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Capacitance Extraction of 3-D Conductor Systems
in Dielectric Media with High-Permittivity Ratios

Johannes Tausch and Jacob White,Associate Member, IEEE

Abstract—We describe a perturbation formulation for the
problem of computing electrostatic capacitances of multiple con-
ductors embedded in multiple dielectric materials. Unlike the
commonly used equivalent-charge formulation (ECF), this new
approach insures that the capacitances are computed accurately
even when the permittivity ratios of the dielectric materials
are very large. Computational results from a three-dimensional
multipole-accelerated algorithm based on this approach are pre-
sented. The results show that the accuracy of this new approach
is nearly independent of the permittivity ratios and superior to
the ECF for realistic interconnect structures.

Index Terms—Boundary-element methods, capacitance, dielec-
tric materials.

I. INTRODUCTION

T HE boundary-element, or method-of-moments [1], tech-
nique for computing capacitances in complicated three-

dimensional (3-D) geometries has rebounded in popularity in
the last decade. This is due, in part, to the development of very
fast solution algorithms based on sparsifying the associated
dense matrices [2]–[5]. The combination of the boundary-
element method and sparsification can be extended to problems
with multiple dielectric materials using an equivalent-charge
formulation (ECF) [6]–[8], but the approach is well known to
have numerical accuracy difficulties when permittivity ratios
are high [9].

If the dielectric materials form flat layers, then the problem
with ECF can be avoided by using layered media Green’s
functions [10], [11] and appropriately modified sparsification
techniques [12], [13]. For problems with arbitrarily shaped
dielectric interfaces with moderate permittivity ratios, it is
possible to use ECF, though for such problems, the Galerkin
boundary-element method is far more accurate than cen-
troid collocation [14]. For sufficiently high-permittivity ratios,
the ECF approach, even when combined with the Galerkin
method, can produce arbitrarily inaccurate results.

In this paper, we show that any numerical scheme directly
discretizing the ECF will fail for high-permittivity ratios. The
difficulty stems from the fact that the conductor charge, which
is of interest, can become much smaller than the charge
used to represent the dielectric interface. To resolve this
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scaling problem, the method described below decomposes the
capacitance computation into two problems which are solved
consecutively. The first problem corresponds to replacing
the finite permittivity dielectric with an infinite permittivity
dielectric and involves only large-scale unknowns on the
interface. To account for the finite permittivity, a perturbation
equation is solved on both surfaces, which only involves
small-scale unknowns.

Sections II and III briefly review the ECF as well as some
issues for calculating capacitance matrices of multiconductor
systems with dielectric materials. The numerical problems that
arise for the ECF in the case of high-permittivity ratios are
described in Section IV. In Section V, a modification of the
existing method is presented, which avoids the difficulties
of the ECF. The technique is extended to the multiple con-
ductor case in Section VI and its utility is demonstrated in
Section VII by applying our multipole-accelerated implemen-
tation of the algorithm to complex multiconductor systems.

II. BOUNDARY INTEGRAL FORMULATION

In inhomogeneous media with permittivity , the electro-
static potential and the electric field satisfy the boundary
value problem

in

on

on

on

as (1)

Here, denotes the union of the conductor surfaces,denotes
the given potential on the conductors, is the union of
the dielectric interfaces, is the normal to , and

, , and .
Since (1) is an exterior problem, it is advantageous for

numerical calculations to cast the differential equation into
a boundary integral equation. This is a common approach
in electrostatics because the charge density can be calculated
directly with this approach. To obtain an integral formulation,
write the potential as the superposition of potentials due to
the conductor charge and the polarization charge on the
interface . In operator notation, this becomes

(2)
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Here, and denote the single-layer potentials on the
boundary surfaces and the interfaces , respectively,
defined by

and

The kernel is the free-space Green’s function for the
Laplace operator in three dimensions

(3)

Note that the conductor charge consists of free charges in
the conductor and polarization charges in the dielectric mate-
rial. For the capacitance, only the free charges are important.
They are linked to the conductor charge by

