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Abstract—In order to optimize high-speed systems, designers the number of densely coupled circuit elements can be in the
need tools that automatically generate reduced-order SPICE tens of thousands. Such PEEC generated circuits are much too
compatible models from geometric descriptions of interconnect expensive to include in a SPICE-level simulator. Recently, nu-

and packaging. In this paper, we consider structures small com- icall bust del ord duction techni h b
pared to a wavelength, and use a discretized integral formulation merically robust model order reduction techniques have been

combined with an Arnoldi-based model-order reduction strat- developed toautomaticallygenerate a low order model from
egy to compute efficiently accurate reduced-order models from large circuit models [2]-[6]. In their basic form, however, these

three-dimensional (3-D) structures. Several issues are addressedreduction methods require LU factorization of the original

including: . o dense circuit matrices whog&(n?) computational complexity
1) gnlgmulatlon to insure passivity in the reduced-order mod- g || too0 expensive. Additionally, since the interconnect is
2) efficient reduction using preconditioned inner-loop iterative  PaSSIVe, It Is Important tha_t the reduced order_ mo_del preserve
methods: this property, but the original PEEC formulation is not in a
3) expansion about multiple s-domain points. form to apply the provably passive model order reduction
Results are presented on several industrial examples to demon-approach of [5].
strate the capabilities and speed of these new methods. This paper describes a computationally efficient approach

Index Terms— Interconnect, packaging, parasitics, passive {0 generating guaranteed passive low order models from large
model order reduction, three-dimensional electromagnetic PEEC-like circuit models. To begin, in Section Il we review

simulation. the original PEEC discretization and recent work on passive
model reduction. In Section Ill, we modify the original PEEC
l. INTRODUCTION methods and follow the circuit solution technique known as

mesh analysis. In Section IlI-C, we derive a first order state-

I N ORDER TO simulate high-speed systems, designers negfl, e form of the mesh analysis system which can be used with
accurate models of the interconnect and packaging that ¢fisjve model reduction algorithms. The main contribution of

be included in a SPICE-level simulation. For many portionfis paper comes in Section IV where we develop iterative

of a design, the significant interconnect may be long anghnrqaches for applying the model reduction algorithms in an

uniform enough to be modeled using a two-dimensional (2-Rkicient manner for PEEC models of size exceeding. 10

approximation and transmission line theory. Unfortunatelygaction V, we present the results of our algorithm followed
discontinuities in this 2-D interconnect, such as vias throuqﬂ, our conclusions.

planes, chip-to-board-connect and board-to-board connectors,
require full three-dimensional (3-D) modeling. In the last few
years, much effort has been devoted to computing models Il. BACKGROUND
of 3-D structures directly from the interconnect or package In this section, we briefly review the PEEC method derived
geometry, usually by combining a Maxwell's equations solvén [1] and the passive model reduction algorithm from [5].
with some post-processing strategy.

One well-known approach for generating accurate circUit PEEC Formulation
models for 3-D structures is the partial element equivalent_l_h | of itic int t extraction f t of
circuit (PEEC) approach [1]. However, for complex 3-D € goal of parasilic Interconnect extraction for a set o

structures for which skin and proximity effects are importan'tj,onductors Is to determine t_he relation between the currents
and the voltages at the terminals (or ports) of the conductors.
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1/a; inside, wheres; is the cross sectional area. By defining
the inner product of two vector functions,andb, by

(a,b):/a~bdv @)
v

and following the method of moments [8], a system lof
equations can be generated by taking the inner product of each
of the weighting functions with the vector integral equation,
(2).

In matrix form, (2) becomes

Fig. 1. Discretization of a short section of thin conductor. The volume is ¥ ~ ~
discretized into parallel filaments along the length. Surface is discretized into (R+sL)Ij] =04 — &p (8)
panels shaded in gray.

where/ € € is the vector oft filament currentsR is the

: . - . . b x b diagonal matrix of filament DC resistances
relation, Y;. We begin by deriving an integral equation from % g

Maxwell's equations and then discuss the circuit-like dis- R.. li (9)
cretization to generate a linear system. " oa

1) Integral Equation FormulationWhen considering struc- 1 is the b x b dense, symmetric positive definite matrix of
tures small compared to a wavelength, the integral formulatiglartim inductances
for Maxwell's equations under Laplace transform reduces to

1 L-L o
J J(x L;; = / / dv' dVv (20)
M + Sﬁ / (r 78) dvl — _V(P(r, 3), re D (2) J 47raiaj v, JV! r — I‘/|
o 47 Jy |r — 1/ ’
and®, and & are the averages of the potentials over the
1 [ ps(r/, filament end faces.
O(r, s) = Por3) b e R @

/] ’ For the charge, the approximated charge density can then

. . . be written as
where s is the Laplace frequencyl is the interior of all

conductorsJ is the current density iD, S is the surface of ps(r) = Zw(r)qf,, res
all conductors ang, is the charge density aofi. Additionally,
the currents and charge obey the conservation equation

dme Jo Jr—r

whereg; is the charge density of panéland v;(r) = 1 if r
is on panel:, zero otherwise.

V-J(r,s)=0, reD 4) The filaments are each made branches in a network circuit

n-J(r,s) = —sp,(r,s), res (5) graph and the junction between filaments are the nodes of the

graph. To enforce (5), the panels are added to the circuit at

wheren is the inward normal orb. nodes on the surface of the conductors. For the two section

2) Discretization: The integral equations in the previousexample of Fig. 1, a simplified version of the network is shown
section are those used in the original PEEC derivation [} Fig. 2. The network in the figure only has filaments which
We will follow the approach given there to generate a digarry current parallel to the length of the wire. As stated
cretization of (2) and (3) and then derive the mesh formulategfore, for long, thin wires, the change in potential in the
approach. lateral dimensions is negligible and one can short together the

