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Abstract

Advancement in VLSI and MEMS technologies necessitates accurate prediction of
inductive e�ects. In the VLSI world, ever increasing VLSI circuit speeds pose challenges
for accurate modeling of on-chip inductive e�ects and their e�ects on circuit performance.
In this scenario, minimizing inductive e�ects is a challenging issue. Additionally, in
the MEMS �eld, several new MEMS designs generate large forces using magnetic �elds
combined with highly permeable materials. Accurate and e�cient inductance solvers are
essential for the analysis and developments of such devices.

This thesis describes several algorithms for accurate simulation of inductive e�ects.
Part I deals with the analysis of on-chip interconnect inductive e�ects. It �rst investigates
the interconnect coupling inductance and its e�ect on circuit crosstalk. The e�ect of the
�nite conductivity semiconductor substrates on inductive coupling and signal integrity
is simulated. Limitations of standard approaches for estimating coupling inductance
are examined. A method for the reduction of the coupling inductance is also proposed.
Part I then analyzes the minimization of the interconnect self inductance, and therefore,
reducing its e�ect on signal delay and delay skew. Di�erent techniques for reducing
interconnect self inductance are compared. The proposed less area-consuming technique
with very little area penalty are more e�ective at minimizing self-inductance than the
commonly used dedicated ground planes technique.

In the second part of the thesis, a fast algorithm to e�ciently extract the frequency
dependent inductance for 3-D structures that contain permeable materials is developed.
The method uses a magnetic surface charge formulation, with very e�cient techniques
for evaluating the required integrals. This approach avoids numerical cancellation errors
by calculating �elds outside of the permeable material. The resulting system is solved
iteratively using a preconditioned GMRES method to allow the analysis of complicated
structures.

Thesis Supervisor: Jacob K. White
Title: Professor of Electrical Engineering and Computer Science
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1

Introduction

Inductance modeling and inductive e�ects simulation are becoming very important

factors in the design and analysis of VLSI circuits and microelectromechanical devices

(MEMS).

The design process of high performance microprocessors is being increasingly im-

pacted by inductive e�ects [1]. This was forecasted by well known technology trends [2].

The rapid rate of process technology advancements and heightening market pressures

for functional integration are resulting in larger VLSI chips operating at steadily in-

creasing frequencies. The adverse e�ect of these developments is the increase in the

on-chip interconnect inductance, and consequently, increase in signal delay and circuit

crosstalk. Interconnect lines with larger inductance will display increased sensitivity to

distant variations in interconnect topology, since magnetic e�ects have a much longer

spatial range than electrostatic e�ects. Prediction of on-chip inductance and its e�ect on

circuit performance is di�cult because of this long range sensitivity

Until recently, the semiconductor substrate was commonly assumed to be a proximate

ideal ground plane and based on this theory, on-chip coupling inductance was assumed

to be negligible. Utilizing this ideal ground plane assumption has led to simplistic mod-

els for the coupling inductance between interconnect lines, which predict small coupling

inductance. Additionally, most delay analysis tools do not model interconnect self induc-

tance, and are limited to RC networks leaving an inherent unpredictability in the design

19



process where inductive e�ects are suspected.

Permeable materials have been used in many of today's MEMS devices such as, mi-

cromotors [3], planar inductors [4, 5, 6, 7, 8], and magnetic force based actuators [9,

10, 11, 12, 13] to increase the device's inductance, and consequently, the force gener-

ated by the device. Permeable materials have been also used in magnetic micro power

applications to miniaturize various electronic devices including inductors and transform-

ers [14, 15, 16, 17, 18, 19].

A common approach to extract the inductance for these structures is to apply a

�nite di�erence or �nite element method to the governing equations in di�erential form.

Such an approach generates a global mesh for all parts of analyzed structure and for

surrounding external space. This causes the number of unknowns to increase signi�cantly,

and thus, a very large linear system can be generated, as shown in Figure 1-1. Solving

this large generated linear system requires excessive memory, and consumes long CPU

time which makes the analysis of complex 3-D permeable structures impractical.

Additionally, most of the approaches that compute the magnetic �eld for structures

that contain permeable materials assume the uniformity of the current distribution across

the cross section of the current carrying conductors. This assumption is only valid at

very low frequencies, which makes it impractical to be used with the steadily increasing

operating frequencies.

V
Permeable

Material
Currents

Figure 1-1: Finite di�erence discretization of all of space
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Part I of this thesis investigates on-chip inductance. In Chapter 2, we investigate

the interconnect coupling inductance and its e�ect on circuit crosstalk. In order to

examine the accuracy of the standard ideal ground plane assumption, we simulated the

semiconductor using a full 3-D mesh of �laments, and extended the 3-D inductance

extraction program Fasthenry to include �nite conductivity volume ground planes. We

then used that capability to more accurately model the semiconductor substrates, and

its e�ect on coupling inductance. In Chapter 2, we also investigate the e�ect of the

on-chip inductive coupling on circuit cross-talk. In addition, the limitations of standard

approaches for estimating coupling inductance are examined. A method for the reduction

of the coupling inductance is also discussed.

Chapter 3 deals with interconnect self inductance. A highly e�ective method for mini-

mizing self inductance without increasing die area has been demonstrated. This approach

can be used to help constrain a design to the RC domain to maintain predictability at

some performance cost, or it can be used as a basis for alternative design rules where

inductance and capacitance must be traded o� to optimize for speci�c performance tar-

gets.

In part II of this thesis, we develop a fast algorithm to e�ciently extract the fre-

quency dependant inductance in presence of linear permeable materials. The approach

used is based on including �ctitious magnetic surface charges. This method avoids com-

puting �elds inside the permeable materials, as these small �elds are di�cult to compute

accurately due to numerical cancellation errors. In Chapter 4, we derive the integral

formulation and then, in Chapter 5, we show how the individual integrals in the integral

formulation are e�ciently evaluated. In Chapter 5, we describe computational experi-

ments that demonstrate the validity and accuracy of our formulation by comparing the

numerically computed results to analytically derived results and published data. In Chap-

ter 6, we show di�erent examples which exhibit frequency dependent inductance, and we

also show the variation of inductance with permeability. We also show how the resulting

linear system can be solved iteratively using a preconditioned GMRES method. Finally,

in Chapter 7, we summarize the work done in thesis and discuss possible extensions of

21



the algorithms presented.

Many of the sections of this thesis also exist in published form. some of Part I appears

in [20, 21, 22, 23, 24]. All of part II (Chapters 4, 5, and 6) is implemented in C code

available from ftp://rle-vlsi.mit.edu/pub/fastmag. Sections of Part II appear in

[25, 26, 27].
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Part I

Minimizing On-Chip Inductive

E�ects
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In this part of the thesis, we analyze on-chip inductive e�ects and explore methods to

minimize these e�ects. In Chapter 2, we investigate the interconnect coupling inductance

and its e�ect on circuit crosstalk. In order to examine the accuracy of the standard ideal

ground plane assumption, we extended the 3-D inductance extraction program Fasthenry

to include �nite conductivity volume ground planes. We then used that capability to more

accurately model the semiconductor substrates and its e�ect on coupling inductance. In

section 2.2, we briey describe the standard technique to model the semiconductor sub-

strate. In section 2.3, we briey describe the Fasthenry program and our modi�cations.

In Section 2.4, we show the simulated frequency dependant coupling inductance, and

then in section 2.5, we discuss the limitations on the standard approach. In section 2.6,

we show the e�ect of the inductive coupling on some circuits with di�erent technologies.

Finally in section 2.7, we discuss a method for the reduction of the coupling inductance

and its e�ect on circuit crosstalk.

Chapter 3 deals with interconnect self inductance and demonstrates a highly e�ec-

tive method for minimizing self inductance without increasing die area. In section 3.2,

we examine the inductance of a signal line sandwiched between ground return lines and

show that line spacing can have only a limited impact on self-inductance. In section 3.3,

we use three-dimensional magnetoquasistatic analysis to show that for integrated circuit

interconnect operating at below twenty-�ve gigahertz, it is the low frequency inductance

that predicts performance[3]. In section 3.4, we compare the performance of the sand-

wiched structure, using two dedicated ground planes and interdigitating thinned signal

lines with thinned ground lines. Results in section 3.4 demonstrate that the interdigitated

approach reduces self-inductance by more than a factor of four over the other techniques,

for a modest rise in capacitance, resistance and area.
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2

E�ect of Substrate Conductivity on

Coupling Inductance and Signal

Integrity

2.1 Motivation

In order to understand the e�ect of interconnect coupling inductance on circuit

crosstalk, consider the example of a pair of parallel interconnect lines over a semiconduc-

tor substrate driving two inverters , as shown in Figure 2-1. While one of the lines, is

switching the other line is quiet. Due to the inductive coupling between the two lines,

the quiet line will exhibit a voltage glitch on it. This voltage glitch can produce wrong

logic and thus circuit failure. This makes it very important to accurately simulate the

e�ect of the coupling inductance on circuit crosstalk.

2.2 Standard Approach for Computing Coupling

Inductance

It is commonly assumed that on-chip inductive coupling e�ects are negligible, and this

assumption is based on the presumption that the semiconductor substrate is a proximate

ideal ground plane. For example, using the ideal ground plane assumption leads to a
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V1Semi−conductor substrate

V2

y

Figure 2-1: Two long interconnect lines running over a semiconductor substrate

simple model for the coupling inductance between parallel interconnect lines. A pair of

parallel lines of length l, with a separation distance y and height above the ground plane

1

2
z can be represented, using the method of images, as the two loop structure shown in

Figure 2-3. Two-dimensional analysis [28] of the structure leads to a simple formula for

the coupling inductance,

L =
�0l

�
ln

p
y2 + z2

y
; (2:1)

where l; z and y are the loop length, height and separation respectively, as de�ned in

Figure 2-3. Figure 2-4 veri�es that equation (2.1) is accurate for the two-loop model

when l > y .

