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Efficient Formulation and Model-Order
Reduction for the Transient Simulation of

Three-Dimensional VLSI Interconnect
Mike Chou and Jacob K. White,Associate Member, IEEE

Abstract—Accurately accounting for three-dimensional (3-D)
geometry and distributed RC effects in on-chip interconnect
is important for predicting crosstalk in memory cells, analog
circuits, and regions of congested routing in digital circuits. In
this paper we describe a multipole-accelerated, mixed surface-
volume formulation, and a preconditioned model-order reduction
algorithm for distributed RC, or electroquasistatic, simulation
of 3-D integrated circuit interconnect. The difficulties arising
from the ill conditioning inherent in the dynamic problem is
effectively resolved by a combined surface-volume approach.
Results are presented to demonstrate that the computational
cost for extracting a complete reduced-order model is order
NNN , where NNN is the number of surface unknowns. Finally, the
multipole-accelerated code is used to investigate the accuracy of
the one-dimensional diffusion equation for long RC lines.

Index Terms—Diffusion equation, integral equations, Krylov-
subspace methods, model-order reduction, transient analysis.

I. INTRODUCTION

W HEN analyzing high-performance integrated circuit de-
signs, it is well known that the single lumped resistor-

capacitor model of interconnect is insufficiently accurate. It has
been shown [1] that reasonably accurate electro-quasistatic,
or transient interconnect, simulations could be performed by
computing the time evolution of the electric field both inside
and outside the conductors via a finite-difference discretization
of Laplace’s equation. More recently, a boundary-element
approach [2] based on Green’s theorem was proposed which
performs the calculation using the same surface discretization
used for ordinary capacitance extraction, thereby avoiding the
large exterior domain mesh and computation. However, the
latter approach generates dense matrix problems, which require

operations to solve directly, and at least to
solve iteratively, where is the number of surface unknowns.
Therefore it is necessary to accelerate such methods when
solving large problems. The direct application of the
fast-multipole algorithm on the boundary-element formulation
produces unacceptable results because the multipole errors are
magnified by the ill conditioning in the linear system which
results from the wide range of time constants in the dynamics.
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To overcome this difficulty, we derive a mixed surface-volume
formulation and show how it prevents the magnification of
the multipole error. In this formulation, the interior finite-
difference method is used to solve Laplace’s equationinside
the conductors, and the boundary-element method is used to
solve theexterior Laplace problem.

For three-dimensional (3-D) interconnect structures to be
included along with the actual transistors in a coupled SPICE-
level circuit simulation, it is necessary to construct low-order
macromodels whose terminal behaviors essentially capture the
complicated 3-D field interactions among the interconnect.
Most model order reduction techniques, such as asymptotic
waveform evaluation (AWE) [3] and the more recent Padé-
via-Lanczos (PVL) [4] and Arnoldi [5] algorithms, have been
successful because it is feasible to carry out an LU decom-
position of the associatedsparsesystem matrix, after which
each solve can be performed cheaply. For problems involving
large densematrices, direct factorization is computationally
intractable. Iterative methods can also be expensive if many
solution iterations, or matrix-vector product computations are
required for convergence, as is the case for ill-conditioned
linear systems. We show how the surface-volume formulation
can be modified slightly to allow effectivepreconditioning
which produces rapid convergence in the iterative solution.

The outline of this paper is as follows. The surface-integral
formulation of the transient-interconnect problem is briefly
outlined in Section II. The phenomenon of ill conditioning
is described in Section III. The surface-volume formulation
is derived in Section IV, and the resulting error control is
demonstrated in Section V. The guaranteed stable Arnoldi
algorithm for model-order reduction is reviewed in Section VI.
The modified surface-volume formulation and preconditioning
techniques are presented in Section VII. Section VIII describes
the method of images for including groundplanes. Computa-
tional results are presented in Section IX where we show that
the cost associated with generating ath-order model is order

and is less than that of performingcapacitance extractions.
The conclusions and acknowledgments are given in Section X.
Finally, in the Appendix, we compare the popular diffusion
model of the distributed RC line to 3-D calculations.

