn xmn problem instead of a sequence of m separate n xn systems.

20 CHAPTER 2. REVIEW OF NUMERICAL TECHNIQUES

linear waveform method. The combination of waveform Newton with a linear waveform
relaxation method is sometimes known as waveform Newton relaxation (WNR) and is
discussed in [30]. The combination of waveform Newton with a linear waveform conju-
gate direction method is presented for the first time in [31] and developed more fully in
Chapter 4 of this thesis.

2.6 Parallel Techniques

In addition to improving the algorithms for solving (1.1), significant computational time-
savings can be gained by using parallel processing hardware. However, no true general-
purpose parallel machine yet exists — obtaining good parallel performance requires care-
ful matching of problem, algorithm, and architecture.

Solving IVP’s in parallel is difficult because the initial value problem is inherently
serial due to the ODE structure. The approaches used for parallelizing IVP solution
algorithms are inherently tied to the original decomposition of the problem. For instance,
with a point-wise decomposition, one would attempt to parallelize the solution steps
required at every timepoint, since those solutions are generated sequentially. On the
other hand, for a waveform-based solution, one would attempt to parallelize the solution
steps required for the set of waveforms.

In general, iterative techniques are easier to parallelize than direct techniques. For
instance, the waveform and point relaxation methods solve a sequence of equations for
25! using values of other components of = from previous iterations. An obvious use
of parallel hardware for such methods is to assign each component of to a separate
processor. Each processor 2 is then responsible for obtaining those values of & from other
processors that are necessary to calculate z¥*!.

‘Relaxation methods can also use a technique known as chaotic relaxation in which
the processors run asynchronously [32], i.e., each processor has a local iteration count
independent of the iteration count of the other processors. Each processor computes
the value of its assigned variable using whatever values for the components from other
processors are available at the time. The conjugate direction methods, however, require
a global control thread and all processors must synchronize several times during each
iteration. Whether the superior convergence properties of the conjugate direction meth-
ods will outweigh the added synchronization cost in a parallel implementation is an open
question.

Many methods have been developed for parallelizing direct techniques, and a very

good survey of such methods can be found in [33]. However, the successful techniques rely

2.6. PARALLEL TECHNIQUES 21

on certain special structures of the problems to be solved (such as the matrix possessing
a band structure). There has not been a truly successful parallel implementation of
sparse Gaussian elimination for the types of matrices produced by the general circuit
simulation problem, for instance. There is some recent interesting work in this direction
by Karmarkar, however [34, 35].

References
(1] G. Strang, Linear Algebra and Its Applications. New York: Academic Press, 1980.

[2] G. H. Golub and C. F. Van Loan, Matriz Computations. Baltimore, Maryland: The
John Hopkins University Press, 1983.

[3] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices.
Oxford: Clarendon Press, 1986.

[4] V. Strassen, “Gaussian elimination is not optimal,” Numer. Math., vol. 13, pp. 354~
356, 1968.

[5] L. F. Richardson, “The approximate arithmetical solution by finite differences of
physical problems involving differential equations,with applications to the stress in
a masonry dam,” Philos. Trans. Roy. Soc. London, vol. Ser. A210, pp. 307-357,
1910.

[6] R. S. Varga, Matriz Iterative Analysis. Automatic Computation Series, Englewood
Cliffs, New Jersey: Prentice-Hall Inc, 1962.

[7] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear
systems,” Journal of Research of the National Bureau of Standards, vol. 49, pp. 409-
436, December 1952.

[8] J. M. Ortega and W. C. Rheinbolt, Iterative Solution of Nonlinear Equations in Sev-
eral Variables. Computer Science and Applied Mathematics, New York: Academic
Press, 1970.

[9] O. Axelsson, “Solution of linear systems of equations: Iterative methods,” in Sparse
Matriz Techniques (V. A. Barker, ed.), pp. 1-51, New York: Springer-Verlag, 1976.

{10] H. C. Elman, Iterative Methods for Large Sparse Nonsymmetric Systems of Linear
Equations. PhD thesis, Computer Science Dept., Yale University, New Haven, CT,
1982.

[11] Y. Saad and M. Schultz, “GMRES: A generalized minimum residual algorithm
for solving nonsymmetric linear systems,” SIAM J. Sci. Statist. Comput., vol. 7,
pp. 856869, July 1986.

22 CHAPTER 2. REVIEW OF NUMERICAL TECHNIQUES

[12] P. Sonneveld, “CGS, a fast Lanczos-type solver for nonsymmetric linear systems,”
SIAM J. Sci. Statist. Comput., vol. 10, pp. 36-52, 1989.

[13] V. Faber and T. Manteuffel, “Necessary and sufficient conditions for the existence of
a conjugate gradient method,” SIAM J. Numer. Anal., vol. 21, pp. 352-362, 1984.

[14] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, “Inexact Newton methods,” SIAM
J. Numer. Anal., vol. 19, pp. 400-408, April 1982.

[15] C. W. Gear and Y. Saad, “Iterative solution of linear equations in ODE codes,”
SIAM J. Sci. Statist. Comput., vol. 4, pp. 583-601, December 1983.

[16] P. N. Brown and A. C. Hindmarsh, “Matrix-free methods for stiff systems of ODE’s,”
SIAM J. Numer. Anal., vol. 23, pp. 610-638, June 1986.

[17] P.N.Brown and A. C. Hindmarsh, “Reduced storage methods in stiff ODE systems,”
J. Appl. Math. Comput., vol. 31, pp. 40-91, 1989.

[18] T. F. Chan and K. R. Jackson, “The use of iterative linear equation solvers in codes
for large systems of stiff IVP’s for ODE’s,” SIAM J. Sci. Statist. Comput., vol. 7,
pp.- 378-417, 1986.

[19] P. Brown and Y. Saad, “Hybrid Krylov methods for nonlinear systems of equations,”
SIAM J. Sci. Statist. Comput., vol. 11, pp. 450481, May 1990.

[20] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations.
Automatic Computation, Englewood Cliffs, New Jersey: Prentice-Hall, 1971.

[21] G. Dahlquist and A. Bjorck, Numerical Methods. Automatic Computation, Engle-
wood Cliffs, New Jersey: Prentice-Hall, 1974.

[22] L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces. Oxford:
Pergammon Press, 1964.

[23] R. Saleh and J. White, “Accelerating relaxation algorithms for circuit simulation
using waveform-newton and step-size refinement,” IEEE Trans. CAD, vol. 9, no. 9,
pp. 951-958, 1990.

[24] L. M. Silveira, “Circuit simulation algorithms for massively parallel processors,”
Master’s thesis, Massachusetts Institute of Technology, May 1990.

[25] M. Vidyasagar, Nonlinear Systems Analysis. Englewood Cliffs, NJ: Prentice-Hall,
1978. '

[26] E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli, “The waveform
relaxation method for time domain analysis of large scale integrated circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 1,
pp. 131-145, July 1982.

2.6. PARALLEL TECHNIQUES 23

[27] J. K. White and A. Sangiovanni-Vincentelli, Relazation Techniques for the Simu-
lation of VLSI Circuits. Engineering and Computer Science Series, Norwell, Mas-
sachusetts: Kluwer Academic Publishers, 1986.

[28] U. Miekkala and O. Nevanlinna, “Convergence of dynamic iteration methods for
initial value problems,” SIAM J. Sci. Stat. Comp., vol. 8, pp. 459-467, 1987.

[29] U. Miekkala, “Dynamic iteration methods applied to linear DAE systems,” J. Com-
put. Appl. Math., vol. 25, pp. 133-151, 1989.

[30] E. Z. Xia, “Parallel waveform-relaxation-newton for circuit simulation,” Master’s
thesis, University of Illinois at Urbana-Champaign, 305 Talbot, Urbana-Champaign,
IL 61801-2932, 1988. also University of Illinois Center for Supercomputing Research
and Development Report No. 772.

[31] A.Lumsdaine, M. Reichelt, and J. White, “Conjugate direction waveform methods
for transient two-dimensional simulation of MOS devices,” in International Confer-
ence on Computer Aided-Design, (Santa Clara, California), pp. 116-119, November
1991.

[32] A. Chazan and W. Miranker, “Chaotic relaxation,” Linear Algebra and its Applica-
tions, vol. 2, 1969. '

[33] K. A. Gallivan et al, Parallel Algorithms for Matriz Computations. Philadelphia:
SIAM, 1990.

[34] N. K. Karmarkar, “A new parallel architecture for sparse matrix computation based
on finite projective geometries,” Proceedings of Supercomputing Symposium 91, June
1991.

[35] I. S. Dhillon, N. K. Karmarkar, and K. G. Ramakrishnan, “An overview of the
compilation process for a new parallel architecture,” 1991. Unpublished.

Parallel Simulation Algorithms for
Grid-Based Analog Signal
Processors

3.1 Introduction

The recent success in using one- and two-dimensional resistive grids to perform certain
filtering tasks required for early vision [1] has sparked interest in general analog signal
processors based on arrays of analog circuits coupled by resistive grids. As is usually the
case, before fabricating these analog signal processors, substantial circuit-level simulation
must be performed to insure correct functionality. Although desirable, simulation of these
types of signal processors is particularly difficult because they must be simulated in their
entirety at the analog level. Ambitious circuits consist of arrays of cells where the array
size can be as large as 256 x 256, and each cell may contain up to a few dozen devices
[2]. Therefore, simulation of a complete signal processor requifes solving a system of
differential equations with hundreds of thousands of unknowns.

The structure of grid-based analog signal processors is such that they can be simulated
quickly and accurately with specialized algorithms tuned to certain parallel computer
architectures. In particular, the coupling between cells in the analog array is such that a
block-iterative scheme can be used to solve the equations generated by an implicit time-
discretization scheme, and furthermore, the regular structure of the problem implies that
the simulation computations can be accelerated by a massively parallel SIMD computer,

such as the Connection Machine®(3].

Connection Machine is a registered trademark of Thinking Machines Corporation.

25

26 CHAPTER 3. PARALLEL SIMULATION ALGORITHMS

In this chapter, algorithms are presented for simulating grid-based analog signal pro-
Cessors on a ma.ssively parallel computer. In Section 3.2, motivation is provided for this
work by way of an idealized example of a grid-based analog signal processor, and a gen-
eral model of grid-based circuits is developed. The simulation algorithms for performing
transient simulation of grid-based circuits are discussed in Section 3.3 and the massively
parallel implementation of the algorithms is presented in Section 3.4. Experimental re-
sults using the Connection Machine are presented in Section 3.5. Finally, conclusions

and suggestions for further work are contained in Section 3.6.

3.2 Problem Description

Preceding the discussion of the simulation algorithms, a description of the problem to
be solved is presented in order to highlight the salient features of the problem which will
be exploited later by the algorithms. An idealized grid-based analog signal processor is
presented first as a motivational problem and then a general description for these types

of circuits is developed.

3.2.1 Motivational Problem

Consider the circuit in Figure 3-1, an idealized version of a grid-based analog signal
processor used for two-dimensional image smoothing and segmentation [4]. The Kirchoff’s
current law (KCL) equation for a node at grid location (j, k) in the network is

cjk = g5(vik — ujk)
+95(Vik — Vig1k) + 9s(Vik — vi—1,k)

+95(vik — vig+1) + g5 (Vi — Vik—1),

where u;; and v;; represent the input and processed output image data at the grid point
(7, k), respectively, g5 is the input source impedance, ¢ is the parasitic capacitance from
the grid node to ground, and g¢,(-) is a nonlinear “fused” resistor. In this circuit, the g,
resistors pass currents in such a way as to force v;; to be a spatially smoothed version
of u;x, unless the difference between neighboring u;:’s is very large. In that case, g; no
longer conducts, there is no smoothing, and the image is said to be “segmented” at that
point.

In a physical implementation of the image smoothing and segmentation circuit, the
idealized elements in the circuit in Figure 3-1 are replaced by subcircuits of physical

circuit elements. For example, in Mead’s Silicon Retina [1], the voltage source u;x and

3.2. PROBLEM DESCRIPTION 27

Figure 3-1: Grid of nonlinear resistors.

the source admittance g; are replaced with a subcircuit containing transconductance
amplifiers and a phototransistor; the g, nonlinear resistor is replaced with a subcircuit

comprised of biasing circuitry and MOS transistors (see Section 3.5).

3.2.2 General Array Description

The circuit grid can be represented generally as an N x N array of identical subcircuits,
each of which is connected to its four nearest neighbors. Consider a single such subcircuit,
shown abstractly as a multiterminal element in Figure 3-2. Let the subcircuit have M;,;
internal nodes and let it be connected to its nearest neighbor to the north, east, west,
and south with My, Mg, Mw, and Mg terminals, respectively. For present purposes,
it is assumed that the subcircuit acts as a voltage-controlled element with respect to its
terminals.

In order to create an N x N grid circuit of subcircuits, a single subcircuit must be
replicated N? times, and then each subcircuit must be connected to its four nearest
neighbors. The following proposition and its corollaries are provided as a means of
describing the grid circuit behavior, given the description of the behavior of the individual
subcircuits.

Proposition 8.2.1. Let C be an n + m node circuit with nodal voltage vector (t) €
R™*™ and nodal charge and current vectors §(9(t),t),#(9(t),t) € R™™, respectively.
Consider a second circuit, C, which is formed from C by joining each node j = n +

1,...,n 4+ m to some node k; € {1,...,n}, such that C is a well-defined circuit and has

28 CHAPTER 3. PARALLEL SIMULATION ALGORITHMS

MN —

Py] = [
| e A
Mw |w E| s+ M] = . [
ool - R

Mg — T
[1 |

Figure 3-2: A single subcircuit, shown here as a multiterminal element, and a grid
constructed of such elements. '

nodal voltage vector v(t) € R, and nodal charge and current vectors g(v(t),t),#(v(t),t) €

R”, respectively. Then, there exists a topological matrix H, such that

q(v(t),t) = H'g(Hwv(),1)
i(v(t),t) = H'%(Hov(t),t).

