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Abstract

Harmonic balance (HB) methods are frequency-domain algorithms used for high accuracy computation
of the periodic steady-state of circuits. Matrix-implicit Krylov-subspace techniques have made it possible for
these methods to simulate large circuits more efficiently. However, the harmonic balance methods are not
so efficient in computing steady-state solutions of strongly nonlinear circuits with rapid transitions. While
the time-domain shooting-Newton methods can handle these problems, the low-order integration methods
typically used with shooting-Newton methods are inefficient when high solution accuracy is required.

We first examine possible enhancements to the standard state-of-the-art preconditioned matrix-implicit
* Krylov-subspace HB method. We formulate the BDF time-domain preconditioners and show that they can
be quite effective for strongly nonlinear circuits, speeding up the HB runtimes by several times compared to
using the frequency-domain block-diagonal preconditioner. Also, an approximate Galerkin HB formulation
is derived, yielding a small improvement in accuracy over the standard pseudospectral HB formulation, and
about a factor of 1.5 runtime speedup in runs reaching identical solution error.

Next, we introduce and develop the Time-Mapped Harmonic Balance method (TMHB) as a fast Krylov-
subspace spectral method that overcomes the inefficiency of standard harmonic balance for circuits with
rapid transitions. TMHB features a non-uniform grid and a time-map function to resolve the sharp features
in the signals. At the core of the TMHB method is the notion of pseudo Fourier approximations. The rapid
transitions in the solution waveforms are well approximated with pseudo Fourier interpolants, whose building
blocks are complex exponential basis functions with smoothly varying frequencies. The TMHB features a
matrix-implicit Krylov-subspace solution approach of same complexity as the standard harmonic balance
method. As the TMHB solution is computed in a pseudo domain, we give a procedure for computing the
real Fourier coefficients of the solution, and we also detail the construction of the time-map function. The
convergence properties of TMHB are analyzed and demonstrated on analytic waveforms.

The success of TMHB is critically dependent on the selection of a non-uniform grid. Two grid selection
strategies, direct and iterative, are introduced and studied. Both strategies are a priori schemes, and are
designed to obey accuracy and stability requirements. Practical issues associated with their use are also
addressed. ‘

Results of applying the TMHB method on several circuit examples demonstrate that the TMHB method
achieves up to five orders of magnitude improvement in accuracy compared to the standard harmonic balance
method. The solution error in TMHB decays exponentially faster than the standard HB method when the
size of the Fourier basis increases linearly. The TMHB method is also up to six times faster than the standard
harmonic balance method in reaching identical solution accuracy, and uses up to five times less computer
memory. The TMHB runtime speedup factor and storage savings favorably increase for stricter accuracy
requirements, making TMHB well suited for high accuracy simulations of large strongly nonljnear circuits
with rapid transitions. '
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Chapter 1
Introduction

The exploding demand for high performance wireless products has increased the need for
more efficient, accurate, and robust simulation technologies for communication and other
nonlinear analog circuits (e.g. RF amplifiers, mixers, power supplies, de-de converters).
Designers of such circuits need to compute many different quantities of interest. Some
of these quantities can be obtained from a small-signal anal‘ysis; however, many nonlinear
effects, such as harmonic and intermodulation distortion or compression points can only be
computed by obtaining circuit’s steady-state.

The conventional time-domain transient circuit simulation technique [46, 47] involves
forming the system of nonlinear ordinary differential equations (ODE) that describes the
dynamics of the circuit, and solving them numerically as an initial-value problem. The
system of ODEs are discretized using an integration method, and the resulting nonlinear
algebraic system solved using the Newton’s method. The sequence of linear problems at
each Newton’s iteration is solved by Gaussian elimination or perhaps an iterative linear
solution algorithm. |

When used in computing steady-state solutions of circuits, the described transient circuit
simulation approach carries a high computational cost and is thus considered impractical.
For many lightly damped circuits, it takes many periods of the excitation input signal in order
for the simulated circuit to reach a periodic steady-state. It is also difficult to determine when
the circuit has reached a steady state. In addition, most simulated circuits are ;1'escribed by
stiff systems of ODEs. Since the simulation must follow the fast-varying signals for accuracy,
many small time-steps are required, resulting in long simulation intervals and extraordinary

run-times.

If the steady-state is periodic, the steady-state analysis can be formulated as a boundary
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value problem for the system of nonlinear ODEs that describes the circuit. The boundary
conditions are given by the periodicity requirement. The simulation technologies for periodic
steady-state analysis of nonlinear circuits belong to two broad classes: time-domain, and
spectral (or frequency-domain) methods. While these methods can be far more efficient

than conventional transient analysis, they have many problems of their own.

Time-domain methods include the finite differences [4], and shooting-Newton methods
[1, 4]. In the finite differences method, a finite-difference approximation is used to discretize
the nonlinear system of ODEs on a finite set of time-points, transforming it into a system
of nonlinear algebraic equations. These equations are then solved simultaneously with the
boundary constraints via Newton’s method. In the shooting-Newton method, the boundary-
value problem is converted into a sequence of initial-value problems. The method begins with
a guess of the solution at the beginning of the shooting interval. This guess is iteratively
improved via the outer Newton loop to yield the special initial condition that results in a
steady-state. o

The non-equally spaced time-points in the time-domain methods are selected based on
local error estimation and can easily follow the rapid transitions in the circuit’s steady-state
waveform, so these methods work well for highly nonlinear circuits. However, these methods
achieve inferior polynomial convergence proportional to the order of the integration method
used. The limited order of these methods limits thejr accuracy. In addition, finite-difference
methods yield a large ill-conditioned linear system. While shooting-Newton methods yield a
much smaller linear system, they require much storage, and are unable to handle distributed

devices, quasi-periodic problems, and problems with large periods.

Spectral methods [38, 40, 42, 72 représent the periodic circuit response as weighted finite
sums of global basis functions. The best known spectral method is the harmonic balance
(HB) method [4, 5], which uses a truncated Fourier basis to approximate the solutions. The
system of nonlinear ODEs is transformed into a nonlinear algebraic system in the frequency
domain. This system is solved for the spectral coefficients of the solution via Newton’s
method. Note that the harmonic balance method is equivalent to a finite difference method
on a uniform gnd of order equal to the size of the Fourier basis. ..
The harmonic balance method achieves a superior accuracy compared to time-domain
- methods due to its exponential convergence nature. Its major drawback, however, is its
inability to handle highly nonlinear problems and large circuits. These problems require
many terms in the Fourier representation of the signals ('i.e. many time-points in the uniform

grid to capture the sharp features in the waveforms), and yield a large ill-conditioned linear
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system, both of which present complexity and storage problems for the harmonie balance
method.

Both time-domain and spectral methods for steady-state circuit analysis have recently
benefited from using preconditioned iterative linear solvers for solving the linear problem at
each Newton step 7, 10, 11, 12, 15, 16]. In particular, the current state-of-the-art precondi-
tioned matrix-implicit Krylov-subspace realization of the harmonic balance method [7, 10,
11, 15] has made this method into a winning simulation strategy for large mildly-nonlinear
circuits. However, strongly nonlinear circuits, and other circuits with solutions exhibiting
rapid transitions, still present a serious bottleneck for spectral steady-state analysis tech-
niques. S

Given the clear theoretical advantage of spectral methods over time-domain methods
with respect to achieved solution accuracy, a pertinent question is whether it is possible to
enhance the existing harmonic balance method in some way, or develop new spectral methods
in order to eliminate the aforementioned simulation bottleneck for strongly nonlinear and
other circuits with rapid transitions.

In this dissertation we embark on a quest for better, more powerful spectral methods
for circuit analysis. We start this journey with an overview of the current state-of-the-art
preconditioned matrix-implicit Krylov-subspace harmonic balance method in Chapter 2. A
study focusing on enhancements to this harmonic ba,lé.nce method is given in Chapter 3. In
particular, we examine the impact of various preconditioners, and the choice of iterative linear
solver. We also analyze the relative advantages of different formulations of the harmonic
balance method.

Our quest continues with the introduction of the Time-Mapped Harmonic Balance method
(TMHB) in Chapter 4. We build TMHB as a fast Krylov subspace spectral method utilizing
a non-uniform grid to resolve the sharp features in the signals and therefore suited to effi-
ciently obtain highly accurate steady-state solutions of stro_ﬁg___ljr nonlinear and other circuits
with rapid transitions. At the core of this new method_is the grid selection strategy, and in
Chapter 5 we present and study several such strategies. Results from applying the TMHB
method and different grid selection strategies on several circuits are given in Chapter 6.
Finally, in Chapter 7 we draw conclusions and suggest some avenues for future work.

-
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Chapter 2
Harmonic Balance Method

Consider a circuit described with N nonlinear differential equations:

§(v(®)) +i(v() + u(t) = 0 2.1)

where v(t) € RY is the vector of node voltages, ¢(v(t)) € RY the vector of node charges
(or fluxes), i(v(t)) € R the vector of resistive node currents, and u(t) € RN the vector of
input sources. |

Let the circuit be driven by a single periodic excitation input source with period T
Finding the periodic steady-state solution of this circuit consists of computing the N steady-
state waveforms v(t) on the solution domain ¢ € [0,7]. The periodic steady-state solution

of (2.1) satisfies the two-point constraint:
»(T) = v(0). (2.2)

Time-domain methods [1, 4] (finite differences, shooting-Newton method) compute the
steady-state by ﬁrst discretizing the solution domain [0,T]. The time-derivatives are ap-
proximated with finite order integration formulas. For example, for the M-th order BDF
formula, the time derivative of the charge function is

1M
(o)) ~ ;}ajqw(ti—j))- (2.3)

A Backward-Euler discretization of the circuit equations (2.1) therefore yields

'hl';[‘I(U(ti)) — g(v(ti-t))] +i(v(E:)) + u(t;) = 0. . (24)

The finite difference methods then solve for the discrete solution samples v(t;), while the

shooting-Newton method solves the problem
¢(v(0),0,T) —v(0) =0 (2.5)
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where ¢() is the state transition function ¢(v{0),0,T) = v(T) computed from time integra-
tion of the circuit over one period.

Since the time-derivatives in the time-domain methods are local properties of a function
(i.e. are computed using values of the function at a handful of nearby time points), these
methods are exact for polynomials of low order M. In other words, the solution is represented
by a sequence of low-order polynomials connected at the discrete time-points ¢;. These
methods can therefore at best achieve polynomial convergence with global errors O(h*).

Spectral methods [38, 40, 42, 72] approximate the solution waveforms as weighted finite
sums of global, orthogonal, and smooth basis functions ¢(¢):

M-1

k=0

and solve for the spectral coefficients ay. If the boundary conditions are periodic, a truncated

Fourier basis is the obvious choice, as it automatically satisfies the boundary conditions:
k=K . . k=K ]
’U(t + T) . Z %ej2vrkf(t+T) — Z V}:egmrkft (27)
k=—K k=—K

‘where 2K +1=M, f = % is the periodic excitation input source frequency, and V; are the
Fourier coefficients. Note that the time-derivative of this approximation can be computed
exactly:

d = 2k ft
Ev(t) ~ kg;xﬂvrkakeJ . (2.8)

Due to the global nature of the spectral methods, as k + 0o the k-th Fourier coefficient
Vi decays faster than any negative power of k if the solution waveform v(t} is infinitely
smooth. This rapid decay of the coefficients means that the truncated Fourier approximation
of the solution expanded by a few additional terms (by slightly increasing K) represents an
exceedingly good approximation of the solution. As a result, spectral methods have errors
that decay faster than any negative power of M, a property known as spectral accuracy,
exponential convergence, or infinite-order accuracy.

The spectral methods will not achieve spectral accuracy if a discontinuity is present in
the solution waveforms or one of their derivatives. In the context of circuit simulation, the
smoothness of the waveforms will depend on the smoothness of the device models used for
the circuit elements. If the device models are p-times continuously differentiable functions
and periodic in all its derivatives, V;, = O(k™?), and the spectral method’s errors will be
O(M~P).
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2.1 Formulation

In the standard harmonic balance (HB) method [4, 5], the solution waveforms are approxi-

mated with truncated Fourier series:

k=K
‘U(t) = k—ZK Vkejzﬂfkft (2‘9)

with K the number of harmonics considered in the truncation. The method solves for the
Fourier coefficients Vi. The approximation (2.9), in conjunction with the NV circuit equations

(2.1), results in the residual function:

K K
FV = S jmkfQue™ i ( S V};eﬂ“kﬂ) + u(t) (2.10)
. ,

k=K =K

where @y, are the Fourier coefficients of g(v(t)) with v(t) the truncated Fourier series ap-
proximations of the solution waveforms, i.e. ¢ (Ef__._ x Vi S t) =K L Que?Fit,

The residual function (2.10) is to be minimized on the solution domain [0,7). This
minimization is typically carried out by enforcing f(V,tn)}=0on a uniform grid of colloca-
tion (interpolation) points tn, € {t1,%2, ...,tar} where £, = m;} T and M = 2K + 1. This
harmonic balance method is more accurately referred to as pseudospectral (or collocation)
harmonic balance.

Equation (2.10) is now rewritten in the frequency domain yielding NM nonlinear alge-

braic equations

F(V) = QLg(T'V) }I‘i(r—IV)} Tu=0 (2.11)

where V is the node-voltage spectrum V = [V_g 1, o, VoE,N3 VoKL 1 =01 o0 VK,N]T (a vector

of Fourier coefficients) and §2 is the diagonal frequency-domain differentiation matrix

[ jon(—K)fIn

j2nK fIy |

L

where Iy is the identity matrix of size N.

The matrices T and ! are DFT matrices that perform the conversions from time to
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frequency and vice-versa

'U(t]_)
v=0"1V = v(ta)
| v(En) |
- (2.13)
ej21r(—K)_ft1 IN . 6j27rKft1 IN
It =
ejz‘.‘r(-K)ftMIN . ej27rKftMIN

where each v(t) € R¥ is a vector of node voltages. Since the grid of time-points #y, ..., £5 is
uniform, the DFT can be carried out in O(NM log M) operations using the FFT.

In harmonic balance, the nonlinear circuit devices are evaluated in the time-domain. As
it can be seen from (2.11), the node-voltage spectrum V is transformed into the time-domain,
the time-domain response of the nonlinear device functions #(v) and g(v) is calculated, and
these waveforms are then converted back into the frequency domain.

Note that this time-domain evaluation of the nonlinear devices, and the subsequent con-
- version of the sampled nonlinear device response to the frequency domain can be a source

of errors in harmonic balance due to aliasing effects.

2.1.1 Time-Domain Formulation

The harmonic balance method can also be written in the time-domain by converting the
system of equations (2.11) from frequency to time:

flv)= I“lﬂl‘q('v). + H{v)+u=0 " (2.14)

where v is the unknown vector of node voltage samples v = [v(t), v(t2), ..., v(tm)]* and

D =T~1Qr is the spectral differential operator in the time-domain:

[ 0 aly oody ... ooy ]
D= 0!_1IN 0 0!]_IN e a_sz ‘ . (2‘15)
.. alI& QQIN can C!__1IN 0 ]

The time-domain differentiation matrix D is a block-aense, real, antisymmetric circulant

matrix with a zero diagonal, compared to the complex diagonal differentiation matrix Q.
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Figure 2.1: Coefficients o, of the time-domain spectral differentiation operator D for K = 15
and f = 1.

The coefficients a are the weights of the spectral time-domain difference operator, and are
illustrated in Figure 2.1 for K =15 and f = 1.

The time-domain formulation of the harmonic balance method is therefore

0 Clt]_IN

G.’_]_IN 0

oIy oply

asly a1y ] Q('U(tl))' i(v(t))
oIy a_oln g(v(t2)) i(v(ts))
oIy O g(v(tar)) i(v(ta))

u(ty)
u(tz) =0
u(tM)

(2.16)

and can be compared to any time-domain finite difference method (for example, a finite

difference method using Backward-Euler in non-uniform discretization of the domain [0, T1):

1
R IN

1 1
v v

—5Iv | [ q(tr)) i(v(t1))
g(v(t2)) i(v(t2))
Iy Iy | g(v(tn)) i(v(tar))

u(ty)
u(t2)

uling)

(2.17)

where £; = 0, hy = T — tar, and Ry = tp — tip1 for all other m. The harmonic balance

method can, therefore, be viewed as a finite-difference’ method of order M, the size of the
Fourier basis. Note that the spectral time-domain difference operator D is much denser than
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the corresponding Backward-Euler difference operator (or any other operator coming from

a low-order integration scheme).

2.2  Solution Strategy

‘The system of VM nonlinear algebraic equations (2.11) are solved by applying the Newton’s
method. The application results in the iteration

JO (VD _y®) = _ Ry ) (2.18)

where [ is the Newton iteration index. This iteration is a linear problem. The [-th Newton
iteration Jacobian is

JO = QrcWr-! + rgOT-1 (2.19)

and is a NM x NM block-dense matrix.
The matrices C and G are

Cl Gl
C G
C= * , G= 2 (2.20)
L CM L GM -1
where the blocks Cr, = [Cin(r, 5)] and Gy, = [Gom(r, 5)] consist of the elements
| T tm
Cnfrys) = Arlin), 2.21)
du,
di(vr(tm)) ,

= VS 2.22
Gnlrys) = L (2:22)
where 7, s are the node indices, r,s = 1,2,..., N. The block-diagonal structure of G and

C is due to the fact that the relations g(v) and i(v) are algebraic. The constituent sparse
blocks G and G, are simply the circuit capacitance and conductance matrices evaluated
at the collocation time-poinfs tm € {tl;tz, ..'.,tM}. Their sparsity depends on the topology
of the circuit.

For linear circuits all C,, and G,, blocks are independent of the voltages-and are the
same, resulting in a iteration-invariant block-diagonal Jacobian. Newton’s method then
yields the exact solution in one iteration, and harmonic balance becomes equivalent to an
AC (phasor) analysis. Note that if the time-domain formulation of harmonic balance is used,
the Jacobian will be dense even for linear circuits because of the density of the spectral time-
domain difference operator D that multiplies the block-diagonal C matrix. In other words,
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Guess at a solution, z°.

Initialize the search direction p® = 7% = b — Az°
Set k=1.
do {
Compute the new search direction, p* = ApF~*.
Orthogonalize, p* = p¥F — ij—u B’

Choose o in

k= bl 4 gpph

z
to minimize ||r¥|| = ||b — AzF]].
If H < tol, return v* as the solution.

else Set £k =k + 1.

Figure 2.2: GMRES algorithm for solving Az = b.

while in the frequency domain the block-diagonal structure of the frequency-domain HB
Jacobian for linear circuits indicates that there is no coupling between different frequencies,
the time-domain HB Jacobian is dense because there is coupling (i.e. nonzero sensitivity)
among the waveform samples v(t,,) at the collocation grid times t.

