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Abstract

The standard approach to calculating electrostatic forces and ca-
pacitances involves solving a surface integral equation of the first kind.
However, discretizations of this problem lead to ill-conditioned linear
systems and second-kind integral equations usually solve for the dipole
density, which can not be directly related to electrostatic forces. This
paper describes a second-kind equation for the monopole or charge
density and investigates different discretization schemes for this inte-
gral formulation. Numerical experiments, using multipole accelerated
matrix-vector multiplications, demonstrate the efficiency and accuracy
of the new approach.

1 Introduction

A classical problem in electrostaticsis the determination of the charge density
for a three-dimensional conductor system. For a given potential distribution
f on the conductor surface(s) S this leads to the integral equation of the first
kind

/SG(w,y)a(y) dS, = f(z), <€S (1)

for the charge density o. Here G(z,y) = 1/47|z — y| denotes the Green’s
function for the Laplacian in the three-space.

It is typical for applications in electrostatics that the surface is composed
of several disconnected components S = S; U...U S, (conductors or elec-
trodes) and that the potential f is constant in each component, that is,

fz) = Zn:kak(w) , z€S§. (2)
k=1
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Here py. is the potential on S; and yp denotes the characteristic function of
conductor surface S} .

The capacitance matrix is an important parameter to determine the be-
havior of electric circuits. Its entry C}; is defined to be the net-charge on
S, if Sy is raised to one volt and all other conductors are grounded. Let ()
denote the solution of (1) with potentials p; = &, then

Ck,l:/ e ds, 1<ki<n. (3)
Sy

Sometimes the charge distribution ¢ as a function on the conductor is also
of interest, because it is proportional to the electrostatic forces on the con-
ductors.

For applications in complex geometries, integral equation (1) is usually
discretized with a collocation scheme. The resulting matrices are dense and
large. In the recent past, there has been an increased interest to sparsify this
system, for instance with the fast multipole method. As a result, the matrix
vector product can be carried out in O(N) operations and thus the solution
of the linear system with an iterative scheme is feasible [6, 7, 8, 12].

The problem with the first-kind integral equation is that discretizations
lead to matrices with increasing condition numbers as the mesh is refined.
This behavior makes the solution of the linear system more expensive and
more sensitive to errors due to multipole approximations. Furthermore, the
numerical analysis of first-kind formulations is more difficult than for second-
kind formulations. In particular, the theory of the collocation method is
only well-understood for planar domains, but very little is known for three-
dimensional problems (see, for example, Sloan [17]).

Many theoretical and practical difficulties associated with the first-kind
formulation can be avoided by using a second-kind integral formulation for
Laplace’s equation. Typically, the arising integral operators are compact on
smooth surfaces and thus the Riesz-Fredholm theory provides a framework
for the analysis, see, e.g. [4]. Of particular importance are the asymptotic
error estimates of discretizations which can be obtained this way. Also, the
condition number of the discretized linear system can be bounded indepen-
dently of the discretization mesh, and so require no preconditioning.

The capacitance problem is an exterior Dirichlet problem for the Laplace
equation. Using double-layer potentials, this problem can be cast into a
second-kind integral equation. The resulting operator has an n-dimensional
nullspace which can be removed by augmenting the integral equation with n
Lagrange multipliers, [1, 11]. The multipliers turn out to be the capacitances.



However, double-layer potentials do not yield the charge density as a
function on the conductors. Since this is the quantity of main interest in
many applications, we will derive a second-kind formulation which involves
the adjoint of the double-layer operator and provides the charge density. For
a similar approach along these lines see Atkinson [2].

The collocation method for the double-layer equation is well understood.
Some of these results do not carry over to its adjoint and we will propose a
modified collocation scheme to avoid these difficulties.

We will also demonstrate how the arising discretized linear systems can
be sparsified with the fast multipole method and will conclude with several
numerical examples comparing the different formulations.