Proof. Define H : R® — R™*™ by:
1 ifj=k
H;x =141 ifnodejin C was joined to node k in C (3.1)

0 otherwise

It should be obvious that substituting Hv(t) for &(¢) will give all devices in C the same
terminal voltages as if the nodes were connected as in C. Thus, each device in ¢ will
produce the same charge at its terminals as it would in C. Consider a component ¢; of
the vector g(v(t),t), corresponding to the sum of charges at node j in C. Node j will
either correspond directly to node j in C or to node k joined with node j in C. In the
former case, g; = §;, in the latter, ¢; = g + §;. Therefore, g(v(t),t) = Hig(Ho(t),t).
An identical argument shows that #(v(t),t) = H'3(Huv(t),t). - a

An alternative proof can be constructed using branch incidence matrices:

Proof. The topological matrix H simply maps the correspondence of node numbers
between the nodes in circuit C and C. Define H : R* — R™™ by:
1 ifj=k%
H;rx =14 1 if node j in C was joined to node k in C (3.2)

0 otherwise

3.2. PROBLEM DESCRIPTION 29

Let € and C be described abstractly as collections of nodes and edges. Then C will have
the same edges as ¢ but fewer nodes. In addition, those edges that meet at nodes in C
will also meet at nodes in C. However, some nodes will be merged so that some of the
branches in C which meet at different nodes will meet at the same nodes in C. Thus, the
branch incidence matrix B for circuit C is related to the branch incidence matrix B for
circuit ¢ according to:

B'=B8'H,
or, equivalently,

B=H!B.

The proposition follows by reducing the sparse tableau formulation for voltages and
currents for C to the nodal formulation. That is, the nodal current vectors i and 7 are

defined by

i(v) = Bg(B'v)

i(4) = Bg(B's),
where g is the vector of branch currents for € and C , and dependenpe on t is omitted for
clarity. Substituting H'B for B produces

i(v) = H'Bg(B'Hv)
= H'Y%(Hv).

An identical argument shows that q(v) = H'g(Hw). a

Ezample. Consider the circuit graphs shown in Figure 3-3. In this case the H matrix
relating the two circuits is given by:

H= 1 . (3.3)

Remark. The matrix H can be defined more generally by relaxing the condition on
the ordering of nodes in the hypothesis of Proposition 3.2.1. That is, C can be constructed
from C by joining a set of m distinct nodes {k1, ..k} C {1,...,n + m} to some of
the n nodes {1,...,n + m}\{k,,..., km}. The remaining n nodes are then renumbered
from {1,...,n}. The matrix H then maps the former node numbers {1,...,n + m} to

the new node numbers {1,...,n}.

30 CHAPTER 3. PARALLEL SIMULATION ALGORITHMS

b2 b2

b1 b6 b b6

b5
n5
nt n1

C | C

Figure 3-3: Example graphs for circuits ¢ and C. The circuits both have branches bl
through b6; circuit C has nodes ni through n5, while circuit C has nodes nl through n4.
The topological matrix relating the nodes for this example is given in (3.3).

The following corollary provides a simple way of describing the construction of a grid
circuit from subcircuits.

Corollary 3.2.2. Consider an N x N circuit grid of identical subcircuits, as shown
in Figure 3-2. Assume each subcircuit has M;y; internal nodes plus M;erm terminals,
and define M = M + Mierr,. Let va(t) € RM be the nodal voltage vector for the
subcircuit at grid location o when that subcircuit js separated from the grid, and let
4o (Ba(t),t) € RM and ia(Da(t),t) € R be the associated nodal charge and current
vectors, respectively. Next, define # = N2M , let & € R" represent the nodal voltage
vector for the N? subcircuits separated from each other, and let §(%(t),t) € R* and
2(9(t),t) € R™ be the associated nodal charge and current vectors, respectively. Finally,
define n = N2M,,,, let v(t) € R* represent the voltage vector for the connected grid
circuit, and let g(v(t),t) € R™ and 2(v(t),t) € R™ be the associated nodal charge and
current vectors, respectively.

Then, g and 2 can be related to § and 3 by a topological matrix H : R* — R", such
that

q(v(t),t) = H'g(Ho(t),t)
i(v(t),t) = HY(Ho(t),t).

Proof. Order the subcircuit terminals such that nodes {1,...,n} correspond only to
the internal nodes of the subcircuits and nodes {n+1,...,7} correspond to the terminal

nodes of the subcircuits. Apply Proposition 3.2.1. O

L

3.3. NUMERICAL ALGORITHMS 31

Remark. If all N? subcircuits are identical, then 7 = N2 M, + N*Mierm, and n =
N2M,,;. However, the boundary subcircuits may differ from the subcircuits internal to
the grid in such a way that the boundary subcircuits have no unconnected terminals. In
that case, the values of 7 and n will be slightly different from the above, depending on
the particular differences of the values M, and Mierm for the boundary subcircuits.

Corollary 3.2.3. Let J, = %%, J; = g—,‘i;, J; = -2—,%, and J; = % be the Jacobian
matrices for the functions g, %, §, and % described in Corollary 3.2.2, respectively, and
let H be the topological matrix relating q to § and i to z. Then, J, is related to Jg and
J; is related to J; by

To(v(8),t) = H'J3(Ho(t),) H
Ji(v(t),t) = H' J;(Ho(t),t)H

and J; and J; are block diagonal.

Proof. The result follows directly from the relations between ¢ and g, and between %
and 1. a

Remark. Computationally, Proposition 3.2.1 and its corollaries demonstrate how it
is possible to compute the nodal sums of charge and current for the connected circuit by

evaluating the constitutive relations for the unconnected circuit.

Ezample. A decomposition of the example circuit shown in Figure 3-1 is shown in
Figure 3-4. Note that the subcircuits internal to the grid have one internal node and
two terminal nodes, the subcircuits on the east and south border of the grid have one
internal node and one terminal node, and the subcircuit on the south-east corner of the

grid has one internal node and no terminal nodes.

Similar results to Corollary 3.2.2 and Corollary 3.2.3 can be constructed for other

types of grid circuits as well (such as hexagonal grids).

3.3 Numerical Algorithms

The system of equations that describes an N x N grid circuit, constructed as in Corol-

lary 3.2.2, can be written compactly as

2L q(w(2),1)+i(o(2),6) =0. (3.4)

32 CHAPTER 3. PARALLEL SIMULATION ALGORITHMS

> é

B

LAJ

{
i
N
i

.
00
eoe

l) E{u E‘];' E]TJ B¢

Figure 3-4: Decomposition of the example circuit shown in Figure 3-1. Note that the
subcircuits on the east and south borders of the grid differ from the subcircuits elsewhere
in the grid.

Here, n is the total number of nodes in the circuit, (t), q (v(¢),%),% (v(t),t) € R” are
the vectors of node voltages, sums of node charges, and sums of node resistive currents,
respectively.

The transient simulation of the analog grid involves numerically solving (3.4). Dis-
cretizing (3.4) with the trapezoidal rule leads to the following algebraic problem for each
time step h:

% [q(v(t +R),t +) — q(v(t),)] + [i (w(t + k), 2+ h) +4(v(),8)] =0. (3.5)
As is standard, the algebraic problem is solved with Newton’s method,
Jr(v™(t+h),t+ k) [v™(t + h) —v™(t + k)| = —F (v™(t + k), ¢ + &) (3.6)
where
F(o(t+h),t+h)= (3.7)
21g(u(t 4 B),t+) ~ @ (0(2), 0] + [(002 +), + 1) 4 (o(0), 1)

and the Jacobian Jr (v(t + h),t+ h) is

20q(v(t+h),t+h) Oi(v(t+h),t+h)
= +
h ov ov

In “classical” circuit simulators such as SPICE [5], the linear system of equations for

Jr(v(t+h),t+h) = (3.8)

each Newton iteration is solved by some form of sparse Gaussian elimination. Sparse

‘

3.3. NUMERICAL ALGORITHMS 33

Algorithm 8.8.1 (Conjugate Gradient Squared algorithm for solving Az = b).

130—0

To =
4Q=p,=0
p-1=0

For £k=0,1,...

if converged, break
pr = (Fo,7k)» Br = pr/pr—1

u; = 7 + Biq;,
P = ur + Bi(qr + BiPr-1)
v, = Ap;

o = (o, Vk), ar = pr/0k
Qi1 = Uk — QU

Tri1 = Tk — 0 A(Ur 4 @ryq)
Trs1 = @k + ap(wr + ry1)

Gaussian elimination is not well-suited to the present problem for several reasons. First,
because of the structure of the matrix generated by grid-type circuits, sparse Gaussian
elimination creates substantially more fill than for typical circuits with an equivalent
number of nodes. Second, it is well known that sparse Gaussian elimination is difficult
to parallelize. Therefore, a parallelizable iterative method is sought, such as a conjugate-
direction method [6].

There are several conjugate-direction algorithms which are suitable for use as a linear
system solver for grid circuits. Since, in the general case, the grid circuits may be
constructed from non-reciprocal elements (e.g., MOS transistors), only methods suitable
for non-symmetric matrices are considered, e.g., CGNR, GCR, GCR(k), ORTHOMIN,
CGS [6, 7]. The present discussion will be restricted to CGS, presented in Algorithm 3.3.1,
since experience has shown that it is the most efficient of the methods examined (see
also [8, 9]).

One reason for the suitability of conjugate direction methods to the problem under
consideration is that the convergence rates of these methods depend on the condition
number of Jg. By taking timesteps small enough, the capacitive portion of the Jacobian,
which tends to be better conditioned than the conductive portion, will dominate (see [10]).

To demonstrate the effectiveness of the conjugate-direction methods, in Table 3-1
the CPU time required to compute the transient analysis of the network in Figure 3-1 is

compared using several different matrix solution algorithms to solve (3.6). The conjugate-

34 CHAPTER 3. PARALLEL SIMULATION ALGORITHMS

Size Direct | CG | ILUCG | CGS | ILUCGS
16 x16 2.69 | 0.94 0.85| 1.12 1.07
32x32 39.3 { 4.10 3.93 | 5.08 4.69
64 x 64 464 | 24.5 2421 278 30.6
128128 || 25000 | 713 1340 | 1420 1790

Table 3-1: Comparison of serial execution time for the transient simulation of the circuit
in Figure 3-1, when using direct, CG, ILUCG, CGS, and ILUCGS linear system solvers.
For this example, g; = 3.0x107°Q! and g, has a conductance of 1.0 x1073Q~" when
linearized about zero. All execution times are CPU seconds for an IBM RS/6000 model
530 workstation.

direction methods shown in Table 3-1 are conjugate gradient (CG), incomplete LU pre-
conditioned CG (ILUCG), conjugate gradient squared (CGS), and incomplete LU pre-
conditioned CGS (ILUCGS). As the table indicates, sparse Gaussian elimination is much

slower than the conjugate-direction methods, especially for larger problem sizes.

3.4 Implementation

For an algorithm to approach peak parallel performance on a SIMD machine, it must
satisfy three requirements. First, the problem must have enough parallelism to effectively
use the available processors. Second, the algorithm should depend only on local or
infrequent interprocessor communication. And third, the algorithm must be mostly data-

parallel, meaning;:

e One can identically map individual pieces of data to individual processors for all

relevant processors, and
e One can operate identically on the data with all the relevant processors

The general circuit simulation problem violates all three of the above constraints,
and previous attempts at using a SIMD machine to accelerate circuit simulation have
not yielded impressive results {10, 11]. As will be shown in the rest of this section,
simulation of grid-based analog signal processors is well suited to SIMD architectures.
These circuits are large enough to keep a large number of processors active, and they can
be simulated with algorithms that depend on nearest-neighbor communication between

Processors.

3.4. IMPLEMENTATION 35

|
e
T

L
e
T

I
ey
T

ool .ol ool

R 1 ee g peee

Tl
|
-
T
|
T

1o

ool ooo ool

Figure 3-5: Mapping of subcircuits to processor grid. Each processor, represented by
a single box, contains the data necessary for simulating a single subcircuit. The lines
connecting the boxes represent the inter-processor communication network.

3.4.1 Data to Processor Mapping

The two-dimensional nature of grid-based analog signal processing circuits maps naturally
onto a two-dimensional grid-connected processor network so that data parallelism and
locality are maintained. In particular, assume that it is desired to simulate an N x N grid
circuit that is constructed by replicating identical subcircuits as described in Section 3.2.
The problem is mapped onto an N x N processor array by assigning the data for one

subcircuit to each processor (see Figure 3-5).

The characteristics of the grid circuit can be obtained with this mapping by using
Corollary 3.2.2, as described in Sections 3.4.2 and 3.4.3. Note that ¥, §(%), and #(%)
can be completely represented by keeping (M;y; + Mierm) components of these vectors on
each processor. However, representing v, g(v), and #(v) requires only M;,; components of
each vector on each processor. Therefore, the convention is adopted that the components
of ¥, q(®), and 2(®) which correspond to the internal nodes are stored in locations
{1,...,M;n;} and the components which correspond to terminal nodes are stored in
locations {M;n¢ + 1, ..., Mint + Mierm }. With this convention, the vectors v, g(v), and
t(v) are simply the first n locations of the vectors ¥, q(9), and #(9), respectively.