II. THE SURFACE INTEGRAL FORMULATION

For the transient interconnect problem, the system is as-
sumed to be in the electro-quasistatic (EQS) regime. The scalar
potential satisfies Laplace’s equation in all of space
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except on conductor surfaces where charge can accumulate [2]

(1)

where is the union of all conductor surfaces. Since Laplace’s
equation (1) holds both inside and outside of the conductors,
all charges in the system reside on the conductor surfaces.
Therefore, the potential is related to the conductor surface
charge density through the superposition integral

(2)

where the regions inside and outside the conductors are
assumed to have uniform permittivity. Charge conservation
[6] at the surface yields the continuity condition

(3)

where and are the normal current densities
taken just inside and just outside the conductor surface. Inside
a conductor, the current obeys the constitutive relation

(4)

where is the conductivity and is the outward normal to
the surface .

Combining (2)–(4) results in an integral formulation

(5)

where is the dielectric relaxation time of the
conductors, is a point on a conductor surface, is the
outward normal to the conductor surface, and is the
Euclidean distance betweenand . Careful application of
Green’s theorem [2], [7] to the first integral on the right-hand
side of (5) yields

(6)

Let be the subset of which is in contact with external
voltage sources, and let be the noncontact
or free surfaces. Then for is known a
priori . Since there is no external current flow at noncontact
surfaces, we also havea priori that for

.
To numerically solve (6) for at noncontact surfaces and

for at contact surfaces, the conductor surfaces are
broken into small tiles, or panels. It is then assumed that
on each panel, there is a constant potential and a constant
external supply current density . A collocation scheme [8],
in which (6) is enforced at the centroid of each panel, is used
to generate a system of equations. The result is a
dense linear system

(7)

where , represent the discretized panel
potentials and external supply current densities. The elements
of the dense matrices and are

(8)

(9)

where is the center of the th panel, and is the area of
the th panel. Mathematically, is the potential at due
to a unitchargedistributed uniformly over panel. Similarly,

is the potential at due to a unitdipole oriented along
the normal to and distributed uniformly over panel. The
integrals in (8) and (9) are often referred to assingle-layer
and double-layerintegrals [9], respectively.

Suppose of the surface panels are connected to
voltage contacts whose potentials are known but
whose supply currents are unknown. It is then
clear that (7) is an index-one differential-algebraic equation
(DAE), solvable with backward-differencing formulas (BDF).
In addition to the elements of , the unknowns also
include the elements of , which
correspond to the noncontact panel potentials. Discretization of
(7) in time with the backward-Euler method yields the linear
system

(10)

where is the timestep. The matrix, or linear operator,
, is defined by the transformation rule

(11)

where and .
Since is defined in terms of and , the unknowns

can be interpreted as a distribution of monopoles and dipoles,
with the panels associated with the elements of acting as
uniform monopoles (single layers), and the panels associated
with acting as uniform dipoles (double layers).

III. D IFFICULTIES WITH MULTIPOLE ACCELERATION

Consider using a Krylov-subspace based iterative algorithm,
such as GMRES [10] to solve (10) at each timestep. The
th iteration of the GMRES algorithm requires computing

the matrix-vector product , where is the th GMRES
search direction. Since is dense, computing directly
requires operations. However, forming is equivalent
to computing potentials at points due to a distribution of
monopoles and dipoles.Fast-multipolealgorithms [11]–[13]
can be used to compute approximate values of thepotentials
in operations where is independent of but dependent
on the required accuracy.
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Fig. 1. Single wire(L = 4) connected to voltage source at one end.

If (10) is solved by using a fast-multipole algorithm to
approximate in (11), then

(12)

where is the multipole approximation to , is the right-
hand-side of (10), and are approximations to the true
solution in (10). The relative error in the computed
potentials and currents is given by

(13)

where is the multipole error and is the
condition number [14] of . As is clear from (13), the error
from the multipole algorithm is magnified by the condition
number of . To see the impact of even mild ill conditioning
in on multipole algorithm errors, consider the first model
problem, a rectangular wire with dimensions , which
is connected to a step voltage source at one end, shown in
Fig. 1. The steady-state voltage at any point on the conductor
surface is 1 V. Fig. 2 is a plot of the steady-state voltage at
the opposite end of the wire (labeled) versus wire length
computed using a multipole-accelerated algorithm.