To review the modeling of charge in the PEEC discretizahree nodes in the vertical direction of Fig. 2. Note that for
tion, the surface of each conductor is covered witanels the general case of a 3-D grid of filaments, there will be two
each of which hold a constant charge density. To model currgfipes of nodes: nodes on the exterior which connect panels
flow, the interiors of all conductors are divided into a 3-D griind filaments and nodes on the interior which connect only
of filaments Each filament carries a constant current densityaments.
along its length and this discretization of the interior captures The last relation is that of the potentiab, to the charge,
skin and proximity effects. For long, thin wires for whichy from (3). Approximating the average over the fade,, by

the Change in potential in the lateral dimensions is negllglbI@S value at the appropriate node point, the potentia| becomes
filaments only along the length of the wire are used. An

example for a section of thin wire is shown in Fig. 1. o, = Plgp (11)
The approximation to the unknown current distribution Calhered. € C"

. is the vector of the: node voltage cC?
then be written as gesgy

is the charge on each pfpanels, and” € R™<+7)>P js the
potential coefficient matrix given by

1 1
Pl = av’ (12)
) ) ) ) § ) 3 J Aj47f€0 . |I‘i — I‘/|
where I; is the current inside filament 1; is a unit vector P
along the length of the filament ang;(r) is the weighting wherep; is the surface of pangl A, is its arear; is theith
function which has a value of zero outside filameéntand node locationy, is the number of node points on the surface

J(r) =~ Z Tw; (r));
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L1 filament (x-directed current) ng L
L | surface pancl (charge) :

— branch currents (Ib) Ig

- ~»= branch voltages (Vb)

IS()UTCEST

Fig. 2. Circuit for a short section of conductor. The panels are connected at the nodes between sections of filaments, and the sources are connected
at the terminals. Only some panels and filaments shown.

andn; is the number of internal node points with=n.+n;. C & R™*_ The idea of model reduction is to derive a much
In the original PEEC derivation and for the rest of this sectiosmaller gth order system
there is exactly one panel per node, = p, unlike what is

shown in Fig. 2. This condition will be relaxed in Section IIl. sLx = —Rx + BV,
P’ can be divided separately into its contribution to the I, =Clz (16)
internal and external nodes by
P with ¢ <« n but which still accurately models the system
P = |:Pz:| (13)  behavior.

In the area of circuit simulation, asymptotic waveform
where P € IR™*" and P € R"™ X" evaluation (AWE) [9] has popularized the use of model
the following linear system: function of the reduced system is chosen to match a number

of moments, or terms in the Taylor series abeut 0, of the

zZ 0 AT I{ 0 original system. More specifically, the admittance is given by
0 P —I||g|=]0 (14) eliminating z in (15)
A, sI 0 ||®, I

where Z = R + sL, I is the identity matrix of appropriate Yi(s)=CT(R+sL)'B= kask (7)

dimension,/; are the terminal currents}? = [A" A7] s the k=0

nodal incidence matrix providing the differencing ®f, and

A, enforces the boundary condition (5). where the moments are obtained from

This is the PEEC formulation of [1]. In the original work,

the elements were created as circuit elements and sent to my = —CT(RT' LR B.

a circuit simulator which would effectively assemble and

solve (14). Thus for (16), we seel&;(s) = > 1o mys®, such that

It is worth noting that in the interior of conductors, (14)n; = ms, & = 1,---,q. The original AWE algorithm
does noexplicitly enforce current conservation as in (4). Thusuffered from numerical ill-conditioning that prevented its use
while an exact solution to the integral equation will satisfpeyond a few moments. Additionally, sin&%(s) represents a
current conservation, there is no guarantee that the discrpéssive circuit, we requiré@(s) also be passive. Recently, a

version will also. numerically robust, guaranteed passive model order reduction
algorithm (PRIMA) has been developed in [5]. The idea is to
B. Guaranteed Passive Model Order Reduction use an Arnoldi algorithm shown in Algorithm 1 to generate

a set of orthogonal vectord/, [10]. These vectors/, are

In this section we review recent techniques for generating . . -
assive reduced order models directly from a large system sdﬁ‘? lied in a congruence transform [11] to preserve passivity.
b Is corresponds to a reduced system with= VqTLVq,

as that in (14). These methods require that the original system

— T n o _ T S A T
be written in a state space form such as #lie order system R=7V, RV(I{ B =V, B, andC = V,/C. In [12], SUCh.
an approach is shown to maték- 2 moments and the main

sLx = —Rx + BV, result in [5] is that this reduced order model is passive under
I, = Ctz (15) the following conditions:
1) B =C;
wherez € C" is the vector of statesy,, I, € C* are the 2) 2P (R +R%)z > 0 for all z
input and output vectors respectively, R € IR**", and B, 3) (L + LTz > 0 for all 2.
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Note that the PRIMA algorithm generates passive reducedhere ®,, has been divided corresponding to internal and
order models which match moments @at= 0 for multiple external nodes4, € R"<*? sums the charges at each node
input, multiple output systems. The extension of this algorithand AqT copies the potential at a node to all its corresponding
to generate passive models which match moments at multipkenels.

values ofs is presented in [13]. Next, to enforce current conservation on the interior (4),
Algorithm 1 (Block Arnoldi process): first replace the panel charge with the current into the panel,
arnoldi  (inputR, L, B, q; outputhb) %qp = I}’. Now, enforcing current conservation on the interior
{ involves replacing the set of equations involvidg with
LetA=R"L,D=R"'B Adf =0
D= VlRl ‘ (QR Fac'For|zat|on ) Z 0 —AT —aT Ibf 0
for (=1 j<=q¢-L j++){ T b
0 P/s —A 0 I 0
W = AV; 1 | = (19)
. . . . Ae A 0 0 i) I
for (i=1;i<=75-1; i++) { A0 0 0 o 0
H; ;= VIW ' n
W =W -V;H,; Combining each of the Z 2 blocks in (19) into single blocks
) gives
W =Vjy1Hj11 (QR Factorization ) Zen —AT[ I, _Jo
1 = (20)
b A 0 (I)n It
Vi = V)
} H(II)I(HZ,J)v ,3=1,--+,q where
Z 0
Zgm = {0 P/J
lll. A FORMULATION FOR MODEL ORDER REDUCTION