36 CHAPTER 3. PARALLEL SIMULATION ALGORITHMS

3.4.2 Device Evaluation

The device evaluation stage of circuit simulation involves the computation of the right-
hand side and the Jacobian for the Newton iteration (3.7), i.e., computing F' and Jp
as in (3.7) and (3.8). Since the linear system solver is a conjugate-direction iterative
method, Jr is not needed explicitly, rather, it is only necessary to calculate the matrix-
vector product y = Jpa. If (by definition) Jz = %J § + J&, then by Corollary 3.2.3,
the matrix-vector product ¥ = Jpx can be calculated according to y = HTJ Hea.
Therefore, only Jz is calculated during the device evaluation process.

Using the topological matrix described in Corollary 3.2.3, the computation and com-
munication required to compute FandJ 7 can be described by the following, where the

dependence on t is omitted for clarity:

1. Calculate ® = Hwv. In this step, the values of ¥ corresponding to terminal nodes

are set with nearest-neighbor communication operations.

2. Calculate the Jacobian, J (%) = 2J4(%) + J:(¥) and “right-hand-side” compo-
nents, ¢(¥) and (), by evaluating the cell devices in parallel.

3. Calculate q(v) = HT (%) and i(v) = HT%(9). In this step, the values of §(®)
and #(9) corresponding to terminal nodes are communicated with nearest-neighbor

communication operations and added into the appropriate locations of g(v) and
i(v).

An explicit representation of H is not needed to accomplish the communication oper-
ations — a local representation of how nodes are connected to each other across the

processor boundary is the only requirement.

3.4.3 Linear System Solution

There are two parts of the CGS iteration which involve parallel data: the vector inner
product and the matrix-vector product. The vector inner-product is computed with an
in-place multiply and a global sum. The matrix-vector product ¥y = Jpx is computed
according to y = HTJzHz, using the result of Corollary 3.2.3, with the following

sequence of operations:
1. Calculate & = He.

2. Perform parallel block matrix-vector multiplication, ¥ = Jz&.

3. Calculate y = HT§.

3.4. IMPLEMENTATION 37

Here, ¢, & y and ¥ are stored and Hz and H T4 are calculated just as in the device
evaluation process above. Again, steps 1 and 3 involve explicit communication operations,

but 2 does not involve any communication, since Jr is block diagonal.

Block Diagonal Preconditioning

An effective technique for improving the performance of conjugate-direction iterative
methods is the use of preconditioners. That is, instead of solving Az = b directly, the

conjugate-direction method is applied to the equivalent system
P lAz = P7'b.

Typically, P is chosen so that the system Pz = r for z is easy to solve and so that the
conjugate direction method applied to the preconditioned system converges faster than
when applied to the non-preconditioned system.

The general structure of the Jacobian matrix Jr is that of a block diagonal matrix
with block off-diagonal bands. The diagonal blocks are of size My X M;ns; the block
off-diagonal bands are of size My x My, Mg X Mg, Mw x My, and Mg x Mg. This sug-
gests a block iterative method for solving (3.6), using the diagonal blocks of Jr as the
preconditioner. A block iterative scheme is particularly well suited to a SIMD imple-
mentation, since each block can be solved simultaneously in parallel. Note that although
J & is already block diagonal, inverting its blocks is not the same as inverting the block
diagonal portion of J.

Rather, let Jp = P + R, where P is the block diagonal part of Jr. To use Pasa
preconditioner in the CGS algorithm, it must be formed from Jz. Let Rj,k be the part
of Jj corresponding to the coupling between internal and terminal nodes of the same
subcircuit — this coupling will become the off-diagonal coupling blocks in Jr. Define P
by Jz = P+R (see Figure 3-6). Using Corollary 3.2.3, note that

P=HTPH. (3.9)
Solving the linear system Pz = r for z is then accomplished by:
1. Form P = HTPH.

2. Solve Pz =r. .

Comments on Preconditioning

On serial machines, conjugate-direction methods have benefitted greatly from the use of

preconditioning. However, the author’s experience, as well as the results reported in [12],

38 CHAPTER 3. PARALLEL SIMULATION ALGORITHMS

Mt my mg my mg

\ |2 _

i E |

Figure 3-6: Definition of P. Since the coupling between internal nodes and terminal
nodes will become off-diagonal blocks in J F, these coupling elements are removed from
J 5 to form P.

indicate that some the advantages of using a preconditioner are lost when implementing
conjugate-direction methods on a massively parallel machine. In this section, results
from [13] regarding parallel algorithms for solving PDE’s are applied to provide some
explanations about the limitations of a parallel preconditioner. The main idea is that
there are two bounds on algorithmic performance — communication bounds and compu-
tation bounds — and preconditioning a conjugate-direction method cannot improve the
communication lower bound.
As a model problem, consider the Dirichlet problem in two dimensions:

Viu = f (z,y) e QCR? (3.10)

ulag = 0.

For simplicity, let O = I? ¢ R2. To solve (3.10), apply a finite-difference scheme with
stepsize h to obtain:
Au=§f (3.11)

where n = h72, A € R**", and u, f € R". The linear system of equations in (3.11) can
also be realized with a grid of linear resistors.

Consider the behavior of the CG algorithm for solving (3.11). As is well known,
the number of iterations required to solve (3.11) for a fixed convergence criterion, say
€, is O (\/n(A), where (k(A)) is the condition number of A [14]. For the discretized

3.4. IMPLEMENTATION 39

Laplacian, £(A) = ch™?, so that the number of iterations required to solve (3.11) for a
fixed ¢ is O(y/n).

The premier preconditioning techniques for CG applied to the discretized Lapla-
cian are the incomplete factorization methods, such as modified incomplete Cholesky
(MICCG). What makes these preconditioners so powerful is that they lower the complex-
ity of the condition number of the system to be solved. In fact, the serial implementation
of the MICCG method is known to solve (3.11) for fixed € in O (n%) iterations.

Unfortunately, this complexity improvement is not necessarily achievable with a par-
allel preconditioned CG algorithm. If sufficient processors are available such that each
iteration of CG takes constant time, then the computational complexity for CG on a
parallel machine is the number of iterations required, i.e., O(v/n), and the communica-
tion lower bound is the maximum network distance that information must travel so that
each processor can compute its solution. For the discretized Laplacian, this distance is
the maximum network distance between any two processors, since each processor must
at some point get information from every other processor to compute the solution [13].
This implies that the communication lower bound for CG is {}(y/n) on a two-dimensional
network or 2(logn) on a hypercube network. Now, for preconditioned CG, the compu-
tational complexity may be less than the O(+/n) for plain CG (e.g., O(nt) for MICCG).
However, the communication lower bound is the same, i.e., Q(y/n).

The conclusion is that a preconditioner which only uses a two-dimensional network
comrunication pattern, as is the case with incomplete factorization methods, cannot
reduce the complexity of the parallel CG algorithm applied to the discretized Laplacian.
However, a preconditioner which uses a hypercube network communication pattern, such
as a hierarchical basis preconditioner, can at least improve the communication lower
bound. These conclusions are borne out in the experiments reported in [12]. Whether
those preconditioners which improve the communication lower bound will alse provably

lower the computational complexity is an open question.

3.4.4 Grid Boundaries

To this point, what happens on the boundaries of the grid has been glossed over. Since
the subcircuits represent physical circuitry, the boundary subcircuits will differ from the
subcircuits internal to the grid {as in the grid of nonlinear resistors shown in Figure 3-4).

To handle the boundary subcircuits properly, the grid subcircuits are subdivided into
smaller sub-subcircuits, some of which can be omitted from the boundary subcircuits in

order to produce correct circuit behavior. Since all processors contain identical data, the

40 CHAPTER 3. PARALLEL DIMULALzusy aaeee

boundary processors do, in effect, still have all the sub-subcircuits. However, by turning
off the appropriate boundary processors whenever data corresponding to an omitted
sub-subcircuit is manipulated, the correct circuit behavior at the grid boundaries can
be produced. For reasons of clarity, further discussion of this operation is omitted; it is

performed in a straightforward manner for all the algorithms to be presented.

3.5 Experimental Results

In this section, experimental results are presented that compare serial and parallel execu-
tion times for several types of grid-based analog signal processors. To make the results as
meaningful as possible, the fastest serial algorithm is compared with the fastest parallel
algorithm. The programs used to test the serial and parallel programs both use MIT’s
SIMLAB program (15, 16] as a base — in other words, to a large extent the serial and
parallel programs are the same program. This is done to guarantee that the code is as
similar as possible for the two programs.

The parallel algorithms were executed on the Connection Machine model CM-2 —
a single-instruction multiple data (SIMD) parallel computer which, in its largest con-
figuration, contains 65,536 bit-serial processors and 2048 Weitek floating-point units
(FPU’s) [17]. The bit-serial processors are clustered together into groups of 16 within
a single integrated circuit, and these IC’s are connected together in a 12-dimensional
hypercube. Two IC’s, or 32 processors, share a single Weitek FPU. Note that a fully
configured CM-2 contains 2048 times as much floating point hardware as a conventional
computer containing a single Weitek FPU (e.g., a SUN-4).

The Connection Machine allows the user to map problems which are larger than the
actual number of physical processors through a software emulation process which creates
virtual processors. All CM experiments reported here used a virtual processor ratio of
one, 1.e., the problems were the same size as or smaller than the actual number of physical
processors on the CM.

The serial experiments were run using the vSIM (Vision SIMulation) program. The
VSIM program is essentially SIMLAB with idealized nonlinear elements and image [/O sup-
port added. The parallel experiments were run using the CMVSIM (Connection Machine
Vision SIMulatioﬁ) program (18, 19]. Implementation of the CMVSIM program required
major enhancement to SIMLAB to support the parallel algorithms. The parallel portions
of the code were written in C* Version 6.0, a CM superset of C [20, 21]. In those cases
where the parallel code was to be a parallel version of code already existing in serial form

in SIMLAB, care was taken to make it as much like the serial code as possible.

3.5. EXPERIMENTAL RESULTS 41

The serial experiments were run on a SUN-4/490 workstation, and the CM results
were obtained on a 16K CM-2 with double-precision floating point hardware, using a
SUN-4/490 as a front-end. The serial execution times were run on the same machine
which was used as the front-end for the parallel experiments. All computations were

performed in double precision arithmetic.

Example Circuit File

CMVSIM constructs the vision circuit grid by reading a description of the simple cell, which
is partitioned by the user into separate circuit files so that the borders can be handled
properly. Each of the simple cell files contains a complete circuit given in SIMLAB circuit
syntax. The files are denoted by their relationship to the border of the cell, i.e., north,
east, west, or south; the circuitry internal to the cell which does not vary on the borders
of the grid is known as the here circuitry. The files containing the circuitry are given the
extensions .rel.n, .rel.e, .rel.w, .rel.s, and .rel.h (with the obvious associated
directions). | _

The north, east, west, and south circuit files contain the sub-circuits which connect
cells together. In order to conmect cells, the border circuits contain special elements
called connector elements which specify how the terminal elements are connected across
processor boundaries (see Figure 3-7).

Since the simple cell is divided into separate circuit files, CMVSIM must be told which
nodes are common to all files. This is done with a “common” comment in the here

circuit file. The “common” comment has the form:
; common {nodel) [(node2} ...

Normally, the common nodes correspond to those nodes to which terminals from neigh-
boring subcircuits are joined. Refer to the “CMVSIM users’ guide” [19] for more details
on using CMVSIM.

The contents of the circuit files to specify a resistive grid are shown in the files

lres.rel.e, lres.rel.s, and lres.rel.h.

Linear Resistive Grid

Table 3-2 shows the results obtained while simulating the linear resistive circuit grid
shown in Figure 3-8. The circuit for which the results are shown had a 1K resistance

between neighboring nodes, a 33.33K resistance to ground, and a parasitic capacitance

42 CHAPTER 3. PARALLEL SIMULATION ALGORITHMS

Processor
Boundary

Figure 3-7: Example separation of a subcircuit into sub-subcircuits. This subcircuit is
divided into three separate SIMLAB circuits: east, south, and here. The east and south
circuits contain grid connectors which specify how the terminal elements are connected
across processor boundaries.

of 1x10713F at each node. A random image was introduced to the network and the

startup transient of the first 1 x10~° seconds was simulated.

For the 128 x 128 grid — which is the largest that will fit directly on the 1/4 size
CM-2 — the CM achieved a speedup of about a factor of 50. If the serial and parallel
results are extrapolated to a 256 x256 grid — which is the largest that will fit directly

on a full size CM-2 — the CM should be able to achieve a speedup of over a factor of
200.

Serial CM

Size Direct CG ILCG || CG
1616 9.95 5.6 4.55 | 10.30
32x32 107.15 30,0 25.57 | 10.46
64 x 64 132228 126.25 113.22 9.26
128%128 || (1.63x10%) (531) (501) || 9.54
256 x 256 || (2.01%10°) (2236) (2220 || (10)

Table 3-2: Experimental result: Linear circuit grid.

3.5. EXPERIMENTAL RESULTS

43

lres.rel.e

global 0

rl here east r r=1k
c0 east here connector

lres.rel.s

global 0

rl here south r r=1k
c0 south here connector

lres.rel.h

global 0
; common here

r1 here 1 r r=1k
vli 1 0 dc v=2

cmvsim options cmin = 1.e-6
plot here

—ANN— see

*h s
[N
L]

Figure 3-8: Linear resistive grid.