For the algorithm used (second-order multipole expansions),
the multipole approximation errors in the potential calculation
is between 0.1–1%, but the steady-state error is much larger
because of the magnification due to the ill conditioning in.
As further evidence of this explanation, the condition number
of is plotted as a function of wire length in Fig. 3.

For multiconductor systems, the condition number of
grows as the spacing between conductors is reduced. Fig. 4
shows a simple two-conductor problem. Each conductor has
voltage boundary conditions at one end. Fig. 5 shows that
the condition number for the system increases as the spacing
between the conductors is reduced. At very large separations,
the two conductors are decoupled, and the condition number
approaches that of the single-wire example in Fig. 1.

We comment here that while higher-order multipole expan-
sions can be used (at a much greater computational expense) to
improve the accuracy, it only serves todelaythe onset of error
magnification, and since the condition number is observed to
grow quadraticallywith the length of the conductors, we shall
pursue other means of resolving this difficulty.

IV. THE MIXED SURFACE-VOLUME FORMULATION

We derive here a mixed surface-volume formulation which
can be multipole-accelerated without loss in solution accuracy,
although it does not change the condition of the system
matrix. Consider the interior Dirichlet-to-Neumann operator

, defined by the linear map between the surface potential
and its normal derivative , where the limit for

is approached from the interior of the conductor
surfaces

(14)

This relation allows the surface-integral formulation (5) to be
written as

(15)

We now discretize the conductor surfaces intopanels
and assume uniform potentials and currents on each panel as
described in Section II. The resulting matrix equation is

(16)

where is as defined in (8). The matrix
approximates the continuous operatorand is defined by

(17)

where corresponds to at the panels.
Given at the surface nodes of a conductor, Laplace’s
equation can be solved in theinterior domain with an interior
finite-difference method to yield at each surface node.
Hence, applying implies solving the interior problems.

As before, a fixed-timestep backward-Euler method is used
to solve the DAE derived from (16). The resulting linear
system is

(18)

The new operator is defined by the transformation rule

(19)
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Fig. 2. Steady-state voltage atv1 versus wire length.

Fig. 3. Condition number grows with wire length.

The computation associated with applying can be per-
formed efficiently. Since the interior Laplace problem is solved
independentlyfor each conductor, the action of theoperator
corresponds to solving ablock-diagonal and sparse linear
system. Thus the dominant cost of applyingin (19) comes

from applying , which is a densematrix operation since
it couples every panel to all panels on all conductors. But as
described in Section III, the application ofto a vector can be
multipole-accelerated. Therefore the combined surface-volume
approach can be made very efficient.
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Fig. 4. Parallel wires(L = 8), each with voltage contacts at one end.

The mixed surface-volume method provides an important
guarantee on the solution accuracy. This is stated in the
theorem below.

Theorem 1: If the steady-state solution of (15) is such that
the surface potential on each conductor is a constant, and none
of the conductors is floating, then the steady-state solution
computed by the mixed surface-volume method is exact,
regardless of multipole approximation error and discretization
error.

Proof: Consider first the single conductor problem. From
(16), the steady state solution satisfies

(20)

From the theory of fractional Sobolev spaces, it can be shown
that the potential coefficient matrix is nonsingular given
a sufficiently fine discretization [15]. It then follows that

in the steady state. In the finite-difference
implementation of , this is equivalent to a resistor network
connected to external voltage sources [1]. Assuming that all
voltage sources are at 1 V, the solution satisfies

(21)

In the equivalent resistor network picture, of the surface
nodes are connected to unit-voltage sources while the remain-
ing surface nodes are left open-circuited. Network analysis
immediately yields and , the exact steady-
state solution. For many-conductor problems, the same result
holds since each conductor is treated independently by the
operator.