The potential defined in (2) satisfies Laplace’s equation, is
continuous throughout the three space, and decays like.
In order to solve the boundary value problem (1), the potential
must also satisfy the boundary conditions on the conductors,
as well as the continuity condition on the interfaces. The latter
conditions will lead to a system of integral equations for the
densities and . For that, we must consider the limiting
values of , defined by (2), as . It is well known
that the potential is continuous, but its normal derivative is
not continuous across the surface, e.g., [15]. In particular, the
following jump relation holds on :

(4)

Here, the operator and denote the normal derivative
on the dielectric interface due to the conductor charge and the
polarization charge, respectively. They are defined by

and

Combining (2) and (4) with the boundary conditions of (1),
the following system of integral equations for the densities
and can be derived:

(5)

The parameter is given by

(6)

The orientation of the surface normal in (1) and (4) is arbitrary.
We will use the convention that the normal of points into

the domain of the lower permittivity, which will ensure that
.

Subtracting the jump relations (4) from both sides of the sur-
face yields the important relation between the charge density
and jump in the normal derivative of the potential

(7)

Formulation (5) has appeared previously in the literature [6],
[7], and is usually referred to as the ECF.

In the following, we will also make use of another relation
between the charge density and potential of the capacitance
problem. Namely, for the solution of (1) and of (5),

(8)

holds. This formula is derived by applying Green’s first
identity to every connected component of .

III. CAPACITANCE MATRICES

Since the potential on each conductor in anconductor
problem must be constant, in (5) can be associated with
a vector . Specifically,

(9)

where is the surface of theth conductor. Then, given
associated with a vector, let be the vector of

net-free charges on each conductor, as in

(10)

The capacitance matrix summarizes the relation
between the conductor potentials and conductor charges

...
...

...
...

... (11)

To compute the complete capacitance matrix, it is necessary
to solve (5) times using ’s associated with linearly
independent vectors. An obvious choice for the vectors
is to choose them equal to the unit vectors. For example,
if is the th unit vector and is the resulting vector
of conductor charges, then is the th column of . Even
though choosing the vectors to be unit vectors leads to a
simple relation between the computedvectors and columns
of the capacitance matrix, we will show in a subsequent section
that unit vectors are not always the best choice. For the case
of a general set of linearly independentvectors,

...
...

...

...
...

...
...

...
...

...
...
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Fig. 1. Inclusion of the conductorC into a dielectric material with permit-
tivity "1. The permittivity of the free space is"0.

and, therefore, the capacitance matrix can be determined from

...
...

...

...
...

...
...

...
...

...
...

IV. HIGH-PERMITTIVITY RATIOS

Typically, system (5) is discretized with piecewise constant
collocation. Numerical experience shows that the error of the
approximated capacitances grow rapidly as the ratio of the per-
mittivities increases, e.g., [9]. In the same paper, it is proposed
to employ the Galerkin method for the discretization of (5).
Even though the Galerkin scheme improves the approximation,
the method produces inaccurate results if the permittivity ratio
becomes very high. In the following, we will explain why this
happens.

To simplify the exposition, we consider a conductor raised
to 1 V, which is embedded in a dielectric material, as de-
picted in Fig. 1. The multiconductor case will be discussed in
Section VI.

To study large permittivities, set and let ,
which is equivalent to letting in (6) approach one. Thus,
integral equation (5) reduces to

(12)

The behavior of the densities and can be determined
by examining at the potential

generated by the solution of (12). From this integral equation,
we see that on , and by comparing (12) to (4), that

on . Since satisfies Laplace’s equation,
the potential must be constant within the material and
the conductor. By (7), the conductor charge vanishes.