44 CHAPTER 3. PARALLEL SIMULATION ALGORITHMS

: Serial CM

Size Direct CG ILCG CG
16 x16 183.13 176.03 126.15 227.88
32x32 4027.23 1802.10 1445.75 487.16

64x64 | (8.86x10%) 14287.90 10377.90 | 896.01
128x128 | (1.95x108) (L1.13x10%) (7.45x10%) [1445.12
256 x256 || (4.28x107) (8.99x10°) (5.35x10%) || (2330)

Table 3-3: Experimental result: Nonlinear circuit grid.

Nonlinear Resistive Grid

Table 3-3 shows the results obtained while simulating the nonlinear resistive circuit grid
shown in Figure 3-1. The nonlinear resistance has the following characteristic equation:

i(v) = T-T-#v—wﬁ‘ (3.12)
The circuit for which the results are shown had a resistance of 10k to ground, a parasitic
capacitance of 1 X 10~7 and parameter values for the nonlinear resistance of o = 1 x 1073,
v =2x107° with 8 being swept from 0 to 1 x 10° over the simulation interval. A random
image was introduced to the network, the DC solution was found with 8 = 0 (i.e., so that
the network was linear), and then a transient simulation of one second was performed,
during which § was increased from 0 to 1x10°. The reasons for this type of simulation
are explained in detail in [22].

For the 128128 grid, the CM achieved a speedup of about a factor of 50. If the
serial and parallel results are extrapolated to a 256 x 256 grid, the CM should be able to
achieve a speedup of over a factor of 200.

Mead’s Silicon Retina

Tables 3-4 and 3-5 show the results obtained while simulating Mead’s Silicon Retina
as described in [1] and shown in Figure 3-9. Table 3-4 shows results obtained when
presenting the circuit with a constant image while Table 3-5 shows the results obtained
when presenting the circuit with a random input image. The simulations used the same
SPICE MOS level 3 devices in both the serial and parallel versions.

The Silicon Retina example contains a significant amount of circuitry in each cell and
the block diagonal preconditioner is quite effective in reducing the CPU time required
to compute the solution. For the examples with the constant input image, the block
diagonal preconditioner reduced the CPU time by approximately a factor of two over

3.5. EXPERIMENTAL RESULTS

B e

45

Figure 3-9: Mead’s Silicon Retina. The simulated chip contains 23 MOS level 3 devices
per cell for a total of 376,320 devices and 261,888 nodes in a 128x128 grid.

Serial CM
Size Direct CGS ILCGS CGS PCGS
16 <16 516.15 1911.72 605.22 840.34 436.225
32x32 3353.68 8241.03 2532.37 936.80 454.67
64 x 64 (21790) (35523) (10596) | 1020.88 461.42
128 x 128 || (141583) (153142) (44336) 1048.25 463.89
256 %256 || (910959) (660172) (185510) || (1076) (466)

Table 3-4: Experimental result:

Mead’s Silicon Retina with constant input image.

plain CGS for all grid sizes. For the examples with the random input image, the block

diagonal preconditioner reduced the CPU time by up to a factor of four over plain CGS.

For the 128 x 128 grid, the CM achieved a speedup of about a factor of 95 for the circuit
with the constant input image and a speedup of over a factor of 144 for the circuit with

the random input image. If the serial and parallel results are extrapolated to a 256 x 256
grid, the CM should be able to achieve a speedup of about a factor of 400 for the circuit
with the constant input image and a speedup of over a factor of 650 for the circuit with

the random input image. If one assumes that the Sun4/490 workstation on which the

serial results were obtained can attain about 2 MFlops floating point performance then

the factor of 650 speedup represents over a gigaflop for the full-sized CM-2.

46 CHAPTER 3. PARALLEL SIMULATION ALGORITHMS

Serial CM

Size Direct CGS ILCGS CGS PCGS
16 %16 1239.50 4405.77 1244.75 1845.34 894.42
32x32 10713.1 25740.9 7343.03 2414.55 1221.14
64 x 64 (9.2x10%) (1.5x10%) (4.3x 10%) || 4787.49 1303.49
198 %128 || (8.0x105) (8.8x10°) (2.5x10°) | 6661.22 1730.36
956256 || (6.9x108) (5.1x10°) (L5x10%) || (9268) (2297)

Table 3-5: Experimental result: Mead’s Silicon Retina with random input image.

Figure 3-10: 256 x 256 image of the San Francisco sky line.

Processing Images

One of the most significant features of CMVSIM is that the program can be used to inves-
tigate how particular vision circuits process images. To demonstrate this use of CMVSIM,
the results of two experiments are presented where the same network is subjected to two
different types of continuations, resulting in drastically different output images (see [22]
for detailed treatment of the continuations). The network used is shown in Figure 3-1
and uses the nonlinear element described by (3.12); let the linear conductance to ground
be called A;. Figure 3-10 shows a 256 X256 image — a portion of the San Francisco sky
line — used as the input image.

Figure 3-11 shows the output produced by the idealized nonlinear network with a

3.5. EXPERIMENTAL RESULTS 47

continuation performed on the value of 8. The fixed parameter values were & = 1x1073,
¥ =1x10~%, A; = 3x107%; the value of B was linearly varied as a function of time from
B =0 to § =1x10° Figure 3-11(a) shows the output of the network at the beginning
of the continuation when 8 = 0; Figure 3-11(b) shows the output of the network at an
intermediate point of the continuation when § = 2x10*; Figure 3-11(c) shows the output
of the network at the end of the continuation when 8 = 1 x108.

Figure 3-12 shows the output produced by the idealized nonlinear network with a
continuation performed on the value of A;. The fixed parameter values were o = 1x10~3,
¥ = 1x107%, and # = 1x10% the value of the A\; was linearly varied as a function of
time from Ay = 1 to Ay = 3x1075. Figure 3-12(a) shows the output of the network at
the beginning of the continuation when A; = 1; Figure 3-12(b) shows the output of the
network at an intermediate point of the continuation when A; = 1x1073; Figure 3-12(c)
shows the output of the network at the end of the continuation when A; = 3x10~°. Note
that the final parameter values of this network are identical to those for the network of
Figure 3-11.

Discussion

The 128 x 128 exarnple of Mead’s Silicon Retina contains well over 300,000 MOS level 3
devices, but the examples with constant and random input images were simulated in
eight minutes and 29 minutes, respectively.

It is interesting to note that the improvement provided by CMVSIM over VSIM was
quite a bit higher for the Silicon Retina examples than for the linear and nonlinear re-
sistive grid examples. One reason for this is that the Silicon Retina examples provide a
much higher computation to communication ratio than the linear and nonlinear resistive
grids. The linear and nonlinear grids each have three simple devices, one internal node,
and two connecting nodes per subcircuit, whereas the Silicon Retina has 23 MOS level 3
devices, 16 internal nodes, and four connecting nodes per subcircuit. Moreover, simula-
tion of the Silicon Retina with the block diagonal preconditioner also involves a parallel
linear system solution step. Maintaining a large computation to communication ratio is
especially important when using the Connection Machine since the CM has notoriously
slow communication functions.

At present, CMVSIM only supports Manhattan-style circuit grids. However, enhance-
ments to allow other regular grid geometries, such as hexagonal grids, have been antici-
pated and should be able to be incorporated in a straightforward manner. CMVSIM could

also be enhanced to allow the simulation of circuits which are “mostly regular,” such as

48 CHAPTER 3. PARALLEL SIMULATION ALGORITHMS

Figure 3-11(a): Output image produced
by B-continuation network. Here, the

parameter values are o = 1x107%, v =
1x107%, Ay =3x107%, and 3= 0.

Figure 3-11(b): Output image produced
by B-continuation network. Here, the

parameter values are o = 1x107%, v =
1x107%, A; = 3x107°%, and 8 = 2x10%

Figure 3-11(c): Output image produced
by B-continuation network. Here, the

parameter values are o = 1x107%, v =
1x107%, Ay = 3x107°, and 8 = 1 x 108.

—

3.5. EXPERIMENTAL RESULTS 49

Figure 3-12(a): Output image produced
by As-continuation network. Here, the

parameter values are o = 1 %1073, y =
1x107%, 8 =1x10%, and A; = 1.

Figure 3-12(b): Output image produced
by As-continuation network. Here, the
parameter values are o = 1 x1073, v =
1x107°, 8 =1x10% and A; = 1x1073.

Figure 3-12(c¢): Output image produced
by Aj-continuation network. Here, the
parameter values are o = 1x1073, v =
1x10-%, 8 =1x10°, and Ay = 3x10~°.
Note that the final parameter values of
this network are identical to those for
the network of Figure 3-11, but that the
output image is much closer to the input
image shown in Figure 3-10.

50 CHAPTER 3. PARALLEL SIMULATION ALGORITHMS

memory chips. To do this, CMVSIM would operate in a hybrid mode in which the regular
portions of the circuit would be simulated on the CM and the non-regular portions would

be simulated on the front-end.

3.6 Conclusion

Although the irregular structure of the general circuit simulation problem seems to pre-
clude the use of massively parallel machines, such as the Connection Machine, for circuit
simulation, there are nevertheless certain interesting (and increasingly important) classes
of circuits which do benefit from these architectures. In this chapter, one such class of
circuits, namely robotic vision chips, was examined.

In developing algorithms for these circuits, the fact that the circuits have a regular
structure which maps nicely to a massively parallel architecture was exploited. Moreover,
the coupling between cells in these arrays is such that block iterative methods could be
used to solve the equations generated by an implicit time-discretization scheme.

The experimental results were very encouraging. It was possible to simulate a 128 x 128
example of Mead’s Silicon Retina, a circuit having over 300,000 SPICE level 3 MOS de-
vices, in about half an hour. The same circuit simulated with the best serial algorithm
running on a Sun4/490 would take an estimated three days — assuming the workstation
had enough memory to accommodate the problem at all. The simulation capability pro-
vided by CMVSIM should allow simulation to be an important part of the design cycle of

real robotic vision chips for the first time.

References
[1] C. Mead, Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley, 1988.

[2] J. L. Wyatt Jr., et al, “The first two years of the MIT vision chip project,” Tech.
Rep. VLSI Memo 90-605, Massachusetts Institute of Technology, October 1990.

[3] W. D. Hillis, The Connection Machine. New Haven, CT: MIT Press, 1985.

[4] A. Lumsdaine; J. Wyatt, and 1. Elfadel, “Nonlinear analog networks for image
smoothing and segmentation,” in International Symposium on Circuits and Sys-
tems, (New Orleans, Louisiana), pp. 987-991, May 1990.

[5] L. W. Nagel, “SPICE2: A computer program to simulate semiconductor circuits,”
Tech. Rep. ERL M520, Electronics Research Laboratory Report, University of Cal-
ifornia, Berkeley, Berkeley, California, May 1975.

e T LN

3.6. CONCLUSION 51

[6] H. C. Elman, Iterative Methods for Large Sparse Nonsymmetric Systems of Linear
Equations. PhD thesis, Computer Science Dept., Yale University, New Haven, CT,
1982. .

[7] P. Sonneveld, “CGS, a fast Lanczos-type solver for nonsymmetric linear systems,”
SIAM J. Sci. Statist. Comput., vol. 10, pp. 36-52, 1989.

[8] R. Burch, K. Mayaram, J.-H. Chern, P. Yang, and P. Cox, “PGS and PLUCGS
— Two new matrix solution techniques for general circuit simulation,” in Interna-
tional Conference on Computer Aided-Design, (Santa Clara, California), pp. 408
411, November 1989.

[9] K. Mayaram, P. Yang, J. Chern, R. Burch, L. Arledge, and P. Cox, “A parallel
block-diagonal preconditioned conjugate-gradient solution algorithm for circuit and
device simulations,” in International Conference on Computer Aided-Design, (Santa
Clara, California), pp. 446-449, November 1990.

[10] L. M. Silveira, “Circuit simulation algorithms for massively parallel processors,”
Master’s thesis, Massachusetts Institute of Technology, May 1990.

[11] D. M. Webber and A. Sangiovanni-Vincentelli, “Circuit simulation on the Connec-
tion Machine,” in 24** ACM/IEEE Design Automation Conference, June 1987.

[12] C. Tong, “The preconditioned conjugate gradient method on the Connection Ma-
chine,” in Proceedings of the Conference on Scientific Applications on the CM (H. D.
Simon, ed.}, pp. 188-213, World Scientific, Singapore, September 1988.

[13] P. H. Worley, “Limits on parallelism in the numerical solution of linear partial dif-
ferential equations,” SIAM J. Sci. Statist. Comput., vol. 12, pp. 1-35, January 1991.

[14] G. Golub and C. Van Loan, Matriz Computations. Baltimore: The Johns Hopkins
University Press, 1989.

[15] A. Lumsdaine, M. Silveira, and J. White, “SIMLAB programmer’s guide.” Re-
search Laboratory of Electronics, Massachusetts Institute of Technology. Unpub-
lished, 1990.

[16] M. Silveira, A. Lumsdaine, and J. White, “SIMLAB users’ guide.” Research Labo-
ratory of Electronics, Massachusetts Institute of Technology, 1990.

[17] Thinking Machines Corporation, Cambridge, Massachusetts, USA, Connection Ma-
chine Model CM-2 Technical Summary, May 1989. Technical Report-General TR
89-1.

[18] A. Lumsdaine, M. Silveira, and J. White, “CMVSIM programmer’s guide.” Re-
search Laboratory of Electronics, Massachusetts Institute of Technology. Unpub-
lished, 1990. .

[19] A. Lumsdaine, M. Silveira, and J. White, “CMVSIM users’ guide.” Research Labo-
ratory of Electronics, Massachusetts Institute of Technology, 1990.