In order to automatically generate low order models from Additionally, in (12), ; was chosen to correspond to the
the large PEEC discretizations, we derive a state-space forfi@de 0 which the panel is connected. Here, insteads a
lation which obeys the conditions for passivity in Section I1-g¢0llocation point at the center of the panel. Also, a Galerkin
Unfortunately, using nodal analysis as in (14) makes passit€me could be used for which
model order reduction difficult since positive semidefiniteness o 1 / / 1 dV' dv (1)
(conditions 2 and 3 in Section 1I-B) is difficult to determine. In Y AjAidreo Sy, Sy, I — 1] :
addition, (14) does not explicitly enforce current conservation
on the interior. Also, for efficient quasistatic inductance calci. A Mesh Analysis Formulation
lation in [14], it was shown that the nodal formulation is poorly |stead of using a nodal analysis approach to derive cir-
conditioned and this slows iterative algorithm convergencg,;t equations, consider using mesh analysis as described in
For these reasons, in this section we derive a mesh anal §i§ The mesh approach has been used in the context of
version of (14) which also enforces current conservation. Th&earconnect analysis in [14] and [15].
adva}ntgges for iterative solu_tion. will bgcome apparent for 14 gescribe mesh analysis, a mesh is a loop of branches in
multipoint model-order reduction in Section IV-B. the network graph. Each mesh is assigned an unknown current,
A. An Alternate PEEC Formulation I, which circulates around its branches. In mesh analysis,

these mesh currents are the unknown quantities rather than the

Inl t.his sectri]on, vlve_modirl:yl thﬁ PEEE formulatior; b,eforl‘ﬁode voltages®,,, as in nodal analysis. For a planar graph, a

applying mesh analysis. While these changes may be impligeh - 1y independent set of meshes is exactly all loops which
by, but not stated, in [1] or have become standard over iMf not enclose any other branches. For nonplanar graphs,
they are included here for completeness. algorithms are given in [16]

To begin, we wish to alter (14) to allow multiple panels to To derive a mesh analysis version of (20), both the sources

be connected to a single surface node. The panel dlscretlzatéf?]l?j the panels are made explicit branches in the network graph.

can then be refi_ned independently of the filamgnt discretizati% assign branch voltages to the panel branches, note that the
to capture, for instance, the sharp changes in charge den&'{%el node voltages in (11) are voltages relative to infinity.

at a conductor edge or corner which does not necessaply ,qqing infinity to the network as a zero volt node, we can
correspond to changes in the potential. With multiple pan w the panel branches as connecting the panel to the zero

1 pPXp
per nodep > ne, and we now write” € R”"7. To enforce %%It node at infinity. Then the panel branch voltages are given
|

current conservation on the surface, (5), the charge on all
panels at a node must be summed. In addition, the potenti
of all the panels at a node must equal the node potential. W=, -0=2,_. (22)
Equation (14) then becomes

z 0 AT —ATqri

T

0o P A 0 ap

0 P 0 I ||e V:[b}:[ H”}:Z,I. 03
Ao sA, 0O 0 P’ I, v=lyp 0 P/s||IP Ml (23)

With this definition for the panel branch voltagesg,; de-
scribes the constitutive relations for both filaments and panels

oo o
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filament (x-directed current)
] surface pancl (charge)

branch currents (Ib)
- —= mesh currents (Im)

Fig. 3. A circuit describing the mesh quantities for a two-conductor TEM line terminated with adgad

For a simple structure such as two thin wires connectedEquations (23), (24), and (27) combine to give a system in
through a source at one end and a lgad at the other, the only the unknown mesh currents
network graph illustrating a few sample meshes is shown in

Fig. 3. The mesh currents can be divided into three separate M ZesM* I = V. (28)
types: By applying source voltages, the system in (28) could be
I, those involving only filaments on the interior; solved to compute the admittance matrik(s), for specified
I, those on the surface which include both a filameritequencies,s. However the goal of this work is to instead

and two panels; generate reduced order models from this large system.
Ir  and those involving only panels for nodes with mul-
tiple panels. C. Deriving a State-Space Realization

17, and Ij;, both pass through the node at infinity. Note also v seek to apply methods of model order reduction to (28).
that the source branch generates a mesh which contains QRlY thys need to derive a first order state-space realization of
the source and panels. o the second order system (28). Care must be taken to derive

In mesh analysis, Kirchoff's voltage law, which implies thal, reajization that has appropriate properties for passive model
the sum of branch voltages around each mesh in the netwgter reduction. Additionally, for computation witR in (15),
must be zero, is represented by the matrix we wish the corresponding for (28) to be both sparse and
nonsingular for expansions abosit= 0.

1) A NonsingularR: To derive a first order system,
choose new state variables &$. These new variables can
be related tal,,, using (23) and (27)

where V; is the mostly zero vector of source voltages. The sVP = PI? = PMTL,,. (29)
three block rows of\/ correspond to the three types of meshes, i

A v/
MV, = | My, M, {pr} = |ve
0 MT‘T‘ b V;P

=V (24)

17, I3, and I%,, respectively. To simplify the notation, let ~ Using (23), (24), and (29) in (28) gives a first order system
My; 0 [_?me Sj\gfl} |:€7]1):| = [‘3} (30)
My =My |, M,=|M,, (25) p b
0 Myp where Z,, = M fZMJ%F and the second row of (30) is (29)

multiplied by P~1.
so thatM = [M; M,]. Note that the nonzero terms &t From (26), the terminal currents and voltages are related
correspond to sources applied at the terminals, definéld asyg their corresponding mesh quantities By = NV;, I, =

in (1). The relation between these quantities can be written R¥1,,. Leting BT = [N 0] and separating out terms
multiplyin ives the desired state-space form
V.= NV, (26) plying s g p
g Lrn 0 Irn o _an _Mp Irn + ‘/s
where NV is an easily constructed terminal incidence matrix. o PV T M o ||V 0
The M matrix also relates the mesh currents to the branch sLx = —Rz+ BV, (31)
currents via I, = BTz
I . IZJ:’ . where L,, = MyLM¥, R,, = M;RM?}, andR and £ are
Iy = [—75} =M ?17 =M L. (27)  defined as the block matrices of (31). THscan be shown to