Since the potential is also one on the dielectric interface, the
polarization charge satisfies the integral equation

(13)

Physically, the limit implies that the dielectric
material is acting like a conductor. Hence, all charges must
be located on the dielectric interface and the conductor charge
density must vanish. Equation (13) is equivalent to calculating
the capacitance of the structure where the dielectric material
has been replaced by a conductor. Thus, the original problem
which was posed on and is reduced to a problem posed
on only. Moreover, the capacitance of this problem is given
by

Now, consider the densities in the ECF (5) for large, but
finite . Since the solution of the ECF depends continuously
on the parameter , it is clear that is small compared to

, because converges to zero, whereas converges to
the nonzero charge .

When solving (5) numerically, the discretization error in the
charge density will be distributed evenly over both surfaces,
resulting in large relative errors in the computed conductor
surface charge. This destroys the accuracy of the capacitance
computed using (10) because the inaccurately computed charge
density on will be multiplied by to calculate the capac-
itance in (10) and any discretization error will be multiplied
by the same factor. On the other hand, the exact value of
converges to . This can be seen by integrating the second
equation in (5) over the interface . By Gauss’ law, we have

and . Hence,

(14)

Thus, the discretization error of grows linearly with ,
whereas the exact value remains finite in the limit of .

V. THE PERTURBATION APPROACH (PA)

The major numerical difficulty associated with high-
permittivity ratios is that the small-scale conductor charge
is used to calculate the capacitance. For a single conductor,
the self-capacitance could also be calculated via (14) using the
polarization charge, thus, avoiding large relative discretization
errors. However, the conductor charge density will still be
inaccurate and the polarization charge cannot be used to
calculate capacitances in multiconductor problems. Instead,
we describe here a perturbation technique which allows for
accurate estimates of the conductor charge density and extend
the approach to the multiconductor case in the following
section.

The idea of the PA is to set up the potential as the
combination of , the potential generated by , and
the correction accounting for the finite permittivity

(15)
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As was shown above, the potential results only from the
charge on the interface, which is given by the integral
equation (13). This is a capacitance problem in homoge-
neous media and can be solved numerically to high accuracy
[4], [14].

The perturbation is set up as a superposition of charges
on the conductor surface and the dielectric interface, similar
to the definition of the potential in (2)

(16)

Substituting (16) into (1), one obtains a new set of boundary
conditions for the perturbation

(17)

The second equation holds because is constant within the
dielectric material and, hence, and

by the jump relation (7).
These boundary conditions yield, very much in the same

way as for (5), the following system of integral equations for
the perturbation charges and :

(18)

Since the potential is generated only by charges on the
dielectric interface, it follows that . Moreover, the
capacitance in (10) reduces to an integral over the perturbation
charge

(19)

System (18) has the same operator on the left-hand side as the
original system (5), only the right-hand side has changed. This
is the key observation. The right-hand side scales like
as . Hence, by linearity, we see that and are
both and, therefore, there is no different scaling in
the solution of (18).

By the same argument, the error due to discretizing (18)
scales like for a fixed meshwidth. Hence, the error
of the capacitance in (19) can be bounded independently of
the permittivity .

The PA for calculating capacitances of structures involving
dielectrics with high permittivities is summarized as follows:

1) solve problem (13) on the interface for ;
2) solve the perturbation equation (18);
3) calculate the capacitance via (19).

VI. M ULTICONDUCTOR SYSTEMS

The technique described above for a single conductor can
be generalized to structures consisting of multiple conductors

Fig. 2. Multiconductor system. For clarity, conductor surfaces are shown
curved, whereas dielectric interfaces are polygonal.

with arbitrary geometries. We illustrate the method with the
four conductor structure shown in Fig. 2.

For the limit , there are two cases that exhibit
different behavior of the charge density.

Case 1: Conductors 1–3 have the same potential,
; the potential on conductor 4 is

arbitrary. This case is quite similar to the single
conductor case. In the limit , we have on
the interface

(20)

and it can be seen from (1) that the potential in the
dielectric medium approaches the constant value

. Thus, the field in the dielectric vanishes and a
more careful analysis shows that

(21)

where denotes the region of the -material.
From Green’s first identity (8), it follows that for

,

as

where is the capacitance matrix defined
in (11).