2.3 Simulating Substrates using 3-D Ground Planes

In order to capture the current distribution and the skin e�ect in the semiconduc-

tor substrate, we simulated the semiconductor using a full 3-D mesh of �laments. We

extended the 3-D inductance extraction program Fasthenry [29] to simulate 3-D ground

planes.

Fasthenry uses a standard �lament discretization of an integral formulation of mag-
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Figure 2-2: Two conductors over a semi-
conductor substrate
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l z

Figure 2-3: Simple two-loop coupling in-
ductance model.
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Figure 2-4: Comparison between the inductance predicted by equation (2.1) and actual
inductance for the two loop model

netoquasistatic coupling [30]. The integral equation is

J(r)

�
+
jw�

4�

Z
V 0

J(r0)

jr � r0j
dv0 = �r�(r); (2:2)

where � is referred to as the scalar potential, and V 0 is the volume of all conductors.

Then, by simultaneously solving (2.2) with the current conservation equation,

r � J = 0; (2:3)

conductor current densities, J , and the scalar potential can be computed. In Fasthenry,
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Figure 2-5: Substrate volume �lament-based discretization.

a mesh formulation of the discretized equation is used to generate a dense system of

equations which is solved iteratively using the fast multipole algorithm [31, 32]. In order

to examine the impact of the �nite conductivity of the semiconductor substrate ground

plane, a volume �lament discretization [33] for the semiconductor substrate was added

to the Fasthenry program, as shown in Figure 2-5. The volume �lament discretization

for the substrate was constructed by �rst laying down a three dimensional grid of nodes,

and then with �laments, connecting each node to its adjacent nodes excluding diagonally

adjacent ones, as shown in Figure 2-6. Filament cross sections are chosen such that no

space is left between parallel adjacent �laments.

2.4 Coupling Inductance Behavior

In this section, we examine the impact of the semiconductor substrate conductivity

on coupling inductance. For the simulation examples below, the cross section of the

conductors is 1� by 1�, reasonable for current DRAM technology [34]. The conductors

were also chosen to be 100� long, 1� above the substrate, and have 2� separation distance
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Figure 2-6: a 2 by 2 by 2 substrate volume discretization to demonstrate how the
�laments, in Figure 2-5, are connected.
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Figure 2-7: Convergence of the coupling inductance with discretization re�nement.
Solid line represents 30� substrate thickness, and the dashed line represents 20� substrate
thickness.
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Figure 2-8: Inductance as a function of frequency for both an aluminum and semicon-
ductor substrate. Substrate thickness is 20�.

between them.

In Figure 2-7, the coupling inductance as a function of volume discretization is plotted

for both very high and very low frequency. As is also shown in Figure 2-7, the formula

based on the two-loop model accurately predicts the high frequency coupling inductance.

For this comparison, the loop height z in equation (2.1) was set to twice the distance to

the substrate, based on the method of images approach [35].

The modi�ed Fasthenry program was also used to compute the coupling inductance

as a function of frequency, for both realistic and idealized substrate conductivities. The

results are plotted in Figure 2-8. Note that the results in Figure 2-8 clearly indicates

that with a semiconductor substrate (1019cm�3 doped silicon), and assuming operating

frequencies below 20 gigahertz, it is the low-frequency-limit inductance, not the high-

frequency-limit inductance, that is most important for predicting on-chip inductive cou-

pling. Figure 2-8 also shows that the transition from low-frequency-limit inductance to

high-frequency-limit inductance occurs at much higher frequency than 20 gigahertz for

lighter doped silicon substrates. For instance, it occurs at 100 gigahertz for a 1017cm�3
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Figure 2-9: Comparison of the coupling
inductance predicted by the two loop model
with a \best-�t" loop height of 14:3� ,
and the simulated coupling inductance as
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doped silicon substrate.

2.5 Limitations of the Standard Approach

The two-loop model is inadequate for modeling the low-frequency-limit inductance.

In Figure 2-9, it is shown that even by selecting a modi�ed loop width, z, in the two-loop

model of Figure 2-3, the model does not accurately predict parallel line inductive coupling

over a range of conductor separations. Note that a \best-�t" loop height of 14:3� was

used for the comparison but the conductors are only 1� above the ground plane.

The simple model fails primarily because the low-frequency coupling inductance over

a substrate ground plane is more three-dimensional in nature than can be modeled by a

loop. This is demonstrated clearly in Figure 2-10, where the plots of inductance per unit

length show a signi�cant change with conductor length. This three-dimensional behavior

is due primarily to the current spreading from the contact points through the substrate,

as shown in Figure 2-11.

2.6 E�ect of Coupling Inductance on Signal In-

tegrity

In order to simulate the e�ect of the coupling inductance on circuit crosstalk, we ran

our program on some examples. Consider 16 parallel 1000� long data lines, where 15

of them are switching simultaneously, as shown in Figure 2-12. The capacitance was

calculated using the capacitance simulator, Fastcap [32]. The devices used were 0:5�

device technology. Step input signals with a rise time of 0.15 nsec were used to simulate

the clock.

As shown in Figure 2-13, a voltage glitch of more than 1 volt appears at the end of

the unswitched bus lines. Another example is a bus crossing structure consisting of two

levels of four conductors, as shown in Figure 2-14. The bus structure produces a voltage

glitch of 0.6 volts at the end of one line when the other 7 conductors are simultaneously
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Figure 2-12: 16 Bit Data Bus, running
over 30�thick silicon substrate. Length of
each line is 1000�.
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Figure 2-13: Cross-coupled voltage glitch
appears on the unswitched line due to the
simultaneous switching of the other bits on
the 16 bit data bus example.

Silicon Substrate

1mu

1mu

1mu

1mu

1mu

Figure 2-14: Two levels of conductors,
each level consists of 4 conductors Length
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Figure 2-15: Cross-coupled voltage glitch
appears on the unswitched line due to the
simultaneous switching of the other lines on
the 2 by 4 bus example.
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switching, as shown in Figure 2-15.

2.7 Reducing Interconnect Coupling Inductance

It is possible to reduce the coupling inductance by using aluminum interconnect cur-

rent return paths, rather than substrate return paths, as shown in Figure 2-16. Fig-

ure 2-17 shows that for a separation y = 3�, the coupling inductance when using an

interconnect return path is less than that of using a substrate return path as long as the

distance to the return path, x, less than 400�. However, in order to get a signi�cant

reduction in the coupling inductance, the return paths must be very close to the original

conductor, For instance, to get a 5 times reduction in the coupling inductance, x should

be less than 3�.

In order to verify this method of the coupling inductance reduction, and show its

e�ect on circuit cross-talk, an example of 8 parallel 1000� data lines is used. Figure 2-18

shows the cross voltage glitch that results on the unswitched line when other bits are

simultaneously switching. It shows that the voltage glitch get reduced 3 times when

every other line is grounded. This reduction in the coupling inductance cross voltage

glitch was expected in the previous section, since the return path is close to the original

conductor. The cost of this cross-talk reduction is that twice the number of lines has

been used.

2.8 Analyzing Shielding E�ects

Figure 2-19 shows that when grounding every third line, the cross voltage glitch is

reduced by a factor of 1.5. The Figure also shows that the voltage glitch get reduced by

an insigni�cant factor of 1.2 when grounding every fourth line. Consequently, the farther

the ground line from the original conductor, the more insigni�cant the reduction of the

cross-talk is. These simulation results proved that, coupling inductance can be reduced if

aluminum interconnect current return paths is used rather than substrate return paths,
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Figure 2-16: Returning path is through conductor rather than through the substrate.
l = 100�, y = 3�.

Substrate return path   
Interconnect return path

10
0

10
1

10
2

10
3

0

1

2

3

4

5
x 10

−11

Loop Width X [microns]

 C
ou

pl
in

g 
In

du
ct

an
ce

 [H
en

ry
]

Figure 2-17: Coupling Inductance for both cases of conductor return path and sub-
strate return path.
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Figure 2-18: Cross-coupled voltage glitch appears on the unswitched line due to the
simultaneous switching of the other bits on the 8 bit data bus. It also shows the voltage
glitch that produce when grounding every other line.
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Figure 2-19: Cross-coupled voltage glitch appears on the unswitched line due to the
simultaneous switching of the other bits on the 8 bit data bus. It also shows the voltage
glitch that produce when grounding every third or fourth line.
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and that these return paths have to be very close to the original conductors. The cost

for this coupling inductance reduction technique is that more ground lines will be used.
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3

Minimizing Interconnect Self

Inductance

3.1 Motivation

Because magnetic e�ects have a much longer spatial range than electrostatic e�ects,

an interconnect line with large inductance will be sensitive to distant variations in inter-

connect topology. This long range sensitivity makes it di�cult to balance delays in nets

like clock trees, so for such nets self inductance must be minimized. Figure 3-1 shows a

schematic of a typical coplanar H clock tree, where the self inductance is needed to be

minimized. A cross sectional view of that clock tree is shown in Figure 3-2.

Because consecutive metal layers are usually orthogonal to each other, there is no

inductive coupling between lines in consecutive layers. Thus, the problem of minimizing

the inductance of the structure in Figure 3-2 is reduced to minimizing the inductance of

the structure in Figure 3-3.