2 Second-Kind Formulations

The idea behind the first-kind formulation is to set up the electrostatic po-
tential as a single-layer potential of a surface charge

uw) = Vo) = [ Glap)o@)ds,, «ew. (4)

The single-layer potential satisfies Laplace’s equation in every connected com-
ponent of R*\ S and furthermore it is known that the single-layer potential is
continuous in B3, Stipulating that u defined by (4) assumes the given values
on the conductor surfaces, one obtains integral equation (1) with the right
hand side given by (2).

Since the function f is constant on each conductor surface, it follows that
u is constant in the interior of each conductor and that the gradient vanishes
on the conductor surfaces when approached from the inside. From the jump
relation of the normal derivative of the single-layer potential it then follows
that

M) =tow)+ [ Gleno)ds,=0, zes. ()

We will also write the above equation symbolically as (1/2+K')o = 0, where
the operator K’ is the adjoint of the double-layer or dipole potential K with
respect to the Lo-inner product. The nullspace of 1/2+ K is spanned by the
functions which are constant on each conductor surface

N(1/2+ K) =span[x1,...,Xn] (6)

see [11]. Therefore we may conclude from Fredholm theory that the nullspace
of 1/2+ K’ is also n-dimensional and that

R(1/2+IC')J‘ = span[xi, ..., Xn] - (7)



The capacitance problem is equivalent to finding the density ¢ in the null
space of 1/2 + K’ whose potential on conductor Sy is given by pg.

To obtain a nonsingular second-kind integral equation select points zj in
the inside of each of the n conductors and define the operators A : R” — C(5)
and G : R" = C'(S) b

Aq(z) = me z €S,

Ga(z) = > aG(zp,2), z€S.
k

Here C'(5) denotes the space of continuous functions on S. The adjoints of
A and G are then given by

Aol = ﬁ [ otas
Go], = /S Gap, y)o(y) dS, .

With the above defined operators we are able to formulate a well-posed
modification of equation (5).

Theorem 2.1 The second-kind integral equation
(1/2+ K"+ AG")o = Ap. (8)

is uniquely solvable. Furthermore, the solution of (8) also solves (1) when
the right hand side given by (2).

Proof: To show unique solvability of equation (8) it suffices to demonstrate
injectivity of operator 1/2+ K’'+ AG’. For that, consider a solution og of (8)
for a vanishing right hand side. Since AG’cq is constant on each conductor

it follows from (7) that (1/2 + K')og = 0 and that AG'cy = 0. Thus the

single-layer potential v(z) = Voo(z) solves the boundary value problem

Av(z) = 0, zeR*\S,

ov~
a_n(m) - 07 CEES,

v(zg) = 0, k=1,...,n
Hence v = 0 and it follows that og = 0.

For the solution o of (8) orthogonality in (7) implies that (1/2+K")e =0
and that AG'c = pi, k = 1,...,n. Thus the single-layer potential Vo (z) is



constant within the conductors and assumes the given values on the conduc-
tor surfaces. Hence o is the solution of (1). ]

The spectrum of the operator 1/2 + K’ accumulates only at 1/2 and
adding the term AG’ removes the non-trivial nullspace. Thus the eigenvalues
of the operatorin (8) are bounded away from zero and its inverse is a bounded
operator. In practice, it is important that the norm of the inverse is small and
this can become a problem in some cases. The added term not only removes
the zero eigenvalues but also changes the other eigenvalues of 1/2+ K’. To
weaken this effect we will also consider preconditioning of the term AG’. By
repeating the arguments we used in the proof of Theorem 2.1 it can be seen
that for any nonsingular n X n matrix B integral equation

(1/2+ K'+ ABG')o = ABp 9)

is well-posed and provides the solution of the capacitance problem.