52 CHAPTER 3. PARALLEL SIMULATION ALGORITHMS

[20] Thinking Machines Corporation, Cambridge, MA, C* Programmer’s Guide, Novem-
ber 1990. '

[21] Thinking Machines Corporation, Cambridge, MA, C* User’s Guide, November 1990.

[22] A. Lumsdaine, J. Wyatt, and I. Elfadel, “Nonlinear analog networks for image

smoothing and segmentation,” Journal of VLSI Signal Processing, vol. 3, pp. 53-68,
1991.

L R i

Conjugate Direction Waveform
Methods with Application to
Semiconductor Device Transient
Simulation

4.1 Introduction

The enormous computational expense and the growing importance of mixed circuit /device
simulation, as well as the increasing availability of parallel computers, suggest that spe-
cialized, easily parallelized, algorithms be developed for transient simulation of MOS
devices {1]. Recently, the easily parallelized waveform relaxation (WR) algorithm was
shown to be a computationally efficient approach to device transient simulation [2]. How-
ever, the WR algorithm typically requires hundreds of iterafions to achieve an accurate
solution, which suggests that significant performance gains can still be realized by the
application of methods for accelerating the convergence of the WR algorithm.

For linear algebra problems, conjugate-direction algorithms have enjoyed success as
techniques for accelerating classical relaxation methods. Since the WR algorithm can in
some sense be considered a function-space generalization of a linear algebra relaxation
method, it seems only natural that conjugate-direction methods can be similarly gen-
eralized. Such a generalization can be rigorously analyzed with respect to asymptotic
behavior by formulating the conjugate-direction method as a Galerkin method.

Beginning in the next section, a Galerkin method will be developed for solving an
operator equation formulation of the linear time-varying initial-value problem. It is then

shown that certain conjugate-direction methods iteratively generate the Galerkin approx-

53

54 CHAPTER 4. CONIUGATE DIRECTION WAVEFORM METHODS

imations. The resulting methods are then combined with an operator Newton method
in a hybrid scheme for solving the nonlinear initial-value problem. The semiconductor
device transient simulation problem is described in Section 4.3. In Section 4.5, experi-
mental results are presented which demonstrate that the conjugate-direction acceleration

significantly reduces the computation time for device transient simulation.

4.2 Description of the Method

Consider the problem of numerically solving the linear time-varying initial value problem

(IVP),

(% +AM)=(t) = b() (4.1)

23(0) = oy

where A(z) € RV*N, b(t) € RV is a given right-hand side, and @(¢) € RV is the un-
known vector to be computed over the simulation interval ¢ € [0,T]. There are several
approaches to solving the IVP. The traditional numerical approach is to begin by dis-
cretizing (4.1) in time with an implicit integration rule (since large dynamical systems
are typically stiff) and then solving the resulting matrix problem at each time step. This
approach can be disadvantageous for a parallel implementation, especially for MIMD
parallel computers having a high communication latency, since the processors will have

to synchronize repeatedly for each timestep.

A more effective approach to solving the IVP with a paraliel computer is to decom-
pose the problem at the ODE level. That is, the large system is decomposed into smaller
subsystems, each of which is assigned to a single processor. The IVP is solved iteratively
by solving the smaller IVP’s for each subsystem, using fixed values from previous itera-
tions for the variables from other subsystems. This dynamic iteration process is known
as waveform relaxation (WR) or sometimes as the Picard-Lindeldf iteration [3].

In this section, conjugate-direction methods are considered for accelerating the clas-
sical dynamic iteration methods. The approach is to first convert the IVP to a system of
second-kind Volterra integral equations by using a “dynamic preconditioner.” Next, it is
shown that the classical dynamic iteration methods are obtained by applying the Richard-
son iteration to the integral equation system. Finally, conjugate-direction methods are
developed for accelerating the classical dynamic iteration methods. This development is
approached by considering conjugate-direction methods as Galerkin methods.

s i T

4.2. DESCRIPTION OF THE METHOD 55

4.2.1 Operator Equation Formulation

Let A(t) = M(t) — N(t) and consider the system of second kind Volterra integral

equations given by
2(t) - Bar(t,0)2(0) ~ [Bas(t,)N (s)a(s)ds = [‘Bult,)b(s)ds, (4.2)
where @), is the state transition matrix [4] for the equation
La(t) = M (t)x(t).

It is assumed throughout that A, M, and N are such that (4.1) and (4.2) each have
a unique solution. A sufficient condition for this assumption is that A, M, and N be
piecewise continuous; a weaker sufficient condition is that A, M, and N be measurable.
Note that the solution ® to (4.2) also satisfies (4.1). In some sense, (4.2) is obtained
from (4.1) by the application of a “dynamic preconditioner” to both sides of (4.1). More
precisely, this preconditioner, denoted M1 is defined by:

(M72)) = [“Ba1(t,)a(s)ds.

Informally, one can think of M~ as being (£ + M (t))™".

Equation (4.2) can be expressed as an operator equation over a space H as
(I -K)ex =1, A (4.3)

where H = Ly([0,T],RV), I : H — H is the identity operator, £ : H — H is defined by

(Kz)(t) = LtKM(t,s)a:(s)ds
= ‘/:@M(t,s)N(s)m(s)ds

and 7 € H is given by

(1) = Bur(t, 0)2(0) + [“Baa(t, s)b(s)ds.

The following are standard results (see, e.g., [5, 6]) which will be used in subsequent
discussions of (4.3).

Lemma 4.2.1. If M and N are piecewise continuous (or measurable) then @ is
measurable and hence K s € Ly([0, T} %[0, T], RV).

Lemma 4.2.2. If Ky € Lg([0,T] %[0, T),RV®), then the operator K has spectral

radius zero.

56 CHAPTER 4. CONJUGATE DIRECTION WAVEFORM METHODS

Lemma 4.2.8. If K € Lo([0,T]x [0, T}, R¥¥), then the operator K is compact.
Lemma 4.2.4. If Kr € Ly([0,T]x10,T],R¥¥), then K*, the adjoint operator for K,
is given by

K2 = [Kuls,t)) 2(s)ds

T
= /: [B1:(s,)N ()] 2(s)ds,
where superscript ! denotes algebraic transposition.

Remark. It should be apparent from Lemma 4.2.4 that, in general, X is not self-
adjoint. Therefore, attention is restricted to those conjugate-direction methods which

are appropriate for non-self-adjoint operators.

4.2.2 Classical Dynamic Iteration Methods

The classical dynamic iteration is obtained by applying the Richardson iteration to the
“preconditioned” problem (4.3):

2Fl = Kk +1p. (4.4)

This approach is known as the method of successive approximations, waveform relaxation,
or the Picard-Lindelof iteration (3, 6, 7, 8, 9].

Ezample. Let M(t) = 0. Then ®$5 = I so that (4.2) becomes

2(t) — 2(0) + /Ot A(s)a(s)ds = | “b(s)ds.

The corresponding dynamic iteration is

t
k41 — b —- A k d
(1) = 2(0) + [(b(s) ~ Als)a*(e)) ds
which is the familiar Picard iteration.

Ezample. Let M (t) be the diagonal part of A(t). Then (4.4) becomes the Jacobi

WR algorithm where the following IVP is solved at each iteration k for each z{**(t):

(j‘; + a,-,-(t)) xf'*‘l(t) + ga;j(t)l'?(t) = b;(t)
:E,(O) = Zg;-.

4.2. DESCRIPTION OF THE METHOD 57

As a direct consequence of Lemma 4.2.2, one has:
Theorem {.2.5. Under the assumptions of Lemma 4.2.1, the method of successive

approximations, defined in (4.4), converges.

Remark. Theorem 4.2.5 only provides a description of the asymptotic behavior of the
dynamic iteration. In [3], Miekkala and Nevanlinna, examine the dynamic iteration on the
infinite interval. In that case, more intuition about the convergence rate of the dynamic
iteration can be obtained, although the extent to which that intuition applies for a given
dynamic iteration on a finite interval depends on the stiffness of the problem.

4.2.3 Accelerating Dynamic Iteration Methods

Another approach to solving (4.3) is to apply a Galerkin method to solving a variational
formulation of the problem. This approach leads directly to the conjugate-direction
methods. Galerkin methods have been well studied for second-kind Fredholm integral
equations [6, 7], of which second-kind Volterra equations are a special case, but infre-
quently studied for second-kind Volterra equations in particular - (see, however, [10]).
With the conjugate-direction approach, instead of applying the Galerkin method over a
space of polynomials or splines, as is typical, one applies the Galerkin method over a
Krylov space generated by (I ~ K). The use of a Galerkin method over a Krylov space
generated by (I —X) is discussed in [1 1} and [12] where the approach is called the method
of moments (see also [13]).

The Galerkin Method

Let X and Y be Hilbert spaces and consider the operator equation
Az = (4.5)

wherez € X\,bcYand 4:X - Yisa bounded injective operator.

Here, a Galerkin method is any scheme where the solution = (4.5) is computed by
solving the problem in a sequence of finite-dimensional subspaces via the use of orthogonal
projections. That is, one takes the subspaces X” C X and Y* C Y with dimX® =
dim Y™ = n and requires the Galerkin approximation 2" to satisfy

(b—-Az™y) =0 Vye Y™~ (4.6)

In general, it is sufficient to satisfy (4.6) over some basis of Y» by defining X" =
span{u®, w?,. .. «""!} and Y* = span{v°,v,... 9" 1} so that the solution * must

58 CHAPTER 4. CONJUGATE DIRECTION WAVEFORM METHODS

satisfy
(b—Az",v'y =0 j=0,1,...,n—1. (4.7)

If " is taken to be

n—1

" = E 7{ ui
e
then (4.7) generates a linear system of equations for {y'}:

(AnZ:l'y"u", v?) = (b,v’).
=0
The crucial question, of course, is whether or not a particular Galerkin method con-
verges. To answer this, the following notion of convergence (which is standard for the
Galerkin method [6, 14]) is used:
Definition {.2.6. The Galerkin method is said to be convergent for the operator A if
the following hold for every b € Y,

1. The solution = € X to the original equation (4.5) exists and is unique.
2. Either:

(a) There exists an index M such that for every n > M, the Galerkin equation

(4.7) has a unique solution x™.

(b) The approximate solutions ™ converge, i.e., z* — ® as n — co.
or

(2) There exist indices M and N such that for everyn, M <n < N , the Galerkin
equation (4.7) has a unique solution z”.

(b) The solution 2V = =.

The particular Galerkin method in which Y = X and Y™ = X" is often called the
Bubnov-Galerkin method. If A is positive definite in addition to being bounded and
injective, it is well known that the Bubnov-Galerkin method is convergent for (4.5) [15].
Furthermore, if A is self-adjoint, the Galerkin approximations can be computed itera-
tively with the conjugate-gradient method (appropriately extended from RM to X, of
course) [6].

For the problem under consideration, the operator (I —K) is not self-adjoint, yet one

still seeks a conjugate-direction method appropriate for solving (4.3). Such methods can

4.2. DESCRIPTION OF THE METHOD 59

be derived by considering the Galerkin method where Y = A(X) and Y" = A(X"). That

is, " is required to satisfy
(b— Az", Au)) =0 j=0,1,...,n—1. (4.8)

Note that this method can also be derived from a wvariational formulation of the

problem. That is, instead of solving (4.5) directly, the following functional is minimized:
#(=z) = [|b — Ax|f?,

where ||2||> = (&,). Clearly, if (4.5) has a solution, the which minimizes ¢ will also
satisfy (4.5).
To be a minimizer of ¢(x) over € X", the projection of the gradient of ¢ onto X*

must be zero, that is,
(Vé(z™), v’y =0 j=0,1,...,n—1. (4.9)

An expression for the gradient, Vé(z), can be obtained by straightforward calculation
and is given in the following claim. ‘

Claim 4.2.7.

(V(z),9) = (b — Az, Ay)

By observation it can be noted that (4.9) is equivalent to (4.8). This particular method
is also known as the method of least squares [6, 15].

Now the main result can be stated.

Theorem 4.2.8. Let X be a Hilbert space and let A : X — X be a bounded bijective
linear operator. Let X® C X be a finite-dimensional subspace with X" C X"*! for all
n € N. If « is in the closure of § = U2, X", then the Galerkin method for (4.5) is

convergent. Moreover, there exists the estimate
e — 2" < Cllb— Az"™|} (4.10)
for some constant C depending only on .A.
Proof. The conditions for the method to be convergent are verified. Let
X" = span{u’,u!,... 4"}

Since A is bijective, the solution to (4.5) exists and is unique. Furthermore, there
exists a constant C' = ||A™!|f such that

=]l < C||A=]|. (4.11)

60 CHAPTER 4. CONJUGATE DIRECTION WAVEFORM METHODS

Case 1: It is first assumed that dim X" = n for all n € N. If the Galerkin equations
(4.8) are not uniquely solvable for some n, then the homogeneous portion of (4.8) has a
non-trivial solution, i.e., there exists a set of coefficients {v*}, not all zero, such that

n—1 .
YAk Auy =0 j=0,1,...,n—1.
k=0

A linear combination of u7’s is taken to obtain

n-1 n—1 i
(3 vhAut, 3 vty = o,
k=0 =0

which contradicts the assumptions that A is injective and dim X" = n. Therefore, (4.8)
is solvable for all n > 1.
If € cIS, then for any € > 0, there exists a Y € S such that

(= -9l < 5.