3.2 Two-Dimensional Self Inductance

We used a typical clock structure to explore some methods for minimizing the self

inductance, and therefore reduce the clock delay, and clock skew. The structure used is

a clock signal line sandwiched between ground return lines, as indicated in Figure 3-3.
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Figure 3-1: Schematic of a typical H Clock tree

Figure 3-2: Cross section in a coplanar clock tree

We used a two-dimensional �eld solver for the inductance and �xed the width of the

clock signal line, W1, and the width of the ground return lines, W2, to 1�. As expected,

we found that two-dimensional inductance increases as the separation distance between

the clock signal line and the ground lines, S, increases, as shown in Figure 3-4. Thus,

in order to minimize the inductance, the separation distance between the clock signal

line and the ground return lines, S, should be as small as possible. The two-dimensional
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Figure 3-4: Variation of two-dimensional
self inductance with the separation distance
between the signal and the ground lines.

inductance is calculated assuming high frequency meaning that �elds exist only outside

the conductors.

3.3 Three-Dimensional Self Inductance

It is often presumed, as was in the previous section, that near gigahertz clock rates

imply that on-chip inductive e�ects can be analyzed by determining high frequency limit

current distributions. In order to verify this assumption and get the speci�c frequency

at which the conductors behave as perfect conductors, we did a frequency sweep on the

inductance of the clock structure using the 3-D �eld solver FastHenry [4]. FastHenry

employs multipole-accelerated Method-of-Moments techniques [5,6].

In Figure 3-5, we show the frequency dependence of the self inductance of the structure

shown in Figure 3-3, where W1 = W2 = S = 1�. Note that the 2-D self inductance

computed in the previous section is, as expected, the high frequency limit of the 3-D self

inductance computed by FastHenry. Figure 3-5 also shows that for frequencies less than

twenty-�ve gigahertz, it is the low-frequency self inductance not the high frequency self

inductance that determines inductive e�ects. The corner frequency for self-inductance

is determined by the skin e�ect. The thinner the conductor is, the higher the corner
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Figure 3-5: Three-dimensional self inductance frequency dependence for the clock
structure in Figure (coplan) . W1 = W2 = S = 1�.

frequency. Note that, in new technologies, conductor widths are getting to be much

smaller than 1�, and therefore the corner frequency is getting higher. This guarantees

that the self inductance of interest is the low-frequency one.

Figure 3-6 shows the frequency dependence of the resistance for the same structure.

It shows that structure resistance has the DC resistance value for frequencies below the

corner frequency and as frequency increases beyond the corner frequency, the resistance

increases due to the skin e�ect.

3.4 Reducing Self Inductance

3.4.1 Optimizing Dimensions of Same Clock Structure

In order to determine the optimum structure that minimizes the self inductance of

the clock, we started by keeping the same structure in Figure 3-3 and trying to optimize

its dimensions to reach minimum inductance. As shown in Figure 3-7,

The inductance decreases as the width of the clock signal line, W1, increases, till it
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Figure 3-6: Resistance frequency depen-
dence for the clock structure in Figure
(coplan). W1 = W2 = S = 1�.
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Figure 3-7: Variation of self inductance
with W1 for the clock structure in Figure
(coplan). W2 = 3�; S = 1�.

reaches a minimum value at W1 = 12�. After this minimum the inductance increases

as W1 increases. The resistance of the clock is always decreasing as W1 is increasing

as shown in Figure 3-8. This curve is not a linear function of W1 due to the constant

resistance of the ground return lines, W2. The component of the total resistance from

W1 continues to fall o� linearly, but the total value saturates at the ground return value.

The 3-D capacitance solver FastCap [7] was used to measure the capacitance of the

structure. In the capacitance model, conductors in upper and lower metal layers were

represented, as they inuence the capacitance of the clock structure. Note that without

including the surrounding conductors in the upper and lower metal layers, changes in

capacitance between the conductors would be grossly over-estimated. Figure 3-9 shows

that the capacitance is increasing linearly with W1.

Consider the two following structures, the �rst has W1 = 3� , W2 = 3�, and S = 1�,

and the second has W1 = 12� , W2 = 3�, and S = 1�. The second structure has been

optimized for minimum inductance given �xed W2 = 3�, its inductance is 10% less than

the �rst structure. This 10% reduction in the inductance was achieved by using 2.3 times

the original space, and 120% increase in the capacitance as shown in Figure 3-9.

Therefore, techniques for widening the clock to lower resistance, has little impact on
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Figure 3-8: Variation of resistance with
W1 for the clock structure in Figure
(coplan). W2 = 3�; S = 1�.
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Figure 3-9: Variation of Capacitance with
W1 for the clock structure in Figure
(coplan). W2 = 3�; S = 1�.

Dedicated Ground Planes
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Figure 3-10: Using dedicated ground planes as return paths for the clock signal.

the inductance. On the contrary, it might increase the capacitance signi�cantly.

3.4.2 Using Dedicated Ground Plane Techniques

We also investigated using dedicated ground planes as return paths for the clock

signal, as shown in Figure 3-10.

Figure 3-11 shows the low frequency self inductance as a function of the ground plane

width, Wg. Figure 3-11 also shows that, at around Wg = 4�, the inductance has a

minimum value. After that minimum value, the low frequency self inductance increases
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Figure 3-11: Self inductance for the dedicated ground plane structure. W1 = H =
Sg = 1�.

monotonically as Wg increases. The current, at low frequency, is uniformly distributed

on the ground plane, therefore, big current loops are formed when Wg is large. This

increases the inductance. Figure 3-12 compares the self inductance frequency response

of the dedicated ground planes case, with W1 = H = Sg = 1�;Wg = 100�, and the two

ground traces case, same as in Figure 3-5. Figure 3-12 also shows the frequency response

when having both the ground traces and the ground planes as return paths. As shown

in Figure 3-12, using only guard traces technique has the smallest inductance unless

the frequency of interest exceed several GHz. Above that frequency, dedicated ground

planes have somewhat lower inductance, but since most of the energy in the signal is

below several GHz, the use of dedicated ground planes is ine�ective in reducing the self

inductance.

3.4.3 Using Interdigitated Techniques

As space is always a limiting factor for chip designs, it would be best if the inductance

can be signi�cantly reduced with only a limited increase of the total space allocated for
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Figure 3-13: Interdigitated clock structure, using 5 lines instead of 3 lines. Total
structure width has been increased from 18� to 20�.

the clock structure. In order to achieve that, one might think of distributing the clock

signal on many lines, and doing the same for the ground return lines. As shown in

Figure 3-13,

The 10� signal line has been divided into two 5� lines. Similarly, the two 3� ground

returns have been exchanged by three 2� ground returns. This design resulted in no
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change in resistance, a 27% increase in capacitance, a 43% decrease in inductance, and

only an 11% increase in area. The inductance is not reduced by 50%, as might be

expected, due to the non-opposing mutual inductances.

We tried di�erent interdigitated structures, keeping the total structure width increase

to less than 20%. Table 3-1 shows that a signi�cant reduction of the self inductance of

the clock can be achieved increasing the number interconnect lines in the clock structure.

Table 3-2 shows the relative change in the RLC performance, for all structures.

N W1 W2 Wt R[m
=�] L[nH/Cm] C[fF=�]
3 10� 3� 18� R1=6.1 L1=3.273 C1=.5124
5 5� 1� 17� 9.9 1.927 .6449
5 5� 2� 20� 6.1 1.869 .6483
7 3� 1� 19� 8.3 1.336 .7345
9 2� 1� 21� 7.5 1.027 .8215
11 1� 1� 21� 8.4 0.850 .8478

Table 3-1: Variation of the resistance, inductance and capacitance of the clock structure
with the number of interconnect lines in the structure, N, and the total width of the
clock structure, Wt. All lines are separated from adjacent lines by 1um.

N W1 W2 Wt R/R1 L/L1 C/C1
3 10� 3� 18� 1.00 1.00 1.00
5 5� 1� 17� 1.62 0.59 1.26
5 5� 2� 20� 1.00 0.57 1.27
7 3� 1� 19� 1.36 0.41 1.43
9 2� 1� 21� 1.23 0.31 1.60
11 1� 1� 21� 1.38 0.26 1.66

Table 3-2: Relative Variation of the resistance, inductance and capacitance of the clock
structure with the number of interconnect lines in the structure, N, and the total width
of the clock structure, Wt. All lines are separated from adjacent lines by 1um.

The resistance or the maximum space allowed for the clock, whichever is more critical

in the design, determines the exact width for each line. As shown in Table 3-1, about

the same reduction percentage in the inductance, can be achieved with two di�erent 5

line structures. However, the �ve line structure with the 17� wide clock structure has
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62% more resistance than the 20� wide clock structure. Table 3-2 also shows that the

inductance can be reduced as low as 3.9 times by having the clock structure composed of

11 lines, where ground and signal lines are alternatively placed. This signi�cant reduction

in the inductance can be achieved with an insigni�cant increase in the total clock structure

width, and clock resistance, and a modest increase in the capacitance.
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Part II

Inductance Extraction for

Structures that Contain Permeable

Materials
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There have been many methods to solve for the magnetostatic �eld in presence of

linear magnetic materials. These methods yield the magnetic �eld by solving for the

double scalar potential �� [36, 37, 38, 39, 40, 41, 42], the magnetization vector M [43],

the �ctitious current on the surface of the permeable material [44, 45] or the reduced

scalar potential [46, 47, 48, 49].

The double scalar potential method uses two di�erent formulations for the magnetic

�eld depending on whether the evaluation point is inside or outside the permeable mate-

rial. The method gives good accuracy but it solves for two scalar potential quantities, the

total potential outside the permeable material,  , and the reduced potential inside the

permeable material, � . Both the magnetization vector method and the �ctitious surface

current have the disadvantage that they solve for vector quantities. This has the same

e�ect as solving for three scalar components. The reduced scalar potential associated

with the induced magnetic �eld is used in the whole region. The method solves for only

one scalar potential, �, but the method su�ers poor accuracy when calculating �elds in-

side highly permeable materials. This poor accuracy is caused by numerical cancellation

errors resulting from subtracting two small quantities of the same order.