2.1 Integral formulation involving Lagrange multipliers

An alternative way to remove the nullspace of (5) is to add the orthogonal
projector into R(1/2+ K')+

(1/24+ K"+ AA")o = Aq. (10)

For any vector ¢ the solution lies in A'(1/2+K’) and it remains to determine
this vector to obtain the solution of the capacitance problem. For that,
consider the scalars ¢q,...,q, as additional unknowns. Given these extra
degrees of freedom, we may require that the solution of (10) generates the
given potentials inside the conductors. Thus we obtain the system

12+ K+ AA —A o| |0
R | b

It is interesting to remark that this is the adjoint of an integral formulation
for the exterior Dirichlet problem discussed by Greenbaum et al. [1] and
by Mikhlin [11]. Finally, the system can be preconditioned with any two
non-singular n X n matrices By and By

(12)

1/2+IC’+.AB1.AI -B; A o | 0
ByG’ 0 N '

without changing the solution.



3 Discretizations

Although the numerical analysis of second-kind integral formulations is well
understood, the form of equations (8) and (11) requires special care for their
discretization. We describe some of these issues in this section.

The framework used here is standard and has been described by many
authors, e.g. [4]. Assume that the surface S can be partitioned into finitely
many patches S = S; U...U S, where each patch S is the image 2z =
Fy(t) defined on a triangular parameter domain P, C R*. Then a family
of triangulations can be obtained by uniformly refining each P,. Let A; be
a triangle in the refinement of P, with vertices g, 1,70y and maximal side
length h. Denote by A = {(t1,t3) : 0 < ty,t9,81 + 2 < 1} the standard
simplex in R2. Define

m7(t) = B ((1 — t] — tg)ﬁo +t]§]\] + t262) 3 t = (t'l)tQ) € A)

and let A; be the image under this mapping. The space of functions that are
piecewise constant on the subdivision S = A; U...U Ay is denoted by Xj,.
The collocation points are the images of the centroids, that is, & = m;(f),
where t = (1/3,1/3). The corresponding interpolation operator Zj, : C'(S) —
X}, is then given by

Inf(z) = f(&), = €A;.

The collocation method for the adjoint formulation (9) seeks the numerical
solution o, in X, which satisfies the integral equation at the points &;

(1/2+ I,K"+ ABG')o, = ABp.

Subtracting the continuous equation (9) from its discretization leads to an
expression for the error e =0 — o},

(1/24+TK' + ABGYes, = (I, — T)K'o = 1/2(T — T})o .

Because of the compactness of the adjoint integral operator, Z; K’ converges
to K uniformly and hence we may estimate the collocation error by

leflloe < [1/2+ K"+ ABG)!| (T - Tw)oall., -

Assuming that o is sufficiently smooth, the error is of order h. For a finite
grid the constant matters and the above estimate suggests that this factor
depends critically on a good choice of the matrix B. However, this requires
some a-priori knowledge of the solution which is usually not available.



The difficulty to find an appropriate B does not arise in the Galerkin
method and we will demonstrate this below. Denoting the Ly-orthogonal
projector into Xp, by Py, the Galerkin discretization of (9) assumes the form

(1/2+ PrK'+ ABG' ol = ABp. (13)

The projector Py, is self-adjoint and hence we have for all functions pp € X},
and £ =1,...,n the identity

Xk, (1/24 PuK")pr) = (Prxe, (1/24+ K')pn) = (xx, (1/2+ K')pr) =0,

where (.,.) denotes the usual L, inner product. Thus R(1/2+ PrK")*+ D
span[xi, ..., xXn] and equality holds if h is sufficiently small because of the
uniform convergence of P,K’ — K'. Hence we see from (13) that the Galerkin
solution satisfies
(1/2+ PLK"Yo! = 0,
BG'a] = Bp.
Therefore the solution of is independent of B and the constant factor in

the asymptotic convergence of the Galerkin error € is given by the optimal
choice of this matrix. That is,

leilloe < &I = Pr)oll

where

k=inf| (1/24+ K+ ABG)!| .