For mildly-nonlinear circuits, the Jacobian is no longer block-diagonal. The off-diagonal
blocks represent the inter-frequency coupling whose strength- (measured with the ratio of
the norms of the off-diagonal blocks to the diagonal blocks) will depend on the amount of
nonlinearity in the circuit.

2.2.1 Matrix-Implicit Krylov-Subspace Approach

The explicit formation and direct factorization of the bloék-dense harmonic balance Jacobian
J is computationally very expensive, O{NM3?). A preconditi‘oned iterative linear solution
algorithm, such as the Generalized Minimum R;emdual algorithm (GMRES) [54] (summa-
rized in Figure 2.2), can be used to reduce the factorization complexity to O(N M?). The
tolerance of the linear solver can be loose, since the linear solver only computes the iterative
solution updates for the outer Newton loop, and is n6£ used for confirming convergence.
Therefore, obtaining an approximate solution update By loosening the linear solver’s toler-
ance only affects the outer Newton method’s convergencé raté, and not the accuracy of the
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final solution. In harmonic balance the GMRES tolerance default is typically 1071,

GMRES is a robust iterative algorithm for solving the linear problem. It guaranteeg
convergence in maximum n steps (where n is the size of the linear system). It is much
faster than relaxation, and only uses matrix-vector products. Furthermore, GMRES allows
implicit matrices (while direct factorization requires explicit matrices). The implicit nature
of GMRES also allows usage of operators such as the FFT. However, good preconditioners
are essential for GMRES as GMRES is slower than direct factorization if it takes all n, steps
to solve the linear system.

The diagonal blocks of the Jacobian work well as a standard preconditioner in many
circuit examples, particularly for mildly nonlinear circuits with weak off-diagonal blocks in

the Jacobian [11, 15]. This frequency-domain block-diagonal preconditioner is

[ jQ?T(—“K)fC_'o -+ @u

i2n(—K + 1) fCo + G,
P, = J2(=K +1)fCh+Go ' (2.23)

72nK fCo + G |

where the blocks Cy = [Co(r, 5)] and Gy = [Go(r, 5)] contain the elements

- 1 M .

Co ('l", 3) = "AZ Z,Cm(ra 3)1 (2'24)
) ) mI‘;I

GQ(T, S) = M— Z_; Gm(T, S) (225)

with 7,5 =1,2,..., N the node indices. Cy and Gy simply represent matrices made up from
the DC (k = 0) Fourier coefficients of the circuit’s capacitance and conductance matrices,
with the averaging in (2.24) and (2.25) done on node by node basis.

To demonstrate the effectiveness of this block diagonal preconditioning consider the op-
erational transconductance (OTA) amplifier circuit shown in Figure 2.3. Table 2.1 illustrates
that the number of GMRES iterations is greatly reduced by the block-diagonal precondition-
ing. In addition, Table 2.1 indicates that the number of GMRES iterations increases with
number of harmonics without preconditioning.

The GMRES linear solver requires forming the matrix-vector product .
Jp* = (IC +I'G) I 1p* (2.26)

where p* is the search direction in the k-th GMRES iteration. This matrix-vector product
can be formed implicitly by a sequential evaluation using 3 FF'Ts, reducing the complexity of
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Figure 2.3: OTA Amplifier (56 MOSFETS).

K || I (GMRES) | I, (PGMRES)
10 139 41
14 155 48
18 159 49
20 173 47
32 200 a1

Table 2.1: Effectiveness of block-diagonal preconditioning in harmonic balance analysis of
the OTA amplifier. K is the number of harmonics, and Iy, the number of linear iterations
in a typical Newton iteration. PGMRES refers to a GMRES method with block-diagonal

preconditioning.

the harmonic balance method to the complexity of the time-frequency conversions, which is
O(N M log M) for the FFTs. To illustrate this again considet the operational transconduc-
tance (OTA) amplifier circuit shown in Figure 2.3. The advantages of the matrix-implicit
approaches are demonstrated in Figure 2.4, which shoWs'the computational cost vs. the
number of harmonics for the different factorization approaches in the harmonic balance
method. I, ' .

The extrapolated slopes (straight dashed lines) in Figure 2.4 correspond to the exponent
B in the O(M?) observed computational complexity versus the number of harmonics K,
where M = 2K + 1. For the Gaussian factorization apprdach 8 = 3.1, for the preconditioned
GMRES scheme 8 = 1.8, and for the matrix-implicit preconditioned GMRES approach
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B =1.1, i.e. slightly faster than linear as expected from an M log M dependence.
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T v

10° ¢
- -~
1 Gaussian factori’zatfon
10° | -7 .
C - 3
-~ - - - -
- -
Z10* | e P —
Q - g =, .
= - GMRES preconditioned
-
= .3 e - -
= 107 - . - E
8 - - x- - -
_ - -
S 107 =3 et
.% 10° = _a. —~ ~ 7 Matrix—Implicit E
= 3 st o GMRES preconditioned
E | P .
o 10 ¢ ,,&— - - 4
w - -7
- f“ 4
10° E - -+
= - 3
] +
-t |
10 : :
10° 10’ 107 10°

number of harmonics

Figure 2.4: The superiority of the matrix-implicit preconditioned approach in harmonic
balance analysis of the OTA amplifier.

The FFT-based, matrix-implicit, GMRES preconditioned pseudospectral harmonic bal-
ance method [7, 10, 11, 15] is the current state-of-the art steady-staté circuit analysis tech-
nique. It is commonly used to analyze circuits with hundreds of devices. A number of other
less effective modifications to improve the accuracy [3], the convergence [8, 17] and the com-
putational efficiency [9] of the harmonic balance method have also been investigated. This
method, however, is still not universally successful when applied to different circuits [11, 15].
In particular, highly nonlinear circuits, as well as other circuits with rapid transitions still
cause pfoblems. These circuits exhibit waveforms with sharp features which require many
harmonics, and many linear (GMRES) and nonlinear (Newton) iterations in order for the
method to converge as well as to obtain a reasonable accuracy. In the next Chapter, we
study possible ways to enhance the harmonic balance method in order to overcome these
limitations. '
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Chapter 3
Enhancements to Harmonic Balance

In this Chapter we study possible enhancements to the standard harmonic balance (HB)
method reviewed in Chapter 2. We will first examine the impact of the choice of different
preconditioners for the GMRES iterative linear solver in the matrix-implicit Krylov-subspace
HB method. We will also derive the approximate Galerkin formulation of the harmonic
balance method and compare its performance to the standard pseudospectral formulation.

At the end, we add a few remarks concerning the choice of an iterative linear solver in HB.

3.1 Time-Domain Preconditioners

If a linear system is solved by an iterative method such as GMRES, the convergence rate
of the solver depends on the spectral properties of the coefficient matrix. The idea of pre-
conditioning is to transform the original linear system into one that is equivalent (i.e. has
the same solution), but which has more favorable spectral properties. The preconditioner
is a matrix that performs this transformation. One way to design a preconditioner is to
construct a matrix that somehow approximates the coefficient matrix, and is easy to invert.

For example, in the frequency—ddmain harmonic balance formulation, the I-th Newton

iteration linear problem

JOAVH = _p(v9) : (3.1)

where AV = v+ — VU is transformed into
JP IPAV = —F(V) (3:2)

using a right-preconditioning approach. The Newton iteration indices were dropped for the
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sake of clarity. Setting PAV = U, we then first solve the system
JPTIU = —F(V) (3.3)

with GMRES. Since the preconditioner P was chosen to be casily invertible, the GMRES
matrix-vector products JP~1p* can be computed efficiently. To further speed up the matrix-
vector product, we can invert the preconditioner once, and store it in its LU decomposed
form. If the preconditioner is well designed, the linear system (3.3) will have more favorable
spectral properties than the original linear system (3.1), and GMRES will be able to converge
(or reach the desired solution tolerance) in significantly fewer iterations. At the end, we
obtain the actual solution AV from:

AV = P7U. - (3.4)

The advantages of the right style of preconditioning (versus left) is that right precondi-
tioning does not change the right hand side —F (V) of the system, and therefore the RHES
of the original linear problem, transformed linear problem, and the outer Newton loop stay
the same. In contrast, a left preconditioning GMRES will in essence solve the original linear
problem to various degrees of accuracy in each Newton iteration due to the scaling of the
RHS of the original linear system by P~! in the transformed linear problem. In practice,
left preconditioning has shown to cause costly increases in both the numbers of GMRES and
Newton iterations.

In the frequency-domain formulation of harmonic balance, the diagonal blocks of the
frequency-domain Jacobian

[ j2n(~K)fCy + G

j2n(—K +1)fCo + G : .
Py = F2m( )fCo+ Go — (3.5)

jQ?TKféo + @0 ]

are commonly used as a right preconditioner. This preconditioner can be easily and efficiently
formed and inverted due to its block-diagonal structure.

‘The block-diagonal preconditioner (3.5) works well for most circuits, but not as well for
highly nonlinear circuits [11, 15]. In Chapter 2 we mentioned that the off-diagonal blocks
in the frequency domain HB Jacobian represent the inter-frequency coupling; their strength
depends on the degree of nonlinearity of the circuit. The block-diagonal preconditioner
does not include these blocks, which is why this preconditioner is not as efficient for highly
nonlinear circuits.
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Time-domain steady-state methods, such as finite-differences, are well-suited for nonlin-
ear circuits. Since the harmonic balance method can be viewed as a time-domain method,
we will use this point of view to design preconditioners that we hope to be more efficient in
simulating highly nonlinear circuits. Note that centered-difference preconditioning in spec-
tral methods is considered in [42], upwind finite-difference preconditioning in [80}, and finite
element preconditioning in [69].

The time-domain formulation of the harmonic balance method given.in Section 2.1 showed
that the harmonic balance method is essentially a time-domain method of ofder M, ‘;vhich
is the size of the Fourier basis used in the truncated series approximation of the solution

waveforms. If the time-domain harmonie balance formulation
Ff@)=TQCq(w) +i(v) +u =0 (3.6)
is solved by the Newton’s method, the linear problem solved at the I-th Newton iteration is
JO AW = — f(u®) (3.7)

where Ay} = 1) _ 4O

The time-domain Jacobian at the [-th Newton iteration is
JO = (rane® + GO = po® + ¥ (3.8)

and it is a real block-dense matrix whose structure is

Gl alcz (1203 een 'OI_ICM
' -1C1 Gy oC ces a_C
I = a_jtn ‘2 1g AS Ve (3.9)
i a101 03202 “e a_ICM_—.l GM ]

where the coeflicients o are the weights of the spectral differentiation operator in the time-
domain. ..

We would like to design a preconditioner that will in some way approxin:{atp the time-
domain Jacobian J;, but will have an easily invertible block structure. Since the time-domain
formulation of the harmonic bélance method is a finite-difference method in disguise, one
idea is use the Jacobian matrix from a lower-order finité difference scheme on a uniform grid

as a preconditioner. For example, the Backward-Euler (or BDF-1) finite difference Jacobian
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on a uniform grid is

%46 -
-& &4 @G,
Jpp = oo (3.10)
| S GG
Similarly, the uniform grid BDF-2 finite-difference Jacobian is
[ 3C. Cu— C
% TG e T
% e %
a _20 3G
h f h 3
JepF2 = 2 2 (3.11)
Cu— 20m-1 3C
L gh : o Aff - SR+ G

and so on for the higher-order BDF integration schemes. In general, the BDF-n time-domain
preconditioner will have n + 1 bands of blocks. For a more efficient factorization, the cluster
of blocks in the upper-right corner of the finite-difference Jacobians is ignored. For example,
the BDF-2 preconditioner Piois:

P =

¥

S .
=T + Gy
_20 3Cy
k 2h + G
G —2C 3Cs
2% R h + G

Cr-2 _20m-1 30y
L 2h h 2h + Gy -

(3.12)

3.1.1 Complexity Ana1y51s of Preconditioning Approaches

The complexity of the preconditioned matrix-implicit Krylov-subspace harmonijc balance
is limited by the FFT to O(NMlog M). It is therefore crucial to investigate the number
of required FFTs in each GMRES iteration for different combinations of preconditioning
approaches and harmonic balance domain formulations. )

For the time-domain HB formulation, a time-domain preconditioner P, transforms the

matrix-vector product into
JP Yt = (T7Q0C + G) P'p* (3.13)
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where p* is the time-domain search direction in the k-th GMRES iteration. The above
matrix-vector product requires only 2 FFTs. On the other hand, the matrix-vector product in
the frequency-domain formulation using the frequency-domain block-diagonal preconditioner
Py is
JP;'p* = (QrC +TG) I Py gt (3.14)
and requires 3 FFTs.
If we now reverse the situation, namely, use the frequency-domain preconditioner in the

time-domain HB formulation, the matrix-vector product becomes
JIIPFITp* = (T7'QrC + G)I Py 'Tp* (3.15)

and now requires 4 FFTs. In comparison, using a time-domain preconditioner in the fre-

quency domain HB formulation, results in the matrix-vector product
JTPIT1p% = (QIC + TG)I-'TP7 I 1p* = (OTC + TQ) PIT1p* (3.16)

which again requires 3 FFTs. While we can conclude that it is best to have both time and
frequency HB formulations implemented, if we have to choose one formulation, it would
be the frequency-domain one, particularly since the frequency-domain preconditioner works

well for most circuits and should therefore be the default choice of a preconditioner.

3.1.2 Time-Domain Preconditioning Results

In order to investigate the potential merits of the BDF preconditioners, we used the standard,
right preconditioned GMRES matrix-implicit HB method to simulate two highly nonlinear
circuits: a diode rectiﬁef, and a DC-DC converter. Statistics for these two circuits are
given in Table 6.1 (Chapter 6). The block-diagonal frequency domain preconditioner is not
effective for these two circuits. :

The standard HB method was implemented in Mica, Motorola’s SPICE-like circuit simu-
lator, in the computer language C {55]. All computer runs were done on Sun Ultra-2 350MHz
UNIX workstations. -

Three different preconditioners were used in the HB GMRES solver: the block-diagonal
frequency domain preconditioner (FREQ), and the BDF-1 and BDF-2 time-dc;xqain precon-
ditioners. The HB method was formulated in the frequency domain. The DC (equilibrium,
¢ = 0) solution of the circuits was used as an initial Newton guess.

Figure 3.1 summarizes the influence of the three preconditioners on the Newton and
GMRES solvers in HB simulation of the diode rectifier circuit. On the left, plot (A) shows the
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Figure 3.1: Diode Rectifier: (A) Newton iterations; (B) average GMRES iterations for

different preconditioners.

total number of Newton iterations Iy for each HB run at increasing number of harmonics K.
While FREQ induces increases in the number of Newton iterations, the BDF preconditioners
keep this number independent of K. In plot (B), the average number of GMRES iterations
per Newton step Ir /Iy is plotted against the number of harmonics K (where I}, is the total
number of GMRES iterations). The FREQ preconditioner is again visibly ineffective and
causes an increase in the average number of linear iterations, while the time-domain BDF
preconditioners are quite effective and keep the both the average and the total number of
linear iterations independent of K.

Figu.re 3.2 shows the total CPU time performance for the preconditioned HB approaches
in simulating the diode rectifier. The performance of BDF-1 and BDF-2 is almost identical,
and both perform increasingly better than FREQ when a growing number of harmonics are
considered. For example, at K = 1000, HB runs using BDF-1 and BDF-2 are twice faster
than the FREQ preconditioner.

The HB simulations of the second circuit, the DC-DC converter, are summarized in
Figures 3.3 and 3.4. While the number of Newton iterations are similar, and increase for
all preconditioners, the BDF preconditioners once again maintain the average number of
GMRES iterations per Newton step independent of the number of harmonics K. This
results in considerable total HB CPU time speedups for large K: for example, at K = 1000,
the HB run using the BDF-2 preconditioner is 3.7 times faster than the HB run using the
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Figure 3.2: Diode Rectifier: CPU time performance of different preconditioners.

FREQ preconditioner.

We can conclude that the BDF preconditioners can be quite effective for highly nonlinear
circuits. They keep the average number of GMRES iterations bounded, and can have a
similar effect on the number of Newton iterations as well. Factoring the BDF preconditioners
is more expensive than factoring the block-diagonal FREQ preconditioner since they contain
off-diagonal blocks. However, due to the independence of the average number of GMRES
iterations from the number of harmonics X in the case of BDF preconditioners, a performance
speedup is present for larger K. The HB method using BDF preconditioners is shown to be
several times faster than the HB method using the FREQ preconditioner, particularly in the
runs with large number of harmonics K; in fact, the speedup factors.increase with increasing

number of harmonics K.
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Figure 3.3: DC-DC Converter: (A) Newton iterations; (B) average GMRES iterations for
different preconditioners.
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Figure 3.4: DC-DC Converter: CPU time performance of different preconditioners.
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3.2 Approximate Galerkin Harmonic Balance

In this section we introduce a different formulation of the harmonic balance method. Recall
from Chapter 2 that in the harmonic balance the solution waveforms are approximated with

truncated Fourier series
k=K

o) = S Ve, (3.17)

k=~K

This approximation, in conjunction with the NV circuit equation

(v(t)) +i(v(®)) +u(t) =0 (3.18)

results in the residual function

HIGE fﬁ jemkfQue®™ 4 ( f Vkeﬂ“’“f‘) + u(?) (3.19)
E=—K k=—K

where Q. are the Fourier coefficients of g(v(t)) with v(t) the truncated Fourier series ap-

proximations of the solution waveforms, i.e. ¢ (Esz_ i Vie??ko t) =K o Que?? I,

The residual function (3.19) is to be minimized on the solution domain [0,7]. In the
collocation or pseudospectral harmonic balance method, this minimization is carried out
by enforcing f(V,tn) = 0 on a uniform grid of collocation (interpolation) points tm €
{t1,t2, . tas} where t, = &2 and M = 2K +1..

Instead of using a collocatlon method, we can minimize the norm of the residual f (V1)

using a mean weighted residual method

= " F WV Ha()dt =0 (3.20)

using a set of M suitable test functions wy(f). For example, if the set of test functions is
wi(t) = ¢, the moment method is generated. If wi(t) = 6{t — ) with £; the same time points
forming the collocation grid, the collocation (pseudospectral) method is generated

When the sets of basis and test functions coincide, the mean weighted residual method
becomes the Galerkin (spectral) method. The Galerkin method is theoretically better than
the collocation (pseudospectral) method. Galerkin’s method reduces the global error across
the continuum of the solution domain [0,77] by using an. integral norm of the residual. In
comparison, the collocation method simply ensures that the residual vanishes at a discrete
collocating set of points distributed uniformly across the solution domain.