m be nonsingular under the condition that no node is connected to
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the circuit via only panels [17]. In circuit language, there caimadequate. To remedy, Section IV-B develops an approach
be no cut-sets of capacitors. Unfortunately, the point at infinitysing nonzero expansion points. While significantly more
is a such a node. From another point of viel,represents expensive, the generated models are more compact as we will
the DC solution of the system and applying sources betwesee in Section V.
terminals as in Fig. 3 does not specify a DC path to ground )
(point at infinity). A. Expansions about = 0
To make the solution unique, for each conductor of the To apply the PRIMA algorithm, or any moment matching
geometry,® must be specified over some terminal. Such scheme about = 0, one must compute matrix-vector prod-
condition is enforced in circuit terms by requiring that at leasicts with the matrix(R—1£). For instance, an Arnoldi type
one source for each conductor is connected to the pointadgorithm requires;— 1 such products to produce an order
infinity. model. However, because the partial inductance mdtrand
Also note that whileR is nonsingular,L need not be for potential coefficient matrix?~*, which appear irC, are both
moment matching about finite In fact £ is generally singular |large and dense, many multiplications Bycan be prohibi-
since My contains one row of zeros for every meshigf. tively expensive. In particular, if done directly, multiplication
2) A Realization for Practical and Passive Model Ordeby P—! would require an initial dense matrix factorization
Reduction: With the nonsingulaiR of (31), the matrix-vector which is O(p®) operations. For modern packaging structures,
products of the formR~* £z needed for model order reductionfor which p exceeds ten thousand, such a factorization is
are now possible. Note that since the defsenatrix of (29) prohibitive.
has been moved intd, R is now sparse and computing the Efficient model reduction hinges on avoiding this expensive
part of the producR ~'y, is inexpensive. Even though com-actorization. Fortunately, the expensive factorization can be
puting £z now involvesP~1, this form will have advantages avoided by noting that the computatign= P~'v is equiva-
as discussed in the next section. lent to solving for the panel chargeg,given a set of voltages,
Additionally, with P~ along the diagonal of, (31) satis- . It is thus possible to use a preconditioned, Krylov-subspace
fies the conditions for passive model reduction of Section Il-Berative method to solvé’q = v as outlined in Algorithm 2
In particular, to show that + £ is positive semidefinite for [19]. Note that the dominant cost of each iteration is@Hg?)
conditions 3, first note that sinck is positive definite, then computation of a dense matrix-vector produ@iy, to acquire
L, is also. If P is generated via a Galerkin approach, then the next vector in the subspace.
too is positive definite, and sinc&is a block diagonal matrix Algorithm 2 (Iterative Scheme foPg = v)
consisting of blocks which are each positive semidefinite, then
so is £ + L. Since theM,, matrices cancel foR + R*, a guess ¢°
similar argument holds for condition 2. Initialize the search direction
Note that the block structure of (31) is similar to the nodal 0 =y — Pg°
form, (19) and at this point in the development the advantages & =1,--- {
of pursing a mesh form are not apparent. Even though both areselect w* € span{w®, Pu®, -- -, P*~ 1w}
different realizations of the same system, a nodal form may  such that the new solution
have benefits over a mesh form. One advantage of (19) is that g =gt 4wk
if there are no internal nodes, then the corresponding (19) minimizes  ||7*|| = |lv — Pq"||
is nonsingular and smaller than the mesh formulafed he if ||7>k|| < tolerance return solutiong®
nonsingularL could be used for expansions abaut= oc.
The results pursuing model order reduction for (19) will not |n the standard approach, for every proddet the iterative
be described here, but the interested reader is referred to [Higorithm would be called to solv&~'v, generating a new
Since R is a diagonal matrix, and{; and M, are sparse, subspacespan{w®, Pw®, P2w°, - - -}, and a new set of search
thenR is now sparse. However, to form the first block &f directions,w;,. If the number of£z products is large, the ad-
requires orderf? operations and memory sinde € IR'*/  vantage of an iterative method would be degraded by the large
is dense. Similarly, to form the second blodR;™* requires number of totalPw products necessary. However, even though
p* operations and memory to forn, and then ordep® .0 js different for each solve, it may be that the space spanned
operations to invert. For complex geometries with tens @k {w®, Pu®, P?uw?,---} is similar, as is illustrated in Fig. 4.
thousands of filaments and panels, such growth rates are ®ge is thus lead to consider reusing the search directions from
verely limiting. In the next section we discuss a more efficiefite previous solves [20]-[22]. While the recycled vectors are
technique for generating reduced order models from (31). not optimal for the next, the cost of computing the solution
along those directions is negligible compared to a sirfgie
product. The recycled algorithm using the Krylov-subspace
IV. MODEL REDUCTION FOR THE method known as generalized conjugate residual (GCR) [19]
FULL QUASISTATIC PROBLEM can be found in a general form in [20] and specifically for a
In this section we describe fast algorithms for computing @nstant matrixP in [17].
reduced order model for (31). In Section IV-A, an approach The O(p?) operations of the iterative algorithm can be
using the expansion poist= 0 is presented. This produces aeduced further by using a multipole-accelerated iterative
straightforward algorithm, however the models produced aaégorithm [23] whose cost and memory has been shown to
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A rw zero. Thus, to eliminat&}”, we use
W
| PH3 .
K Pw? SVZ) = PMP I, + Py? (34)
II ,"P}?}Z . .
g 2 pa in place of (29) and arrive at
e b (M ZpyyM ™)1, = y1 — M, Pys. (35)

After solving (35),z2 = V' can be directly computed from

Fig. 4. Two-dimensional illustration of the search direction space for w@4). This approach avoids the inner computationPofla: but

?lgire;rteci‘:fs? ;geﬂ']tsr:sgﬁefﬂﬁghg’ba':e;er'etz;f”?r"h directions and o importantly, it returns us to the familiar mesh matrix,
(28), to which we can apply the effective preconditioning
techniques developed for inductance extraction in [14].

grow only asO(p). Similarly, the computation of the product |n general, Krylov-subspace iterative methods applied to

M;LMj can be performed iO(f) operations also via the solving (28) can be significantly accelerated pyecondi-

multipole-algorithm [14]. tioning if there is an easily computed good approximation
to the inverse ofM Zgy M7 . We denote the approximation
B. Efficient Multipoint Approximation to (M ZpMT)~1 by @, in which case preconditioning the

As we shall see in Section V, moment matching abowt It€rative algorithm is equivalent to solving

0 described above generates poor results. For this reason we (M ZpMT)Qz = V, (36)

wish to consider expanding about some other point or points.