The matrix coeflicients of the Galerkin method are of the form
(K9),; = i/ / 9 G(a,y) S, ds (14)
VIZ G s sy Y e

where «; is the surface area of panel A;. To avoid the double integrals replace
the integration over A; by the midpoint quadrature rule (replacing A; would
yield the collocation method). The result is a qualocation scheme of the form

1
(5+ D;'KI Dy + ALBGT)ol = ALBp. (15)

The matrices Ky, Gp, Ay and Dy, in the above system are given by

(Kn)ij = /A %G(&,y)dsy, (16)
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(Ga)ie = /A‘G(m,mk)dsx, (17)
(A = {WOW f e (18)

else,

Dy = diag(ay,...,an). (19)

Note that matrix K}, arises when discretizing the double-layer operator with
the collocation method. From equation (6) it follows that the nullspace
of the matrix 1/2 + K}, is given by the vectors span[xi ..., Xn,s]. Thus
R(1/2+ KI)t = span[x1,--., Xnx) and the independence of the solution
o, of (15) from the matrix B follows as for the Galerkin method.

The error of the Galerkin method is of order h and it is important to
verify that the approximation of integral (14) does not affect the asymptotic
convergence. This is demonstrated in the following theorem.

Theorem 3.1 The error €, = 0§ — o} converges linearly, i.e.,
[€nlloe = OCh).- (20)
Proof: Subtract equations (13) and (15). This results in the expression
<% + DK Dy + AhBG{) &= (D' KDL - K)ol . (21)
Set k), = D,:lKgDh — Ki. The proof is based on showing that

1Bl = max Y Bl = O(h) (22)
J

where ||.||, is the matrix co-norm. With that, we have stability and linear
convergence of ||€3]|,, in (21). To demonstrate estimate (22) set

Ryt = o [ Dm0 i) g ey

vy

o (1) = mj (s)
then )
b= | (B (5) = F5(5)) i (5) ds, (24)
where Jj(s) = |Dyx Dymj(s)]. Since the surface S is smooth, there is a
constant ¢ > 0 such that
8ixG(m,y)§c|miy| z,y€ S. (25)

8



For a fixed index 7 let
Ni={j:lh< dist(A;, A;) < (I+1)h}, 1=0,...,0(1/h).

Because of the uniform refinement scheme, one sees easily that #A; < ¢/l,
where ¢ is independent of the index ¢. From the chain rule and estimate (25)
we have for all j € N}

h

h
b . =odk

= O(lg)v

o0

17l = 0(), |

!
I

:(’)(

s
and furthermore

il = 02, |71 = o),

o0

s

where ||.||., is understood componentwise for matrices and vectors. Taylor
expanding the integrand in (24) about the centroid § yields

K = & </A (I,T(S —3§)ds — /A(s - §)TA (s—3)ds + rh>

where a = —F/;(5), A = F/{(5)J(5) + 2F};(5)J' (5" and r, = O(h/I*). The
first term in the above expansion cancels out and we are left with

h h?

|Eij| = O( 12)7

Thus the contribution to ||F4||., of panels at a positive distance can be
estimated by

> Z/\:/|Eij| ZZC’)(%+hT) = O(h). (26)
>0 7€eN; >0

It remains to estimate the contribution of nearby panels Ajy. From definition
(23) it follows that || Fj;|| . = O(h) for j € Ny and hence

Eij

[0 .
<22 |1Fy). = Oh), jeNo.

Since the number of panels in Ay can be bounded independently of & and 1,
their contribution to ||Fy||,, is O(h). Together with estimate (26) assertion
(22) follows. O

To facilitate numerical calculations, one often replaces integrals over tri-
angular pieces by integrals over flat triangles. In this case there are ana-
lytical expressions of the matrix entries (16) available, see [14]. Using the




techniques of Atkinson and Chien [5], it can be shown that this procedure
does not change the asymptotic behavior of the error. Since the detailed
proof is quite complex we do not demonstrate this here.

Finally, we remark that the discretization of the integral equation which
contains the Lagrange multipliers can be treated analogously as described
above for the adjoint formulation. In particular, the qualocation discretiza-
tion error of equation (12) is independent of the matrices By and By .