Both the Galerkin and the collocation method use a finite set of trigonometric polynomials
(i.e. the truncated Fourier basis) to approximate the solution waveforms. As it will be shown
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in the next section, the set of Fourier coeflicients for the Galerkin method are the truncated
set of the exact Fourier coefficients of the infinite Fourier series of the solution. The computed
Galerkin approximations of the solutions are thus also known as Fourier truncations.

In comparison, the collocation method uses a different set of Fourier coeflicients. The
collocation Fourier coeflicients are such that the approximate collocation solution interpo-
lates (i.e. exactly passes through) the set of collocation points. The computed collocation
approximations of the solutions are thus known as Fourier interpolations.

The computation of the exact Fourier coefficients in the Galerkin method requires an
exact evaluation of integrals, while the DFT (or FFT) can be used to compute the Fourier
coeflicients in the collocation method. This explains the popularity of the collocation method

for complicated nonlinear problems.

3.2.1 Derivation

Given the theoretical advantages of the Galerkin method over collocation, we now proceed
to derive the Galerkin harmonic balance method. We choose the set of test functions to
be the same set of M = 2K + 1 Fourier basis functions used in approximating the solution
waveforms, i.e. w(t) = &2/t with [ € [-K,—K +1, ..., K]. The Fourier basis functions are
periodic and mutually orthogonal, which can results in simplified evaluation of the integral
in (3.20). '

Applying the Galerkin method to minimize the harmonic balance residual function {3.19)

yields a system of N M nonlinear equations
1L (T —jonlft
R(V) = f FV, e =0 (3.21)
=

where [ € [-K,~K +1,..., K]. Expanding for f(V,t), the system becomes

T . T ) 1 (T )
G(v(t))e 2 dt + 1 f i(w(t))e i dt + — f u(f)e7tdt = 0 (3.22)
0 : - T Je=o T Je=o

=3

i=|

where v(t) is the truncated Fourier series approximation in (3.17).
The Galerkin system of equations (3.22) is solved by applying the Newton’qunethod. The

Jacobian for the Newton iteration is

+

OF,(V) , OF(V)
oV v

where F, = [F, _x, Fy—k+1, - Fo.x)7 and F; = [Fi _k, Fi_xy1,.-, Fix]T are the terms in the

Galerkin equations (3.22) corresponding to the integrals of the node charges time derivative

J=J,+Ji= (3.23)
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d{v) and currents i(v) respectively, i.e.

1 /T ;
Fu(V) = [ dtw®)e > dt, (3.24)
Fu(v) =7 [ ito(e)emat (3.25)

For the sake of clarity, we will focus on the resistive part of the Jacobian J;; the derivation
of the capacitive part J, is similar.

Using the chain rule, the resistive part of the Jacobian J; is

_OR(V) _OR(V) dv

Ji = = .
7 By OV (3.26)
Substituting (3.25) into (3.26) we obtain '
o—i2n{~K)ft
1 /T 8i(v(t e—j21r(—K+1)ft
J,.:_./- dt_‘(”_(_.)_) [ w_ 8w . ﬂ_]. (3.27)
T Ji=0 Ov : Vg OV_gn IV
e—j21r(K)ft
Since v(t) is approximated by the truncated Fourier series (3.17), the terms % = gi2m(k)ft
and we arrive at
e—i2m(0)ft e—i2m(1)ft eo. e 32F(2K)ft
1 T | Oi{v(t e—i2m(=1)ft =izt ... g—i2w(K-1)ft
Ji= = dtM (3.28)
T Ji=0 ov : : : :
' e—IW(—2KMt  g—j2m(—2KADft ... i2(O)ft

k. -

The resistive part of the Jacobian J; is therefore a matrix whose entries are Fourier

transform integrals. Each of these integrals picks out the exact Fourier coefficients G} of
ai!‘v!t“ i e
8v .

o B 7
GE o G-——2K
& & - G
=+ 77 e (3.29)
| é‘:K ~;K—1 T éa i

In practice, the Fourier transform intégrals will be evaluated by a numerical integration
rule, and the G% blocks will only be approximations to the exact Fourier coefficients. It is
particularly interesting to see what happens if the trapezoidal rule is used for this evaluation.
Since the integrands are periodic, the trapezoidal rule is equivalent to Gaussian quadrature
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and is exponentially accurate. If the grid used in the trapezoidal rule evaluation is the set of
M uniformly spaced time points ¢, € t3, tg, ..., tar With &, = gm_;;)z, the trapezoidal rule is
equivalent to an M-point DFT. The resistive part of the Jacobian then becomes a circulant
matrix o 3 o
Gy Gy -+ (G4
le Cf“ o G_Yz = TGr! (3.30)

and is identical to the resistive part of the Jacobian J; in the pseudospectral harmonic balance
formulation. A similar result can be obtained for the capacitive part J, of the Jacobian.

The Galerkin harmonic balance method is, therefore, equivalent to the pseudospectral
harmonic balance when the Galerkin integrals are evaluated using a trapezoidal rule on a
uniform grid of same size M as the size of the Fourier basis.

In order to achieve a better approximation to the resistive part of the actual Galerkin
harmonic balance Jacobian (3.29) (which contains exact Fourier coefficients), as well as to
the capacitive part, the number of uniformly spaced points in the trapezoidal rule can be
increased to M, = 02K + 1 (where ¢ > 1). This approximate Galerkin Jacobian can be
computed from the pseudospectral harmonic balance Jacobian on the uniform collocation
grid of M, points : it is the central NM x NAM part of this pseudospectral HB Jacobian.
This approximate Galerkin Jacobian will converge to the actual Galerkin Jacobian in the
limit o — co.

When the pseudospectral harmonic balance uses the larger M, point uniform collocation
grid and the oversampled DFT transform matrices T’ and ' of size NM,;, the method is an
oversampled pseudospectral HB (i.e. a pseudospectral HB with oversampling transforms).

In summary, the middle NM x NM part of the oversampled pseudospectral Jacobian ap-
proximates the actual Galerkin Jacobian increasingly better for increasing transform lengths.
In other words, the oversampled pseudospectral HB represents an approximate Galerkin HB
method (AGHB).

As an illustration, consider the case K =1 (i.e. M = 3). When ¢ = 1 (no oversampling),

the resistive part of the pseudospectral Jacobian is Je

Gy G Gy
=[G @ .. (3.31)
G G G

We now introduce oversampling with o = 2. The collocation grid is now M, = 5, and the
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resistive part of the oversampled pseudospectral Jacobian is

| Go G G2 G2 G
G Gy G G, G
J,‘Z ég él ég é._l G’_z . (332)
G, G G Gy G '
G, G, G G Go |

Its middle 3 x 3 part represents the resistive part of the approximate Galerkin Jacobian:

é{) é_l é_.g
J;:(G)Z él éa é—l . (3-33)
Ge G Go

Note the differences between the lower-left (1, 3) and upper-right (3, 1) corner terms in (3.33)
and (3.31).

Given the theoretical advantages of the Galerkin method over collocation, we may suspect
some sort of accuracy enhancements by using the oversampling transforms in the pseudospec-
tral HB method. Consider the computation of G} with the Galerkin (spectral) method

T
G* _ dZ(’U) —-_127rlftdt (334)
T
with the uniform M,-point trapezoidal rule (or equivalently, with an oversampled pseu-

dospectral method with oversampling factor o). Define

g*@) = dz(v(t)) ‘ (3.35)
and let its exact infinite Fourier representation be given by
o0 _ . '
g(t) = 3 Gpef™™ (3.36)
) k=—c0

Let the approximate pseudospectral representation with truncated Fourier series be given by
K . '
g(t) = 3 Gpe?®™ It (3.37)
=—K Fm
Using the trigonometric interpolation theorem {43], it can be shown that G, differs from
G by a perturbing aliasing suin: '
-~ — w -~ '
Gr=Gr+ 2, Gium, (3.38)
j=—°° ? J#o
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where M, = 02K + 1.

‘The presence of the aliasing term in the collocation Fourier coefficients indicates that
the error for the collocation method will always be greater that the error for the Galerkin
‘method. On the other hand, it can be shown that the aliasing term is asymptotically of the
same order as the truncation error [67, 39], which implies that the errors for the Galerkin
and collocation methods will decay at the same rate in the asymptotic limit [42].

To illustrate the perturbing aliasing terms in the approximate Fourier coefficients G,
look at the case K = 1, and no oversampling (i.e. ¢ = 1). The approximate Fourier
coefficient G, is

Go=Gy+ (G +Gi+ G, +G). (3.39)

Note the presence of the G’f_l coefficient in the aliasing sum which is particularly worrisome,
since typically |G*,| > |G}].

If the oversampling is set to ¢ = 2, the same approximate Fourier coeflicient is
Go= G4+ (G + G+ G + G (3.40)

Note how all perturbing coefficients here now have indices with absolute values greater than

2. In general the magnitudes of the perturbing coefficients will be smaller than 1G3).

3.2.2 Approximate Galerkin Harmonic Balance Results

In this section we compare the performance of the oversampled pseudospectral HB (i.e.
approximate Galerkin harmonic balance, or AGHB) with the pseudospectral HB formulation
(i.e. PSHB) on the two nonlinear circuits (the diode rectifier and the DC-DC converter) used
in the time-domain precondltlomng experiments. A nght preconditioned matrix-implicit
GMRES linear solver was used in both formula.tlons -with BDF-2 as a preconditioner. The
initial Newton guess was a shootmg—Newton solution computed with loose tolerance.

The HB methods were unplemented in Mica, Motorola’s SPICE-like circuit simulator, in
the computer language C [55]. All computer runs were done on Sun Ultra-2 350MHZ UNIX
workstations. "

Figures 3.5 and 3.6 show the L., norm of the frequency-domain pointwise error ¢; in
a solution waveform for the two circuits simulated with PSHB and AGHB with increasing

oversampling o. The frequency-domain pointwise error es is computed as:

er(kf) =1V — Vil (3.41)
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Diode rectifier: approx Galaerkln (A) {B)
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Figure 3.5: Diode Rectifier, AGHB L, norm of the frequency-domain pointwise error in

iyry versus: (A) number of harmonics K; (B) oversampling factor o.

where V[ is the k-th Fourier coefficient of the exact solution, and Vj is the k-th Fourier
coefficient of the solution computed by PSHB or AGHB. Since no exact solution for these
circuits exists, a PSHB solution computed with a very large number of harmonics (K = 5000)
was used for this purpose. Note that the points at ¢ = 1 in the plots correspond to the PSHB
solutions.

While the Galerkin formulation is theoretically better than the collocation (pseudospec-
tral) formulation, the plots in Figures 3.5 and 3.6 show only a small improvement in accuracy
when AGHB is used: up to 7.5dB for the iy sy waveform in the diode rectifier, and up to
12dB for the DC-DC converter’s vcorz,- The reduction in the error initially increases with
an increasing number of harmonics K, but saturates after reaching its peak value. The plots
show that only minor 10% to 20% oversampling is needed to reach the peak error reduction
at each K. This is a good outcome since the computational cost of AGHB is limited by the
length of the FFTs, i.e. its complexity is O(IN M, log M, ) If a larger value of o was required
to get the error reduction, the benefits of AGHB would not have been worth the extra cost.

Note that if a direct factorization is used for the linear problems in boti—L“AGHB and
. PSHB, the oversampling in AGHB does not introduce an additional computatit;nal cost as
the complexity is entirely dominated by the expense of the factorization.

Since AGHB is more accurate than the PSHB, to ensure a fair comparison of the two
formulations we compare total CPU times needed for the two formulations to reach identical
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DC-DC Converter: approx QGalerkin {A) {B8)
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Figure 3.6: DC-DC Converter, AGHB Lo, norm of the frequency-domain pointwise error in

Vecoir versus: (A) number of harmonics X ; (B) oversampling factor o.

solution accuracy. Figure 3.7 shows these times for the DC-DC Converter, with AGHB using
20% oversampling (¢ = 1.2). The plot indicates that AGHB is on average 1.5 times faster
than the PSHB in computing the solution to same accuracy. The efficiency savings come
primarily from the fact that AGHB needs to use fewer harmonics than PSHB to reduce the
error to the same amount. This reduction in the size of the problem easily offsets the cost

increase due to the use of oversampling transforms in AGHB.

In order to examine the possible effects of the AGHB to the GMRES linear solver and
the Newton nonlinear solver, Figures 3.8 and 3.9 plot the average GMRES iterations per
Newton step {computed as-the ratio of the total GMRES iterations I, to the number of
Newton iterations), as Weil' as thé Newton iterations as functions of the oversampling factor
o. The points at ¢ = 1 correspond to PSHB. While the AGHB formulation does not
seem to have any effect on the Newton solver, as o is increased, the average number of
GMRES iterations drops by a third. The Galerkin formulation, therefore, generates a better
conditioned linear system. Unfortunately, we are unable to take advantage of this property
of AGHB in practice since the increased cost of AGHB at larger o completely pverwhelms
the savings generated by the reduction in the GMRES iterations.

We can conclude the a.pbroximaté Galerkin formulation of the HB method does indeed
bring some improvements to the standard pseudospectral HB method. The achieved increase

In accuracy is small, and does not improve with increasing number of harmonics X (as
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DC-DC Converter: approx Galerkin {A)
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Figure 3.7: DC-DC Converter, total CPU times for PSHB and AGHB to reach a specific

solution accuracy in fyyy.

predicted by the theory, the Galerkin and collocation spectral methods have errors that
will decay at the same rate in the asymptotic limit [42]). Nevertheless, given that only a
small 20% oversampling in AGHB yieds the peak increases in accuracy, the approach is cost
effective for matrix-implicit HB implementations. The simulated examples show that the
maximal observed 12dB improvement in accuracy is equivalent to a simulation run time

speedup of 1.5 comparing AGHB and PSHB runs reaching identical solution error.

47



Dicde rectifier: approx Galerkin (A} (2)
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Figure 3.8: Diode Rectifier, AGHB: (A) average GMRES iterations; (B) Newton iterations,

both versus o.
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Figure 3.9: DC-DC Converter, AGHB: (A) average GMRES iterations; (B) Newton itera-

tions, both versus o. .
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3.3 Selection of Iterative Linear Solver

There are many other iterative linear solver methods besides GMRES, and many more are
being developed. It is therefore worthwhile to examine what are the relative advantages
and disadvahtages of CMRES versus some other iterative methods that can be used in
implementations of harmonic balance. One such alternate method is the Quasi Minimum
Residual (QMR) algorithm [54].

The GMRES method holds the theoretical advantage over QMR in achieving the largest
residual reduction in each iteration. In addition, GMRES requires only one matrix-vector
product computation, versus two for the QMR. The Krylov subspace formed by the GMRES
method is orthogonal, while QMR, uses a bi-orthogonal Krylov subspace. GMRES is easier
to code and is more robust in practice. ,

Unfortunately, GMRES requires storage of the entire Krylov subspace. This can become
prohibitive for large problems for which the preconditioning is not effective and GMRES
takes many iterations to reach the desired accuracy in solving the linear system. In addition,
GMRES performs full back-orthogonalization, and therefore the number of inner products
grows with the iteration number.

In comparison, QMR only requires storage of the last two-vectors in the Krylov subspace
since it only back-orthogonalizes for two steps. Note however that if the matrix-vector
product is computationally expensive (as it is in the-harmonic balance case due to the FFTs
and the preconditioner), the lower back-orthogonalization cost of the QMR is irrelevant.

A transpose-free variant of QMR, TFQMR [54] requires only one matrix-vector mul-
tiplication, and is therefore more efficient than QMR. Similarly, there are variants of the
GMRES algorithm that addréss the memory problems with this linear solver. The restarted
GMRES algorithm restarts the GMRES algorithm after some maximum number of itera-
tions. The quasi GMRES variants (QGMRES and DQGMRES) [54] use a truncated back-
orthogonalization.

Nevertheless, given its proven reliability record in practice, we recommend GMRES as
a default linear solver for harmonic balance. QMR, TFQMR, and the quasi variants of
GMRES are not as robust, and are therefore only prefered in situations when ineffective
preconditioning in GMRES in a large problem results in large number of fterations and
memory storage issues. It is therefore recommended to have at least one of the QMR methods
(preferably TFQMR) as a second choice in the implementation of harmonic balance.
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Chapter 4
Time-Mapped Harmonic Balance

One of the main advantages of the shooting-Newton method for steady-state analysis of
circuits is that it is a time-domain method which can select time-points based on local error
estimation. Shooting-Newton methods can, therefore, easily handle circuits whose solution
waveforms undergo rapid transitions, such as many highly nonlinear circuits, by increasing

the time-point grid resolution fo resolve the sharp waveform features.

The main advantage of the harmonic balance (HB) method is its spectral accuracy. The
solution waveforms converge exponentially fast with increasing harmonics in the harmonic
balance method, in contrast to the limited order polynomial convergence for the shooting-
Newton and other time-domain methods. Unfortunately, the effective time-points used by
the harmonic balance method are uniformly spaced, and this forces the method to use a

large number of harmonics when the circuit solution contains very rapid transitions.

In this Chapter we introduce the Time-Mapped Harmonic Balance (TMHB) method.
The main idea behind this new method is to utilize 2 non-uniform time-point grid with
increased resolution in the fast varying regions of the solution waveforms, while retaining
all of the advantages of the state-of-the-art preconditioned matrix-implicit Krylov-subspace
harmonic balance method (referred to in the remaining text as the standard HB method).
Since the non-uniform time-point grid is better adapted. tO-fast-.va.l-'ying solution waveforms
than a uniform grid with same number of time-points, one would hope and expect better
accuracy in the computed solutions from the TMHB method compared to the:s«t*a,ndard HB
method.

A non-uniform collocation grid in HB is certainly possible if the time-frequency con-
versions are done by the Almost Periodic Fourier Transform (APFT) [4]. Recall, however,
that the computational complexity of the standard HB method is limited by the complex-
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ity of the time-frequency conversion. By replacing the FFT with the APFT the run-times
would increase from O(N M log M) to O(NM?), which would definitely be an unacceptable
outcome. ‘ |

In the TMHB method, we keep the FFT and yet are able to use a non-uniform grid in the
TMHB by mapping (transforming) the circuit problem and solving it in a new, pseudo-time
domain. In this new domain, the sharp features in circuit’s waveforms flatten out to certain
extent, and the rapid transitions are less rapid. We are thus able to compute the solutions
to a higher accuracy using a uniform time-point grid in this pseudo-time domain. As we
know how this uniform grid is related to the non-uniform grid in real time, the solution is
then transformed back into the real time domain.