Such multipoint expansions have been explored previousty the unknown vector:. The mesh currents are then com-

for explicit moment matching in [24], and for the Krylovputed withl,,=Qz. Clearly, ifQ is precisely( M Zgyy M 1)1,

subspace techniques in [25], [12]. Recently, a provably passtien (36) is trivial to solve, but the@ will be very expensive

multipoint rational Arnoldi algorithm has been derived for théo compute.

reduction of RLC circuits with multiple inputs and outputs To follow the approach of [14], consider preconditioning

[13]. with a block diagonal version ofgy. Thus, the precondi-
For expansions about pointg # 0, the moments become tioner will be an LU factored version of

my = —BT{(R + soL) L LPRB. Q=M R+sl 0 MT (37)
0 P/So
Thus, to apply any multipoint scheme for the large dense . R )
systems of (31), one must be able to compute not ahty WhereL and P are block diagonal.

rapidly, as in the last section, but also One can improve this preconditioner by noting that for fast
capacitance extraction in [23], [26], it was found that block
(R4 s0L) ™1y (32) diagonal preconditioning foP is not adequate to capture the

) ] . o ~strong coupling involved in charge interaction. For that reason,
Again, (32) is too large for direct factorization and one is legh (23], [26] a local-inversion preconditioner was developed.

to iterative solution. Since we know this preconditioner works well fd?, we
lterative Solution: wish to use it in (37). Each row;, of the local inversion
B R,, + soLL M. 1t " preconditioner is formed by directly inverting a smBIknatri_x
z=(R+s0L) y= [ T SOPP_J [92} corresponding only to those panels near pandlhe row in

p

this inverse corresponding to partels then used as the row
= [wl} (33) ¢ of the preconditioner(".
x2 For the local inversion preconditioner to be effective inside

is particularly expensive because each matrix vector prod(iae mesh formulated preconditioner of (37), it must be positive
of an iterative algorithm requires an inner solve fBr. definite. While this preconditioner is not guaranteed to be

Thus, the model reduction algorithm would have three levef9sitive definite, we have found from experiment that it
. produces good results implying it must be “close” to positive
of nested loops: - ) d - .
o . definite. This can be explained by realizing that the inverse
1) Arnoldi iteration; . . .
S . . : . of each of the smallP matrices described above is close to
2) for each Arnoldi iteration, an iterative solve of (32); . . . . .
: . : e a capacitance matrix and capacitance matrices are diagonally
3) at each iteration for (32), a solution with—". . L o
] ] } ) ] dominant. This implies that each row df is likely to be
Fortunately, this last inner iteration can be avoided Kyiagonally dominant, s is likely to be positive definite.
realizing that computation of (32) is very close to solving the 1,¢ preconditioner of the form (37) requires an approxi-

mesh formulated circuit of (31) at a single frequengygiven | ation for P, but C' is an approximation o?~. Thus, (37)
an input vectory. Thus we can return to solving the secong,q,1d become

order form, (28), to compute:; = I,,, and then compute N
V' separately. However, (33) differs from (31) singeis not M R+ sol. . 071 MT (38)
generally zero, yet the last entry in the input for (31) is always 0 ¢
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Fig. 5. Impedance looking into a matched transmission line for varioksg. 6. Relative error for models for matched transmission line.
reduced order models and the original discretized system.

12

requiring aninversionof C, destroying its sparsity?—* would . Direct Factorization
be too dense to LU factor efficiently as a submatrix of (37). =— Non-recycled lterative
. . . o———=»o Recycled lterative
Fortunately this inversion can be avoided. Recall that the ||+« wutipole Recycled erative ]

form of (28) was desirable because it avoided the inverse
of P. Now, to avoid the inversion ofZ we can return to
the first order form, (31), for the preconditioning step. More
specifically, the preconditioning step requires computing

A 1
R+ soL 0
(" 2o i) mmne e

Instead solve

A A —1
R+ 5oLl Mp | _ |11 5 M )
|: _MIT 800:| |:0 o o (40) S *

and discardz,. The matrix is sparse and can be computed | tor dif o " o
rapidIy with LU factorization. Fig. 7. Flop count for different methods of computidy - «.

Floating Point Operations
3

Size of System (# of State Variables)

C. Recap preconditioning approach for capacitance required us to return

To recap, we noted that the dominant cost of applyir§ the(R + soL) block form for just the preconditioning step.

Arnoldi-based model order reduction was in the repeated

computation of Az where, for a nonzero expansion point V. RESULTS
so, A = (R+soL) 1L, Since the submatrices of are
L and P~! which are dense matrices of dimension® 10
10° a practical algorithm must avoid(n®) computation
such as the explicit formation aP~! or (R + so£)71. In
Section IV-A for s = 0, we used an iterative algorithm to )
avoid forming P! in the computation ofCz. Applying a A EXpansions about = 0

preconditioned iterative algorithm was straightforward since it Consider generating a reduced order models of order 10,
was identical to capacitance computation as explored in [22], 40, and 80, for a matched 2-D transmission line. The lines
Since many solves must be performed, a recycling algorithee copper and have a rectangular cross section with a width
was employed for further speedup. In Section IV-B, $gr# of 37 um and height 15:m. They are vertically spaced with

0, iterative solution is not as straightforward to computa 42 m center-to-center spacing. From Figs. 5 and 6, as the
the (R + soL£) 1y portion of the Az product. SinceP~! is model order is increased, a model which matches to higher
contained within(R + so£), iterative solution would require frequency is generated. For a reduced order model with 1%
two levels of nested solve. Fortunately, we can return toearor, a twentieth order model is valid up to 6 GHz, a fortieth
pure mesh form for this computation and then the iterativeder model up to 12 GHz, and an eightieth order model past
solve is instead fof M Zry MT)~L. Not only does this form 20 GHz (to about 26 GHz).

avoid the nested solve, but also provides a good method

of preconditioning from the previous work for inductance INote that, due to its simplicity of implementation, our implementation uses
ollocation approach rather than a Galerkin approach to compute the entries

. . . . C
extraction. To ap.p.Iy thESQ precondltlomng ideas to 'nClucgg P. Such an approach is not guaranteed to give a positive semidefinite
the added capacitive portion &gy, we saw that the best P 4+ P7 but has yet to cause nonpassive models.