In this part, we develop a fast algorithm for e�cient extraction of the frequency

dependant inductance of structures with magnetic materials. The magnetic material

considered consists of constant magnetic permeability, implying magnetic linearity of the

problem. Moreover, eddy and displacement currents are ignored under the magnetqua-

sistatic assumption.

In Chapter 4, we start by deriving a formulation for the magnetic �eld using a �cti-

tious surface magnetic charge on the permeable material interface [49]. The method has

the advantage of introducing only one scalar quantity, which is the scalar surface mag-

netic charge. Consequently, minimum number of unknowns are generated. The method,

however, is considered a reduced potential method, and therefore, it inherits the possibil-

ity of numerical cancellation errors when solving for �elds inside the permeable material.

This problem is completely avoided in our formulation, because it avoids computing �elds

quantities inside the permeable material.
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The magnetic �eld expression, generated in section 4.1, is then substituted in the

boundary condition equation that ensures the continuity of the normal ux density across

the permeable material interface. This leads to an integral equation that relates the

magnetic charges to the current in the conductors. In section 4.2, an integral equation

for the currents in the conductors is generated. The produced integral equation relates the

currents in the conductors and the voltages across the conductors to the magnetic �eld,

not the magnetic charges. After some mathematical manipulation, the term depending

on the magnetic �eld in the current integral equation is replaced with another term

that is dependant only on the magnetic charges. Thus, two coupled integral equations

that relate currents, voltages, and surface magnetic charges are generated. Moreover, in

section 4.3, we show that the coupled integral formulation leads to a linear system. Thus,

for a given voltage, the linear system can be solved for the charges and the currents, and

therefore, the frequency dependant inductance of the structure can be extracted.

In Chapter 5, we present how the individual integrals in the resulting linear system,

from Chapter 4, can be calculated e�ciently and accurately. In section 5.2, we compute

the �eld due to the current sources. In section 5.3, we present two di�erent methods to

compute the integral that represents the e�ect of the magnetic charges on the current

in the conductors, L�. One of the two methods converts the integral into a line integral.

This enables the automation of the integral computation process.

In section 5.4, we discuss e�cient evaluation of the integral that represents the mag-

netic �eld due the magnetic charges. We then show that discretizing the boundary

condition integral equation using a standard collocation method is inaccurate for mate-

rials with sharp geometric features and can be replaced by a qualocation method which

is much more accurate and no more expensive than the collocation method.

In Chapter 6, we present computational experiments and demonstrate that the algo-

rithm using the qualocation method more accurately predicts the magnetic �eld for the

analytically solvable problem of a permeable ellipsoid in a uniform magnetic �eld.

We also compare the extracted inductance to published data for some practical exam-

ples. The algorithm predicted accurately the inductance of these examples. In section 6.2,

54



the resulting linear system is solved iteratively using a preconditioned GMRES method.

The method is up to an order of magnitude faster than the standard direct method.
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4

Integral Formulation for Structures

with Permeable Materials

4.1 Equivalent Magnetic Problem

This section focuses on an integral equation formulation for modeling 3-D magneto-

static �eld in presence of permeable materials.

Assume that regions that contain permeable materials are separated from current

carrying conductors, as shown in Figure 4-1, as is the case in many magnetic problems.

As illustrated in Figure 4-1, the volume of the magnetic problem consists of two parts.

The �rst part is the volume of the magnetic material Vcore, surrounded by a surface Score

and characterized by a permeability �. The second part of the magnetic problem is the

volume of the free space Vair and characterized by a free space permeability �0. The free

space current sources are inside Vair.

The integral formulation is derived by assuming the magnetoquasistatic assumption,

that the the frequencies of interest will be considered small enough such that the dis-

placement current, j!�E, can be neglected. Thus, Maxwell's equations using the mag-

netoquasistatic assumption are

r�E = �jw�H (4.1)

r�H = J (4.2)

r � (�E) = � (4.3)
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Figure 4-1: Current sources are outside the magnetic material
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r � (�H) = 0 (4.4)

where ! is the angular frequency.

The magnetic �eld intensity at a point, H, can be separated into two parts, as follows:

H = Hc +Hm: (4:5)

Hc is the free space �eld intensity that would exist if there were no permeable parts. Hc

is directly the result of the current sources, so that

r�Hc = J: (4:6)

Hm is the magnetization component which results due to the presence of permeable

regions. Hc is given by the Biot-Savart law [28, 50]:

Hc = r�
1

4�

Z
Vcond

J(r0)

jr � r0j
dv0 =

1

4�

Z
Vcond

J(r0)� (r � r0)

jr � r0j3
dv0 (4:7)

where Vcond is the volume of the conductors, r0 is the source point vector and r is the

�eld point vector.

From (4.2) and (4.6) we get,

r�Hm = 0: (4:8)

This implies,

Hm = �r	 (4:9)

where 	 is the magnetic scalar potential.

Thus, the magnetic �eld intensity at a point, H is given by,

H(r) = r�
1

4�

Z
Vcond

J (r0)

jr � r0j
dv0 �r	(r) (4:10)

Taking the divergence of (4.10), and substituting from (4.4) results in ,

r2(	) = �r �H(r) (4:11)

By expanding (4.4) we get ,

�(r)r �H(r) +H(r) � r�(r) = 0 (4:12)
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By substituting from (4.12) in (4.11),

r2(	) =
H(r) � r�(r)

�(r)
(4:13)

The right hand side of this (4.13) is zero everywhere, except on the surface of the

magnetic, Score. Hence, for simplicity, we can set the right hand side to �m(r), as in,

r2(	) = ��m(r) (4:14)

where �m(r) is an equivalent �ctitious magnetic charge density, since it is zero everywhere

except on the magnetic material surface.

Equation (4.14) has the solution

	(r) =
1

4�

Z
Score

�m(r0)

jr � r0j
ds0 (4:15)

Thus, the magnetic �eld intensity at a point becomes,

H(r) =
1

4�

Z
Vcond

J (r0)� (r � r0)

jr � r0j3
dv0 �

1

4�
r

Z
Score

�m(r
0)

jr � r0j
ds0 (4:16)

and the magnetic ux density is

B(r) =
�(r)

4�

Z
Vcond

J(r0)� (r � r0)

jr � r0j3
dv0 �

�(r)

4�
r

Z
Score

�m(r0)

jr � r0j
ds0 (4:17)

4.1.1 Boundary Condition Equation

The Boundary condition at a point p on the interface is

Bcore:n(p) = Bair:n(p) (4:18)

where n(p) is the unit vector perpendicular to Score at p. The left hand side of this

equation becomes

Bcore:n(p) =
�0�r
4�

Z
Vcond

r
1

R
� J(r0) � n(p)dv0 �

�0�r
4�

r

Z
Score

�m(r0)

R
ds0 � n(p) (4:19)

where R = jp � r0j. The gradient can be brought inside the surface integral since it

operates on p, whereas the integral operates on r0. For the same reason, �m(r0) can
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be brought outside the gradient. The integrand is zero except when p = r0. Then a

singularity appears, which evaluates to 2��m(p). Hence equation (4.19) becomes

Bcore:n(p) =
�0�r
4�

�Z
Vcond

r
1

R
� J(r0) � n(p)dv0 + 2��m(p)

�

�
�0�r
4�

�Z
Score�p

�m(r
0)n(p) � r

1

R
ds0

�
(4.20)

Similarly for the air region

Bair:n(p) =
�0
4�

�Z
Vcond

r
1

R
� J(r0) � n(p)dv0 � 2��m(p)

�

�
�0�r
4�

�Z
Score�p

�m(r
0)n(p) � r

1

R
ds0

�
(4.21)

Substituting equations (4.20) and (4.21) into (4.18) gives the integral equation valid at

the interface

2�
�r + 1

�r � 1
�m(p) =

Z
Vcond

r
1

R
� J(r0) � n(p)dv0 �

Z
Score�p

�m(r
0)n(p) � r

1

R
ds0 (4:22)

The analysis in this section showed that linear magnetic materials can be modeled as

magnetic surface charges distributed on the material interfaces, as shown in Figure 4-2.

These charges should satisfy equation (4.22).

4.1.2 Discretization of Magnetic Charges

The magnetic material interface can be divided into triangular or quadrilateral panels,

on which charge density is assumed constant, as shown in Figure 4-2. The approximation

to the charge density distribution can then be written as

�m(p) �

nX
j=1

qjwj(p) (4:23)

where qj is the charge on panel j, and wj(r) is the weighting function which has a value

of zero outside panel j, and 1=Aj on panel j where Aj is the area of the panel j.
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Figure 4-2: Linear magnetic material can be represented with an equivalent free space
problem with magnetic surface charges distributed on the magnetic material interfaces.
The interface is discretized into panels on which charge is assumed constant

Substituting the charge density expansion (4.23) into (4.22), yields

2�
�r + 1

�r � 1

qj

Aj

+

nX
j=1

qj

Aj

Z
panel j

n(p) � r
1

R
ds0 = �

Z
Vcond

r
1

R
� J (r0) � n(p)dv0 (4:24)

If the current density is known, a linear system can be formed as

AQ = C (4:25)

where Q is the vector of the unknown panel charges,

Ci =

Z
Vcond

r
1

R
� J(r0) � n(p)dv0; (4:26)

Aij =
1

Aj

Z
panel j

n(p) � r
1

R
ds0 i 6= j; (4:27)

and

Aii = 2�
�r + 1

�r � 1

qj

Aj

(4:28)

Unfortunately, only for few cases, the current distribution is known a priori, such as

at very low frequency, where the current distribution is uniform across the cross section

of the conductors. Thus, for a general frequency of operation, the current density is

needed to to be solved for, and therefore, another equation for the current needs to be

derived.
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4.2 Current Integral Formulation

In this section we get an integral formulation for the current. By assuming the

magnetoquasistatic assumption, the current density, J, within the conductors is,

J = �E (4:29)

where � is the conductivity.