4 Multipole Acceleration

We consider solving the discretized linear systems with an iterative Krylov
subspace solver like GMRES of Saad and Schultz [16]. In the iteration the
major numerical effort is spent in calculating matrix-vector products, which
in the context considered here is equivalent to calculating the electrostatic
potential due to a charge distribution. Since every panel interacts with every
panel, the matrices are dense and the direct calculation of the potential
involves O(N?%) operations.

The Fast Multipole Method (FMM) [15] is a scheme to compute N po-
tentials due to N charges in (V) operations. A detailed description for
three-dimensional particle distributions has been given by Greengard [7],
and the adaptation of the algorithm for collocation schemes of integral equa-
tions in 3-D potential theory by Nabors et al. [12]. This section discusses
the modifications of the FMM for the qualocation scheme described in the
previous section.

The FMM achieves its efficiency by using a hierarchical partition of the
problem domain into cubes. The top level cube is chosen to contain all
charges and is recursively subdivided until the bottom level cubes contain
at most a fixed number of charges. The interactions between well-separated
cubes is approximated with truncated multipole expansions.

At the bottom level the potential ® due to chargesin a cube is expanded
into the truncated multipole expansion

n —m 0
R i sl UL (21)

n=0m=-—n

Here r, 8, and ¢ are the spherical coordinates with respect to the multipole
expansions origin (usually the center of a cube) and the Y, (8, ¢)’s are the
surface spherical harmonics [9]. The approximation can be made arbitrarily
accurate outside the cube by increasing the expansion order /.
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Once the multipole coefficients p)" have been formed for every bottom
level cube, the upward pass calculates the multipole coefficients for every
cube in the higher levels from the multipole coefficients in the level below.

In the second phase of the algorithm, the downward pass, a local expan-
sion of the form

U(r,0,¢)~ Z Z Y, (0, ¢) A (28)

=0m=-—n

is formed for every cube in the hierarchy beginning at the top level and going
down to the bottom level. A local expansion approximates the potential ¥
inside the cube due to charges outside the cube and its neighbors. For more
details on the upward and downward pass, we refer to Greengard’s thesis [7].

Finally, in the third stage of the algorithm, the potential due to all charges
is calculated by evaluating the local expansions (accounting for charges far
away from the evaluation point) and evaluating the potential due to nearby
charges directly.

In the case of a distribution of point charges, the multipole coefficients
of a bottom level cube in (27) follow immediately from the addition theorem
of spherical harmonics

=3 3 Y06 LD <.

|$ a yl n=0m=—n

where the spherical coordinates of the points 2 and y are r, ¢, 8 and p, o, 3,
respectively. With this formula one sees easily that the multipole coefficients
it of the combined potential due to charges at r;, ¢;, 8; depend linearly on
their strengths ¢;. In matrix notation we have

p=Q2Maq,

where the coefficients of the transformation matrix are

Similarly, the potentials in (28) at points (p;, a;, 3;) depend linearly on the
local expansion coefficients A7'. The entries of the transformation matrix are
given by

Yo" (i, Bi)

n,m) — n+l

L2P;
p;

(30)

11



The matrix-vector product in the discretization of the double-layer oper-
ator corresponds to calculating the potential due to a collection of constant-
strength dipole panels. With minor modifications, the fast multipole al-
gorithm can also be applied for this type of calculation. In this case the
coefficients of the transformation matrix (29) have the form

Q2M ) = / Y (8,6) dS(r0.. (31)

If A; is replaced by a flat triangle, there are closed-form expressions for the
integrals; see [12]. The upward pass, as well as the downward- and evaluation
pass for the dipole panels carry over from the algorithm for point charges.
In particular, the transformation of local expansions to potentials is given
by (30).