In this section, we present results from model order re-
duction. First we investigate the models produced and then
observe the efficiency of the iterative solution algorithims.
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Fig. 9. Responses of various models for the transmission line. (a) Exact and reduced ladder circuit. (b) Exact and reduced PEEC.

Next, to demonstrate the efficiency of the recycled iterativts length. Each section has a nine filament bundle, and each
scheme, consider refining the discretization of the transmissioode has 12 panels leading to a 1704 element circuit. The line
line of the previous example and extracting a fiftieth ordes shorted at the far end instead of being matched in order to
model. Fig. 7 shows the number of floating point operatiorsmphasize the resonances. The admittance is then computed
(flops) required for direct factorization with back substitutionthrough a number of the resonant frequencies of the line using
a nonrecycled Krylov-subspace method, a recycled Kryldgoth the full model and a twenty-first order reduced model.
method, and multipole-accelerated recycled Krylov method, For comparison, given the exact per unit length 2-D line
for various levels of discretization. Our implementation, callegarameters’ and C’, a similar 40 section ladder circuit is
FASTPEP, uses direct matrix-vector products and thus tbenstructed as shown in Fig. 8. The resistance per unit length
multipole-accelerated times are projected based on flop couRtshosen to roughly match the actual resistance at the first
from multipole-accelerated capacitance and inductance coggsonance (and thus not at DC!). The admittance is computed
[23], [14]. The residual error tolerance of the iterative alfor both this eightieth order model and also a twenty-first order
gorithm had to be chosen as T0so that the difference reduced model. The four admittance functions are shown in
between models produced by the iterative scheme versyg. 9. The solid lines in each figure represent the full PEEC
direct factorization differed by less than 1% up to 100 GHznodel and the full ladder model. The solid lines show qualita-
As can be seen from Fig. 7 for an original 15409 stai@ely the same results: there is a periodic resonance with the
system, the recycled scheme performs an order of magnityggt occurring when the 1 cm structure is half a wavelength
faster than direct factorization, and similarly, the muItipolﬁ)ng. The resonant peaks show a decay for the PEEC model
algorithm would provide another order of magnitude spe&ghce it captures skin effects. Similarly, one might hope that
up. Note that the CPU time comparison would be similfecayse the frequency behavior of the two is roughly the same,
to the flop count comparison for the direct factorization ange model order reduction results for similar order would be the
direct recycled iterative scheme, however the overhead dgme. However, the twenty-first order reduced models are very
arranging the multipole computation would shift its curv@igrerent. The PEEC twenty-first order model loses accuracy

slightly upward. before the third resonance, however the ladder model does not
) begin to degrade until the sixth.
B. Quality of the Models To understand this phenomenon, Fig. 10(a) and (b) plot

The methods of the last section provide efficient generatitihe poles of the admittance function for the four cases. In
of a reduced order model, and in this section we investigatég. 10(a), the poles of the exact admittance lie evenly spaced
the quality of the generated models. on a vertical line in thes plane. Since the model order

To compare to an analytic result, consider the 2-D transmigduction was performed abouyt = 0, one would expect
sion line of uniform cross section and length 1 cm describedtrend of pole matching starting at the origin and moving
in the last section. The line is divided into 40 sections alormutward as shown. In Fig. 10(b), the full PEEC model has
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Fig. 10. Pole locations for (a) RLC ladder model and (b) the PEEC models. Note axis scaling.

410" C. Improving the Model
% » The cluster of real, weak poles near the origin is not limited
2t ® to the transmission line example and has been observed in most
X examples. We thus seek a geometry independent means of
1 ® : avoiding the matching of the weak poles near the origin. One
Z x|l approach is to expand abosit= oo which would select the
g0 CeoNm m ® weak poles last and model generation would invol/e! R.
'“1_ 10'g | But for most discretizations, there are multiple panels at the
x nodes, and thug is singular. The nodal formulation approach
) ® could be used for such expansions as pursued in [18].
N X Another approach is to use some multipoint scheme [24],
35 15 1o = o [25] as developed in Section IV-B. Results of this approach
real(s) x10° are described next.

Fig. 11. Closeup of origin on linear scale for the pole locations of the PEEC
models. Solid black circle marks origin. D. Results of Multipoint Model Order Reduction
With multipoint models computationally tractable, we can

two sets of vertically spaced poles. The complex conjugabegin to investigate generating low order models. In this
pairs with real part in[—10% —10%] are exactly pole-zero section we give results of expansions about nonzeimgive
cancelled and do not affect the frequency response perhapsght into the properties of the resulting models specific to
due to symmetry in the two conductor geometry. The conjugdteerconnect analysis. The general topic of multipoint model
pairs with real part near5 x 10~1° correspond to the vertical generation via Krylov subspace methods is addressed in detail
line of poles in Fig. 10(a) and are the dominant poles of the [12].
system, responsible for the resonances in Fig. 9. Note thatl) Expansion Points:In this section we explore choosing
they do not lie along a vertical line due to skin effects. la single nonzere as an expansion point and discuss the quality
addition, there are also a large number of purely real poles.the resultant reduced order models. We then further improve
By noting the scaling of the plot, these real poles are the closést models by using multiple expansion points.
to the origin (see closeup in Fig. 11). For this reason, momentFrom Section V-B where, = 0, the poles,s;, closest to
matching about the origin captures these poles first insteadttoé origin were captured first. This was a natural conclusion of
the poles responsible for the resonant behavior. matching moments about the origin. One can also explain this