Taking the divergence of (4.2) results in the current conservation equation,

r � J = 0: (4:30)

Because of the zero divergence of the magnetic ux density B in (4.4) , the magnetic

ux density vector can be de�ned as,

B = �H = r�A (4:31)

where A is the vector potential.

Substituting from (4.31) in (4.1) produces,

r� (E + jwA) = 0: (4:32)

This implies that there exists a scalar function, �, such that

�r� = E + jwA (4:33)

where � will be called the scalar potential.

We require one �nal relation to relate the vector potential, A to the current density,

J . By taking the curl of both sides of use of (4.31) and choosing the Coulomb gauge,

r �A = 0: (4:34)

we get,

�r2A = �r�H +r��H (4:35)

and thus,

A(r) =
1

4�

Z
Vcond

�(r0)J (r0)

jr � r0j
dv0 +

1

4�

Z
Score

r�(r0)�H(r0)

jr � r0j
ds0 (4:36)
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where Vcond is the volume of all conductors, Score is the surface of the magnetic material,

and �(r0) in the �rst integral is the permeability of the space containing the conductors,

which is equal to �0. Note that the second integral in the previous equation is a surface

integral, becauser�(r0) is zero everywhere except on the surface of the magneticmaterial.

Substituting (4.36) and (4.29), into (4.33) yields the following integral equation:

J (r)

�
+
jw�0
4�

Z
Vcond

J(r0)

jr � r0j
dv0 +

jw

4�

Z
Score

r�(r0)�H(r0)

jr � r0j
ds0 = �r�(r): (4:37)

4.2.1 Discretization of the Current Equation

By using the magnetoquasistatic assumption, the current within a long thin conductor

can be assumed to ow parallel to its surface. The conductor can be divided into piece-

wise straight segments. In order to capture skin and proximity e�ects properly, each of

these segments can be divided into a bundle of parallel �laments of rectangular cross-

section inside which the current is assumed to ow along the length of the �lament, as

shown in Figure 4-3. The mesh currents, shown in Figure 4-3, are the currents around

each mesh [51] in the network. They satisfy

M tIm = Ib; (4:38)

where Im 2 Cm is the vector of mesh currents, Ib is the vector of branch currents except

for the source branches, and M 2 Rm�b is the mesh matrix, where m = n � b� n + 1 is

the number of meshes, b is the number of segments, and n is the number of �laments per

segment.

We use mesh currents as basis for the current density. It will be shown in the next

chapter that, because of this selection of the basis function, the current integral equation

can transformed to be function of the scalar magnetic charges rather than the vector

magnetic �eld.

Using this basis function, the current distribution can be approximated as

J(r) �

mX
i=1

Iiwi(r)li (4:39)
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Figure 4-3: (a) One conductor, (b) divided into piecewise-straight segments, (c) dis-
cretized into �laments. Notice how the mesh currents are related to the branch currents
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where Ii is the current in mesh i, li is a unit vector along the length of the mesh and

wi(r) is the weighting function which has a value of zero outside mesh i, and 1=ai inside,

where ai is the cross sectional area of the �laments in mesh i.

Following the method of moments [52], a system of m equations can be generated

by taking the inner product of each of the weighting functions with the vector integral

equation (4.37). Then multiplying both sides with ai gives,

mX
j=1

#filaments in mesh jX
f=1

�
1

�af

Z
Li

li � lf dL

�
Ij

+j!

mX
j=1

#filaments in mesh jX
f=1

 
�0
4�af

Z
Li

Z
V 0

f

li � lf
jr � r0j

dV 0 dL

!
Ij

+
jw

4�

Z
Li

Z
Score

r�(r0)�H(r0)

jr � r0j
ds0dL =

Z
Li

(�r�(r)) dL = �Vmi
(4.40)

where � is the conductivity, Li is the lengths of mesh i, V 0
f
is the volume of �lament f

in mesh j, and Vmi
is the voltage across mesh i. Note that the right hand side of (4.40)

results from integrating r� along the length of the ith mesh.

4.2.2 Relating Current Formulation to Magnetic Charges

The third term in (4.40) is depending on the magnetic �eld, H. This term need to

be transfered into other terms that are directly dependant on the currents, J and the

magnetic charge density, �m. We start by applying Stokes theorem [53] to the third term

in (4.40)

jw

4�

Z
Li

Z
Score

r�(r0)�H(r0)

jr � r0j
ds0dL =

jw

4�

Z
Si

r�

Z
Score

r�(r0)�H(r0)

jr � r0j
ds0dS (4:41)

where Si is the surface area of the current mesh i. The shape of Si is arbitrary, as shown

in Figure 4-4.

Substituting from (4.36) into (4.31) will result in an expression of the magnetic �eld
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Figure 4-4: S1; S2; S3 and S4 could be possible surfaces for Si. Stokes theorem transfers
the line integral across a mesh i into a surface integral over the surface Si. Note that the
shape of Si is arbitrary

density,

B(r) =
1

4�

Z
Vcond

�0
J (r0)� (r � r0)

jr � r0j3
dv0 +

1

4�
r�

Z
Score

r�(r0)�H(r0)

jr � r0j
ds0 (4:42)

By equating the two expressions for the magnetic ux density in (4.17) and (4.42),

we get

r�

Z
Score

r�(r0)�H(r0)

jr � r0j
ds0 = (�(r) � �0)

Z
Vcond

J (r0)� (r � r0)

jr � r0j3
dv0

��(r)

Z
Score

�m(r
0)r

1

jr � r0j
ds0 (4.43)

By substituting from (4.43) into (4.41), the third term in (4.40) becomes,

jw

4�

Z
Li

Z
Score

r�(r0)�H(r0)

jr � r0j
ds0dL =

jw

4�

Z
Si

(�(r)� �0)

Z
Vcond

J(r0)� (r � r0)

jr � r0j3
dv0dS

�
jw

4�

Z
Si

�(r)

Z
Score

�m(r
0)r

1

jr � r0j
ds0 � dS (4.44)

If the surface Si in (4.44) is chosen to penetrate the magnetic material, the two surface

integrals in Equation (4.44) are almost equal but with opposite signs, which may result

in numerical cancellation errors.
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Taking into consideration that Si can be of any shape, as long as it encircles cur-

rent mesh i, one can usually �nd a surface Si that does not to penetrate the magnetic

material. Note that most of structures that contain permeable materials contain an air

gap. Therefore, if such a surface Si is chosen, �(r) in (4.44) will be equal to �0, and

consequently, the second integral in (4.44) vanishes. Thus, we get

jw

4�

Z
Li

Z
Score

r�(r0)�H(r0)

jr � r0j
ds0dL = �

jw�0
4�

Z
Si

Z
Score

�m(r
0)r

1

jr � r0j
ds0 � dS (4:45)

where Si is a surface that encloses mesh i and does not penetrate the magnetic material.

By interchanging the two double surface integrals in (4.45), and then substituting in

(4.40), we get

mX
j=1

#filaments in mesh jX
f=1

�
1

�af

Z
Li

li � lf dL

�
Ij

+j!

mX
j=1

#filaments in mesh jX
f=1

 
�0
4�af

Z
Li

Z
V 0

f

li � lf
jr � r0j

dV 0 dL

!
Ij

�
jw�0
4�

Z
Score

�m(r
0)ds0

Z
Si

r
1

jr � r0j
� dS = Vmi

(4.46)

By discretizing the magnetic surface charge density on the magneticmaterial interface,

�m(r0), the same way as in (4.23), the current integral equation becomes

mX
j=1

#filaments in mesh jX
f=1

�
1

�af

Z
Li

li � lf dL

�
Ij

+j!

mX
j=1

#filaments in mesh jX
f=1

 
�0
4�af

Z
Li

Z
V 0

f

li � lf
jr � r0j

dV 0 dL

!
Ij

�
jw�0
4�

nX
k=1

qk

Z
Si

r
1

jr � r0j
� dS = Vmi

(4.47)

where qk is the charge on panel k on the magnetic material interface,
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4.3 Coupled Integral Formulation

By discretizing the current in (4.22) using the mesh current basis in (4.39) and as-

suming long thin conductors so the volume integral in (4.22) is approximated as a line

integral, we get

2�
�r + 1

�r � 1

qk
Ak

+

nX
k=1

qk
Ak

Z
panel k

n(p) � r
1

jr � r0j
ds0

= �

mX
i=1

Ii
ai

Z
Lmeshi

r
1

jr � r0j
� li � n(p)dL

0 (4.48)

Equations (4.47) and (4.48) form a coupled integral equation system to solve for the

mesh currents, Ij, and the magnetic surface charges on the magnetic material interface,

qk. The two coupled integral equations can be summarized in the matrix form as�
R(!) + j!LJ (!) j!L�(!)

HnJ (Hn� � I)

��
IM

qk

�
=

�
V

0

�
(4.49)

where IM 2 Cm is the vector of m mesh currents, and qk 2 C
k is the vector of n charge

panels,

In order to extract the inductance of a set of conductors, the admittance matrix Yt

needs to be calculated. The admittance matrix can be calculated using

Yt(!)Vt(!) = It(!); (4:50)

where It; Vt 2 Ck are vectors of the terminal current and voltage respectively [51]. To

evaluate the ith column of the admittance matrix, Yt , we solve (4.49) with a vector V

whose only nonzero entry corresponds to Vt, and then extract the entries of IM associated

with the source branches. For example, for the one conductor circuit shown in Figure 4-3,

we solve (4.49) with a vector V whose only nonzero entry is the third element and equal

to one. The admittance of the circuit is the third element in the solution vector, IM .