At the core of the TMHB method is the non-uniform grid selection strategy. The success
of the TMHB transformation of the circuit problem is critically dependent on how well these
non-uniform time-points are placed. The grid selection strategy is a topic of Chapter 5. |

In this Cha,pter we derive the Time-Mapped Harmonic Balance algorithm, give a Krylov-
subspace based solution technique and describe the post-processing procedure used to obtain
the actual Fourier coefficients from the TMHB solution. We also describe the procedure used
to comstruct the time-map function which relates the non-uniform grid to a uniform pseudo-
time grid. We study the error cohvergence properties of the TMHB method, and demonstrate
these properties on analytic waveforms.

In [68] the authors use coefficient smoothing techniques for fast varying solutions in
fiuid dynamics. Spectral methods using mapping (also known as transformation, change-
of-coordinate, or pseudo) techniques have been applied to solving explicit scalar (or at best
small systems of) first or second order ODEs and PDEs in a number of references, ‘mostly
dealing with problems in fluid dynamics {43, 70, 71, 76, 77, 81, 82, 83).

4.1 Formulation

As we did in formulating the standard HB method in Chapter 2, we start by considering a
circuit whose dynamics is described with N nonlinear differential equations:

T

d(v(t)) +i(v(®)) +u(t) =0 ) (4.1)

where v(t) € RY is the vector of node voltages, g(v(£)) € RY the vector of node charges
(or fluxes), i(v(t)) € RN the vector of resistive node currents, and u(t) € RY the vector of

input sources.
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Let the circuit be driven by a single periodic excitation input source with period 7.
Finding the periodic steady-state solution of this circuit consists of computing the N steady-
state waveforms v(t) on the solution domain t € {0,T]. The periodic steady-state solution

of {4.1) satisfies the two-point constraint:

v(T) = v(0). (4.2)

In the standard HB method, the solution waveforms are approximated with truncated

Fourier series:
k=K

o(t) = > W;ef?“”f“ (4.3)
k=—K

with f = % the periodic excitation input source frequency, and K the number of harmonics
considered in the truncation. The method solves for the Fourier coefficients Vi. The ap-
proximation (4.3), in conjunction with the N circuit equations (4.1), results in the residual
function:
X K
FV.0 = 3 jonkfQue™™ i ( 3 v;ceﬂ"’“f*) + u(t) (4.4)
k=—K k=—K

where Q. are the Fourier coefficients of q(v(t)) with v(t) the truncated Fourier series ap-
proximations of the solution waveforms, i.e. ¢ (Efz_K Vyel2mks t) =K g QeI

The residual function (4.4) is to be minimized on [0, T].

In order to enhance the clarity of the presentation, we now introduce the following nota-
tion for grids of time-points.

Definition 1 The set of M time-points pM = {1, ts, ,t m} is a grid if (1) Vi € [0,T);
and (2) 0 =¢; <2 < ... <lm < T (strict monotonicity property). The grid spacing hu, is
B = £y — tm With tage1 = T, and the grid size is M.

Definition 2 The grid p™ is uniform if all its spacings satisfy hm = const., ie. tm =
gm_—)_ Uniform grids are denoted p,. - |

In the standard (pseudospectral) HB method, the minimization of (4. 4) is carried out
by enforcing f(V,t) = 0 on the uniform grid ¢m € pM of collocation (interpolation) points
where M = 2K + 1.

In contrast, the Time-Mapped Harmonic Balance (TMHB) utilizes a non-uniform grid of
time-points p™. The non-uniform grid has increased resolution in the regions of the solution
waveforms with rapid transitions. The non-uniform grid resolves the sharp waveform features
in order to increase the solution accuracy of the TMHB method.

We now introduce the notion of pseudo time t and denote the grids of pseudo time-points
with 5. The pseudo time i coordinate is related to real time via the time-map function A

33



such that
t=x(t) (4.5)

The time-map function maps the uniform grid of pseudo time-points 5 into the non-uniform
grid of real time-points p™ such that A : £, — t,, where &y € M | t,, € p™, X(0) = 0, and
AT =

The time-map function A(-) is constructed from the non-uniform grid of time-points pS
which is generated by the grid selection algorithm. This non-uniform grid is spectrally
interpolated to yield A(-). The details of this construction are given in Section 4.4.

To derive the Time-Mapped Harmonic Balance (TMHB) method, consider that

d 1 d ,
i or (4.6)

Replacing the time-derivative in (4.1) with (4.6) yields
AQ(U()\@) +i(v(A@)) +u(A(H) =0 (4.7)

X(t) dt

and the two-point constraint (4.2) becomes

v(A(T)) = v(A(0)). (4.8)

The solution waveforms in TMHB are approximated with truncated pseudo Fourier series:

k=K .
v(®) =v(A@)) = 3 Vi (4.9)
' k=—K
where V; are the pseudo Fourier coefficients of the solution waveforms. Equa,tlons (4.7) and
(4.9) yiéld the residual function
-~ -~ . K ~ - ) -~
WV, = Z 2k fOue™ i | S Ve 4 u(d) (4.10)
A (i) k=—K k==K
where Q. are the pseudo Fourier coefficients of g(v(A(£))) with v(A(f)) the truncated pseudo
Fourier approximations of the solution waveforms, i.e. ¢ (E;f.{:_ K Vied2mk s f) = 0K . Qret?i,
The residual function (4.10) is to be minimized on [0,T]. The minimization is carried
out by a collocation method, enforcing f(V,£) = 0 on the uniform pseudo grid of collocation
points gM.
The non-uniform grid in real time in effect “stretches” out those regions of the solution

waveforms with sharp features. As a result, the TMHB solution v(t) in real time is the
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smoother waveform v(A(£)) when viewed in pseudo time, as illustrated in Figure 4.1. Since
the waveform is smoother in pseudo time, its features are more easily resolved with an M-
point uniform pseudo grid, compared to resolving the original fast varying waveform in real
time with an M-point uniform real time grid in the HB method. Thus one expects better

accuracy from the solution of the TMHB method.
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Figure 4.1: The smoothing effect of the non-uniform grid of TMHB: (A) vcory in real time
(non-uniform p™ grid); (B) time-map function ¢ = A(®); (C) veorr in pseudo time (uniform
-\M -

Ay exid).

Another way of seeing why TMHB should be more accurate than standard HB is to think
of how the set of pseudo Fourier series basis functions interpolates the solution waveforms.
The pseudo Fourier series basis in real time is the set of e/ kXTI oscillatory functions.
These basis functions smoothly increase their freqﬁency in the regions where the non-uniform
grid is dense. The more rapidly changing pseudo basis function is thus able to capture the
rapid transitions in the solution waveform more easily. Two basis functions, one from stan-
dard, and one from a pseudo Fourier series waveform approximation are given in Figure 4.2.
The non-uniform grid was such that it had a peak increase in density in the middle of the do-
main at £ = 10ms (the time map function (4.43) was used) to accommodate ra;;id'traﬁsitions
occurring in the middle of the interval.

In addition, the magnitude of the pseudo series coefficient for the highest frequency
(largest k) pseudo basis functions need not be as large as the corresponding magnitudes
in the standard series basis Functions. The high frequency basis coefficient magnitudes in
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Figure 4.2: Basis functions, (k = 4), for the (A) standard, and (B) a pseudo Fourier series.

the standard series need to be larger in order to increase the slope of the basis function
and capture the rapid transitions. This causes a pronounced Gibbs effect and a not-so-
well approximating solution interpolant. In contrast, due to smaller high frequency basis
magnitudes, the pseudo basis functions cause much smaller Gibbs oscillations and are better
building blocks in interpolating the fast varying solution waveform.
Equation (4.10) is now rewritten in the frequency domain yielding NM nonlinear alge-
braic equations
F(V)=TAT'Qrg(T'V) + Ti(V) + Tu =0 (4.11)
where V is the pseudo node-voltage spectrum V= [f/__ KLy e V_ KN, Vo Kpt1s e wens VK,N]T (a
vector of pseudo Fourier coefficients), and 2 is the diagonal frequency-domain differentiation

matrix ) _
j21I'KfIN

Q= s2n(K =1 f Ty , (4.12)

i i2n(—K)fIn

A is the diagonal matrix '
Al(ltl)IN
1 IN ]
A= X (4.13)
| X(:M)IN .
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and Iy is the identity matrix of size V.

The matrices I' and I'"! are DFT matrices that perform the conversions from pseudo

time to frequency and vice-versa

[ v(A(E ]
v=I"V = v(A(E)
v(A{En))
(4.14)
2 —K)fh eFmK I
-t =
ej21r(-——K)ffMIN ej21rKffMIN

where each v(A(f)) € R¥ is a vector of node voltages. Since the pseudo time grid pM is
uniform, the DFT can be carried out in O(NM log M) operations using the FFT just as in
the standard HB.

4.2 Matrix-Implicit Krylov-Subspace Solution Technique

The system of NM nonlinear algebraic equa.i:ions (4.11) are solved for the pseudo Fourier
coefficients V by applying Newton’s method. The application results in the iteration

JO (Ve _y0) = _pi®)

o7

Gum |

(4.15)

where [ is the Newton iteration index. The I-th Newton iteration Jacobian is
JO = TAT'Qre®r-! + rgor-! (4.16)

and is a NM x NM block-dense matrix.
The block-diagonal matrices C and G are -
e ] KA ]
' G

C= < _ ., G= ’ (4.17)



where the blocks Cp, = [Cir(r, s)] and G, = [Gi(r, 5)] consist of the elements

Cmlr,s) = dg(vr(Mtm))) _ dar(v(tm))

dv, dv, '’ (4.18)
di(vr(A(Em))) _ dir(v(tm))
Gmflr,s) = o, — (4.19)
where 7,5 are the node indices, r,s = 1,2,..., N. The matrices G and C remain block-

diagonal as in the standard HB as ¢{v) and i(v) remain algebraic. The constituent sparse
blocks G,, and C,, are the circuit conductance and capacitance matrices evaluated in real
time on the non-uniform grid of real collocation time-points £,, € p™. The sparsity of these

blocks depends on the circuit topology.

The grid selection algorithm will in general generate mildly non-uniform grids even for
linear circuits. This is caused by the grid selection scheme which distributes the time-points
following the rate of change in the solution waveforms, which is not constant for the pure
sinusoidal signals in a linear circuit. The multiplication by TAT! in the formation of the
Jacobian prevents the decoupling of the Jacobian and the equations as in standard HB
for linear circuits. The decoupling is possible only if A happens to be an ideﬁtity matrix,
meaning that ¢t = A(£) = £, i.e. that the pseudo time non-uniform grid in TMHB is in fact

uniform.

This should not be a cause for an alarm since TMHB is a method meant to be used
on highly nonlinear circuits whose solutions undergo rapid transitions. For linear and even
mildly nonlinear circuits driven by pure sinusoids, the uniform grid in the standard HB is
effective enough, so that introducing a non-uniform grid with TMHB would, at best, yield

only minor improvements in solution accuracy.

The Newton iteration (4.15) is a linear problem, and explicitly forming and factoring
the block-dense TMHB Jacobian J would be very expensive, O(NM®). As in standard
HB, a preconditioned iterative linear solver (GMRES) is used to reduce the complexity to
O(NM?), with further reductions in complexity obtained by implicitly forming the GMRES
matrix-vector product by sequential evaluation using FFTs, to O(N M log M). Therefore the
complexity of TMHB is the same as the complexity of the state-of-the-art matrix-implicit
Krylov-subspace standard HB.

The memory requirements for the TMHB method are also of the same complexity as
the standard HB, growing linearly with O(NM) due to the storage of the Krylov subspace
vectors in the GMRES algorithm.
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4.2.1 Speeding Up the Maitrix-Vector Product

The matrix-vector product
Jp* = (TAT7'QrC + T'G) Ip* (4.20)

where p* is the search direction in the k-th GMRES iteration, requires 5 FFTs. It is possible
to reduce this number of FFTs to 3 by a simple algebraic reformulation of the system of
algebraic equations (4.11). Multiplying (4.11) by TA~'I'"? results in the system:

QTg(T'V) + TA™N(P1V) + TA 1y = 0. - (4.21)
When Newton’s method is applied to (4.21), the Jacobian at the I-th Newton iteration is:
J® = re®dr-! 4 ra-tgOr-? (4.22)

where A1 is computed trivially as A is a diagonal matrix. The k-th GMRES iteration

matrix-vector product used to solve the linear subproblem at each Newton iteration is now
JpF = (QIC + TATIG) T (4.23)

and requires 3 FFTs. As the FFT limits the complexity of the TMHB, and the GMRES
computation time dominates the total TMHB runtime, a substantial speedup is achieved by
this 40% reduction in the number of FFTs in the matrix-vector product computation. Note
that the matrix-vector product in the standard HB also requires 3 FFTs. The only (minor)
overhead in TMHB matrix-vector product comes from the multiplication by the diagonal
matrix A~ _

Note that we could choose to reformulate only the GMRES linear problem, and not the
system of equations (4.11), arriving at the same formulation for the matrix-vector product
with 3 FFTs. In this case the right hand sides (RHS) for the outer Newton loop and the inner
GMRES iterations will be different. This approach has shown to cause a drastic increase in
both the number of Newton and GMRES iterations in practice, and is not recommended.

4.2.2 Linear Device Treatment

.

Linear elements (such as linear resistors, capacitors, and controlled voltage sources) are
characterized by linear device functions i{v) and ¢g(v). Therefore, in most circuit simulators
these devices can be evaluated only once, rather than'at each collocation point. Consider

such an implementation of HB where the linear devices are treated separately. In effect, the

99



steady-state circuit problem (4.1) can now be expanded with an additional term and written
as:

g{v(t)) + i(v(t)) + /:o y(t — T)u(r)dr +u(t) =0 (4.24)

where g(v(t)) € RY and i(v(¢)) € RY are now, respectively, the vectors of node charges (or
fluxes) and resistive currents from the nonlinear circuit devices, y(t) € RY is the matrix-
valued impulse response of the circuit with all the nonlinear devices removed, and u(t) € RY

the vector of input sources. If y(¢) is causal and has finite energy, then

T [ y(t — )o(r)dr = YV, (4.25)

The TMHB system of NM nonlinear equations (4.11) is now expanded with this additional
term

F(V)=TAT\QTg(T V) + Ti(T V) + YV + Tu =0 (4.26)

where ¥ = Yz + QY is a block-diagonal matrix, with Y and Yo being its resistive and
capacitive parts which are also block diagonal. Note that due to the linearity of the devices
described by Y, all of the constituent sparse blocks Yg,, and Yg,, of Yz and Y¢ respectively,
are the same, while Y’s diagonal blocks differ as a result of a multiplication by £2.

The matrix-vector product (4.20) is now

Jp* = (TAT'QIC + TG) T7'p* + Yp* (4.27)

and still requires 5 FFTs. The matrix-vector product (4.23) corresponding to the reformu-
lated problem (4.21) is now '

Jp* = (QUC + TA™'G) T'p% + TA-'T 'Y p* (4.28)

and requires 2 additional FFTs bringing the total to 5 FFTs.

There are several ways of getting around this problem. If the circuit contains very few
linear elements, we may skip the sequence of operations TA~T'! in front of Y, removing
the 2 costly additional FFTs. In practice this has shown to work well with only minor
increases in the number of GMRES iterations if the only linear elements in the-circuit are a
few controlled sources. ' .

A better approach is to treat all linear elements as nonlinear elements and retain the
original reformulation of the matrix-vector product (4.23) with 3 FFTs. The overhead of
this approach is the repeated evaluation of linear elements such as resistors and capacitors

at each collocation point. This overhead is minor, however, when one considers that: (1) the
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cumulative device evaluation time in HB or TMHB is only a small fraction of the cumulative
time spent in solving the linear problem with the GMRES iterations; (2) the evaluation of
a resistor, capacitor, or a controlled source takes a fraction of a time needed to evaluate a
modern model for a nonlinear device such as a bipolar or MOS transistor; and (3) modern
communication circuits consist of large number of transistors comparé,ble to the number of
linear devices. 7

One final point is that the linear devices found on a chip such as resistors or capacitors,
are in fact nonlinear as they are nonlinear functions of temperature, which in turn is a
nonlinear function of the on-chip voltages and currents. It is therefore important to treat
these devices as nonlinear via an implementation of an appropriate device model for accurate

circuit simulation.

4.2.3 Preconditioning
For the reformulated TMHB, the diagonal blocks of the TMHB Jacobian (4.22)
j2n(—K)fCo + Gon ]

ion(—K +1)fCo + G
sz | J 71'( )f 0 0, . (429)

j27TKfC’o + éo,)\ |

-

where the blocks Cy = [Cy(r, 5)] and Gy = [Go(r, s)] contain the elements

_ 1 XM
CO(T’ 3) = "'M_ 2 Cm(T, 3)1 (4'30)

_ M
Goalrss) = 37 3 X(Em)Cun(r,9) «3)

m=1

with r,s = 1,2,..., N the node indices, are the standard preconditioner for the GMRES
solver in the TMHB method, just as the diagonal blocks of the HB Jacobian are the default
preconditioner in the standard HB method [11, 15} " The diagonal blocks of the TMHB
Jacobian consist of the DC Fourier coefficients of the matrices C and AG. These DC
coefficients can be quickly computed by averaging the entries of C and A™'G c;_qrresponding
to each circuit node. The diagonal block structure of the preconditioner allow é.pplication of
fast direct block factorization algorithms.

This standard frequency-domain preconditioner works well in most circuit examples. The
grid selection strategy in the TMHB requires a computation of a solution guess, which can
be also used as a good starting initial guess for the Newton iterations of the TMHB. The
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usage of this initial guess drastically reduces the total number of Newton iterations, and
also has a reduction effect on the number of GMRES iterations as well. As a consequence,
the standard preconditioner is quite adequate in most circuit examples. For some strongly
nonlinear circuits, the time-domain BDF preconditioners from Chapter 3 are more effective
than the standard preconditioner in TMHB as they are in the HB method.

Right preconditioning is used in the TMHB method. With right preconditioning the
linear problem JAV = —F becomes JP~!PAV = —F where P is the preconditioner. By
letting PAV = U, the GMRES algorithm first solves the linear problem JP~/ = ~F, and
then computes AV = P~17.

GMRES, and this RHS is the same as the RHS used in the outer Newton loop. As it was
noted earlier in this section, when these two RHS sides are different, costly increases in both

the number of Newton and GMRES iterations are noted in practice.

4.3 Computing the Real Time Fourier Coefficients

The TMHB method solves for the pseudo Fourier coeflicients V of the solution waveforms.
These pseudo Fourier coefficients can be related to the real Fourier coefficients V. First note
that if time-domain waveforms are desired, due to (4.9), an inverse FFT readily yields the

voltage waveforms at the non-uniform grid pM of real time-points:
v(t) = v(A{E) =TV, (4.32)

To compute the actual Fourier coefficients V', we use the following “unmap” procedure.
We first introduce a non-uniform oversampled grid in pseudo time 5M~. This grid is chosen
such that the time-map function A(-) maps it into a uniform oversampled grid in real time
pﬂ“’, ie. X:in+>t, where f, € pM and t,, € pMe_ The number of collocation points in
the oversampled grids are M, = oM where ¢ > 1 is the oversampling factor.