Solving the linear system arising from the adjoint integral formulation (15)
involves matrix-vector multiplications with the transpose of the dipole poten-
tial. This operation can be multipole accelerated, too. To see this, consider
the ¢-th row of the matrix-vector product

P
[kl qu/ 5nzlfy—y| Sy_/Aif?—mq)

qu 16—yl

Thus the i-th component of the matrix-vector product is the integral of the
field due to a point-charge distribution. This suggests to use the multipole
algorithm for point charges to obtain the local expansion coefficients of the
potential. The evaluation pass for the adjoint formulation consists of inte-
grating the field, given by its local expansion coefficients, over the panels.
Thus the transformation matrices have the form

where

—yl

Y, " (v, B
LQR,(n,’m) = /A a—nZ?"nYnm (0, ¢) dS(,,"g’qg) . (33)

Note that the arising translation matrices for the adjoint formulation are
transposes of the matrices for the dipole operator, that is,

QQMadjmfmf = LQPdI;pole?
L2Padjo7fmf = QQMg;pole'

12



5 Numerical Results

To compare collocation discretizations of the first-kind integral equation (1)
with the various second-kind integral formulations discussed in this paper,
we carried out a variety of numerical experiments on smooth surfaces as well
as on domains with edge and corner singularities.

The discretized linear systems were solved iteratively using GMRES with
multipole-accelerated matrix-vector products. Our code is based on the pack-
age FASTCAP [13] with the modifications discussed in Section 4 to imple-
ment second-kind formulations. In our experiments we monitored the con-
vergence rate of the discretization scheme as well as in the behavior of the
iterative solver.

5.1 Smooth Surfaces

Smooth surfaces give rise to compact integral operators and thus the Fred-
holm theory provides the framework for the numerical analysis of second-kind
formulations. The first problem we consider is posed on the ellipsoid

$2 $2 $2
S = RS, L2481
{ace 4+1+9

For this geometry the charge density can be expressed in closed form using
ellipsoidal coordinates [10]. Table 1 displays the errors of the charge density
in the maximum norm and the errors of the capacitance. The maximum of
the error was approximated by taking the difference of the calculated and
exact solution at several points in each panel. The asymptotic convergence of
all discretization methods appears to be of order one, however the constant
factor for the first-kind formulation and the qualocation discretization of (9)
is smaller than for collocation of the second-kind formulation. The results
obtained from discretizing the formulation with Lagrange multipliers (12) are
not significantly different and omitted. The convergence rates of the capaci-
tance for collocation of the adjoint formulation are of order one, whereas the
rates for qualocation and collocation of the first-kind formulation are faster.

Summarizing, it appears that the errors obtained by the first-kind and
qualocation of the adjoint formulation are approximately equal, whereas col-
location gives much poorer approximations. The results of Table 1 are shown
for B =1 in (9) and changing this parameter has in fact some impact on the
error of the collocation method.

13



first-kind, colloc second-kind, colloc second-kind, qualoc

Panels | Loo-error cap-error | Leo-error cap-error | Leo-€rror —cap-error
48 0.3449 2.1694 0.4605 4.2897 0.4288 2.5583
196 0.2446 0.6657 0.3828 2.1627 0.3104 0.7763
768 0.1336 0.1782 0.2510 1.1226 0.1591 0.2086
3,072 0.0765 0.0456 0.1595 0.5855 0.0908 0.0553
12,288 0.0401 0.0115 0.0880 0.3005 0.0441 0.0147

Table 1: Errors of various discretization schemes for the ellipsoid. The exact
value of the capacitance is 24.7056. ..

The advantage of the second-kind formulations over the first-kind formu-
lation is the conditioning of the discretized systems. In Table 2 we display
the GMRES iterations that were necessary to reduce the residual to 107.
The number increases when refining the mesh for the first-kind formulation
but remains bounded for the second-kind formulation.