The real poles result from the discretization of the conductoccurrence by viewing the Arnoldi process as it was originally
into bundles of filaments in order to capture skin and proximityeveloped as method of eigenvalue computatiorRor £. It
effects. Because the system is driven from external terminakswell known that the Arnoldi algorithm will converge fastest
it is difficult to excite the modes corresponding to the many eigenvalues); = =, which are well separated from other
interior filaments. For this reason, the effect on the frequenejgenvalues, and slower to clustered eigenvalues [27]. Since
response of the large cluster of real poles near the originpgeles clustered close to the origin are very well separated under
weak; in fact all of these poles are nearly or exactly cancell¢ioe map% they will be captured first.
by zeros. In addition, as the order is raised beyond 21, mostNow consider choosingo € R andsg > 0 For 30 # 0,
additional poles are matched near the origin resulting in vepples for whic
slow convergence to the full model. poles haveRe(s ) < 0 no pole will be closer than the distance
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dominant poles starting at;j5x 10'* and moving outward

|sol. In particular, the weak poles at the origin appear moees desired. Note that the model is close to optimal in the
as a cluster and we would expect to capture the poles alsanse that almost every pole matched corresponds to a pole
the imaginary axis more readily. Additionally, the choice of aesponsible for the resonant peaks.
real expansion point implies solution of (35) will not involve To take advantage of the efficient approach developed here
complex arithmetic. for multipoint expansions, consider matching many moments

The results for various, for a PEEC model for a 2-D TEM at multiple points along the imaginary axis. Consider choosing
transmission line are shown in Figs. 12 and 13. We see tlsat points,sq = 0, £j1x 10!, £52x 10, £53x 10, 54 x
so = 10 does slightly better compared g = 0 of Fig. 10 10, +;55x 10 and matching 1, 4, 4, 4, 4, 4 moments at
but still places multiple poles near the origin, angd= 10'2 each, respectively. The results for this 21st order model are
does not seem to capture any single pole accurately. To explgitown in Fig. 15 where we see that this approximation accu-
so = 102, the expansion point is too far away, and theately captured the dominant poles to a frequency comparable
entire region of poles appears as a distance cluster for whichthat for the RLC ladder network of Figs. 10(a) and 9(a).
convergence to any one pole is slow. While it may be possibleWhile the results in Fig. 15 were the underlying goal of
to find a better choice foit0!! < sq < 10'2, these results this section, the choice of expansion points and number of
demonstrate that choosing an appropriate real expansion poitments to match at each did not come without trial and
a priori is difficult. error. For instance, consider an 11th order model matching

Instead, consider choosing € c. In fact, choosing purely two moments at each point instead of four in the previous
imaginary expansion points is the common choice since itéxample. The results in Fig. 16 show that even though the
the response along thgw axis which is of interest. As with model roughly captured the poles, it did not capture their
choosing the origin, the poles nearest the expansion poinagnitude well and thus did not give a very accurate frequency
will tend to appear in the model first. For model reductionresponse. Comparing to Fig. 15, perhaps the influencall of
for interconnect analysis, we can exploit that the only largbe weak poles near the origin has an effect at these higher
dense cluster of poles is at the origin, and thus by choosing faequencies and more moments should be matched at zero.
imaginary expansion point away from the origin, the algorithfhis is not the case as shown in Fig. 17. We now match
will not stagnate as fog, = 0. five moments att = O instead of 1, and while the response

The advantage of complex, comes at a cost. Solvingfor the first two resonances near= 0 improved, near the
(35) will involve complex arithmetic and is thus four timeghird around 40 GHz, it has worsened. Also, the pole for
as expensive as the real case. However, to maintain a riéed second resonance has moved away from its exact value
reduced order model, moments must be matched at conjudat¢ the magnitude of the resonance is close to the exact.
pair points, sy and sg. It was pointed out in [28] that the Both of these examples indicate that strictly observing pole
Tt = x, + jx; and x* = z, — jz; resulting from solving locations is not a direct measure of error in the frequency
(35) atso andsg, respectively, generate only two independemniesponse.
vectors,z,. andz;, for the Arnoldi algorithm. These directions These examples illustrate the need for sophisticated methods
can be computed with a single solve of (35) and thus the casdt error analysis and expansion point and order selection.
of a complex expansion point is only double that of a real onEor the provably passive multipoint Krylov-subspace Arnoldi

For the TEM example, we choosg = 455 x 10! and schemes used here, some of ideas of Grimme [12] might
in Fig. 14 we see that model order reduction matches therk here.
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Fig. 19. Various reduced order models for the self-admittance of a middle

Fig. 18. An 18-pin backplane connector. pin from part of the back plane connector.

The point of the above discussion was to describe the nebe algorithm in [13]. The self-admittance of the excited pin
for automatic multipoint methods, but such methods could nist shown in Fig. 19. The result is compared to a much higher
be applied unless the algorithms of this paper make problemrsier model of size 250. The fiftieth order model matches
for n > 10* computationally possible. Next we show thatvell up to around 15 GHz, compared to the poor response of
indeed they do. a fiftieth order model for which all moments were matched at

2) Results for a Practical ExampleFinally, consider a s = 0. The poles captured in the reduced model are shown in
real example to show the computational efficiency dfig. 20. The many real poles in the original model are greater
multipoint expansions via the algorithms of this chaptethan 13 and are out of range of the plot.