Since y € 8, there must be an integer N such that y € XV But in that case, one must

also have forn > N

(= -2 < A= -)] < =
because, from (4.9), " minimizes || A(z — y)|| for all y € X¥ and, as X* 5 XV for all
n 2 N, the minimum does not increase for n > N. Therefore, by (4.11), ||z — 2"|| < ¢

forn > N. Thus, " — & as n — co.
Case 2: Next, assume that dim$ = N. Without loss of generality, one can take § =

span{u®,u',...,u""1} and form X" = span{u?®,ul,. .. ,u™ 1}, The Galerkin equations
are then uniquely solvable forn =1,2,... . N. Kz € ¢l S, ¢ can be expressed as
N-1
z =) o'u.
i=0

Since b = Az, (4.8) is equivalent to

N-1
(A(z — V), Au’) = (A (o =), Aufy =0 j=0,1,... N-1.

=0

In particular,

N-l . . - N_l a - .
(A Z (o — v)u', A Z (o — v)u',) =0,
=0 =0

implying that of = 4%,: =0,...,N—1, i.e, that 2V = 2.
The estimate (4.10) follows from (4.11):

le — 2| < Cl|A(z - 2™)|| = Cll4e — A="||

4.2. DESCRIPTION OF THE METHOD 61

so that
lz —2™|| < Cllb — Az™|.

o

Remark. The case for which dimS = oo but dimX" # n for all n is handled by
redefining the X"’s so that the assumption dim X" = n holds (see [15, p. 93]).

Corollary {.2.9. The Galerkin method described in Theorem 4.2.8 is convergent for
(4.3) in the space H, with finite-dimensional subspaces H* = {¢,K1,... K" 14} for all
n € N. '

Proof. By the Riesz theory for compact operators, (I — K) is bounded and bijective

since K is compact. Let S = U, H". The recursive definition of H" guarantees that

1. HdimS = oo, then dimH" = n for all = € N, in which case the Galerkin equations
are uniquely solvable for all n € N.

2. f dimS = N, then dmH"*=n forall 1 <n < N and dimH" = N for all n > N.

To show that = € clS, note that
z=(I-K) "= ki
=0

where the Neumann series for (I — K)™! converges since the spectral radius of X is
zero. Since the sum Y22, K34 is clearly contained in clspan{p,K,K%p,...}, then
x € clspan{u®,u!,...}. a

Remark. Corollary 4.2.9 can be applied to the case where A = 7 — K, provided J
has a bounded inverse and the spectral radius of 7K is strictly less than unity. In that

case, J ! can be applied to the system to obtain
(I-T 'Kz =T

Corollary 4.2.9 is then applied since J 'K is compact.

Iterative Algorifhms

Various iterative algorithms exist which can be used to implement the Galerkin method
described in Corollary 4.2.9. The foremost of these in the linear algebra setting are
the generalized minimum residual algorithm (GMRES) [16] and the generalized conju-
gate residual algorithm (GCR) [17]. The GMRES and GCR algorithms can be adapted

62 CHAPTER 4. CONJUGATE DIRECTION WAVEFORM METHODS

Algorithm 4.2.1 (WGMRES).

Set r*=b—-Az°, 8=|+?|, and v° =7/
For k=1,2,... until (r¥ r¥) <,
hj,k = (Avj,v"), i = 1,2,...,]6
'&H'l = A'Uk - E;s:l hj,k'vj
hisrp = [[85F|
,vk+1 — i’k+1/hk+1,k
Set afF = 20 4+ VFyF
Here, y* minimizes ”ﬁel—ﬂkyk” where
H" is the (k+1) x k matrix with nonzero entries h;;,
V¥ =[v,...,v%], and
e; = [1,0,...,0/F

Algorithm 4.2.2 (WGCR).

Set p? =0 =b— Ax°
For k=0,1,... until {r* r*) <e¢
. A k gk

« = T A5

Z* = gk 4 op*

rH = pE _ o Ap*

P = pbtt | 3 i

vhere {f}]} are chosen so that

(Ap*t, Ap') =0 for 0K j <k

quite readily to the space H instead of RY and are shown in Algorithm 4.2.1 and Algo-
rithm 4.2.2, respectively. The function-space versions of these algorithms are referred to
as WGMRES and WGCR (waveform GMRES and waveform GCR) to distinguish them

from their linear algebra counterparts.
The two fundamental operations in Algorithm 4.2.1 and Algorithm 4.2.2 are the
operator-function product Ap and the inner product {-,-). When solving (4.3) in the

space H, these operations are as follows:
Operator-Function Product: To calculate w = (I — K)p:
1. Solve the IVP

(£ + M@)y(t) = N(@)p(t)
y(O) = po=120

—____—

BN s e

4.2. DESCRIPTION OF THE METHOD 63

for y(t), t € [0,T]; this gives y = Kp.
2. Setw=p—y

Inner Product: The inner product (z, y) is given by
N T
(@, y)=>]0 i(t)y(t)dt.
=1

Remark. Step 1 of the operator-function product is equivalent to one step of the clas-
sical dynamic iteration. Hence, the WGMRES and WGCR algorithms can be regarded

as being accelerations of the classical dynamic iterations.

The conjugate-direction methods are just as amenable to parallel implementation as
the classical dynamic iteration methods. As already discussed, one step of the dynamic
iteration is embedded within the operator-function product. Moreover, the inner product
is accomplished by N separate integrations of the pointwise product zi(t)yi(t), which can
be performed in parallel, followed by a global sum of the results.

Convergence Properties

The convergence result in Corollary 4.2.9 only provides an asymptotic estirmate. A
stronger convergence result can be obtained by making suitable assumptions about K;
in particular, it is assumed that K is a contraction.
Definition 4.2.10. An operator A : X — X is said to be a contraction on X iff for all
z € X,
Az < yli=|]

for some v € [0,1).

The assumption that K be a contraction may seem unnecessarily strong; however,
note that under the assumptions of Lemma 4.2.1, K is always a contraction over some
interval [0, 7.

Lemma 4.2.11. Under the assumptions of Lemma 4.2.1, there exists an interval [0, 7
such that K is a contraction on L,([0, 7], RM).

Proof. By assumption, K (i, s) = @a(t,s)N(s) is measurable, so that-
T T
K| <] f K(t,s)dsdt < T*C%
o Jo
where Cg = ess.sup, sep0, 71 K (t,5). But since

K| < I K|| |l

64 CHAPTER 4. CONJUGATE DIRECTION WAVEFORM METHODS

T < 'C'IIE can be chosen so that
IKz]l < ~ll=]|.

a

If K is a contraction, one can formulate the following result for the method of succes-
sive approximations.

Theorem 4.2.12. Let the system of (4.4) be such that K is a contraction, i.e., || <

Y| for some v € {0,1). Then, the method of successive approximations, defined in

(4.4), converges. Moreover, there exist the estimates
I — ¥ < yll2* — 27|

and
5]l < +*117°)..

Proof. Using (4.4),

et — 2| = |IKz* + ¢ — (Kb + y))]
= K=" - 2"
< i —2*).
Using ||&*+! — &*| = ||7¥||, the second estimate follows from induction on the first. O

If X is a contraction, one can formulate similar results for WGCR.
Theorem 4.2.13. Let the system of (4.4) be such that K is a contraction, i.e., |[Kz| <
7liz|| for some v € [0,1). Then, the waveform generalized conjugate residual algorithm,

Algorithm 4.2.2, converges. Moreover, there exists the estimate

. 0 (1-7)° : 0
17411 < g lakr = 1l < 1= G20 oy,

Proof. The result can be obtained by following the analogous proof for algebraic
GCR (17, p. 40}. O

To demonstrate the convergence properties of WGCR, the results of three numerical

experiments are presented. The three examples are of the 2x2 system

L2(t) + Az(2). (4.12)

4.2. DESCRIPTION OF THE METHOD 65

104 g
0k
102 ¢

165

WIS MR

104

101
0

Figure 4-1: Convergence comparison between WR and WGCR for the 2 x 2 system (4.12).
In this example, A has eigenvalues {1,10} and ||r||? is plotted against iteration number.

In the first experiment, A has eigenvalues {1,10}, in the second A has eigenvalues
{1,100}, and in the third, A has eigenvalues {1,1000}. The plots shown in Figures 4-1 —
4-3 compare convergence of Jacobi WR (JWR), Seidel WR (SWR), Jacobi-preconditioned
WGCR (JGCR), and Seidel-preconditioned WGCR (SGCR).

4.2.4 Hybrid Methods for Nonlinear Systems

Many interesting applications are not necessarily described by a linear system of ODE’s,

but rather by a nonlinear system of ODE’s:

Lo(t) + F(z(t),t) = 0

o) = 2 (4.13)

To solve (4.13), Newton’s method is applied directly to the nonlinear ODE system (in a
process sometimes referred to as the waveform Newton method (WN) [18]) to obtain the

following iteration:

(% + JF(wm)) ™t = Jp(z™)z™ — F(z™)

0 — o (4.14)

Here, JF is the Jacobian of F'. Note that (4.14) is a linear time-varying IVP to be solved
for 2™+ which can be accomplished with a waveform conjugate direction method. The
resulting operator Newton/conjugate-direction algorithm is shown in Algorithm 4.2.3;
note that the method is in the class of hybrid Krylov methods [19].

66 CHAPTER 4. CONIUGATE DIRECTION WAVEFORM METHODS

100

w0 |
102 |
102 |
104 |
£ oosl
w0 |
107 |

10

10¢ | -

10-10 L L . . .
0 10 20 30 40 50
Lieration

Figure 4-2: Convergence comparison between WR and WGCR for the 2x 2 system (4.12).
In this example, A has eigenvalues {1,100} and ||r||? is plotted against iteration number.

102 ¢ . Seidel 1
109 | ' .

104 b i
& jost .
10-6 | 4 |
108 | “‘-‘]’GCR .

'SGCR
10° | .

10-10 X L L " i s 1
0 20 40 &0 80 100 120 140

Teration

Figure 4-3: Convergence comparison between WR and WGCR for the 2 x 2 system (4.12).
In this example, A has eigenvalues {1, 1000} and |{r||? is plotted against iteration number.

4.3. DEVICE TRANSIENT SIMULATION 67

Algorithm 4.2.3 (Nonlinear GMRES/GCR).

Pick 2%, &€, v <1
For m =0,1,... until (@r™,r™} < ¢, °
Linearize (4.13) to form (4.14)
Solve (4.14) with Algorithm 4.2.1 or Algorithm 4.2.2 using €™
Update ™! and r™*!
Set emtl =¢™ .y

4.3 Device Transient Simulation

A device is assumed to be governed by the Poisson equation, and the electron and hole
continuity equations:

kT
Eq—v2u+q(p-*n+ND—NA) =0

dp

v.J —+R] =0
ptd (8t *)

where u is the normalized electrostatic potential, n and p are the electron and hole

concentrations, J, and J, are the electron and hole current densities, Np and N4 are

the donor and acceptor concentrations, R is the net generation and recombination rate,

g is the magnitude of electronic charge, and € is the dielectric permittivity [20, 21].

The current densities J, and J, are given by the drift-diffusion approximations:

Jn = —qDp(nVu—Vn)
J, = —qDy(pVu+Vp)

where D, and D, are the diffusion coefficients, which are assumed here to be related to
the electron and hole mobilities by the Einstein relations, that is D = % . Jp and J,
are typically eliminated from the continuity equations using the drift-diffusion approxi-
mations, leaving a differential-algebraic system of three equations in three unknowns, u,
n, and p.

Given a rectangular mesh that covers a two-dimensional slice of a MOSFET, a com-
mon approach to spatially discretizing the device equations is to use a finite-difference
formula to discretize the Poisson equation, and an exponentially-fit finite-difference for-

mula to discretize the continuity equations (the Scharfetter-Gummel method) [22]. On an

68 CHAPTER 4. CONJUGATE DIRECTION WAVEFORM METHODS

N-node rectangular mesh, the spatial discretization yields a differential-algebraic system

of 3N equations in 3N unknowns denoted by

fr{u(t),n(d),p(#)) = 0 (4.15)
fa(u(t),n(t),p(t)) = £n@) (4.16)
Fa(u(t),n(t),p(t)) = £p(t) (4.17)
where ¢ € [0,T], and u(t),n(t),p(t) € RN are vectors of normalized potential, electron

concentration, and hole concentration, respectively. Here, fy, fo, f3 : R3N — RN are

specified component-wise as

ekT f
Fri(uiy ne, piyug) = —'—‘ZLJ(U: u;) — qAi (pi — ni + Np — Na)
fa(wiyniyuj,mi) = ’_‘Zf}[njB(u,-—u,-)—n;B(u,-—u,»)] — R;
fa(ui, pisuypi) = D ZL [;i Blui—u;) _PiB(uj""U-i)] — R;
ij

The sums above are taken over the four nodes adjacent to node ¢ (north, south, east,
and west), Li; is the distance from node ¢ to node j, di; is the length of the side of
the Voronoi box that encloses node i and bisects the edge between nodes 7 and j, and
B(v) = v/(e’ — 1) is the Bernoulli function, used to exponentially fit potential variation
to electron concentration variation.

On the order of a thousand mesh nodes are typically needed to accurately represent
a 9-D slice of 2 MOS transistor, so that simulating a circuit where even a few transistors
are treated by numerically solving the device equations leads to an enormous coupled
system of algebraic and differential equations.

The standard approach used to solve the differential-algebraic system generated by
spatial discretization of the device equations is to discretize the d/dt terms with a low-
order implicit integration method such as the second-order backward difference formula.
The result is a sequence of nonlinear algebraic systems in 3N unknowns, each of which
can be solved with some variant of Newton’s method and/or relaxation [23]. Another
approach is to apply relaxation directly to the differential-algebraic equation system with
a WR algorithm [2, 24], as given in Algorithm 4.3.1.