Since from (4.5) £ = A1(¢), (4.9) can be rewritten as |

k=K
oty = 3 Ve kAT, . (433)

k=—K
This summation is evaluated at real times £, € pMe to give the solution waveforms v(tm)
at the oversampled uniform grid in real time. Note that (4.33) cannot be carried out by an

inverse FFT since the pseudo time-points A~1(ty,) € pM* form a non-uniform grid. Due to

62



this non-uniform grid, the complex exponentials in the summation are not equally spaced
along the unit circle in the complex plane as required by the FFT.
Finally, since the v(t)’s values are now known on a (oversampled) uniform grid in real

time, we can use the FFT to compute the real Fourier coefficients V'
V =Tu(t) (4.34)

where ¢ € pMe

Note that this procedure actually yields M, = 2K, + 1 Fourier coefficients, which is
more than the M Fourier coefficients expected. The additional Fourier coefficients represent
the higher frequencies 27kf where K < k < K, captured by the non-uniform grid in
TMHB. These coefficients are shown to match the Fourier coefficients of the “exact” solution
quite well (see Figure 4.3). Without oversampling, these coefficients would be zero and the
additional accuracy obtained by the TMHB method would be lost.

DC—DC convertar: 'Vccm_l (K =20)

20 T T T T T T T

5 .
froequency [MHz]

Figure 4.3: TMHB matching of high-frequency coefficients.

In effect the M pseudo Fourier coefficients ¥ “pack” high frequency information content.
In order to “unpack” this content, we must carry the described “unmap” procedure utilizing
the oversampling frequencies between K and K. S
'The rate of oversampling is determined by the Nyquist frequency f, = 1/(2hmin) cor-

responding to the smallest spacing A,;, = min(h,,) for Vm in the non-uniform grid in real
time p™, where from _ _
=
Ky=12 = | —— , 4.35
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and 0 = K, /K.

The unmap procedure described above is in essence an oversampled pseudo Fourier in-
terpolation of the solution waveforms vw(¢). This interpolation uses the discrete waveform
values of v(t) at the non-uniform grid in real time p™ to generate the discrete values v(t,,)
at the oversampled uniform grid in real time pM > t,. It is crucial to use a spectrally
accurate oversampled interpolation in order to preserve the accuracy of the solution. Local
interpolation schemes (linear or quadratic) are not suitable for this task as they introduce

errors that are larger than the errors from the Fourier approximation of the solution.

4.3.1 Complexity of the Unmap Procedure

The complexity of the post-processing unmap procedure is O(oM?) per waveform since the
summation (4.33) is a multiplication of V by a dense matrix of size oM x M. The unmap
procedure is typically applied on only those few waveforms whose Fourier coefficients are
wanted. In comparison, the complexity of the TMHB method is O(NM log M), i.e. limited
by the FFT. This means that the worst cases when the computation time for the unmap
procedure can be a significant portion of the computation time for the TMHB are if: (1) the
circuit is extremely non-linear (requi_ring vast variations in the grid resolution translating
into large o and large M); and either if (2a) the circuit is small (N small) or (2b) the unmap
procedure is carried on all N waveforms for a circuit of arbitrary size.

In practice, however, the situation is not bad at all. Recall that the actual computation
times are roughly equal to some computation complexity constant times the order of com-
plexity. The constant for the TMHB method applied to highly nonlinear circuits is much
larger than the constant for the unmap procedure since it is proportional to the total number
of GMRES iterations performed. This number in turn is larger for very nonlinear circuits
since for these circuits the standé,fd ﬁreéonditioner made ﬁp from diagonal ,l)ﬂldcks of the
Jacobian J is not terribly effective. ‘ | .

-

Furthermore, stability considerations in the grid selection algorithm limit the rate of
change of the TMHB grid resolution (i.e. the ratios of neighboring grid spacings should be
kept bounded). This in turn limits the oversampling factor ¢. Finally, for large circuits,

computer memory limits set a bound on M.
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4.4 Construction of the Time-Map Function

The time-map function X maps the uniform grid in pseudo time M to the non-uniform grid
p™ in real time. In addition, in the unmap procedure used to compute the real Fourier
coefficients, the time-map function A maps the non-uniform oversampled grid in pseudo time
- into the uniform oversampled grid p¥ in real time.

The first step in constructing the time-map function A is to determine a set of S non-
uniform real time time-points. The success of the TMHB method is crucially dependent on
this time-point selection, and several different selection strategies are presented in Chap-
ter 5. The strategies requires an initial guess for the solution waveforms. In particular,
an approximate solution is computed using a shooting-Newton method [4] with a low-order
time integration scheme. The S non-uniform time-points for the TMHB method are then
selected based on balancing two criteria: using small fime-steps in the fast-varying regions
of the approximate solution waveforms, and insuring that the time-steps do not change too
rapidly. Although using a shooting-Newton method to compute the approximate solution
is expensive, the cost is kept low by loosening the convergence tolerance. In addition, this
shooting-Newton solution is useful as an initial guess for the TMHB.

Given the S non-uniform real time time-points, we now describe the construction of
the time-map function t = A(f). In order to preserve the spectral accuracy of the TMHB
method, the time-map function must be smooth {or more precisely, at least as many times
continuously differentiable as the functions describing the circuit element’s device models).
Also, we must be able to compute its first derivative with spectral accuracy or better as 1t is
used in the TMHB formulation (4.10). Furthermore, to ensure the strict monotonicity of the
non-uniform grid of real time-points, the time-map function must be strictly monotonic, i.e.
X'(®) > 0 for all [0,T). Finally, for unmap purposes, we also need to be able to compute
A7H(E). . '

We first, represent A(f) as a sum of a linear part and a T-periodic part Ag(D)

t =MD =1+ 2. ' (4.36)

This split of the time-map function is illustrated in Figure 4.4,
The periodic part )\¢.(ﬂ is chosen to be a‘F(_)urier polynomial interpolant ¢() of order S
such that the interpolatory condition .

t, =&, + d(Ls) (4.37)

is exactly satisfied at the points (fs,t,) where t, € p° ate the S non-uniform real-time time-

points, and £, € 55 are S uniform pseudo time-points. The interpolant $(f) is the truncated
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Figure 4.4: Split of the time-map function: (A) time-map function A(f); (B) linear part £
(C) T-periodic part A4(f).

- Fourier series

D= 3 Byt (4.38)

k=~J
where 2J + 1 = S. The coefficients @ can be computed with an inverse FFT of size S

@._.J tl — f]_
=t L . (4.39)
O, tg —is

Thus the time-map function is constructed as:

J ~
M) =4 3 Bpeiehst (4.40)
k==J . .

and this approximation exactly passes through the points (s, t5).
The first derivative of the time-map function is

: J ) o
N@ =1+ 3 jonkfoemst o (441)
k=—-J .

and is exact.

The A(-) function (4.40) and its first derivative (4.41) are now evaluated on the grid of
M uniform pseudo time-points M to yield the M-point non-uniform grid in real time p™
and the matrix of time-map derivatives A.
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Due to the Fourier nature of the representation (4.40), A(f) may exhibit high frequency
oscillations and violate the monotonicity requirement. In practice, for the grids selected
by the grid selection algorithm, if § is sufficiently large, this violation rarely happens. If
a violation does happen, it can be resolved by damping the time-map function with an

exponential filter uy, yielding a filtered construction
J -
MO =1+ Y P (4.42)
k=—J

N _
where px = e 5(%)" and § and 7 are filter parameters [83]. Note that the filtered approxi-
mation no longer passes through the points (t;, %), as illustrated in Figure 4.5.
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Figure 4.5: Filtering of the time-map function: (A) a non-monotonic time-map function
A(®); (B) the filtered monotonic tlme-map function A\, (f) (S=8,0 =35, and = 2).

The filtered approximation can introduce an offset T such that A(0) = 7 and MT) =
T + 7. This offset causes no problems to the TMHB method. Strong filtering, however, can
deteriorate the quality of the constructed time-map function -by making its flat regions less
flat. As the flat regions in the time-map function correspond to the highest grid resolution
density, the filtering can cause a substantial resolution reduction in these regions, and this,
in turn, can reduce the effectiveness of the TMHB method. | ‘ |

The values of A7'(t) at the oversampled uniform times iy € Mo are reqmred in the
unmap procedure used to compute the real Founer coefﬁcmnts This computation is accom-
plished by applying Newton’s method to the nonlinear equation A(m) —tm =0and solving
for £, at each time point fy,.
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4.4.1 Explicit Time-Map Functions

Almost all of the mapping references given in the introduction of this Chapter use param-
eterized explicit mapping functions since the problems being solved are given by explicit
equations, and the solution behavior is well known. Similarly, an early implementation of
the TMHB method used an explicit functional form of the time-map function. In particu-
lar, for a diode rectifier circuit whose waveforms had rapid transitions in the middle of the
solution interval [0, T, the time-map function [43, 77]

Ap(d) = % (tan-l {Lta.n {w (% ~ %)] } + 323) (4.43)

was used, with the parameter L controlling the increase of the grid resolution. A plot of this
explicit time-map function is shown in Figure 4.6.
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Figure 4.6: The explicit time-map function Ag(f)

This explicit time-map function is well-suited for this particular circuit problem. The
function is infinitely smooth, obeys the strict monotonicity requirement, and its exact first
derivative and inverse can be written down explicitly as well. However, automating the choice
of an appropriate explicit time-map function is at best very complicated when presented
with an arbitrary circuit problem whose many solution waveforms may undergo an unknown

number of rapid transitions throughout the solution domain [0, T).
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4.5 Error Convergence Analysis of TMHB

In this section we will study the convergence properties of TMHB, and attempt to understand
more precisely why the TMHB method can achieve significant improvement in solution
accuracy when compared to the HB method. The basics of the analysis presented here are
similar to the convergence analysis for pseudo Chebyshev approximations for stiff problems
in [71] and the analyses in [73, 76).

Let the exact periodic steady-state solution of the system of circuit equations (4.1) have

the infinite Fourier series representation

k=—c0

in the real time coordinate ¢, and the infinite pséudo Fourier series representation

w -
V() =o' A@) =o' (D = Y Vperms (4.45)
k=—o0
in the pseudo time coordinate £. The Galerkin formulation of the HB method represents its

approximate solution v(¢) with the truncated Fourier series

k=K
v(t) = Y Vgl (4.46)
k==K :
while the Galerkin TMHB method uses a truncated pseudo Fourier series to represent its

approximate solution H(f) o
k=K .
=3 Ve (@47)

E=—K
‘The Galerkin formulations of both HB and TMHB, in other words, use a truncation of the
standard and pseudo infinite Fourier series respectively in approximating the solution.
We now. proceed to bound the global truncation errors for the HB and the TMHB meth-
ods. We assume that the solution waveforms are infinitely smooth for clarity.
Recall that the Sobolev norm of iﬁteger order g of a ’._'F—periddic waveform u(t) is given by

12 /T . g . ‘n
2_ 1 DPR2dt = S |uf? : 4.48
Il = 73 [, PPt = 32 1ol (4.48)

-

where |ul; is the Ly norm of the j-th derivative of u(t), i-e. -

T . . L+ o0 .
= [ WO = r)¥ S KHDLP (.49

k=—co.
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with u(t) = 32 _ Ure?>™* 7t the infinite Fourier series representation of u(z).
The principal approximation theory result for the Galerkin spectral methods (40, 42]
states that for any 0 < ¢ < p there exists a constant C' independent of K such that

[v* —vllg < CKTPlv*)p. (4.50)

The quantity [lv* — v||; is the truncation error measured in the ¢-th Sobolev norm. The
inequality (4.50) states that the truncation error is bounded by the norm of the derivatives
of the approximated waveform.

The inequality (4.50) defines a family of error bounds. For a fixed g, the truncation error
is bounded by the smallest of the right—haﬁd sides of (4.50). If the right-hand sides of (4.47)
decrease as p is increased, and K is sufliciently large, the error bound tightens, and the
method achieves spectral accuracy. |

If the waveform has rapid traisitions, as p is increased, the norms of the derivatives {v*|,
may generate a sequence with a more rapid increase rate than the decay rate of the CK97?
sequence when K < K, where Ky is fairly large. This in turn means that the bound of
the truncation error, i.e. the right-hand side of (4.50) will grow for increasing p. Instead
of achieving spectral accuracy, the bound of the truncation error will be O(K~?=) (i.e. the
error will have polynomial convergence) where p, is the value of p at which the error bound
attains a minimum. '

Spectral accuracy will eventually be retrieved for large K, i.e. when K > Kj. In other
words, when the number of t{ime-points M = 2K + 1 is larger than My = 2K, + 1, the
sharp features in the waveform will be sufficiently well resolved, and the error of the spectral
method will start its spectral (infinite order) decay. However, the number of harmonics Ko
which defines the threshold of the spectral convergence of the error can be very large for
very fast varying waveforms. | '

The main mechanism through which the TMHB attains a faster rate of error convergence
is by working in the pseudo tiine domain, in which the waveform 4* is smoother. When
K < Kp ie. the number of harmonics is smaller than the spectral accuracy threshold, the
sequence |¢*|, does not increase as rapidly as the sequence |v*|, for increasing p, and the
TMHB error is thus more tightly bound than the HB error. When the number of harmonics
K approaches the spectral accuracy threshold Ky, the HB error bound will quickly catch up
with the TMHB error bound and both methods will be converging at the same rate.

‘We will now proceed to derive the HB and TMHB truncation error bounds, and investi-

gate their values and decay rates using an explicit waveform and explicit time-map function.
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Setting ¢ = 0 in (4.50), the truncation error for the HB method should satisfy
lo* = vllo < CE?|o"),. (4.51)
More specifically,
* I2

[o* —olls = " —v
' =]

= > %P
|k|=K+1
o0
= @iy S KRV
Jk|=K+1

< @r) KT S BPQxf)?VI
[kl=K+1
< @y KL (4.52)
The truncation. error for the HB method is therefore bounded by
[o* — o] < (27 ) PKP|o"] (4.59)
Similarly, the truncation error for the TMHB method satisfies

5% — 9] < (27 f) PE "), (4.54)

The right-hand sides of (4.53) and (4.54) define families of error bounds as p takes different
integer values i.e. 1 < p < co. The errors will be bounded by the minimums of these bound
families.

Let B(K,p) be the truncation error bound family for the HB method, i.e.
B(K,p) = @rf)"K "], (4.55)
and B(K,p) the truncation error bound family for the TMHB method:
B(K,p) = (2r f) PK?|9*),. (4.56)
The standard truncation error bound By,(K) for the HB method is
Bn(K) = min B(K, p) T (4.57)
and the pseudo truncation error bound for the TMHB method is

B {K)= min B(K,p). (4.58)

71l



When K < K, as argued above, we expect the TMHB error bound to be tighter than
the HB error bound, i.e. B,, < B,, since the waveform in pseudo time ¥* is smoother than
v* and thus generates a more slowly increasing sequence of derivative norms |6*|, than the
sequence [v*[,.

We will now illustrate the error convergence mechanism of the TMHB method by using
an explicit analytic waveform v*(t) and an explicit time-map function ¢ = A(£). The analytic
waveform is

v*(¢) = (1 + tanh(S(¢ — 0.5))) (4.59)

on t € [0,1] with the parameter S = 1000 determining the steepness of the rapid transition
at t = 0.5. The time-map function is

t= (D) == (arctan(L tan(r( — 0.5))) + ) (4.60)

with L = 0.01. The time-map function is in essence a change of coordinate, transforming
the waveform v*(t) into the smoother function 4(f) = v(A(£)) in the pseudo time coordinate.
Figure 4.7 illustrates the analytic waveform in real time, the time-map function, and the

smoothed waveform in pseudo time.

Anatytic waveform v = {(A) (B) [{e3]
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Figure 4.7: The analytic waveform v*(t): (A) plot of v* in real time; (B) tlme-map function;
(C) plot of 4* in pseudo time.

While the waveform v*(t) is not periodic, it can be periodized with period T = 2 by
adding to it its mirror (flip) image v*(2 — ¢) for ¢ € [1,2]. To compute the standard error
bound families B(K,p) corresponding to v*(t) and pseudo error bound families B(X,p)
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corresponding to #*(f), we compute the waveform derivative norms |- |, for the integer range '
1 < p < 50 by numerically evaluating the norm integrals with the trapezoidal rule. The

derivative discontinuities at £ = 1 are numerically ignored by integrating over only the first

half of the period, i.e. over ¢ € [0, 1].

As our primary interest is to see how the v* and ¢* error bounds behave for increasing
K, we compute the minimums B,(K) and Bn{(K) of the error bound families at each K.
Figure 4.8 shows a plot of these error bounds in dB versus K. The left plot is linear in K" and
demonstrates that the error bound B,,(K) of the pséﬁdo approximation is much tighter than
the error bound By, (K) of the standard approximation for small and moderate values of X.
For example, at K = 300 the pseudo error bound is 130dB tighter than the standard error
bound. As a result, the truncation error of the pseudo approximation will also be several
orders of magnitude smaller than the truncation error of the standard approximation for a

range of values for K.

Error bounds: (A) (B8}
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Figure 4.8:" Convergence of the standard B(K) and pseudo_ﬁ (K) error bounds in dB versus
K: (A) linear plot; (B) log plot.

The right plot in Figure 4.8 plots the error bounds versus a log scale for the number
of harmonics K. The operating range of the TMHB method is the range of‘I(: where the
pseudo error bound is smaller than the standard error bound. This range is clearly visible,
and it can be seen that it extends up to K = Ko = 6300. For small K, the standard error
bound decreases at a rate of about 20 dB per decade,’ which indicates a polynomial order
convergence of O(K 1), while the pseudo error bound decreases at rate of 80 dB per decade
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i.e. with O(K™*). As K approaches the spectral accuracy threshold Ko = 6300, the decay
rate of the standard error bound increases, and the value of the standard error bound catches
up with the value of the pseudo error bound at the threshold. For K above the threshold,
both error bounds have spectral decay, although a limiting rate of 1000 dB per decade is
observed which corresponds to O(K~*°) (explained below).

Note that when the standard error bound finally catches up with the pseudo error bound
at K = K, both bounds have reached very small values of around -270 dB which is close to

the double precision accuracy (-300 dB) of most numerical computations.