In the following chapter, we discuss how the individual elements in (4.49) can be

calculated e�ciently and accurately.
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5

E�cient Evaluation of the Integrals

in the Magnetic Integral

Formulation

In the previous chapter, we derived the magnetic coupled integral formulation (4.49).

In this chapter, we discuss how the individual integrals in resulting linear matrix system

(4.49) can be calculated e�ciently and accurately.

5.1 Evaluation of sub-matrices R and LJ

This section briey describes the calculation of the sub-matrices R and LJ in the

linear system (4.49).

LJ and R are the m�m loop inductance matrix, and loop resistance matrix and loop

inductance, respectively. A general element in the sub-matrix L is given by

Lij =

#filaments in mesh jX
f=1

j!�0
4�af

Z
Li

Z
V 0

f

li � lf
jr � r0j

dV 0 dL (5.1)

where � is the conductivity, V 0
f
is the volume of �lament f in mesh j, li is the unit length

along the length of the ith mesh, af is the cross sectional area of �lament f , lf is the unit

length along the length of the �lament, f , and Li is the length of the ith mesh.
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A general element in the sub-matrix R is given by

Rij =

#filaments in mesh jX
f=1

1

�af

Z
Li

li � lf dL (5.2)

The mesh matrices can be computed directly from (5.1) and (5.2). As a matter of

fact, these sub-matrices are related to the partial inductance model [54, 55, 56] via the

following equations

L =MLpM
t

R =MRpM
t (5.3)

where M is the sparse mesh matrix, Lp is the Nf � Nf partial inductance matrix,

with Nf is the total number of �laments,

Lpfk =

"
j!�0
4�afak

Z
Vf

Z
V 0

k

lf � lk
jr � r0j

dV 0 dV

#
; (5.4)

Rp is the Nf �Nf diagonal matrix of �lament DC resistances, and

Rpff =
lf

�af
(5.5)

where af is the cross sectional area of �lament i, and lf is the length of �lament f , Vf is

the volume of �lament f , and Vk is the volume of �lament k.

The elements in (5.4) can be computed using analytical formulas for partial mutual

inductance and partial self inductance of rectangular �laments [57].

5.2 Evaluation of Magnetic Field due to Currents

In this section, we describe an e�cient way to evaluate the elements of the sub-matrix

HnJ in the linear system (4.49). An element [HnJ ]ki is the magnetic �eld due to current

mesh i, at point rk, dotted with the unit normal to panel k, nk, as shown in Figure 5-1.

[HnJ ]ki is the sum of line integrals over all the �laments that constitute mesh i, as in
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Figure 5-1: Evaluating [HnJ ]ki, the magnetic �eld due to current mesh i, at point rk,
dotted with the unit normal to panel k, nk.

[HnJ ]ki =

#filaments in mesh iX
f=1

Z
Lfilament f

r
1

jrk � r0j
� lf � nkdl

0

=

#filaments in mesh iX
f=1

Gkf (5.6)

where lf is the unit vector along the length of �lament f .

Each element,Gkf , in the summation in (5.6) can be calculated by transforming each

�lament into the panel coordinates. In the new coordinate system, the current �lament

f is chosen to be aligned on the new x axis and the panel center lies in the new x-y plane,

as shown in Figure 5-2.

Following this transformation, we get an analytical expression for Gkf as in,

Gkf =
1

L3

 
L1 � L2p

(L1 � L2)2 + L2
3

+
L2p
L2
2
+ L2

3

!
� n0k(3) (5:7)

where n0
k
(3) is the z component of the transformed nk to the new coordinate system, as

shown in Figure 5-2. Thus by using (5.6) and (5.7), we get an analytical formula for the

elements of HnJ in the linear system (4.49).
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Figure 5-2: Evaluating [HnJ ]ki, using an analytical expression which is produced by
transforming to a new coordinate system.
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5.3 Evaluation of E�ect of Magnetic Charge on Mesh

Currents, L�

In this section, we describe an e�cient way to evaluate the elements of the sub-matrix

L� in the linear system (4.49). An element [L�]ki is the e�ect of the magnetic charge of

panel k of on mesh current i is given by,

[L�]ki = �
j!�0
4�

Z
Smesh i

r
1

jr � r0j
� n(r)dS (5:8)

where n(r) is the normal the surface of current mesh i at point r.

5.3.1 Evaluating [L�]ki Using A Surface Integral

The integral in (5.8) comes from integrating 1/r over the surface of current loop i and

evaluating the result at a point at the permeable material surface. Since the shape of

the surface of the current loop is arbitrary. we can choose a surface like the tented one,

shown in Figure 5-3. This tented surface is composed of triangles, and so [L�]ki is given

by:

[L�]ki = �
j!�0
4�

X
4

Z
S4

rr

1

j r � r0 j
� n(4)dS4 (5:9)

where S4 is a triangle on the current loop surface, and n(4) is the normal to triangle on

the current loop (mesh) surface. The integral inside the summation in (5.9) is the poten-

tial due to a dipole charge distribution on a triangles. This potential can be evaluated

analytically [58, 59].

5.3.2 Evaluating [L�]ki Using A Line Integral

Although, the shape of the surface of the current loop is arbitrary, that surface should

be selected such that it doesn't penetrate the magnetic material as discussed in subsection

(4.2.2).

The current loop surface that doesn't penetrate the magnetic material can be very

complicated, as in spiral inductor problems. Additionally, the process of selecting that
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Figure 5-3: Evaluating [L�]ki, the e�ect of the magnetic charge of panel k of on mesh
current i. Note that the surface of the current loop i are divided into triangles.
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surface needs to be automated. For these reasons, [L�]ki needs to be calculated in terms

of the line integral along the current loop.

If we translate the surface of the loop to a new coordinate system such that the

center of panel k is the origin of the new coordinate system, P0. Thus, the integral in

(5.8) becomes

[L�]ki =
j!�0
4�

Z
Smesh i

1

r2
[ur � n(r)] dS (5:10)

where n(r) is the normal the surface of current mesh i at point r and ur is the unit vector

along the r direction. The integral in (5.10) is equal to j!�0
4�
I
(P0), where I
(P0) is the

solid angle integral. The solid angle integral is dependant only on the contour of the

surface [60, 61, 62]. The solid angle integral I
(P0) is given by

I
(P0) =
1

4�

I
C

h
Z(l)

R(l)
� 1

i (�̂ � v̂)�t̂ � �̂�
�

dL (5:11)

where R and Z are the two spherical coordinates of the point l on contour C, � is the

projection of vector R on the x-y plane, �̂ is the unit vector along �, t̂ and �̂ are the

unit tangential vectors of the contour C and the projection curve of C on x-y plane,

respectively, and v̂ = �̂ � ẑ with ẑ being a unit vector along the z-axis. The geometry is

shown in Figure 5-4.

Now we use the idea of the solid angle to get an e�cient way to calculate [L�]ki

Thus, after translating the surface of the loop to a new coordinate system such that the

center of panel k is the origin of the new coordinate system, P0, [L�]ki can be calculated

as in

[L�]ki =
j!�0
4�

#filaments in mesh iX
f=1

Z
Lfilament f

h
Z(l)

R(l)
� 1

i (�̂ � v̂)�t̂ � �̂�
�

dL

=

#filaments in mesh iX
f=1

Ekf (5.12)
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Figure 5-4: Evaluating of the solid angle integral at the origin P0
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After some mathematical manipulation, we get an expression for Ekf as in

Ekf =
j!�0
4�

Z
l

"
zp

x2 + y2 + z2
� 1

#
�

h
x(y2 � y1)� y(x2 � x1)

(x2 + y2)

i
�

h
1

(x2 � x1)2 + (y2 � y1)2 + (z2 � z1)2

i
dL (5.13)

where dL is a line integral along �lament f ,

x = x1 +

h
(x2 � x1) � L

(x2 � x1)2 + (y2 � y1)2 + (z2 � z1)2

i
;

y = y1 +

h
(y2 � y1)) � L

(x2 � x1)2 + (y2 � y1)2 + (z2 � z1)2

i
;

and

z = z1 +

h
(z2 � z1)) � L

(x2 � x1)2 + (y2 � y1)2 + (z2 � z1)2

i
Note that (x1; y1; z1) is the translated starting point of �lament f and (x2; y2; z2) is the

translated end point of �lament f , as shown in Figure 5-4.

The integral in (5.13) can be done using numerical quadrature [63]. We, thus, e�-

ciently evaluate the elements of L� in the linear system (4.49). The evaluation is used

via a line integral along the length of the current meshes. This enables us to automate

the integration process, and consequently, to handle complicated structure.

5.4 Evaluation of Magnetic Field due to magnetic

charges

This section describes an e�cient way to evaluate the elements of the sub-matrix

Hn� in the linear system (4.49). An element [Hn�]pk is the magnetic �eld due to the

magnetic charge of panel k, dotted with the unit normal to panel p, n(p), as shown in

Figure 5-5. The elements of Hn� comes from (4.48) that resulted by discretizing the

boundary condition equation (4.22) using the charges density approximation in (4.23).
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Figure 5-5: The surface of the permeable material is divided into triangles in calculating
the integral Hn�.