Case 2: Conductors 1–3 have different potentials. In this
case, the potential within the dielectric material
cannot approach a constant, and

as (22)

and, thus, in view of Green’s first identity

Letting in the first case corresponds to replacing
the dielectric material by a conductor, whereas the limit has
no physical meaning for the second case. In fact, as ,
the potential energy for the second case approaches infinity.

If the charge density for the first case is calculated via the
ECF (5), then the same scaling problem occurs as in the single
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conductor case. Because of (7) and (20), the charge density
on the conductor surfaces facing the material scales like

, whereas the polarization chargeapproaches a nonzero
distribution. Again, the different scaling in the ECF can be
avoided with the PA.

The first step is to calculate the charge distribution associ-
ated with replacing the material by a conductor. For this,
remove all conductor surfaces. For the structure shown in
Fig. 2, conductor 3 and parts of conductors 1 and 2 have to
be removed. Furthermore, the interface panels are replaced by
conductor panels. The result is a capacitance problem in a
homogeneous medium.

As in the single-conductor case, the perturbation charge is
obtained by superposition, as in (15). The result is a system
of the form (18), whose right-hand side and solution scale
like .

If the conductors in the material have different potentials,
there is no bad scaling in (5) because, in the limit,
charges must remain on the conductor surfaces to maintain
a nonconstant potential in the dielectric material. Thus, the
charge density can be calculated directly via (5).

Now consider calculating one column of the capacitance
matrix of a multiconductor system by raising a conductor to
1 V while grounding the others. For the structure of Fig. 2,
one could apply the PA to calculate column and the
equivalent-charge approach to obtain all other entries. Al-
though this approach avoids different scales in the calculation
of each column, there is still a problem. Namely, ifis used
to determine the net charge on the conductors for the potential
distribution , then the resulting charge vector
has bad scaling. Hence, the discretization error will scale like

, whereas the charge will approach a finite limit, resulting
in large relative errors.

To avoid this problem, calculate in a different coordi-
nate system. For this, let be the matrix whose columns
consist of an orthonormal basis of vectorswhose product

remains bounded as . Furthermore,
denote by the corresponding matrix for the orthogonal
complement. The matrices can be determined easily from
the problem geometry. For our example, we have

and

Furthermore, set , , and
. By linearity of the capacitance problem, the entry

is the net charge on conductorwhen the potential on
the conductors is given by theth column of . Thus,
scales like and can be calculated stably using the PA.
The matrix contains the part of the capacitance matrix that
scales like and can be determined directly by the ECF.

Since the matrix is orthonormal, and

Fig. 3. The coated sphere. Some of the interface panels have been removed
to show the inner conductor surface panels.

Fig. 4. Relative errors of the capacitance as calculated by the ECF and
the modified formulation. Coated-sphere example. The exact value of the
capacitance varies between 18–25.

TABLE I
NUMBER OF GMRES ITERATIONS REQUIRED TOSOLVE THE EQUIVALENT-CHARGE

FORMULATION ANDTHE PERTURBATION EQUATION FOR THE

COATED-SPHERE PROBLEM

is a similarity transform of . The capacitance-matrix matrix
can be determined by calculating the matrixfirst and then
recovering from

VII. RESULTS

To demonstrate the accuracy and stability of the PA de-
scribed in this paper, we compare the capacitances obtained by
the PA, ECF, and other approaches for several structures and
permittivity ratios. While the first three examples illustrate the
solution behavior for simple geometries, the last two examples
are included to demonstrate that the PA can be useful for more
realistic and complex structures.

The problems were discretized with piecewise constant
collocation and the arising linear systems were solved using
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TABLE II
CONVERGENCE BEHAVIOR, TWO SPHERES IN ELLIPSOIDAL DIELECTRIC MEDIUM. NOTE

THAT FOR p = [1;�1], THE ECF AND THE PA GIVE THE SAME RESULTS

Fig. 5. Two spheres in a dielectric medium.

the iterative solver GMRES. To accelerate the matrix-vector
products, the fast multipole algorithm was applied, [2], [5].
Our code is based on the package FASTCAP [4] with some
modifications to calculate the normal derivatives of the po-
tential for the interface condition. The results are displayed
dimension-free, i.e., .