The convergence exponents of the error bounds in Figure 4.8 can be explained by plotting
the family (set) of standard and pseudo error bounds for fixed K versus the norm order p (see
Figure 4.9). The values of p at which the families of error bounds attain the minimum are
the Eonﬁergence exponents of the error bounds (taken with a negative sign). For K = 100
(plot A) the minimum of the standard error bound family is at p = 1, while the pseudo
error bound family has a much smaller minimum at p = 4. At around K = K, = 6300
(plot B) both error bound families reverse the increasing trend for large p. For K = 10000
(plot C) both error bound families decay monotonically at the fastest possible rate over the
entire p range, so their minimums are at the largest considered p in our computation. The
limiting convergence rate exponents of the error bounds in Figure 4.8 are 50 because the

bound families were numerically computed up to the value of p = 50.

Error bound families: (A) K= 100 (B) K=K, ==6300 {C) K= 10000
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Figure 4.9: The standard B(K,p) and pseudo B(K, p) ‘error bound families in dB versus p:
(A) K =100 ; (B) K = K, = 6300; (C) K = 10000.
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As it was explained earlier, the reason for the smaller pseudo error bound in the operating
range of the TMHB method K < Kj is due to the more slowly increasing sequence of
derivative norms |9*(t)], of the waveform in pseudo time coordinates. Figure 4.10 plots
the sequences of standard derivative norms |v*()}, and pseudo derivative norms {7*(t)|, in
dB versus p. As it can be seen, the transformation into pseudo time coordinates via the
time-map function yields a slower rate of increase of the pseudo derivative norms when p is
small. The quality of the time-map function will determine how much slower will the pseudo
derivative norms increase compared td the standard derivative norms; it will also determine

for how many values of p will this rate slowing be in effect.
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Figure 4.10: The standard (Jv*|,) and pseudo (|#*|,) derivative norms ir dB versus p of the

analytic waveform v*.

While our error convergence analysis used Galerkin (spectral) Fourier approximations,
it can be readily extended for the collocation (pseudospectral) Fourier approximations since
the aliasing term present in the collocation Fourier coefficients is of the same order as the
truncation error of the method {67, 39} (Chapter 3). )

The analysis also holds if the solution waveforms are not infinitely differentiable. In
that case the family of error bounds on the right-hand side of (4.50) has a finite number of

members.
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4.6 Demonstration of the Error Convergence of Pseudo

Fourier Series

The greater accuracy of the TMHB method comes from the smaller global truncation error of
the pseudo Fourier series for the (smoother) solution waveform in pseudo time, compared to
the global truncation error of the standard HB Fourier series approximation of the solution
waveform in real time.

Furthermore, from the results of the analysis in Section 4.5, when X is small or moderate,
we would expect the error in the TMHB method to decrease O(K~—#) compared to the error
convergence rate O(K ) for the HB method, where the convergence rate exponents satisfy
P > p. In other words, the error in the TMHB method should decrease exponentially faster
than the standard HB error with increasing number of harmonics K (or equivalently, with
increasing number of collocation time-points M = 2K + 1).

To demonstrate the superior error convergence of the pseudo Fourier series, consider
approximating an analytic waveform with both standard (uniform grid) Fourier series and

(non-uniform grid) pseudo Fourier series. The analytic waveform is
vi(t) = %(1 + tanh(10%(z — 0.4))) exp(~((z — 0.4)/0.2)?) (4.61)

on the interval [0, T] with T = 1.5. While this function is not periodic, the periodicity error
v3(T) — v}4(0) is of order 10~** (-260dB), and is sufficiently small for the demonstration.
The function v}(t) has a very rapid transition at £ = 0.4 as it can be seen from Figure 4.11.
The iterative grid selection algorithm (discussed in Chapter 5) resulted in a non-uniform
grid which was used to construct the time-map function also shown in Figure 4.11. When
the time-map function is evaluated on a uniform grid 3} in pseudo-time, it generates the
non-uniform grid p™ in real time. The smoothing effect of this non-uniform grid on the
function v} (¢) is also shown in Figure 4.11.

To compute the Fourier coefficients in the standard approximation, the function v} (t) is
evaluated at a uniform set of M points pX, and an inverse FFT is performed on this vector
of values. To compute the pseudo Fourier coefficients, ‘the function v%(t) is;evaluated on
the set of non-uniform points p™, and again an inverse FFT is performed on this vector of
values. |

To compute the error in the standard and pseudo Fourier series approxima.tions, two
different error measures were used. The first one is‘simply the magnitude of the K-th

Fourier coefficient of the series, i.e. ¢; = |Vk| for the standard and & = |Vk] for the pseudo
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Analytic waveform: (A) (B} {C)
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Figure 4.11: The analytic waveform v (t): (A) plot of v} in real time; (B) time-map function;
(C) plot of v in pseudo time.

Fourier series approximation. The magnitude of this highest-frequency Fourier coefficients
is well known to be a measure of the truncation error in the Fourier representation.

The second error measure is computed in the time domain, and it is the normalized Lo
norm of the vector of time-domain errors in the Fourier interpolants at the M midpoints of
the grids, i.e. € = [jva(tn) — vi(tn)|l, Where v4(2) is the standard Fourier interpolant, and
tn = (tm + tms1)/2 Where t,, € pM (uniform grid); & = [|94{tn) — v%(ta))|, where ©4(2) is
the pseudo Fourier interpolant, and t, = (fm + tms1)/2 Where &y, € p™ (non-uniform grid).

A plot of these two error measures in dB is given in Figure 4.12. The spectacular error
convergence of the pseudo Fourier series approximation in the operating range (small and
moderate K) is clearly evident. While the standard Fourier series achieves a convergence
rate exponent of about p = 1.1, the convergence exponent for the pseudo Fourier series is
about ﬁ-= 20. The plot also shows that the two error measures are equivalent.

A plot of the standard and pseudo Fourier interpolants at M = 12 is shown in Figure 4.13.
It is clearly visible that even for a small M the pseudo Fourier series approximation is much

better than the standard Fourier series approximation.
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Ansalytic waveform, approximation errors: (A} (B)
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Figure 4.12: Errors in standard and pseudo Fourier series approximations of the analytic

waveform v} (t): (A) frequency-domain error measure €;; (B) time-domain error measure ¢,.
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Figure 4.13: Fourier interpolants of the analytic waveform v4(t), M = 12: (A) standard
interpolant; (B) pseudo interpolant.
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Chapter 5

Grid Selection Strategies for the

Time-Mapped Harmonic Balance

In Chapter 4 we introduced the Time-Mapped Harmonic Balance (TMHB) Method, a fast
Krylov-subspace spectral method for accurate steady-state simulation of circuits with rapid
transitions. The TMHB features a non-uniform grid which resolves the sharp features in the
signals.

The success of the Time-Mapped Harmonic Balance method is critically dependent on
the selection of an appropriate non-uniform grid. In this Chapter, after a brief overview of
the TMHB method in the next section, we will presént several different selection strategies,
and discuss some issues related to their use in practice as a part of the TMHB algorithm.

The relative merits of these strategies when used in TMHB simulation of several circuits
are given in Chapter 6. |

5.1 TMHB Method Overview

Consider a circuit described with N nonlinear differential equations:
d(w(®)) +i(v(t)) +u(®) =0 (5.1)

where v(t) € RY is the vector of node voltages, g{v(t)) € R" the vector of node charges
(or fluxes), i(v(£)) € RY the vector of resistive node currents, and u(t) € RN the vector of
input sources. The periodic steady-state solution of (5.1) satisfies the two-point constraint
v(T) = v(0).

The TMHB method utilizes a non-uniform grid of 2K +1 = M time-points in contrast
to the uniform grid used in standard HB. This non-uniform grid in real time £ is related to
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a uniform grid in pseudo-time ¢ via the time-map function A such that ¢ = A, A0) =0,
and A(T) =T.
The time-map function is constructed starting from a selected grid of 5 non-uniform real

time time-points, and is a sum of a linear part and a T-periodic part:

M) =+ ij Oy eI 2RIt (5.2)

k=—J
where 2J + 1 = S. The A(-) function (5.2) is then evaluated at M uniform pseudo time-
points to yiéld the AM-point non-uniform grid in real time. The construction guarantees
the ability to compute X(f) with spectral accuracy required by the TMHB method. The
strict monotonicity of A(£) can be ensured by applying an exponential filter to the time-map

function.

In the TMHB the problem (5.1) is transformed into:

5 FL0O) + @) + @) =0 (53)

The solution waveforms in TMHB are approximated with truncated pseudo Fourier series:

o) = (AB) = 3 Vyeehs 5.4
k=—K
As in the state-of-the-art standard HB method [7, 10, 11, 15], the TMHB method uses a
matrix-implicit Krylov-subspace approach to compute the pseudo Fourier coefficients V' of
the solution with O(NM log M) complexity (which is the complexity of the FFTs used to
compute the matrix-vector product in the GMRES solver for the linear problem at each
Newton iteration).

To compute the real time Fourier coefficients, the TMHB introduces a non-uniform over-
sampled grid in pseudo time such that A(-) maps this oversampled grid in pseudo time to a
uniform oversampled grid in real time. Since £ = A~1(£), (5.4) can be rewritten as

k=K O
o)) = 3o VieHDO) .69
k=—K
The summation in (5.4) is then evaluated to give the solution waveforms at the oversampled
uniform grid in real time. Finally, since the v(£)’s are now known on a uniform grid in real

time, we can use the FFT to compute the real Fourier coefficients V.
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5.2 Grid Selection Strategy Requirements

Grid selection techniques for finite-difference methods are discussed in several mathematical
references [21, 22]. The techniques are typically classified as either a priori or adaptive. The
grid selection strategies considered in this section are a priori methods, in which the S-point
non-uniform grid used in the construction of the time-map function is selected beforehand,
and remains fixed during the iterative computation of the solution. In contrast, adaptive
grid selection strategies repeatedly update both the grid and the approximate solution until
a convergence criteria is met. In the adaptive grid selection for a fixed-order finite-difference
numerical method [22], the grid is adjusted to a measure of the local truncation err0¥ of
the method in the approximate solution at each iteration. However, the TMHB method is
a spectral method, which can be viewed as a variable-order finite-difference method {with
the order equal to the size K of the Fourier basis), and a local truncation error estimate
requires a costly summation of the solution’s truncated pseudo Fourier series approximation.
A further complication is the need for an expensive spectrally accurate interpolation from
the old grid to the new at each iteration of the adaptive method, for which the FFT cannot
be used due to the non-uniform spacings of the grids.

Adaptive grid selection techniques have been used in mapped spectral methods applied to
problems in fluid dynamics {71, 76, 82]. However, in all of these references a fixed functional
parameterized form of the mapping function is considered, with the mapping parameters
determined by minimizing a particular functional of the solution. The references deal with
explicit small PDE problems, and the adaption is performed iteratively at each time evolution
step of the solution. .

By nature, all a priori grid selection techniques requife some knowledge of the solution
behavior (a solution guess). All selectioﬁ stra.fegies considered here obtain this information
by solving the problezﬁ (5.1) using a shooting-,-Neﬁton method with a low-order integration
scheme, whose cost is kept low by a 1ooée_convergence tolerance.

The shooting-Newton method [4] reformulates the two—pc.)int'constra.int as

¢(v(0),0,T)—v(0) =0 (?-6)

where ¢ is the state-transition function for {5.1). Equation (5.6) is solved w‘itb a Newton
method. _

The cost of the solution guess computation is kept low by loosening the error tolerance
of the shooting method, as well as approximating the Jacobian J, of the state-transition
function using a forward-difference formula. Note that the solution guess also serves as an
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initial guess for the TMHB Newton iterations.

As the solution guess is given at the discrete times selected by the local time-step control
mechanism of the transient simulation over one period at the last iteration of the shooting-
Newton method, local quadratic interpolation is used to get the solution values at arbitrary
time.

The S-point non-uniform grid used in the construction of the time-map function should
be selected based on two major considerations: reduction of the truncation error (accuracy
consideration) and preserving stability.

One approach in satisfying the accuracy requirement is to concentrate the grid time-
points in the high-gradient regions of the solution waveforms. The solution waveform v(t)
in real time then becomes the smoother waveform v(A(f)) when viewed in pseudo-time, as
illustrated in Fig. 5.1. The greater solution accuracy of the TMHB stems from the reduction
in the global truncation error in the pseudo Fourier series approximation of this smoother
waveform vs. the standard Fourier series approximation of the original waveform on the

uniform standard HB grid.

DC-DC converter: TMHB-D grid; time—map function; v(COIL) in pseudo t.
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Figure 5.1: DC-DC converter circuit: grid and time-lir'la.p function for direct strategy (top

row) and iterative grid selection strategy (bottom row).

82



The stability requirement is in general difficult to handle quantitatively, but in practice,
bounding the ratio of the neighboring grid spacings is a known rule-of-thumb approach that

works well:
o Ay _a+1
< <
a+1~ R, = « (5.7)

where o > 0 determines the grid “rigidity”, and hm = tmi1 —tm With ¢y and tmq two neigh-

boring grid points. Note that rigid grids (larger o) can suffer from “point exhaustion” if the
number of grid points S is not large enough. Finally, note that both bounding the grid spac-
ings and using a large enough number of grid points greatly enhances the strict monotonicity

of the time-map construction (5.2) and virtué,lly eliminates the need for filtering.

5.3 Direct Grid Selection |

The shooting-Newton solution guess generates a non-uniform grid in which the points are
distributed such that the local truncation error of the integration method is kept under the
specified (loose) tolerance. In general this means smaller time-steps in the regions where the
waveforms undergo rapid transitions, smoother waveforms in the pseudo-time uniform grid,
and a reduced global truncation error in the TMHB pseudo Fourier series approximations.
Unfortunately, in most cases the grids generated by the shooting-Newton method are unus-
able since their time-steps change too rapidly. This not only causes non-monotonicity in the
constructed time-map function and necessitates the use of filtering which renders a much less
effective time-map function, but more importantly, instability and convergence problems in
the TMHB iterations.

This instability can be alleviated by boundmg the time-steps to obey (5.7). We accom-
plish this by “smoothing” the S-point shootmg—Newton grid with a discrete exponential
kernel:

' = Z ( )!i—:ﬂ (5.8)
via a+1
where h; are the time-steps in the shooting-Newton grid, and h; the time-steps from the
“smoothed” grid. Note that the kernel is defined for —5 < (i — ) < £ and is periodic with
period S. The scaling factor. v is the sum of the kernel over one period. -

The direct selection strategy is illustrated in Figure 5.2, with o = 2. The dashed lines are
the quantities before the smoothing, i.e. straight out of the shooting-Newton initial solution
guess run, and the solid lines are the same quantities after the direct selection strategy (i.e.

the “smoothing” of the shooting-Newton grid with the periodic exponential ker_nel). The
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Figure 5.2: DC-DC converter circuit, direct strategy, before (dashed) and after (solid) the

smoothing: (A) time-steps; (B) ratios of neighboring time-steps; {C) time-map function.

horizontal bounds in the plot of the ratios of neighboring time-steps are a/(c + 1) = 2/3
and (o + 1)/a = 3/2.

The described direct grid selection strategy is simple and fast. Its disadvantages are the
indirect control over the number of grid points S via the shooting-Newton tolerances, and
the asymmetric nature of the generated grids (somewhat alleviated by smoothing) due to

the one-directionality of the shooting-Newton time-step control.

5.4 Iterative Grid Selection

The iterative grid selection was developed from ideas in [21], in which PDE IVPs are solved
by adaptively adjusting the spatial grid during the time evolution of the problem. In the
iterative grid selection, an initial uniform grid p3 evolves into the final non-uniform grid p5.
During this process the S time points t, € p? are re-distributed in such a way that the
shooting-Newton solution guess of (5.1) is uniformly resolved. The solution guesg guides the
iterations such that in the regions where the solution has large gradients, the points should
be conéentra.ted, and in the regions where the solution varies slowly, the points should be
spread out.

We first introduce the grid resolution n defined as n,, = t,,,f—tm . For the grid resolutions
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to yield an acceptable grid iterate we need

>, —=1. (5.9)

A monitor function R specifies the desired resolution and should indicate increased resolution
in the regions where the shooting-Newton solution has rapid transitions. A choice for this
function that works well for a number of circuit examples is the Ly, norm of the weighted

rate of the change in the solution guess:

R, = _ T (vj(tm-.l-l) - Uj(tm))

tmit ~tm 3 F;

(5.10)

where v; is the shooting-Newton solution guess waveform of the j-th circuit equation, and F;
are the waveform weights, set to the maximal peak-to-peak voltage (or current) amplitude
among all waveforms. Local quadratic interpolation is used to compute the solution guess
values at arbitrary time.

For accuracy we require that the grid resolution is proportional to the monitor function

Mm m+1

—= . 5.11

B B 541
For stability we obey (5.7) by replacing n., in (5.11) with a centered difference smoothing
T — (@ + 1) (Npy1 — 20, + Riyp—y ) Tesulting in

N — (0 + 1) (nmi1 — 20 + n1)
- Bm
Ttmy1 — 0@+ (N2 = 20my1 + M)
Ry o

Equation (5.9),- and (5.12) written for m = 1,2,...,(5 — 1) form a system of S nonlinear

(5.12)

equations that are solved for n using a damped Newton method.
The Jacobian J, can be easily written down - '

by aa  dy oW
ap ba 02 ds |

az by ¢ _ ds. |
n=| C e JCRE)

as—2 bsg cs—2 ds

ds-1 as-1 bs_1 €5
1 1 : ' _1
| ﬂ_z-l ;g (- P— ... PR "IE J
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where

am = —a(a+1)Rmy, ' (5.14)
bn = (2024204 1)Rpp1 + a(a+ 1) Ry, (5.15)
en = —(2¢+2a+1)Rp — ala+ 1) Ry, (5.16)
dn = ala+1)R, (5.17)

and is computed exactly.

The I-th Newton iteration is the linear problem JO(An)t+) = —z(n®) which is effi-
ciently solved by Gaussian elimination since the Jacobian J, is banded and S chosen inde-
pendently of M. '

"The initial guess for the Newton iterations is n,,, = % corresponding to an S-point uniform
grid. At the I-th newton iteration the resolution iterate n® = n{-1 + n(/_\n)(“ is used to
compute a potential grid iterate {t0,t0, . O} where & o=t 4+ _(T The damping
factor & is decreased and n® recomputed until the potential grid iterate satlsﬁes the strict
monotonicity property. The I-th iteration is then deemed successful, the monitor function
recomputed on the new grid iterate, and the iterations continued until ||An|| and |jz(r)|| are
smaller than specified tolerances.

The iterative selection strategy is illustrated in Figure 5.3, with oo = 2 and § = 50. The
dashed lines are the quantities corresponding to the initial uniform p° grid, and the solid lines
are the same quantities after a converged iterative selection strategy. The horizontal bounds
in the plot of the ratios of neighboring time-steps are a/(a+1) = 2/3 and (a+1)/a = 3/2.