In the reminder of this section we test the possible discretization techniques for the

boundary condition equation in order to accurately evaluate Hn�. We begin by rewriting

(4.22) as in,

�m(p)
2�(�r + 1)

(�r � 1)
= HC � n(p) �

Z
Score

�m(r
0)n(p) � r

1

j rp � r0 j
dS0; (5:14)

where �m is the �ctitious surface charge density, rp and r
0

are positions in 3-space, �r is

the relative permeability of the magnetic material, HC is the magnetic �eld produced by

free space current sources, Score is the surface of the permeable material, and n(p) is the

normal to that surface at rp.

5.4.1 Collocation and Galerkin Discretization

The integral equation in (5.14) can be solved by discretizing the permeable material's

surface into panels on which the �ctitious charge is assumed constant, and then deter-

mining the panel charges by enforcing (5.14) at test points. This discretization produces

the following collocation equation,

qk
Ak

2�(�r + 1)

(�r � 1)
= HC � n(p) �

X
k

qk
Ak

Z
Sk

n(p) � r
1

j rp � r0 j
dS0 (5.15)

where qk is the �ctitious magnetic charge on the kth panel on the magnetic material

surface, Ak is area of the kth panel on the magnetic material surface, np is the unit vector
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normal to the magnetic material surface calculated at the center of panel k, and Sk is the

surface of panel k. If the surface is discretized into at triangles, the integral in (5.15) can

be calculated analytically [58] . Consequently, using the collocation method is e�cient.

The galerkin approach can also be used to discretized (5.14), in which case the panel

charges are determined by enforcing (5.14) in average over a panel. This discretization

produces the following galerkin equation,

qk
Ak

2�(�r + 1)

(�r � 1)
= HC � n(p) �

1

Ap

qk
Ak

Z
Sp

Z
Sk

n(p) � r
1

j rp � r0 j
dS0kdSp (5.16)

where Ap is the surface area of panel p.

The double integral in the galerkin method (5.16) is harder to evaluate than the

integral in the collocation method (5.15), and is typically computed by combining analytic

integration with numerical quadrature.

5.4.2 Qualocation Discretization

If the collocation method with a coarse discretization is used to solve (5.14), the com-

puted �ctitious charges are quite inaccurate when dealing with permeable material with

edges. Switching to the galerkin method improves accuracy substantially, but the galerkin

method is more expensive. Instead, we show that by using a qualocation method [64, 65],

which costs no more than collocation, the �ctitious charges are also accurately computed.

Like the collocation method, the qualocation method can be thought of as an approx-

imation to the galerkin method. In qualocation, however, the panel charge is approxi-

mated as a point charge and the integral equation is enforced in average over a panel.

This results in the following qualocation equation,

qk
Ak

2�(�r + 1)

(�r � 1)
= HC � n(p) �

Ak

Ap

X
k

qk
Ak

Z
Sp

n(p) � r
1

j r � r0
k
j
dS0 (5:17)

The integral in the qualocation method (5.17) is equivalent to computing a dipole

potential, and can be evaluated analytically [58]. Thus amount of work needed to com-

pute the �ctitious magnetic surface charge, and therefore, �eld and inductance values, is
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Figure 5-6: Di�erent discretization con�gurations

almost the same when using the collocation or qualocation method. Figure 5-6 shows a

schematic for the three di�erent discretization methods. The galerkin method is repre-

sented by two shaded triangles because the galerkin integral in (5.16) is evaluated over

both the source and the target triangles. While, the inner integral in the galerkin in-

tegral, on the source panel, is calculated analytically, the outer integral in the galerkin

integral, on the target panel, is approximated using quadrature points.

In the collocation method, the target triangle is not shaded because the integral in

(5.16) is approximated at the target triangle's centroid. However, in the qualocation

method, the source triangle is not shaded because the integral over the source triangle is

approximated as a point charge at the its centroid.

After computing the magnetic charges, the total magnetic �eld can be calculated from

H(r)Total = HC �

X
k

qk
Ak

Z
S

r
1

j r � r0 j
dS0k: (5:18)

5.4.3 Qualocation Accuracy Results

In order to compare the accuracy of the three discretization techniques, consider

the two adjacent perpendicular panel shown in Figure 5-7. Figure 5-8 compares the

error in computing the integral in (5.14) using the three discretization methods. For this

example, the collocation method produced more than 33% error. The qualocation method

produced only 1% error which can be achieved only by using eight point quadrature in
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Figure 5-8: Accuracy comparison of the three discretization techniques in the two panel
example

the galerkin integral. The collocation integral,
R
Sk
n(p) � r 1

jrp�r0 j
dS0, is e�ectively the

�eld at an evaluation point, at panel p, due to the charge on panel k dotted with the

normal at panel p. Figure 5-9 shows the �eld on the z axis on panel p due to the charge

on panel k for the two panel example Figure 5-7. As shown in Figure 5-9, the �eld blows
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Figure 5-9: Evaluation of the electric �eld as the evaluation point on panel p approaches
the charge panel k in the two panel example

up as the evaluation point on panel p approaches the charge layer of panel k.

On the other hand, the qualocation integral
R
Sp
n(p) � r 1

jr�r0
k
j
dS0 is e�ectively the

the potential, at panel p, due to the dipole charge layer of panel k. Figure 5-10 shows

the potential on the z axis on panel p due to the dipole charge layer of panel k in the

two panel example. As shown in Figure 5-10, the dipole potential is always bounded no

matter how close the evaluation point is to the charge panel.

Thus, the qualocation integral is much better behaved than the collocation integral

when the evaluation point is close to charge panel. This explains why qualocation is

much more accurate than collocation specially when dealing with edges.
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Figure 5-10: Evaluation of the dipole potential as the evaluation point on panel p
approaches the dipole charge panel k in the two panel example
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6

Algorithm Results

6.1 Algorithm Accuracy Results

In this chapter, we present computational results compared with published or ana-

lytical data to demonstrate the accuracy and versatility of the algorithm.

We �rst start by demonstrating the accuracy of the qualocation method. We ex-

amined the problem of permeable material in a uniform vertical magnetic �eld shown

in Figure 6-1. We used our algorithm to compute the magnetic charge density on the

permeable material. We then calculated the average �eld across the cylinder's median

cross section and compared with the published data in [66, 67, 68, 69]. Figure 6-2 shows

the distribution of the surface magnetic charge density on the cylinder produced by our

algorithm. This distribution was then used to compute the average ux density over the

median cross section of the cylinder shown in Figure 6-3. The average ux density over

the median cross section of the cylinder, computed using the qualocation method matches

the exact solution much more accurately than when using the collocation method, with

larger di�erences associated with higher permeability.

In order to test the e�ect of the aspect ratio of the permeable structure on accuracy

of the algorithm, we examined the analytically solvable problem of an ellipsoid of per-

meable material in a uniform vertical magnetic �eld, shown in Figure 6-4. We used our

algorithm to compute the magnetic charge density on the permeable material, as shown
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Figure 6-1: Permeable Cylinder in Ho
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Figure 6-2: Magnetic surface charge distribution on the permeable cylinder of � = 10
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Figure 6-3: Average ux density over the permeable cylinder's median cross section,
for di�erent permeabilities. Note that 960 panels were used to discretize the cylinder

Median Cross
Section

Ho

minor axis, b

m
aj

or
 a

xi
s,

 a

Figure 6-4: Ellipsoid with �r = 1000 in Ho, b=1 m.

in Figure 6-5. We then calculated the average �eld across the median cross section of the

permeable ellipsoid and compared it with the analytical results [70, 71]. As shown in

Figure 6-6, the average ux density over the median cross section of the ellipsoid, shown
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Figure 6-5: Magnetic surface charge distribution on a high aspect ratio permeable
ellipsoid of � = 1000
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Figure 6-8: Fictitious magnetic surface
charge on cylinder top.

in Figure 6-4, computed using the qualocation method matches the analytic solution

much more accurately than when using the collocation method, with larger di�erence

associated with thinner ellipsoids.

The inaccuracy of the collocation approach is most clearly demonstrated by exam-

ining a coil of wire around a long permeable cylinder, shown in Figure 6-7. Figure 6-8

shows that the collocation underestimates the magnetic charges on top of the permeable

cylinder. Qualocation method is no more expensive than collocation and is much more

accurate for highly permeable materials with big aspect ratio or with edges.

An example to demonstrate the accuracy of the algorithm is the example of a spiral

inductor over a permeable material substrate. These planar inductors have been studied

for some time [72, 73, 74, 75, 4]. The tested realistic spiral inductor in Figure 6-9 has a

diameter of 280�, with a 10� by 10� cross section. The permeable material substrate is

1500� by 1500�, with 200� as its thickness.

Figure 6-10 shows the variation of extracted inductance with the permeability of the

permeable substrate. The inductance of the spiral inductor over a magnetic substrate
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Figure 6-9: A spiral inductor over a magnetic substrate.
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Figure 6-10: Variation of the inductance of spiral inductor with relative of the magnetic
substrate.

increases as the permeability increases, till it reaches an upper limit which is almost

double the value of the spiral inductance without a substrate [74, 75].

Figure 6-11 shows the frequency response of the inductance of the spiral inductor in

Figure 6-9. Note the high frequency inductance is lower than the low frequency one,

due to the skin e�ect. The frequency at which the inductance start to drop is mainly

determined by the size of the cross section of the conductor.
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Figure 6-11: Inductance frequency response of the spiral inductor over a magnetic
substrate example. The substrate has a relative permeabilty of 2000.