Panels | first-kind second-kind second-kind
colloc colloc qualoc
48 6 6 6
192 21 11 12
768 27 11 12
3,072 35 11 11
12,288 43 11 11

Table 2: Iteration count for the ellipsoid

In the first example we increased the number of panels by refining the
discretization, in the following example we keep the refinement fixed and in-
crease the number of conductors. The geometry we investigate is a collection
of spheres of equal radius, pseudo-randomly distributed in space as shown in
Figure 1. Each sphere is discretized into 192 flat triangles.

The results demonstrate that the first-kind and the adjoint integral for-
mulation require more GMRES iterations to converge as the number of
spheres increases. The increase for the second-kind formulation is much
slower and can be controlled by the choice of the preconditioner B in (15).
For B = (G’A)~" the iteration count is almost constant as the number of
spheres increases.

14



Figure 1: Sixty-four spheres example

Although the existence theory and error analysis of the previous sections do

5.2 Nonsmooth Surfaces

L-shaped block of Figure 2. The integral operator of the adjoint formulation
for this domain is not compact and the charge density has corner and edge

not apply for non-smooth domains, we also include numerical results for the

rer approximation in these regions

larities.

To accommodate for the poo

rities.

singula

ingu

the mesh is graded towards the s

kind formulation

In this example the capacitance obtained by the first-

equals app

ximately the value obtained by the second-kind formulation on

TO

of the solution, the accuracy of the first-kind formu-

the next refinement level. Assuming that the error of the capacitance is an

lation appears to be better.

indicator for the error

rease is faster than in the smooth case. Despite

the fact that the adjoint operator is no longer compact, the iteration count

for the second

of iterations for the first-kind formulation increases when

The number
refining the mesh and the inc

-kind fo
For edges and corners the term 1/2

angle, see e.g. [11].

rmulation remains bounded as the grid is refined.

(8) must be replaced by the solid

mn

For piecewise constant elements with centroid collocation
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number | first-kind  second-kind, qualoc
spheres B=1 B=(G'A)!
4 25 13 10
8 33 21 14
16 40 28 14
32 48 31 16
64 55 32 16

Table 3: Iteration count for the multiple spheres example

Figure 2: Discretization of the L-shaped domain

the solid angle does not appear in the discretization, because the node points
lie on smooth components of the surface, and the poorer convergence of the
second-kind formulation may be attributed to this missing term. On the
other hand, higher order discretizations place the node points on the edges
and vertices of the panels and thus solid angles appear in the discretized
equation. Table 5 displays the capacitances for the L-block obtained with
piecewise quadratic elements. The discretization and the matrices for this
example were generated with the aid of the package BIEPACK [3].

The capacitances for the first-kind formulation apparently do not con-
verge to the correct value, on the other hand, the capacitances of the adjoint
formulation are consistent with the results obtained from using piecewise
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first-kind, colloc | second-kind, qualoc
Panels Ci1 its Ci1 its
112 | 12.448 18 12.373 15
448 | 12.606 28 12.486 17
1792 | 12.650 43 12.609 20
7168 | 12.662 62 12.651 20
28672 | 12.665 87 12.662 19

Table 4: Discretization errors and GMRES iterations, L-block, piecewise
constant elements

constant elements.

first kind second kind
Panels C its C its
28 | 12.940 16 | 12.753 19

112 | 13.124 29 | 12.675 22
448 | 12.746 43 | 12.671 22
1792 | 12.742 76 | 12.668 22

Table 5: Capacitances and GMRES iterations, [.-block, piecewise quadratic
elements

6 Conclusion

Our experiments with the capacitance problem on smooth surfaces showed
that second-kind formulations result in better conditioned linear systems. In
addition, the adjoint formulation directly produces surface densities which
are more useful in subsequent electrostatics application than the dipole layer.
To maintain the accuracy of the approximation, the adjoint operator must
be discretized with a non-standard qualocation scheme.

For non-smooth domains the error for piecewise constant elements is
smaller for the first-kind formulation, especially for relatively coarse dis-
cretizations. However, the adjoint formulation appears to give better results
then the first-kind formulation when higher order panels are used.
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