The described iterative grid selection strategy has the advantage of choosing S indepen-
dently of M and the number of grid pomts in the shooting-Newton grid. Its disadvantage is
its hlgher complexity when compared to the direct selection strategy. The complexity can
also rise ra.pldly for large S due to the Gaussian elimination step in Newton’s method.

5.5 Optimization-Based Grid Selection

Two different cost functions were used in setting up an optimization-based grid selection
strategy. The “design parameters” for both cost functions were the S grid points ¢;,. The first
cost function was simply the magnitude of the last pseudo Fourier coeficient associated with
the current grid iterate and the shooting-Newton guess waveform with sharpest transitions.
The magnitude of this coefficient is a measure of the truncation error in the pseudo Fourier

approximation.
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Figure 5.3: DC-DC converter circuit, iterative strategy, initial grid (dashed) and final grid
(solid): (A) time-steps; (B) ratios of neighboring time-steps; (C) time-map function.

The second cost function was the time-domain L, error between the shooting-Newton
guess waveform and the pseudo Fourier interpolant associated with the current grid iterate.
Note that this cost function computation required a computation of a time-map function
and Newton solves to compute its inverse at the points of comparison. Computation of its

gradient by finite differences required S + 1 cost function evaluations.

The strategy was first set up as an unconstrained optimization using the Nelder-Mead
non-gradient optimization method [57, 56], and the BFGS Quasi-Newton gradient-based
method with mixed quadratic and cubic line searches [57, 58]. Penalty terms were added to
the cost function in order to ensure the monotonicity of the grid. A second setup used two
versions of a constrained SQP method 58] with grid monotonicity and stability constraints,
one without, and one with user supplied gradients of the cost function and the constraints.

The expected advantage of the optimization-based grid selection strategy is reaching an
optimal grid. The disadvantage is its complexity {highest among the considered strategies),
and the lack of robustness due to the possibility of falling into local minima traps.

Applying the optimization-based strategy on sample waveforms produced ipconsistent
results. The runs that used the first cost function (magnitude of the last pseudo Fourier
coeflicient) redistributed the grid points such that there was a sharp “dip” in the pseudo
spectrum at the last frequency, and did not lead to a reduction in the truncation error, or
clustering of the points in the regions with sharp transitions. The runs using the second cost
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function typically ended up trapped in a local minimum, and clustering of the grid points
in regions that did not need it. The line searches often generated infeasible intermediate
grids causing a breakdown in the optimization. Overall, the results were inconsistent, and
the optimization-based strategy was not robust enough to be integrated in TMHB and used
for TMHB runs. |

5.6 Practical Issues and Limitations of the Grid Selec-

tion Strategies

Each of the presented grid selection strategies were developed and initially tested on single
sample circuit waveforms with sharp features. This testing phase eliminated the optimization-
based strategy due to inconsistent results. The direct and the iterative strategies proved
robust and consistent enough to be integrated with the TMHB algorithm and applied to
actual circuits.

When either the direct or iterative grid selection strategy is integrated with the TMHB
method, the a priori nature of the strategy limits its effectiveness. The errors present in
the computed shooting-Newton solution guess with a loose tolerance cause errors in the
clustering of time-points by the grid selection strategy. Recall that tightening the tolerance
of the shooting-Newton run would cause its run-time to become a significant part of the
total run-time for the TMHB method.

In particular, the inexact shooting-Newton solution guess has been observed to cause:
(1) an unnecessary and an excessive increase in grid resolution leading to point exhaustion
in the remainder of the grid domair; (2) an insufficient increase in grid resolution in certain
regions; and (3) an erroneous time-shift in ‘the.position‘ing of the grid resolution increase
(when the rapid transitions in the computed waveform are located at different times than in
the actual steady-state waveform). These errofs were observed to be more noticeable in larger
circuits. All of these effects lead to less eﬂ'ectivé grids, and translate into a decreased ability
of the TMHB method to achieve significantly better solution accuracy than the standard
HB method. Ia

The observation of the stability requirement (5.7) for bounding the neighboring time-
steps, helps tremendously in producing a grid which is used to construct an effective smooth
time-map function which observes the strict monotonicity requirement without a need for
filtering. This in turn helps the Newton and GMRES iterations in the TMHB method to

be efficient and to converge to the correct solution. The smoothing nature of this time-step
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bounding also helps in alleviating the aforementioned problems caused by the errors in the

shooting-Newton guess, limiting the loss of solution accuracy.

When the circuit is reasonably large, the multiple transitions problem can present a sig-
nificant setback to the grid selection strategies. In explanation, the many solution waveforms
may have rapid transitions that occur at many different times throughout the solution do-
main [0, T]. The grid selection strategy is then required to generate a grid which increases
and decreases its resolution many times throughout the solution domain. This is impossible
to do with a limited number of points. In addition, the stability requirement limits the peak
resolution increases. As a result, the strategies do not generate grids that lead to effective
time-map functions. ‘ |

In the case of direct grid selection strategy, decreasing the amount of smoothing by
reducing the grid rigidity (stability) parameter « is one way to reduce this problem. In the
course of our research, we tested this approach on several circuits. The reduction of the
stability parameter « indeed in many cases lead to a more effective time-map function and
increased TMHB accuracy. However, it was impossible to determine a universal near-optimal
value for a across all circuits. Instead, a conservative and safe default value of o = 2 was

selected.

In the iterative grid selection strategy, one may consider using a different monitor func-
tion R. In particular, the waveform weights F; can be (1) all set to a constant value; (2)
equal to one constant for the voltage and another (much smaller) constant for the current
waveforms; (3) set to the maximal peak-to-peak amplitude among voltage and current wave-
forms separately, with the current peak-to-peak amplitude scaled by a constant factor. One

can also use a different norm, such as the L, norm.

These differing scaling and averaging schemes for the monitor function end up empha-
sizing different waveforms in guiding the iterations of the iterative grid selection, and lead
to different final grids. Unfortunately, if the circuit is large, it is hard to evaluate whether
the right waveforms are emphasized. Sometimes the waveforms having the steepest features
can in fact have a very small peak-to-peak amplitude. This indicates that the waveform is
perhaps simply a noisy DC voltage, whose high frequenéy Fourier coefficients are so small
that they can be of the order of the accuracy of the computation. Such a wa:veform is not
useful in the computation of the monitor function and may cause less effective grid selection.
These waveforms can be identified by setting a threshold value for the peak-to-peak ampli-
tude below which the waveform is igniored in computing the monitor function. Choosing this

threshold value is, unfdrtunately, circuit dependent.
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In practice, all these hands-on monitor function schemes worked very well for a particular
circuit, but poorly for the remaining circuits. The selected default for a monitor function
(5.10) uses an Lo, norm and waveform weights set to the maximal peak-to-peak amplitude
among all voltage and current waveforms. It is a conservative choice that does not produce
the best results in individual circuits, but is universally good for all considered circuits.

Note that the interpolation of the solution guess waveforms to obtain in-between values
in the iterative grid selection strategy did not show to lessen the effectiveness of this strategy.
In particular, both linear and quadratic interpolation work equally well for this purpose.

The direct iterative Strategy also sometimes showed some sensitivity to the integration
method used in the shooting-Newton run. In particular, a low second order (trapezoidal or
BDF-2) scheme sometimes can produce a large constant error in the TMHB solution. One

way to eliminate this error is to switch to usixig a higher order integration scheme.
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Chapter 6

Time-Mapped Harmonic Balance
Results

In this Chapter we compare the performance of the TMHB method with standard state-of-
the-art matrix-implicit Krylov-subspace harmonic balance [7, 10, 11, 15] on several circuits.

The TMHB method is meant to be used on circuits whose solution waveforms undergo
rapid transitions. Most highly nonlinear circuits will exhibit such waveforms. If the circuit is
linear and driven by a sinusoidal source, all signals in the circuit will also be pure sinusoids.
In such a case, the standard HB algorithm gives the exact solution since the truncation

errors for the standard Fourier series approximations of all solution waveforms are all zero
for M > 1 (see Chapter 2).

Note that the rate of change in the pure sinusoids in a linear circuit is not constant
throughout the solution domain [0,7]. As a result, the TMHB grid selection algorithms
will in general genera.fe mildly non-uniform grid for linear circuits, and the pseudo Fourier
series representation of the TMHB solution waveforms will have a non-zero truncation error.
Similarly, we can deduce that for mildly nonlinear circuits, i.e. circuits with smoothly varying
waveforms, TMHB will not be in general more advantageous than the standard HB method.

Four strongly nonlinear circuits were simulated with the HB-and TMHB methods: a diode
rectifier, a DC-DC converter, a BICMOS switching mixer, and a BiCMOS IF preamplifier
circuit driven into distortion. Equation and element statistics for these circuit{s “are given in
" Table 6.1. | '

Both the standard HB and TMHB methods, as well as the direct and iterative grid
selection strategies were implemented in Mica, Motoro‘la.’s-SPICE-rl,ike circuit simulator, in
the computer language C [55]. All computer.runs were done on Sun Ultra-2 300MHz UNIX
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Circuit N R | C iL|VSRC|ISRC|VCVS | DIO | BJT | MOS | TOTAL
Diode Rectifier 6 21 3 11 1 1 8
DC-DC Converter 9 4 | 1 2 1 1 11
Switching Mixer || 105 [| 39 | 47 | 2 3 2 14 | 10 5 122
IF Preamplifier || 289 || 138 | 147 6 1 2% | 25 343

Table 6.1: Circuit statistics: N is the number of circuit equations; R, C, L numbers of
resistors, capacitors, and inductors; VSRC, ISRC, and VCVS numbers of voltage, current,
and voltage-controlled voltage sources; DIO number of diodes; BJT and MOS numbers of
bipolar and MOS transistors; TOTAL the total number of elements.

workstations.

Both the standard HB and the TMHB methods in all runs used the same shooting-Newton
solution guess (see Section 5.2) as an initial guess for the Newton iterations. Two variants of
the TMHB method were considered: TMHB-D, utilizing the direct grid selection strategy,
and TMHB-], using the iterative grid selection strategy. The grid rigidity parameter « in the
grid selection schemes was fixed at the default value & = 2, and the number of grid points
S in the iterative scheme was S = 50.

The “exact” solution for each of the circuits was computed using a standard HB method
with a very large number of harmonics (as permitted by the memory limits of the computer
hardware). In particular, the number of harmonics used in the exact HB run was K = 5000
for the diode rectifier and the DC-DC converter, and X = 1000 for the switching mixer and
IF preamplifier circuits.

6.1 Diode Rectifier

The first circuit is a simple but strongly nonlinear diode rectifier, shown in Figure 6.1
The circuit is powered by a 50Hz sinusoidal voltage source v;,(t). The diode rectifier was
first simulated with both the standard HB and the TMHB-I method at same number of
harmonics, K = 10. Plots of two solution waveforms exhibiting rapid transitiens, ivin(t)
and vs(t), are given in Figures 6.2 and 6.3 respectively. It can be seen that the TMHB
solution waveforms more closely match the exact solution than the standard HB solution
waveforms. In other words, even at this small number of harmonics, the TMHB method

computes a more accurate solution (about 10dB more accurate in L, norm sense) than the
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Figure 6.1: Diode rectifier circuit.

standard HB method. _
The pointwise errors in a computed solution waveform v(t) or in the computed Fourier
coefficients V;, of its approximation, in the time and frequency domains respectively, are also

of interest. The time-domain pointwise error ¢ is computed as:

&(t) = |v*(t) — v(9)] (6.1)

where v*(t) is the exact solution waveform, and v(f) is the waveform computed by the HB

or the TMHB method. The frequency-domain pointwise error €; is computed as:
e (kf) = Vi — Vil (6.2)

where V;* is the k-th Fourier coefficient of the exact solution, and V; is the k-th Fourier
coefficient of the solution computed by HB or TMHB.

Figure 6.4 shows plots the pointwise errors in the computed vy (¢) solution waveforms
by the HB and TMHB methods in the time and frequency domain, at same number of
harmonics K = 10. In the first plot it is visible how the TMHB method diminishes the
peaks in the time domain error in the middle of the solution interval, which is where the
waveforms exhibit the rapid transitions. “The second’ plot demonstrates that the TMHB
computes each Fourier coefficient more accurately than ‘the standard HB.

The circuit was next repeatedly simulated wifth;both'thé HB and the TMHB methods
for an increasing number of harmonics K. Figure 6.5 showé the L., norm of tbg frequency-
domain pointwise error €5, in dB, for the computed Fourier coefficients of the iy Ii‘! waveform,
versus the number of harmonics K. The plot shows orders of magnitude improvement in
the accuracy of the TMHB solutions compared to the staﬁdard HB solution. For example,
at K = 220 the TMHB solution is about 60dB or 3 orders of magnitude more accurate than
the standard HB solution.
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Figure 6.4: Diode rectifier circuit, pointwise errors in éyyy: (A) time-domain errors; (B)

frequency domain errors. Both HB and TMHB-I runs used K = 10 harmonics.
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Figure 6.5: Diode rectifier circuit, TMHB error convergence: Lo, norm of the frequency-

domain pointwise error in fvry, in dB.
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Moreover, Figure 6.5 demonstrates the superior error convergence properties of the
TMHB. The vertical distance between the HB and TMHRB convergence curves widens linearly
in log space - i.e. exponentially fast in linear space with increasing number of harmonics
K. This is a confirmation of our expectations for the error convergence properties of the
pseudo Fourier series approximations and the TMHB method. The TMHB error decreases
with O(M~?) versus the O(M~P) error convergence of the standard HB method, with p > p.

The plot also indicates that the iterative grid selection strategy in TMHB-I produces a
better time-map function and helps the TMHB algorithm reduce the solution error more
than TMHB-D which uses the direct selection strategy.

Note that an even more superior convergence profile is obtained if a different monitor
function is used in the iterative grid selection. In particular, using an L, norm in the monitor

Ry = (1 e > (vj (tmﬂ)ﬁ; vj(tm))z)% (6.3)

function

+1~ tm i3

and setting F; = 1 for the voltage waveforms and F; = 1073 for the current waveforms
(effectively scaling up the current waveforms), produces a better non-uniform grid and time-
map function in the iterative strategy. By scaling up the currents the fast-varying iy n
waveform plays a much greater role in the distribution of the time-points. The net result is
that, for example, at K = 220, the TMHB-I method using the new monitor function achieves
an additional 2 orders of magnitude gain over the previous result, effectively computing the
solution 5 orders of magnitude (100dB) more accurately than the standard HB method.
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Figure 6.6: DC-DC converter circuit, veorz computed with: (A) standard HB; (B) TMHB-I,

at same number of harmonics K = 50.

6.2 DC-DC Converter

The second simulated circuit is a DC-DC converter, powered with an 85kHz input. This
circuit was first simulated with the standard HB and the TMHB-I method, both using
K = 50 harmonics. Plots of the computed solution waveform vcor.(t) is given in Figure 6.6.
The plots illustrate the 20dB improvement in L., norm accuracy using the TMHB-I method
at this number of harmonics. '

The time and frequency domain pointwise error in vcorr as computed by HB and TMHB-
I methods at the same number of harmonics K = 50, are shown in Figure 6.7. It can be seen
from the first plot how the TMHB method diminishes the error peaks at the times of the two
sharp edges in the waveform, i.e. lessens the prominence of the Gibbs effect due to its use of
the pseudo Fourier approximations. In the frequency domain (second plot), TMHB computes
each individual Fourier coefficient with a much smaller error than the standard HB method.
The improvement in accuracy is more pronounced for the Fourier coefficients corresponding
to the higher frequencies - these are the coefficients of the Fourier basis functions that are
used to “build” the sharpest features in the waveform, such as the two rapid \tr‘a.nsitions in
Vcorr.-

The circuit was next repeatedly simulated for increasing numbers of harmonics with both
HB and TMHB methods to capture the asymptotic behavior of the error. Figure 6.8 plots

the Ly norm of the frequency domain error in the veorr, waveform, versus the number of
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Figure 6.7: DC-DC Converter circuit, pointwise errors in vcorr: (A) time-domain errors;
(B) frequency domain errors. Both HB and TMHB-I runs used K — 50 harmonics.

harmonics K. The plot is another confirmation of the superior error convergence properties
of the TMHB method. At K = 600 the TMHB-I error is 100dB(5 orders of magnitude)
smaller than the standard HB error. Note that the Lo norm error as well as the errors
for each individual harmonic for each of the remaining waveforms in the circuit again show
similar superior convergence properties. Figure 6.8 also indicates that the TMHB-I method
is more successful at simulating the DC-DC converter than the TMHB-D method.
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Figure 6.9: Switching Mixer circuit, 4y computed with: (A) standard HB; (B) TMHB-],
at same number of harmonics X = 6.

6.3 Switching Mixer

The third considered circuit is a Gilbert cell switching mixer in BiCMOS technology. Its
T
R
edge at —342, and both rise and fall times for the edges equal to 5% of 7. For the simulation

LO (local oscillator source) was a 1.8GHz square wave, with a rising edge at =, a falling
experiments the RF inputs were kept at zero. The idea was to obtain a transient steady
state operating point with high accuracy.

The mixer was first simulated with both the standard HB and TMHB methods at a
very small number of harmonics K = 6. Since the circuit is relatively large, larger numbers
of harmonics not only increase run times, but can also cause out of memory problems in
computer systems with 'msufﬁciént RAM. It was therefore of particular interest to see whether
the TMHB can compute a significantly more accurate solution than the HB method when
only a few harmonics are considered.

Plots comparing the sté.nda.rd HB and TMHB-I computed iy3;(f) waveforms with the
exact solution are given in Figure 6.9. The TMHB-I solution is dramatically-better than
the standard HB solution despite the use of only K = 6 harmonics (or equivalently, M =
2K +1 =13 time points). The L., norm of the error for the TMHB method was 18dB lower
than the standard HB.

The mixer was next simulated with HB and TMHB methods at K = 50 harmonics.
Figure 6.10 shows plots of the time and frequency domain pointwise errors in 7y3;. The
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Figure 6.10: Switching Mixer circuit, pointwise errors in éya;: (A) time-domain errors; (B)
frequency domain errors. Both HB and TMHB-I runs used X = 50 harmonics.

time domain error plot shows the peaking of the errors around the times when the waveform
has large gradients. The TMHB method is seen to reduce this maximal error, as well as
reduce the error throughout the rest of the solution domain. The second, frequency domain
error plot shows again how the TMHB computes each individual Fourier coefficients more
accurately than the standard HB method. Note that only the coefficients with even k are
plotted as the odd k coefficients are all zero (the waveform has a frequency equal to twice
the excitation frequency). It is interesting to note that the greatest error reduction is now
for the low frequency Fourier coefficients.