A. Coated Sphere

In the first example, we approximate the capacitance of
the unit radius spherical conductor, which is covered by a
concentric-unit thick coating with discretization, as shown in
Fig. 3.

Due to the spherical geometry, the analytic value of the
capacitance is known. The same discretization into 1536 panels
was used to approximate the capacitance with the ECF and by
the perturbation method for a wide range of permittivity ratios.

Fig. 4 compares the discretization errors obtained from both
formulations. As can be seen from this plot, the equivalent-
charge approach gives enormous discretization errors for high-
permittivity ratios, whereas the error of the PA remains small,
even when .

The condition number for a fixed discretization is bounded
as the permittivity ratio is increased. This is true for both
formulations. The reason is that the ECF (5) converges in
the limit to the well-posed integral equation (12). As a
result, the number of GMRES iterations to solve the discretized
linear systems is independent of the permittivity. This is
demonstrated for the coated sphere in Table I. For the other
structures, the iterative method took more steps to converge,
but showed the same independence of the permittivity. This

again makes it clear that the accuracy problem of the ECF is
not ill conditioning, but a scaling problem.

B. Two Spheres in a Dielectric Medium

The second structure consists of two spheres in an ellip-
soidal dielectric medium, as shown in Fig. 5. The defining
equations for the conductors and the interface are

respectively. As there is no closed-form solution for this
problem, we investigate the behavior of the numerical approxi-
mation for different mesh refinements. To make the differences
between conductors at equal and different potentials clear, we
show in Table II the computed net-free charges for potential
vectors and .

In the equal potential case, there is a significant difference in
the convergence behavior of the ECF and PA. For all permittiv-
ities calculated, the net charges obtained using the PA and the
2304 panel grid are within 5%-6% of the corresponding values
obtained from the finest grid. On the other hand, the ECF
requires for a finer discretization into 9216 panels to
be within 5% of the finest grid result. For larger permittivities,
even the finest grid results of the ECF have not converged
within reasonable accuracy.

Contrary to the equal potential case, the ECF provides
accurate results for any permittivity ratio if the conductors
are at different potentials. It can be seen from the table that
all approximations using the 2304 panel grid are within 1% of
the finest grid. This demonstrates that the bad scaling of the
equal potential case is the sole source of error in the ECF.

C. Comparison with Modified Green’s Function

The main purpose of the ECF and PA is to handle arbitrary
distributions of dielectric materials. However, the case of
layered media is common and modified Green’s functions are
an alternative to the ECF or PA. For a single dielectric interface
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Fig. 6. Cross-sectional view of two cubes in a layered medium.

TABLE III
COMPARISON OFCAPACITANCES FORFIG. 6 AS CALCULATED BY MODIFIED

GREEN’S FUNCTIONS PERTURBATION APPROACH AND ECF. NOTE THAT

FOR p = [0; 1], THE ECF AND PA GIVE THE SAME RESULTS

at , the Green’s function can be found by the method
of images

where is the free-space Green’s function defined in
(3) and is the image of . Thus the capacitance problem
reduces to solving

(23)

on the conductor surfaces.
In this example, we consider two cubes above and below

the interface, as indicated in Fig. 6, where .
For the modified Green’s function, each cube was dis-

cretized into 600 rectangular panels. In addition, for the ECF
and PA, the interface was truncated to a square plate of
sidelength 12 and discretized into 784 panels.

Different from the case of a finite dielectric, only a po-
tential that vanishes on the bottom conductor will generate a
badly scaled density. If the potential is nonzero in the high-
permittivity region, the charge density on the bottom conductor
will not converge to zero as .