Algorithm 6.2.1 (GMRES Algorithm for Ax = b).

guess x0

for k = 0; 1; : : : until converged f
Compute the error, rk = b�Axk

Find xk+1 to minimize rk+1

based on xi and ri, i = 0; : : : ; k

g

6.2 Algorithm Computational Results

The standard method to solve the linear system in (4.49) is Gaussian elimination [76,

77, 78] but the computational cost is m3 operations, which is expensive and sometimes

impractical for complicated structures. For this reason we use a conjugate-residual style

iterative method like GMRES [79]. Such methods have the general form given in Algo-

rithm 6.2. The cost of the GMRES algorithm is order m2 operations per iteration and

in order to reduce the number of iterations a preconditioner is usually needed.

In general, however, the GMRES iterative method applied to solving (4.49) can be

signi�cantly accelerated by preconditioning if there is an easily computed good approxi-

mation, P to the inverse of system matrix. Using preconditioning the GMRES algorithm
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is equivalent to using GMRES to solve�
R(!) + j!LJ (!) j!L�(!)

HnJ (Hn� � I)

�
[P ] [x] =

�
V

0

�
(6.1)

for the unknown vector x. Then we compute

�
IM

qk

�
= Px. Clearly, if P is precisely

equal to inverse of the system matrix, then (6.1) is trivial to solve, but then P will be

very expensive to compute.

Since the individual elements in the sub-matrix Hn� in (4.49) decay like 1

r2
, the sub-

matrix [Hn� � I] are diagonally dominated. Note that the diagonal elements of Hn�

are zeros, thus, the identity matrix produces a good approximation of the sub-matrix

[Hn� � I]. The elements of coupling sub-matrix HnJ are the �eld values on the panels.

These values are at best of the same order as the elements of HnJ which is dominated

by the identity. Moreover, the elements of the sub-matrix j!L� decay like 1

r2
which is

much faster than the 1
r
decay of the elements of j!LJ . Thus, the sub-matrices HnJ and

j!L� are small and could be canceled in the preconditioner and a good choice for the

preconditioner P can be:

P =

�
lp�1 0

0 �I

�
(6.2)

where lp�1 is a good approximation to the sub-matrix [R(!) + j!LJ(!)]
�1

By using (5.3), [R(!) + j!LJ (!)] = [MRp(!)M t + j!MLpM
t(!)], where Rp is the

diagonal resistance matrix, Lp is the partial inductance matrix, and M is the sparse mesh

matrix. If we get a sparsi�ed approximation of Lp, we can then get a sparse matrix lp,

and thus a sparse preconditioner, P, using (6.2) will be formed.

First sparse approximation of Lp that comes to mind is the diagonal of Lp which is

the sparsest approximation of Lp .

Because many of the structures that contain permeable material uses long current

loops causes the interaction between the �laments in the same segment to be much

bigger than the interaction between a �lament in this segment and �laments in other
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Figure 6-12: Convergence of GMRES using di�erent preconditioners, for the problem
of the cylindrical inductor with permeable core. The linear system size is 1765 by 1765.

segments. This suggests the use of a section block diagonal approximation [56]. In this

approximation, we include only the principle sub-matrices of Lp corresponding to the

groups of �laments contained in each segment. For example, the one conductor circuit

shown in Figure 4-3, the section block diagonal approximation of Lp would consist of two

2� 2 blocks.

Figure 6-12 compares the GMRES convergence rate of the preconditioners, when ex-

tracting the inductance of of the cylindrical coil with permeable core shown in Figure 6-7.

We see that section preconditioner converges faster than the diagonal of Lp method and

that both of them are much faster GMRES with no preconditioner.

Figure 6-18 shows the number of GMRES iterations needed to extract the inductance

of the cylindrical coil with permeable core shown in Figure 6-7. As it is illustrated

Figure 6-18, using a preconditioner signi�cantly reduced the number of iterations in the

GMRES algorithm. A good preconditioner helps keep the number of iterations almost

constant with the increase of the number of unknowns, as it is the case for the section

block diagonal preconditioner.

The faster convergence of GMRES when using the section block diagonal precondi-
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Figure 6-13: E�ect of preconditioner on the number of iterations used in GMRES for
the cylindrical inductor example.
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Figure 6-14: Eigen values for the preconditioned system and the un-preconditioned
system. Note the many near-zero eigen values for the un-preconditioned system

tioner can be explained by examining the spectra of the preconditioned matrix and the

un-preconditioned matrix in Figure 6-14. The eign values for the preconditioned are

much more clustered than in the un-preconditioned system. Moreover, the number of
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Figure 6-15: Side view of the microfabricated inductor

Figure 6-16: Top view of the multi layer core microfabricated inductor

near-zero eign values of the un-preconditioned system is much more than those of the

preconditioned system. These near zero eign values increases the condition number of

the matrix and thus causes slower convergence [76]. Note that the condition number of

a matrix is equal to biggest eign value divided by the smallest eigen value.

We used the industrial example of a microfabricated inductor in [80] to further test

the convergence rate of our preconditioned GMRES algorithm. The microfabricated

inductor is shown in Figure 6-15, 6-16. We used the section block diagonal preconditioner

to accelerate the convergence rate of GMRES. For a resulting linear system of 2905 �

2905, the section preconditioner signi�cantly improved the convergence compared to no

preconditioner case, as shown in Figure 6-17.

In Figure 6-13, we show the CPU time consumed when solving the cylindrical inductor

with the preconditioned GMRES method or with the standard direct methods, such as

Gaussian Elimination. Figure 6-13 shows that preconditioned GMRES method using the

section preconditioner, is up to an order of magnitude faster than standard Gaussian

Elimination method.
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7

Conclusion and Future Work

7.1 Summary

In this thesis, we have investigated several algorithms for accurate simulation of in-

ductive e�ects. The �rst part of the thesis dealt with the analysis of on-chip interconnect

inductive e�ects. It �rst investigated the interconnect coupling inductance and its e�ect

on circuit crosstalk. In order to accurately model the e�ect of the substrate on the cou-

pling inductance and examine the standard approach of dealing with the semiconductor

substrate e�ect, the substrate was simulated using a full 3-D mesh of �laments.

We showed that, at frequencies below 20 gigahertz, it is the much larger low frequency

inductance that is important. We also showed that the standard ideal ground plane

technique failed to predict coupling inductance for frequencies below 20 gigahertz and

it underestimated the value of the actual coupling inductance by up to four times. The

e�ect of the interconnect coupling inductance on circuit cross-talk has been shown. A

method for the reduction of the coupling inductance was also proposed.

Part I then analyzed the minimization of the interconnect self inductance, and there-

fore, reducing its e�ect on signal delay and delay skew. We showed that, for integrated

circuit operating at below twenty-�ve gigahertz, it is the low frequency inductance that

predicts the performance. We then compared the performance of the sandwiched struc-

ture, using two dedicated ground planes, and interdigitating thinned signal lines with
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thinned ground lines. Our results demonstrate that the interdigitated approach reduced

interconnect self inductance by more than a factor of four over the other techniques, for

a modest rise in capacitance, resistance and area.

In the second part of the thesis, we developed a fast algorithm to e�ciently extract

the frequency dependent inductance for 3-D structures that contain linear permeable ma-

terials. This algorithm avoids numerical cancellation errors by calculating �elds outside

of the permeable material.

The algorithm uses a magnetic surface charge formulation, with very e�cient tech-

niques for evaluating the required integrals using either analytical techniques or e�cient

quadrature methods. A qualocation discretization technique was used and was proven

to be no more expensive and up to an order of magnitude more accurate than standard

collocation for highly permeable materials with big aspect ratios or with edges. Com-

putational results were presented and compared with experimental data to demonstrate

the accuracy of our algorithm. The resulting system is solved iteratively using a precon-

ditioned GMRES method that is up to an order of magnitude faster than the standard

direct method, and therefore, allows the analysis of complicated structures.

7.2 Future Work

Part II derived a computationally e�cient method for inductance extraction in pres-

ence of linear magnetic materials. Although many of the MEMS applications use linear

magnetic material, some applications use non-linear permeable materials. The algorithm

may be extended to handle non-linear permeable materials by introducing a scalar vol-

umetric magnetic charge inside the magnetic material, along with the surface magnetic

charge. A non linear system of equations may be generated and then solved using Newton

method.
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A

E�ect of Air Gap on Extracted

Inductance in Magnetic Circuits

The magnetic formulation derived, in part II of the thesis, deals with magnetic circuits

that contain air gaps. In this appendix, we demonstrate the e�ect of the air gap in

magnetic circuits on the extracted inductance by our magnetic formulation. We used the

formulation to solve the problem of the toroidal inductor shown in Figure A-1.

It is well known that as the length air gap decreases, the inductance increases. If

the length of the air gap is small compared to the length of the magnetic circuit divided

by the relative permeability of the magnetic material, the inductance will no longer be

a�ected by the air gap and it will saturate to a �xed value [28].

Figure A-2 shows that, when using 944 panels to discretize the toroid, the extracted

inductance of the toroidal inductor �ts well with the theory, that the inductance increases

as the length of the air gap decreases. However, when the air gap length became less than

the length of the magnetic circuit divided by the relative permeability of the magnetic

material, the formulation failed to capture the right inductance, as the inductance starts

to decay rather than saturating to the limiting value. As also shown in Figure A-2, the

extracted inductance in the case of zero air gap is far from the saturated value, and thus

the formulation may be inaccurate if used for closed magnetic circuits.

When a �ner discretization is used, the length of the air gap at which the formulation

fails became smaller, as shown in Figure A-2. Thus, closed magnetic circuits could be
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Figure A-1: C Toroidal Inductor. Note that L = 2 � � � R, where R is the radius of
the toroidal inductor and equal to 6.5m

analyzed using the formulation, if a thin air gap is introduced. This air gap has to be

small enough so that it doesn't a�ect the value of the inductance, but in the same time,

the discretization has to be �ne enough to be predict the saturated inductance.
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