In the presenf approach, the hybrid Krylov method described in Section 4.2.4 is
applied to (4.15)—(4.17) to obtain the following IVP at each Newton iteration m:

0 an szz J.fm um™t

4
Lt + J.fm szz J.fza n™t

dt
d
dtpm+1 Jfa: Jfa:z ‘Ifss pm+1

S T _alaes dMdidLsfAadAdAT A A S AW AT

Algorithm 4.8.1 (WR for Device Simulation).

guess u®, n° p° vaveforms at all nodes
for £=0,1,... until converged
for each node ¢
solve for uf—’”,nfﬂ,p,’-’*l wvaveforms:

fu(u o pf b)) = 0
fo(uf 0 ub nk) = dphn
Faulwi®, pi" b, pk) = Ap
" Ity Jne g, u™ fi(u™,n™, p™)
= I It Jis n™ | — | f,(u™,n" p™)
i J E Jfaa i fa (uma nm,pm)
EYS2T() [uo
w1 0) | = | no
P (0) | Po

4.4 Implementation

The nonlinear WGMRES and WGCR algorithms described in Section 4.2 were imple-
mented in Mark Reichelt’s WORDS program, a WR-based device transient simulation
program. In addition, a waveform-relaxation-Newton algorithm (WRN) and a waveform
conjugate-gradient-squared algorithm (WCGS) were implemented [9, 25]. As previously
mentioned, the operator-waveform product has embedded within it one step of tradi-
tional waveform relaxation. Therefore, the operator-waveform product routine need only
make a function call to the WR routine already implemented within WORDS — the
preconditioning scheme inherent to the WR routine will automatically be used by the
conjugate-direction method as well. In this section, the main WR routine already con-
tained within WORDS is described [2] and the modifications made to that routine to

support the conjugate direction methods are developed.

4.4.1 Main WR Routine

As reported in [2], the node-by-node Gauss-Jacobi WR. algorithm as given in Algo-
rithm 4.3.1 will typically require many hundreds (or even thousands) of iterations to

converge, severely limiting the efficiency of WR-based device simulation. Moreover, as-

70 CHAPTER 4. CONJUGATE DIRECTION WAVEFORM METHODS

signing each node to a separate proceésor in a parallel implementation would require on
the order of a thousand processors or more (the number of nodes necessary for accurate
device simulation). Since the WR. algorithm is more suited to a coarse-grained MIMD
type of architecture, such a fine-grained division of the problem is not necessary or de-
sirable. Instead of the node-by-node approach, WORDS collects groups of mesh nodes
into blocks and solves the nodes in each block simultaneously. The block WR. algorithm
is similar to node-by-node WR, except that the system of equations for each node ¢ in
Algorithm 4.3.1 is replaced by a larger system of equations representing the systems of
equations for all the nodes contained in block I. In each WR iteration, the solution
k(1) = [z1(2),-..,zn(1)]T is computed by solving the equation system for x1(t), the
vector of u, i, and p waveforms of the nodes in block 7, while holding the waveforms of
neighboring mesh nodes in adjacent blocks fixed. This approach of blocking for WR is
typical in WR-based circuit simulators [9].

Using blocks of nodes typically produces faster WR convergence; however, the compu-
tational expense of directly solving the system of equations for blocks of nodes is higher
than that for solving the smaller system of equations for a single node. Furthermore, the
same timepoints are used for all nodes within a block, so that a block algorithm cannot
take advantage of multirate behavior within a block. The challenge is to find a blocking
which covers the device mesh in relatively few easy-to-solve blocks and groups tightly-
coupled nodes together, but that does not group nodes together which are expected to
change at different rates.

The blocking scheme used by WORDS is to group together the nodes according to
the vertical lines of the discretization mesh — this has been shown to be a particularly

effective blocking strategy for MOSFET simulation [2] for the following reasons:

1. The vertical lines cross the oxide-silicon interface, a traditional source of numerical
difficulty with a Neumann reflecting boundary condition on the electron and hole

current equations.

2. Since each vertical line is essentially a one-dimensional device simulation problem
the resulting block-based problems produce block-tridiagonal matrices which are

easily solved.

3. Each vertical line in the channel of a MOSFET has both ends pinned by the gate
and substrate contacts, so that the line’s solution correctly accounts for these con-
tacts and directly captures the nonlinear electric field dependence governing surface

depletion and channel width from the very first WR iteration.

—-

4.4, IMPLEMENTATION 71

4. The vertical line blocking allows the WR, algorithmn to take advantage of the mul-
tirate behavior resulting from the horizontal distance between the contacts. For
example, if the drain voltage of a MOSFET is increased while the source is held
steady, more timepoints are needed to accurately resolve the widening of the drain

depletion region than are needed to resolve the source end of the device.

The main WR routine in the WORDS program uses a red/black block Gauss-Seidel
scheme, with vertical mesh-line blocks. In the main WR routine, the equations governing
nodes in each block are solved simultaneously using the second-order backward-difference
formula. The implicit algebraic systems generated by the backward-difference formula
are solved with Newton’s method and the linear equation systems generated by Newton’s

method are solved with sparse Gaussian elimination.

4.4.2 Operator Waveform Product

Although the operator waveform product has one step of traditional WR, embedded
within it, the main WR routine within WORDS is nonlinear WR, so some small mod-
ifications are necessary to compute the linearized WR step as required by the operator
waveform product.

For reasons of clarity, the methods for computing the linearized operator-waveform

product are developed by considering the nonlinear IVP (4.13):

#e(t) = F(=(t)1)
z(0) = =

instead of the device simulation equations. The waveform Newton algorithm (4.14) ap-

plied to solving the nonlinear IVP can be written as:

L™t 4 Jp(z™)e™? = Jp(e™)e™ - F(z™)
acm+1(0) = ®p

From (4.2), the preconditioned linear IVP is given by
2™ (1) ~ Bar(t, 0)2™(0) - [*Bar(t,)N (s)z™ (s)ds =
[@ult,) (Tr(a™(s), $)2™(s) ~ F(z™(s),) s,
or, in operator equation form, as

(I-K)z™ = .

72 CHAPTER 4. CONJUGATE DIRECTION WAVEFORM METHODS

Equivalently, the result of the operation Kz can be expressed as being the vector & which
satisfies the IVP
(£ +M(20),0)&(0) = N@@,02)
53(0) = X
(recall that Jp(z(t),t) = M(=(t),1) — N{z(t),1)).

In the following discussion, three different approaches are examined for calculating the

(4.18)

operator-waveform product product (I —K)z, or more specifically for calculating K.
The methods require increasing levels of modification to the main WR routine within

WORDS.

Matrix-Free Approach (Level One)

The simplest means of obtaining an approximation to the linearized operator waveform

product is to use a matrix-free approach. In this approach, K is approximated by
KpxW(z+p)-W(=)

where W (&) is taken to mean one iteration of the WR routine within WORDS, using 2
as the input.

The matrix-free approximation turns out to not be a very good approximation in
practice. This is due to more than the effects of the perturbation due to p. To see why,
consider a 2 x 2 example:

gd;ﬁb'x + filz1,22) = O

L35+ folz1,29) = 0
Let &, and &, be the output of one iteration of the Gauss-Seidel WR routine applied to
solving (4.19). Then & = [; #;]' satisfies

(4.19)

ﬁ@ + fi{#1,z2) = 0

%532 + fo(#1,%2) = 0

(4.20)

Let § be the output of one iteration of the Gauss-Seidel WR routine applied to solving
(4.19) with y as the input. Then

L+ f1(#h, y2) 0 (4.21)
Lo+ fa§1,82) = 0
Define p =y —« and p = § — Z. From (4.20) and (4.21), P satisfies (to first approxi-

mation):

- 8fy(Fuas) = . B,

Edfpl 4+ fig‘;ll.rzlpl + J'1(as;12mg_l
~ Py T ~ 8 T .5 -~

1, 4 2ertadp, 4 SaBE)E, = 0

P =0 (4.22)

4.4. IMPLEMENTATION 73

However, for p to be the result of the operator-waveform product within the conjugate-

direction method, it should satisfy:

dx | Bfilerzz)s | Bfilzy, _
by + 2Dfamlp, o Al p, o

Splriza) 5 afz(xz,xz)ﬁz —

T (4.23)
am + FEN b dz2

Comparison of (4.22) with (4.23) shows that the evaluation point of the Jacobian is
incorrect with the matrix-free approach.
The 2 x2 example is easily generalized to N dimensions:

Kp=W(z+p)-W(z)+O(|W(z)—=|)

This inaccuracy is present with any nontrivial decomposition of the problem (e.g., Gauss-
Jacobi will have this same inaccuracy). This inaccuracy is a function of ||£— || and hence

cannot be made smaller by scaling p as is typically done with matrix-free methods [19].

Relaxation Newton Approach (Level Two)

An improvement to the matrix-free approach is to instead use one step of a relaxation-
Newton method. This approach attempts to correct the problems in the level one method
regarding the evaluation points of the Jacobian. This approach is still approximate,
although experiments comparing the performance of the level two method with the level
one method indicate that the level two approach provides a much better approximation.

Consider one step of the Jacobi-Newton waveform method, in which the IVP

(£+D(2)2 = D(z)z~ F(z)

50 — o (4.24)

is solved for #. Define the operator M according to (4.24), i.e., # = He. Let § = H(z)y
be the result of the following iteration applied to y:

((+D@)¥ = D@y-F@) (£.25)
§(0) = v,

Note that D is still evaluated at . Define p = y — @ and p = § — &. From (4.24) and
(4.25), it is required that p satisfy

(£ +D(=))p = D(=)p—Jr(z)p+O(pl?
P(0) = po

or in operator equation formulation:

p=Kp = H(z)y — Hz + O(|pl[*)

14 CHAPTER 4. CONJUGATE DIRECTION WAVEFORM METHODS

fory==z+p.
In general, the operator H is defined by

¢
(Hz) (t) = Bu(t, 0)&(0) + [) B2, 5) (M (2(s), s)z(s) = F(x(s),5)) ds
or, equivalently, that & = Hz satisfies
(4 +M(z))& = M(z)z~F(e)
53(0) = Iq

The Jacobi-Newton iteration as described in (4.24) for M = D, computes Hae ex-
actly, and then the operator-waveform product is approximately computed according to
H(z)y — He. Now, for the case M # D, a second approximation is introduced, i.e., the
relaxation Newton for M # D only epprozimately computes H(z).

Consider, as an example, taking one step of the Seidel-Newton waveform method for

solving the nonlinear IVP. If the procedure is examined component-wise, the following

sequence of scalar IVP’s needs to be solved, where the dependence on ¢t is omitted for

clarity:
. OF(z),. ’
%(Il - 271) + 61.’1:1 (.7..'1 - -Tl) = —";—t.’cl — Fl(ﬁ)
OFy(z),. .
%(52 —z2) + 62;52)(Ig —z3) = —%zg — Fp(%1,72,..-)

The equation for Z; can be approximated by expanding Fy(%;,%q,...) in a Taylor series

about :
_ aFy(x), . .
%(xg — 352) 4 62:152)(1?2 et 332) = —7%.’1,‘2 —_ Fg(.‘l."], bt o) R .)
aF. . .
= —%.’Bg — FQ((U) — ——62%::)-(&1 - .’L‘l) + O((Il - 271)2)

so that
3F2(23)
32’!2

The Seidel-Newton waveform method can therefore be expressed compactly as approxi-

OF. .
g’;(fﬁg - 552) + —gx('—ic’)‘(il - SB]_) -+ ($2 - .‘1’22) ~ —"%272 — FZ(CD)

mately solving the system of equations:
£& + (L{z) + D(z))& = (L(z) + D(z)) = — F(z)

In this case, the approximation depends on |& — 2. In operator equation formulation,

the Seidel-Newton waveform method calculates

& = Ha + O(|[Hz — =|?)

4.4, IMPLEMENTATION 75

The WORDS program computes Hz by incorporating the following small meodifica-

tions to the main WR routine:

1. Use #™(t+h) as the initial guess for 2™ (1+ b) within the Newton iteration in the
numerical integration routine, instead of using an extrapolation based on values of

™+ at previous time points.
9. Perform only one Newton iteration at each timestep of the integration method.

In order to calculate F (z}y, there is the additional requirement of linearizing M about
« instead of y. Since approximations are already involved in the level two operator
waveform product, one additional approximation is made where H(z + p) is used in
place of H(z)(x + p), introducing an error of O(||p|l). Then, p is calculated according
to:

p=Kp=H(z +p) - He + O(IHz — =[I") + O(llpl) + o(lpl)-

Full Linearization Approach (Level Three)

The third, and most accurate approach, is to actually use the fully-linearized Jacobian.
To implement this, the main WR routine in WORDS was augmented in the following

manner:

1. Compute the full matrix J r(z) — this requires additional data-structures as well
as additional computation since the normal WORDS WR routine only requires the
diagonal blocks of J r(z).

9. Perform a matrix-vector product Jr(z)p in place of the function evaluation for F
__ the result of the matrix-vector product is used as the right-hand side for the

integration routine.

3. Perform only one Newton iteration at each timestep of the integration method

(since the problem is linear).

This approach gives the exact operator-waveform product for the conjugate-direction
methods, with the slight drawback of some extra function evaluations. Preliminary ex-
periments showed that this extra work was more than offset by improved performance;
thus the level three operator-waveform product was used for all experimental results

reported in Section 4.5.