This suggests to use the PA only for the first column of the
capacitance matrix. The results in Table III demonstrate that
the capacitances calculated this way are in good agreement
with the capacitances obtained from the modified Green’s

Fig. 7. Bus-crossing example, the lower conductors are covered by a dielec-
tric material. Discretization used in the calculations is finer than shown.

function approach. As expected, the ECF produces highly
erroneous results when the permittivity ratio gets large.

If the top conductor is grounded and the bottom conductor
has a nonzero potential, then there is no bad scaling in the
solution and the numerical approximation obtained by the ECF
are in good agreement with those obtained by the modified
Green’s function approach.

D. Bus Crossing

To demonstrate that the PA is also useful for complex
multiconductor systems, the capacitance matrix associated
with the bus-crossing structure of Fig. 7 is calculated.

All the conducting bars have 1 1units cross sections.
Conductors 1 and 2 are covered by a dielectric material whose
thickness is approximately 0.25 units. The spacing between the
conductors in the horizontal direction is 0.4 units and 1 unit
in the vertical direction. The structure was discretized into
10 400 panels, out of which 4768 panels were placed on the
dielectric interface.

The capacitance matrices calculated by both methods are
compared in Tables IV and V. As expected, the results of both
approaches are close for a small permittivity. The effect of
the bad scaling in the ECF becomes obvious for the coupling
capacitances between the top and bottom conductors when

. The matrices of the ECF are far from symmetric,
even though a fine discretization was used. For the PA, there
is still asymmetry, however, it is much smaller and does not
grow when is increased.

E. Connector

The capacitances associated with the backplane connector
of Fig. 8 are investigated in Table VI. For , the results
of both methods appear to be close. However, the differences
become obvious if the capacitance matrix is used to determine
the net charges on the pins for a constant potential. From
(8), it is clear that the net charges for this case must remain
bounded in the limit . The results obtained by the PA
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TABLE IV
COMPARISON OF THECALCULATED CAPACITANCE MATRIX FOR

THE BUS CROSSING IN FIG. 7. TOP: EQUIVALENT-CHARGE

FORMULATION, BOTTOM: PERTURBATION METHOD. "1 = 2

TABLE V
COMPARISON OF THECALCULATED CAPACITANCE MATRICES FOR

THE BUS CROSSING IN FIG. 7. TOP: EQUIVALENT-CHARGE

FORMULATION, BOTTOM: PERTURBATION METHOD. "1 = 10

Fig. 8. Backplane connector with four pins. Discretization used in the
calculations is finer than shown.

reflect this behavior well, whereas the net charges of the ECF
increase without bounds.

F. Central Processing Unit (CPU) Timing

The perturbation method involves solving an additional ca-
pacitance problem for the infinite permittivity case. Since this
problem is always less complex than the original capacitance
problem, the overall CPU time of the PA is less than twice
the time of the ECF. The actual factor varies with the problem

TABLE VI
COMPARISON OF THECALCULATED CAPACITANCE MATRICES

FOR THE CONNECTOR OFFIG. 8. "1 = 10

TABLE VII
TOTAL CPU TIMES IN MINUTES, "1 = 10

geometry and Table VII displays the timings for our examples.
Our current implementation of the perturbation method restarts
the whole calculation for the perturbation equation. Further
optimizations could be achieved by reusing already calculated
data of the infinite permittivity problem.

VIII. C ONCLUSION

The capacitance calculation for structures with multiple
dielectrics by the ECF can be erroneous when the ratio
of the permittivities is high. The error is due to bad scal-
ing of the solution and not due to ill conditioning of the
integral formulation. The PA described in this paper does
not suffer from an accuracy loss in this case. Furthermore,
calculations with the new approach can be multipole accel-
erated and are, therefore, efficient enough to allow capaci-
tance extractions of complex 3-D, multiple-dielectric geome-
tries.

Finally, perturbation methods can also be applied to
structures containing more than two dielectrics with high-
permittivity ratios, e.g., when , , and .
However, the approach gets more involved, sometimes
requiring the solution of two or more perturbation equations.
Although it is often easy to tell what to do for a given structure,
the description of the most general case is complicated and
beyond the scope of this paper.
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