We generate a fiftieth order model for half of the backplane To observe the computational efficiency of the precondi-
connector of Fig. 18. The discretization generated 1560 panttmed iterative algorithm, consider one solve of (35) using the
and 480 filaments. For simplicity, only one input and onsimple block preconditioner in (37) for a finer discretization
output is modeledB = b, corresponding to exciting only oneof the connector resulting in 5112 panels and 2592 filaments.
of the middle pins. Assume we desire an accurate frequentye results shown in Fig. 21 are good compared to no pre-
response up tev = 10'!. Since poles tend to be matchedonditioning.

outward from the expansion point, we match 48 momentsOne can improve the block preconditioner by using the
about a midpoints, = j5x 10 and then two ats, = preconditioner of (40) which uses a local inversion precon-
0 to insure accurate capture of the DC behavior. To matditioner for the capacitive part. For (40), the iteration count is
moments at multiple points, as in the previous section, we usmaller as shown in Fig. 22 and also the number of nonzeros
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TABLE |
Nonzeros AND CPU TiME FOR FACTORIZATION OF ONLY THE PRECONDITIONER
LOCAL INVERSION IS FOR ABLOCK DIAGONAL L AND LOCAL INVERSIONBASED C'

Preconditioner | Number of non-zeros Factor time

iterations | before factor | after factor | (CPU secs)
Block Diag 1 19 288622 894175 114.2
Block Diag 2 55 152971 675278 9.1
Local Inversion A7 113438 276561 4.5
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Fig. 23. Convergence of iterative solver faf Zpy M7 using recycling.
Numbers for each line correspond to solve number. With more vectors from
recycling, the later solves converge faster.

inversion preconditioner, yet it was worse in all respects, as
shown in the table.

The local inversion preconditioner required less time, fewer
iterations and had many fewer nonzeros in the factored matrix.
Since the CPU time to factor each of these is so small,
choosing a denser preconditioner could significantly improve
results. Such an optimization will not be pursed here. Note
that for a denser preconditioner, the CPU time advantage of
the local inversion preconditioner would become considerably
more significant.

Just as fors = 0, if many moments are to be matched at
a givensg, then the Krylov subspace from previous moments
can be reused. Consider now computing multiple moments at
Sg = J * X 1011

For each iterative solve, we see that the number of iterations
decreases as shown in Fig. 23. The 23 solves required a total of
422 matrix-vector products, compared to the roudiily47 =
1081 that would be required without recycling, representing
over a factor of two speedup. This speedup is counterbalanced
by the memory consumption in storing the back vectors. For
the above problem, storage of the deiisend P matrices with
5112 panels and 2592 filaments requires 263 MB. Storage of
the back vectors with 6858 complex entries each requires 46

is considerably less as shown in Table |. The table and fig%’ which is over 17% of the total storage. For this small

also include a block preconditioner with smaller blocks thagoplem, such memory is acceptable, but for larger problems
in Fig. 21. This smaller block preconditioner had roughly th@hich require multipole or precorrected-FFT acceleration,
same number of nonzeros in the unfactored matrix as the losath consumption is unacceptable. By noting that the most
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. . " # Filaments + Panels
Fig. 24. CPU flops required to generate a fiftieth order model.
Fig. 26. Memory use projections for use of a multipole algorithm for the
dense matrix vector product for the fiftieth order connector model.

10

»— Dense Product
o—eo Multipole

the jw axis converges slowly to the exact transfer function.
This behavior was attributed to the large clusters of poles near
the origin, a common feature of the PEEC RLC method. A
common solution to such a problem is to match moments
about somes # 0. Computations for the Arnoldi algorithm
for s # 0 however, would be extremely expensive due to the
required nested dense iterative solve.

The advantage of the mesh formulation became apparent for
computing multipoint expansions because the first order state-
o _ space form could be reformulated in a pure mesh form. From

10° 10* a pure mesh form, effective preconditioning and multipole
# Filaments + Panels acceleration could be applied to give an algorithm of nearly
Fig. 25. Flop count projections for use of a multipole algorithm for the deng®(n) flop and memory growth which, fon ~ 10%* was
matrix vector product for the fiftieth order connector model. 50 times faster and consumed 5 times less memory than
direct factorization. Such growth rates make such algorithms
Igssential as problems near= 10°.

10"}

Flops

benefit from recycling comes from the first few solves i

Fig. 23, the storage of these back vectors could be stoppe h"? \(’j"? S";Y]V tgatkar; accurate Ict)w c;:]der nl?]dzl_coulgfbﬁ:
when memory consumption is a concern. generated for the backplane connector, the method is not fully

For the overall computational efficiency, Fig. 24 Show@utomatic in regard to error control. An accurate model was

the total CPU floating point operations (flops) required tgenderﬁ[e?honly aftter %OTF:Ja”fngt thet rlespiﬁnse oftthe reduce_zd
generate a fiftieth order model for thél connector for various model 1o the exact model. Uniortunately, theé exact response 1S

levels of discretization. As can be seen, if (35) were solv&?nera"y not available for comparison. Itis thus not clear how
by direct factorization, the flops would grow &(n?), but to fully automate the generation of a good model. Methods to

with the iterative solver, the growth is onl@(n?). Note investigate include [24] and recently [12].

that for a modest problem size still unded* elements, the

iterative algorithm is an order of magnitude faster than direct ACKNOWLEDGMENT

factqnzaﬂo_n_. . ) o ) The authors would like to thank M. Tsuk, Digital Equipment
With efficient iterative solution in place, the Mu“'pc"eCorporation, for the connector example.

algorithm could be directly applied to bring the operation count

and memory growth t@(rn). The benefits of such an approach

are shown in Figs. 25 and 26. We see that using multipole

acceleration is roughly a factor of five improvement in both[1] A. E. Ruehli, “Equivalent circuit models for three-dimensional multicon-

t|me and memory over dense matnx vector products ductor Systems,’lEEE Trans. Microwave Theory Tecl’vol MTT-22,
pp. 216-221, Mar. 1974.
[2] P. Feldmann and R. W. Freund, “Efficient linear circuit analysis by
VI. CONCLUSION Padé approximation via the Lanczos process,”"HWRO-DAC’94 with
. EURO-VHDL'94 Sept. 1994.
In this paper, we developed a mesh formulated approach f@@] w. B. Gragg and A. Lindquist, “On the partial realization problem,”
passive model order reduction of the full quasistatic Maxwell’s  Linear Algebra Applicat.vol. 50, pp. 277-319, 1983

. . _ [4] K. Gallivan, E. Grimme, and P. Van Dooren, “Asymptotic waveform
equations. We found that model reduction abeut= 0 evaluation via a Lanczos methodXppl. Math Lett. vol. 7, no. 5, pp.

stagnates, that is, the reduced order transfer function along 75-80, 1994.
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