76 CHAPTER 4. CONJUGATE DIRECTION WAVEFORM METHODS

4.4.3 Inner Product

The inner product {2, %) on the space H is given by

N 7
(x,y) = 2/0 x;(t)y:(t)dt.

A simple quadrature method (i.e., the trapezoidal rule) was used to perform the numerical

integration.

4.4.4 Initial Residual

The initial residual is calculated in WORDS with the main WR routine as well. In-
terestingly, the initial residual can be approximately calculated by taking one step of a
relaxation-Newton waveform method (in the present case, the Seidel-Newton waveform
method).

Again consider computing the linearized operator-waveform product for a conjugate-
direction method applied to the nonlinear IVP. The initial residual for the preconditioned
linear IVP is simply ¥ — (I — K)2™**°, or

PO By (1, 002" 10(0) + [Baalt,) (TR(E™(e),5)e™(5) = F(7(6),) s
+ [Bult,)N(@™(s),)™ (s)ds — 2" (1)

= Pp(t,0)zo+]Ot (L, 8) (M(z™(s),s)z™(s) — F(z™(s),5)) ds - 2™L(1)

Here, it is assumed that 2™+1% = 2™,

Consider one step of the Jacobi-Newton waveform method, in which the IVP
(4 + D(z(t),t)) & = D(=(t),t)e — F(x(t),t)
z{0) = =g
is solved for #. In other words,
£(t) = $o(,0)80 + | “@p(t, s) (D((s), s)a(s) ~ F(e(s),s)) ds
which can be expressed in operator equation form as
& = Hpz
Now, it should be easy to see that
PO = g — (I - Kp)a™?

'l,b + EDxm-i-l,O _ mm-{-l,U

= Hpa™ —™

4.5. EXPERIMENTAL RESULTS 77

where Hp and Kp are defined by substituting D for M in the definitions of H and K.

Here, it has been attempted to calculate Ha in the same way as for the level two
operator-waveform product. That is, for M # D, one step of relaxation-Newton only
approximately computes the 2. This is the only approximation involved for the residual
calculation and is much less grievous than, say, the approximations made in the level
one and level two operator-waveform product methods. In any case, WORDS uses the

following relationship for the initial residual:

rm+1,0 =Hg™ — g™

4.5 Experimental Results

Four N-channel MOSFET examples were used to compare the performance of the relax-

ation and conjugate-direction waveform methods:

kG: 2.2 um channel-length; 50 psec, 0-5V ramp on the gate with the drain at 5V.
kD: 2.2 um channel-length; 50 psec, 0-5V ramp on the dra,ir; with the gate at 5V.
JG: 0.17 um channel-length; 5 psec, -1V ramp on the gate with the drain at 1V.
JD: 0.17 ym channel-length; 5 psec, 0-1V ramp on the drain with the gate at 1V.

The parameters used with the conjugate-direction methods were: ¢ = 0.1, » = V0.1,
and ¢ = 1x10718. To simplify comparisons, 32 equally-spaced timesteps were used in all
experiments.

Table 4-1 shows the number of function evaluations and the CPU time required for
each of the waveform methods to reduce the max-norm of the drain terminal current error
below 0.01% of the max-norm of the drain terminal current. As Table 4-1 indicates,
conjugate-direction methods significantly reduced the number of function evaluations
and CPU time over WR and WRN. In fact, in the JG example, WCGS is 22 times
faster than ordinary WR. As is common in the algebraic case, WGMRES and WGCR
perforin similarly in terms of function evaluations, but WGMRES is computationally
more efficient because it avoids several waveform inner products on each iteration. As
is also common in the algebraic case, WCGS performs very well on most problems, but
can also exhibit convergence difficulty on others.

Note that the speedup in CPU time is not as impressive as the speedup in terms of
function evaluations. This is partly due to the extra work required at each iteration of
the conjugate-direction methods — however, careful profiling and hand optimization of

78

Table 4-1: Comparison of WR, WRN, WGCR, WGMRES, and WCGS. CPU times shown

CONIUGATE DIRECTION WAVEFORM METHODS

CHAPTER 4.

Example Method FEvals CPU sec

D WR 843x10° 14469
WRN 3.77x 108 7088
WGCR 2.21 % 10° 1138
WGMRES | 2.21 x10° 991
WCGS 2.77x10° 820

iG WR 7.48x10° 12615
WRN 3.41x10° 6214
WGCR 1.97x10° 1011
WGMRES | 1.97x10° 877
WCGS 1.97x 10° 568

kD WR 1.22x10° 1526
WRN 3.94x 10° 559
WGCR 9.03 x10* 315
WGMRES | 9.03 x 10* 280
WCGS 9.92 x 104 214

kG WR 1.43x 108 1756
WRN 4.09x10° 578
WGCR 1.03x10° 353
WGMRES | 1.03x10° 316
WCGS Non-Convergence

are for an IBM RS/6000 model 540.

4.5. EXPERIMENTAL RESULTS 79

102

w]
w01}

.
.

o3| |

Drain Current Accuracy {percent/100}

Ly
-,
.
-,

104}

10-5

0.5 1 1.5 2 25 3 35 4

Function Evaluations x105

Figure 4-4: Convergence comparison between WR (dotted), WRN (dashed),
WGCR/WGMRES (solid), and WCGS (dash-dotted) for jD example. The max-norm
of the relative drain terminal current error is plotted against the number of function
evaluations.

10

¥ b}
\
LY
100 B \
3 %
\“ -
100+) ™, h

wil |3 \ 1

102t

Drain Current Accuracy (percent/10C)

103} ' ‘n“ _

104 l\ 1 2 Ml AL 3 i 1 L
4] 1 2 3 4 5 5 7 g 9 10

Function Evaluations x10%

Figure 4-5: Convergence comparison between WR (dotted), WRN (dashed),
WGCR/WGMRES (solid), and WCGS (dash-dotted) for kD example. The max-norm
of the relative drain terminal current error is plotted against the number of function
evaluations.

80 CHAPTER 4. CONIJUGATE DIRECTION WAVEFORM METHODS

the conjugate-direction code will improve the CPU time comparison. The difference is
especially apparent with WGMRES and WGCR, because the amount of extra work per
iteration grows linearly with the number of iterations (the number of linear iterations
per Newton iteration in the nonlinear versions). On the other hand, WCGS maintains
the same amount of work per iteration but can suffer from occasional stability problems.
Recently, Freund and Nachtigal have developed the QMR algorithm which is character-
ized by a minimization property over a Krylov space but which does not have a linearly
increasing amount of work per iteration [26]. A function-space generalization of the QMR
algorithm is a topic which is currently being investigated.

The graphs in Figures 4-4 and 4-5 compare the convergence of WR, WRN, WGCR,
WGMRES, and WCGS for the jD and kD examples, respectively. In the graphs, the
terminal current error versus number of function evaluations is plotted and clearly demon-

strates the rapid convergence of the conjugate-direction methods.

4.6 Conclusion

In this chapter, some new dynamic iterative methods were presented to accelerate the
convergence of the WR algorithm. The methods are based on the application of the
Galerkin method to an operator equation formulation of the linear time-varying initial-
value problem. Experimental results demonstrated that this acceleration significantly
reduces the computation time for device transient simulation.

Future work is primarily focused on developing theoretical results about the con-
vergence of linear and nonlinear conjugate-direction methods for differential-algebraic
systems of equations. Expectations are to be able to provide intuitive convergence rates
as in [3] and [27]. Other open questions remain regarding the behavior of the conjugate
direction methods in the presence of multirate integration methods as well as in the pres-
ence of errors due to numerical quadrature. Finally, the function-space generalization of
the QMR algorithm is under further study.

References

[1}] W. Engl, R. Laur, and H. Dirks, “MEDUSA — A simulator for modular circuits,”
IEEE Trans. CAD, vol. 1, pp. 85-93, April 1982.

[2] M. Reichelt, J. White, and J. Allen, “Waveform relaxation for transient two-
dimensional simulation of MOS devices,” in International Conference on Computer
Aided-Design, (Santa Clara, California), pp. 412-415, November 1989.

4.6. CONCLUSION 81

(3] U. Miekkala and O. Nevanlinna, “Convergence of dynamic iteration methods for
initial value problems,” SIAM J. Sci. Stat. Comp., vol. 8, pp. 459-467, 1987.

[4] R. W. Brockett, Finite Dimensional Linear Systems. New York: Wiley, 1970.

[5] J. B. Conway, A Course in Functional Analysis, Second Edition. New York:
Springer-Verlag, 1990.

[6) R. Kress, Linear Integral Equations. New York: Springer-Verlag, 1989.

[7] K. E. Atkinson, A Survey of Numerical Methods for the Solution of Fredholm Integral
Equations of the Second Kind. Philadelphia: STAM, 1976.

[8] P. Linz, Analytical and Numerical Methods for Volterra Equations. Philadelphia:
SIAM, 1985.

[9] J. K. White and A. Sangiovanni-Vincentelli, Relazation Techniques for the Simu-
lation of VLSI Circuits. Engineering and Computer Science Series, Norwell, Mas-
sachusetts: Kluwer Academic Publishers, 1986.

[10] R. C. MacCamy and P. Weiss, “Numerical solution of Volterra integral equations,”
Nonlinear Anal., vol. 3, pp. 677-695, 1979.

[11] G. Miel, “Tterative refinement of the method of moments,” Numer. Funct. Anal. and
Optimiz., vol. 9(11-12), pp. 1193-1200, 1987-1988.

[12] P. Omari, “On the fast convergence of a Galerkin-like method for equations of the
second kind,” Math. Z., vol. 201, pp. 529-539, 1989.

[13] Y. V. Vorobyev, Method of Moments in Applied Mathematics. New York: Gordon
and Breach, 1965.

[14] E. Zeidler, Nonlinear Functional Analysis and its Applications. New York: Springer-
Verlag, 1985.

(15] S. G. Mikhlin, Variational Methods in Mathematical Physics. New York: Macmillan,
1964.

[16] Y. Saad and M. Schultz, “GMRES: A generalized minimum residual algorithm
for solving nonsymmetric linear systems,” SIAM J. Sci. Statist. Comput., vol. 7,
pp. 856-869, July 1986.

[17] H. C. Elman, Iterative Methods for Large Sparse Nonsymmetric Systems of Linear
Fquations. PhD thesis, Computer Science Dept., Yale University, New Haven, CT,
1982.

[18] R. Saleh and J. White, “Accelerating relaxation algorithms for circuit simulation
using waveform-newton and step-size refinement,” IEEE Trans. CAD, vol. 9, ro. 9,
pp. 951-958, 1990.

82 CHAPTER 4. CONJUGATE DIRECTION WAVEFORM METHODS

[19] P. Brown and Y. Saad, “Hybrid Krylov methods for nonlinear systems of equations,”
SIAM J. Sci. Statist. Comput., vol. 11, pp. 450-481, May 1990.

[20] R. Bank, W. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose, and R. Smith, “Tran-
sient simulation of silicon devices and circuits,” IEEE Trans. CAD, vol. 4, pp. 436-
451, October 1985.

[21] S. Selberherr, Analysis and Simulation of Semiconductor Devices. New York:
Springer-Verlag, 1984.

[22] D. Scharfetter and H. Gummel, “Large-signal analysis of a silicon read diode os-
cillator,” IEEE Transactions on Electron Devices, vol. ED-16, pp. 64-77, January
1969.

[23] K. Mayaram and D. Pederson, “CODECS: A mixed-level device and circuit simu-
lator,” in International Conference on Computer Aided-Design, (Santa Clara, Cali-
fornia), pp. 112-115, November 1988.

[24] E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli, “The waveform
relaxation method for time domain analysis of large scale integrated circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Czrcmts and Systems, vol. 1,
pp. 131-145, July 1982.

[25] P. Sonneveld, “CGS, a fast Lan{:{zos—type solver for nonsymmetric linear systems,”
STAM J. Sci. Statist. Comput., vol. 10, pp. 36-52, 1989.

[26] R. W. Freund and N. M. Nachtigal, “QMR: A quasi-minimal residual method for
non-Hermitian linear systems,” Tech. Rep. 90.51, RIACS, NASA Ames Research
Center, December 1990.

[27] U. Miekkala, “Dynamic iteration methods applied to linear DAE systems,” J. Com-
put. Appl. Math., vol. 25, pp. 133-151, 1989.

Conclusions

The observation was made in the introduction that for specific initial value problems,
one can achieve the largest performance gains by using closely matched algorithms and
architectures to exploit characteristic features of the particular problem to be solved.
This claim was well borne out by the results obtained by both the circuit and device
simulation problems.

In developing algorithms for the vision circuits in Chapter 3, the fact was exploited
that the circuits have a regular structure which maps nicely to a massively parallel
architecture. Moreover, the coupling between cells in these arrays is such that block
iterative methods could be used to solve the equations generated by an implicit time-
discretization scheme. The experimental results were very encouraging. A circuit having
over 300,000 SPICE level 3 MOS devices was simulated in about half an hour, compared
to three days using even the best serial algorithm running on a Sund/490. The simulation
capability provided by cMvsiM should make it a useful tool in the design cycle of real
robotic vision circuits.

In Chapter 4, a new class of waveform methods was developed to accelerate the con-
vergence of the WR algorithm. Although the conjugate direction waveform methods are
‘more general than the techniques developed for the vision circuits, they were particularly
effective in reducing the computation time for performing device transient simulation. In
the best cases, computation time was reduced by more than an order of magnitude over

the conventional WR algorithm.

83