Our final simulation experiment for the switching mixer circuit consists of repeated HB
and TMHB runs for increasing numbers of harmonics K. Figure 6.11 summarizes the results.
While the TMHB error convergence is better than the standard HB, it is not as impressive
as in the case of the DC-DC converter circuit. As it was discussed in Section 5.6, larger
circuits present several special problems to the grid selection algorithms due to the large
number of waveforms. In the case of the switching mixer, the multiple transitions problem,
as well as the erroneous time-shift in the transitions iﬁ the computed shooting-Newton guess
have been found to be the cause of the somewhat limited success of TMHB in this circuit.
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Figure 6.12: IF Preamplifier circuit, vourp computed with: (A) standard HB; (B) TMHB-I,

at same number of harmonics K = 9.
6.4 IF Preamplifier

The fourth and final simulated circuit is a BiICMOS IF (intermediate frequency) preamplifier,
which was driven into distortion with a 0.1V peak-to-peak 110MHz sinusoidal source. This
circuit generated the largest number of equations N'= 289. The first simulation experiment
was a standard HB and a TMHB run both at K = 9 harmonics. As in the case of the
switching mixer, due to the size of the circuit, it was of particular interest to see if TMHB
is a superior method for small number of harmonics. -

Plots comparing the distorted output solution waveform voyrp for the standard HB
method and the TMHB-I method are shown in Figure 6.12. The L., norm of the error of the
TMHB method was 19 dB lower than the standard HB, which these plots illustrate quite
well qualitatively. Figure 6.13 shows plots of the time and frequency domain pointwise errors
in voprp. A reduction of the error in each computed Fourier coefficient using the TMHB
. method is evident from the frequency domain plot.

‘The final set of simulation experiments was a repeated sequence of HB and TMHB runs
for increasing number of harmonics K. A summary of the results is given ili Figure 6.14.
The plots show that the TMHB-I method has the best error convergence profile. The size of
the circuit, as in the case of the switching mixer, caused some problems to the grid selection
strategies, which is why the TMHB convergence profiles are not quite as spectacular as in
the case of the two smaller circuits, the diode rectifier and DC-DC converter. In particular,
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Figure 6.13: IF Preamplifier circuit, pointwise errors in voyrp: (A) time-domain errors; (B)

frequency domain errors. Both HB and TMHB-I runs used K = 9 harmonics.

the multiple transitions problems was found to be a cause in the degraded performance of
both TMHB-D and TMHB-IL In addition, in the case of TMHB-D, using the a low second
order (trapezoidal) integration method in the shooting-Newton solution guess run caused a
large constant error which is in evidence in Figure 6.14. This problem was resolved when a
higher order scheme (BDF-5) was used, as seen from the plot.
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6.5 Runtime Efficiency and Storage Requirements of
TMHB

A logical way to measure the runtime efficiency of the TMHB method is to compare standard
HB and TMHB runs achieving same accuracy in the solution. Tables 6.2 and 6.3 summarize
these findings. The accuracy F was the Lo norm of the frequency domain pointwise error
in the computed Fourier coefficients for the waveforms used for the error convergence profile
plots in the previous Sections.

The total CPU times include the time spent in the grid selection strategy, as well as a
complete unmap of all solution waveforms in the circuit. The simpler direct grid selection
strateg&_ is much faster than the iterative grid selection strategy. On the other hand, the
cost of the iterative grid selection strategy is independent of the number of harmonics M,
and linearly depends only on the selected size of the iterated grid S (which was kept fixed
at S = 50 in our experiments) and the size of the circuit V.

A complete unmap of all solution waveforms, as discussed in Subsection 4.3.1, is in general
unnecessary in practice as only a few waveforms are of interest. A partial unmap of only
the few needed waveforms can generate significant total CPU time savings for larger circuits
with hundreds of waveforms.

Standard HB TMHB-D
Circuit E K T Ty, In |In| K T 1L I, | Iy
Diode Rectifier |-200 || 650 | 43.2 | 33.0 | 273 | 16 | 330 40.8 | 21.1 | 243 | 16
DC-DC Converter | -100 {| 1000 | 1080 | 1053 | 2487 | 14 250 | 1740 { 1658 | 7160 | 12
Switching Mixer |[-130 || 150 | 67.3 | 21.8 | 37 8 | 50 | 56.4 | 22.7 | 88 S
IF Preamplifier | -155 || 170 | 1065 | 861 | 417 | 18 | 100 626 | 509 | 370 | 15

Table 6.2: ACompa.rison of the standard HB and TMHB-D methods at, same achieved solution
accuracy. F is the achieved accuracy in dB. K is number of harmonics, T is total CPU time,
T}, is linear solve time, Iy, is number of GMRES iterations, I is number of Newton iterations.

All times are in seconds.

Table 6.2 compares the runtime statistics for the standard HB runs and the TMHB-D
runs achieving identical solution accuracy. It can be seen that the TMHB-D is comparable
in efficiency to the standard HB method for the diode rectifier circuit, while it is less efficient
for the DC-DC converter. This is caused by the larger number of GMRES linear iterations
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associated with the TMHB-D method.

The cause of this increase in linear iterations was traced to the nature of the time-map
functions A(f) generated by the direct grid selection strategy. In particular, this time-map
function increases the grid density in the regions of rapid transitions to a much larger degree
than in the case of the time-map function generated by the iterative grid selection strategy.
The very large increase in grid density corresponds to the “flat” segments of A(£), i.e. to a
very small first derivative \'(Z) of the time-map function. The large spread in these derivative
values leads to a large condition number of the diagonal matrix of these derivatives A, which
In turn causes condition number increase in the Jacobian matrix J for the linear problem in
TMHB.

| The situation improves for the larger circuits, the switching mixer and the IF preamplifier.
Due to the multiple transitions problem in larger circuits (see Section 5.6), the time-map
function constructed from the non-uniform grid generated by the direct strategy does not
yield excessive grid density increases as in the case of the two smaller circuits. For the IF
preamplifier, the TMHB-D method (using a BDF-5 integration method for the shooting-

Newton solution guess run} is 1.7 times faster than standard HB.

Standard HB TMHB-I

Circuit ElK| T ||l k|7 || L ln
Diode Rectifier | -200 || 650 | 43.2 | 33.0 | 273 | 16 | 240 | 27.2 | 6.84 | 187 | 14
DC-DC Converter | -100 || 1000 | 1080 | 1053 | 2487 | 14 | 180 | 177 | 156 | 2112 | 12
Switching Mixer |-130 || 150 | 67.8 [ 21.8 | 37 | 8 | 45 [62.8|131] 73 | 9
IF Preamplifier |-155 {§ 170 | 1065 | 861 | 417 [ 18 | 90 | 662 | 514 | 441 | 17

Table 6.3: Comparison of the standard HB and TMHB-I methods at same achieved solution
accuracy. F is the achieved accuracy in dB. K is number of harmonics, T is total CPU
time, T is linear solve time, Iy is number of GMRES iterations, I is number of Newton
iterations. All times are in seconds.

Table 6.3 compares the runtime statistics for the standard HB runs and the TMHB-I
runs achieving identical solution accuracy. Signiﬁcé,nt runtime speedups are seen for three of
the four simulated circuits. For both the diode rectifier and the IF preamplifier, a speedup
of 1.6 is achieved. For the DC-DC converter the speedup is a factor of 6.

The total CPU times T for the HB and TMHB-I methods in reaching a specific accuracy
in vy from the DC-DC converter circuit are shown in Figure 6.15. The accuracy measure
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Figure 6.15: DC-DC Converter circuit: total CPU time T for HB and TMHB-I to reach a
specific solution accuracy in vcory. (A) linear plot; (B) log plot.

was again the L, norm of the frequency domain pointwise error in the computed Fourier
coefficients. For less stringent accuracies , the total CPU times for the TMHB method are
comparable to the HB CPU times due to the TMHB overhead in grid selection and waveform
unmap. The situation is drastically different for aécufacies better than -50dB: the TMHB
becomes up to several times faster than the HB method. In addition the speedup factor
grows with increases in required accuracies.

The TMHB is expected to retain the O(NM log M) complexity of standard HB, while
reducing the error O ((ﬁ)p) versus the O ( (ﬁ)p) error convergence of the standard HB
method, with > p. The roughly linear dependence of the CPU time T on M , means that
log(T) will roughly behave as log(M). Therefore, when log(T') is plotted against the error
in dB which has dependence log (ﬁp ) = ~plog(M), the plot is a straight line with a slope
proportional to p. The steeper slope of the log(T') line corresponding to TMHB in plot (B)
of Figure 6.15 confirms the complexity and convergence properties of TMHB.

'The memory storage requirements for the TMEB method are the same as for the standard
HB method, growing linearly with M due to the storage of the Krylov subspace vectors in
the GMRES linear solver. Since the TMHB method can achieve same solution accuracy
as the standard HB method with a smaller number of harmonics, it follows that significant
memory savings can be achieved by using the TMHB method. In particular, from Table 6.3,
we can measure the memory savings roughly as the ratio of the needed numbers of harmonics
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Figure 6.16: DC-DC Converter circuit: numbers of harmonics X required of HB and TMHB-I
to reach a specific solution accuracy in veosr- (A) linear plot; (B) log plot.

K for the standard HB and the TMHB-I method respectively. For example, the memory
savings range from a factor of 1.9 for the IF preamplifier, to a factor of 5.5 for the DC-DC
converter.

Figure 6.16 shows the required numbers of harmonics K needed by the HB and the
TMHB-I methods, versus the reached accuracy in the veorr waveform for the DC-DC Con-
verter circuit. Since the storage requirements are proportional to X the plot demonstrates
- that the TMHB method storage requirements at same solution accuracy are not only smaller
than those of the HB, but also grow less rapidly for higher accuracy computations.

We can therefore conclude that TMHB is particularly well suited for high accuracy sim-
ulations of large memory hungry circuits.
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Chapter 7
Conclusions

Harmonic balance (HB) methods are the frequency-domain algorithms of choice for high ac-
curacy computation of the periodic steady-state of circuits. Matrix-implicit Krylov-subspace
techniques have made it possible for these methods to simulate large circuits more efficiently. -
However, the harmonic balance methods are not so efficient in computing steady-state solu-
tions of strongly nonlinear circuits with rapid transitions. While the time-domain shooting-
Newton methods can handle these problems, the low-order integration methods typically
used with shooting-Newton methods are inefficient when high solution accuracy is required.
In this dissertation, we embarked on the quest for better, more powerful spectral methods

for circuit analysis.

7.1 Contributions of Thesis

We first examined possible enhancements to the standard state-of-the-art preconditioned
matrix-implicit Krylov-subspace HB method. We formulated the BDF time-domain pre-
conditioners and showed that they can be quite effective for strongly nonlinear circuits,
speeding up the HB runtimes by several times compared to using the frequency-domain
block-diagonal i)re_conditioner. Also, an approximate Galerkin HB formulation was derived,
yielding a small improvement in accuracy over the standard pseudospectral HB formulation,
and about a factor of 1.5 runtime speedup in runs reaching identical solution érgor.

Next, we introduced and developed the Time-Mapped Harmonic Balance method (TMHB)
as a fast Krylov-subspace spectral method that overcomes the inefficiency of standard har-
monic balance for circuits with rapid transitions. TMHB features a non-uniform grjd and

a time-map function to resolve the sharp features in the signals. At the core of the TMHB
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method is the notion of pseudo Fourier approximations. The rapid transitions in the solution
waveforms are well approximated with pseudo Fourier interpolants, whose building blocks
are complex exponential basis functions with smoothly varying frequencies.

‘The TMHB method features a matrix-implicit Krylov-subspace solution approach of same
complexity as the standard harmonic balance method. As the TMHB solution is computed
in a pseudo domain, we gave a procedure for computing the real Fourier coefficients of the
solution, and we also detailed the construction of the time-map function. The convergence
properties of TMHB were analyzed and demonstrated on analytic waveforms.

The success of TMHB is critically dependent on the selection of a non-uniform grid. Two
grid selection strategies, direct and iterative, were introduced and studied. Both strategies
are a pnon schemes, and are designed to obey accuracy and stability requirements. Practical
issues associated with their use were also addressed.

‘Results of applying the TMHB method on several circuit examples demonstrated that the
TMHB method achieves up to five orders of magnitude improvement in accuracy compared
to the standard harmonic balance method. The solution error in TMHB decays exponentially
faster than the standard HB method when the size of the Fourier basis increases linearly.
The TMHB method is also up to six times faster than the standard HB method in reaching
identical solution accuracy, and uses up to five times less computer memory. The TMHB
runtime speedup factor and storage savings favorably increase for stricter accuracy require-
ments, making TMHB well suited for high accuracy simulations of large strongly nonlinear

circuits with rapid transitions.

7.2. Future Work

The grid selection strategies were shown to be the weak link in the TMHB method. More
work in this area (particularly in the case of multiple waveforms in larger circuits) may
enhance the consistency of the TMHB method and iricrease its practical value. In particular,
more robust optimization schemes minimizing different functlonals of the solution {71, 73, 76]
deserve additional attention. ;

The post-processing procedure used in computing the real Fourier coefficients from the
pseudo Fourier coefficients computed by the TMHB has O(oM?) complexity, compared to
the O(NM log M) complexity of the TMHB method. While we argued that in practice
this does not cause runtime efficiency problems (see Chapter 4), it may be possible to use
a faster alternative algorithm for this post—processing unmap step [78]. A less expensive
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' procedure for computing the real Fourier coefficients can have a major impact on an efficient
implementation of an adaptive grid selection TMHB algorithm.

While time-domain steady-state methods, such as the shooting-Newton method, and the
finite-difference method, cannot be applied to analyze circuits driven by multi-tone signals,
the harmonic balance method can be readily extended to solve these circuits [6, 23, 24, 25,
26, 27, 28, 29). When the excitation signals have widely-separated frequencies, new methods
based on converting the circuit equations to multi-rate partial differential equations have
been proposed [19, 20]. Two-dimensional mapping pseudospectral techniques applied to
explicit scalar problems have been considered in (74, 83]. However, it is not yet clear whether
extending the TMHB method to multi-tone problems is possible. A further study is needed
to answer this question. '

An efficient analysis of two-tone linear time-varying circuits (e.g. PLLs, mixers, narrow-
band amplifiers, switched capacitor filters) has recently been facilitated with Krylov-subspace
based time-varying time-domain methods [16], as well as with a Kronv;subspace time-
varying extension of the harmonic balance method [18]. Harmonic balance has also been
applied to autonomous circuits (e.g. oscillators) [14]. Whether the mapping techniques of
the TMHB method can be extended to these problems is an open question.

New spectral methods for special classes of circuits will continue to be developed. For
example, we also formulated the Mixed Fourier-Chebyshev (MFC) method, which is much
like the Mixed Frequency-Time (MFT) method [2, 4] and is meant to be used for clocked
analog circuits. A derivation and a simple example of this method are presented in the
Appendix A. A complete evaluation of the anticipated advantages of this new method

requires further research.
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Appendix A

The Mixed Fourier-Chebyshev
Method

The steady-state analysis of clocked analog circuits is extremely computationally expensive
because the period of the clock is typically orders of magnitude smaller than the time period
of interest. The Mixed Frequency-Time method (MFT) [2, 4] exploits the property of these
circuits that their waveforms are similar over the clock cycle intervals. The method thus
efficiently computes a solution by integrating over only a few selected cycles.

We developed the Mixed Fourier-Chebyshev method (MFC) as a fully spectral method
similar to MFT. The cycle segments of the waveforms are no longer obtained by time inte-
gration, but by approximation with truncated Chebyshev series.

To understand the MFC it is helpful to review the Mixed Frequency-Time method
(MFT) {2, 4]. Given a quasiperiodic résponse sampled at S points at rate T, as shown
in Figure A.1, the method starts by picking J sample times 7; out of the sample set. The
sampled waveform v(7;) is then approximated by a J-term Fourier series.

The MFT method represents coupling of the Fourier delay relationship:

v(1 + 1) = D(T)v(r) (A1)

where D(T,) = I'"(T,)T, with the time integration of the J cycles [r,7 + T}

T

o(r +T,) = E(w(r), 7, 7+ T¢) o (A2)

The coupled equations are then solved for v(7;):

£((r), 7,7+ T) - D(T)w(r) = 0 (A.3)
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Figure A.1: Sampled quasiperiodic response.

The Mixed Fourier-Chebyshev method features the same Fourier delay relationship as in
the MFT method:

v(n +Tp) v(r1)
v(ry +T) - D(T) v(13) (A4)
'U(TJ 4 Tc) i 'U(TJ)

The cycle waveforms are no longer computed by time integration (transient simulation},
but with Chebyshev polynomials due to their non-periodicity. The method is thus fully
spectral in nature and achieves in theory exponential order convergence.

The approximation of the J cycle waveforms v;(t) with Chebyshev series is:

e M-1

v(t) = Y CiaTi(z) - % 7,0 (A.5)

k=0
where z = ;(¢) (linear map of {75, 7; + T¢] onto [-1,1]).
The collocation grid is the standard “roots” interior (M — 1)-point Chebyshev grid:
T} = Cos 1’1%:_%1
Consider a simple example: an exponential resistor circuit shown in Figure A.2 and

described by the following equations '

C'1'J+—}iv—f(v—v,f,,) =0
flv)=e" ' (A.6)
Vin = @;SIN(27 fit) + a.sin(2n Jet)
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v_out

Figure A.2: Exponential resistor circuit,.

The Mixed Fourier-Chebyshev method for this problem generates a total of MJ equa-
tions; the first (M — 1)J equations represent the J spectral problems:

C (% i CunTi(@)) + & (SH5H CoaTilw) - 1;0) —

_ (A7)
f (SEF CiaTilw) = §C50) = 0
while the last J equations represent the B.C.s via the Fourier delay relationship:
Tie' OLaTi(1) - 3Cip Yile' CiaTe(-1) - 1C1
: = D(T) | : (A.8)
L' CuTill) — §Cng SH' CosTi(~1) - §Cs

This system of equations is then solved for the Chebyshev coefficients Cjx with Newton’s
method. Note that the Chebyshev (upper) part of Jacobian is block-diagonal, while the
Fourier (lower) part is full.

Figure A.3 shows the resulting Fourier sample points and cycle waveforms from applying
the Mixed Fourier-Chebyshev method to the exponential resistor circuit from Figure A.2.
There were J = 13 total cycles. Robust and fast Newton convergence was observed. The
plot verifies the validity of the MFC method by comparing the solution with the steady-state
waveform computed via SPICE’s transient analysis.
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Figure A.3: MFC method results for the exponential resistor circuit.
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