Since (6) and (15) are both derived from (5), the Green’s
theorem based and the surface-volume based formulations are
equivalent in their integral equation form. If we define the
integral operators and as

(22)

(23)

then formally by Green’s theorem [7],
where is the identity operator. Thus it follows that in

the limit as the mesh becomes very fine, (i.e., ),
the discretized versions of these operators approach each
other, . Since constant implies

, both and are
singular matrices with the vector {1, 1, , 1} in the null
space. The surface-volume formulation essentially factors the
matrix into the product of a singular and a
well-conditioned, nonsingular . When the action of is
multipole accelerated in the mixed formulation, errors are
introduced only in the capacitance matrix of the surface panels
which does not alter the physical character of the system. This
error appears only during the transient and will be shown
experimentally to be small and independent of condition
number. This is expected since approximations are made only
on , the well-conditioned part. The null space of is
preserved. The same is not true for the Green’s theorem based
pure-boundary formulation, since multipole approximations
are made on which alters the null space of .

V. COMPUTATION RESULTS

To show that both the pure boundary-element (BE) for-
mulation and the mixed finite-difference/boundary-element
(FD/BE) formulation produce similar resultswithoutmultipole
acceleration, we performed simulations on the single-wire
conductor in Fig. 1 using the dimensions , ,
and . Here we introduce a discretization parameter,
which represents the number of sections into which each unit-
length is divided. For example, in Fig. 1. One end of
the conductor is connected to a step voltage source, and the
voltage waveform at the other end is shown in Fig. 6. For the
coarse mesh , both methods produce small discretization
errors. For the fine mesh , the two methods converge
to the same waveform. This confirms the validity of the new
mixed formulation.

Multipole acceleration is performed on both techniques for
the double-wire example in Fig. 4, with actual discretization
( ) shown. At their near ends, one wire is connected to a
step-voltage source, while the other is grounded. Simulated
voltage waveforms at their far ends are shown in Fig. 7.
For the mixed FD/BE formulation, the multipole-accelerated
result produces the correct steady state, and is practically
indistinguishable from the nonaccelerated explicit calculations.
The multipole-accelerated pure BE technique is seen to pro-
duce obviously erroneous results, as reported in Section III.
Experimentally, for the mixed surface-volume formulation, we
find that second-order multipole acceleration always produces
results matching those of the explicit calculations, independent
of the condition number.

A fairly complex 3-D interconnect example is presented
here to demonstrate that the multipole-accelerated surface-
volume method is necessary for large problems. The GMRES
[10] iterative method without preconditioning is used to solve
the linear systems (10) and (18). Polysilicon resistivity of

cm is assumed for all conductors, and oxide
permittivity of is assumed throughout space. All com-
putations are performed on a 266 MHz DEC AXP3000/900
workstation with one gigabyte of physical memory.
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Fig. 5. Condition number increases as wire separation decreases.

Fig. 6. Without acceleration, both techniques produce correct results.

Fig. 8 displays a model of a six-conductor SRAM cell. The
groundplane is shown but not used in this example. Each
conductor is connected at a port labeled 1–6. An additional
port, labeled 7, is connected to conductor 3. Table I lists the
number of surface unknowns for four successive refinements,

with Fig. 8 corresponding to ( ). The pair of -
shaped conductors (1 and 2) are the clock lines, while the
pair of -shaped conductors (5 and 6) are the data lines.
A third pair of intertwined, interior conductors (3 and 4)
make interconnections between transistors in the cell. Assume
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Fig. 7. Multipole errors get magnified only in the pure BE method.

Fig. 8. SRAM cell (m = 3 mesh).

that ports 3 and 4 are grounded and that ports 5, 6, and 7
are floating during a particular fetch cycle. We simulate the
cross-talk noise induced on these lines by a unit-step voltage
source on both ports 1 and 2. Such spurious signals must be
minimized at the design phase to ensure error-free operation.

Results of the time-domain backward-Euler simulation are
shown in Fig. 9. The multipole-FDBE method is applied to
four successively finer meshes , while the
explicit-BE method, due to CPU time and memory limitations,

TABLE I
PROBLEM SIZE AND FD TIME FOR SRAM

is used only for the coarsest mesh . From the voltage
waveforms and , it is seen that the mesh
results in significant discretization error. The finer meshes
generate large numbers of unknowns which necessitates using
the multipole-accelerated FD/BE method. CPU times for the
multipole-FD/BE method are plotted in Fig. 10, which can be
seen to exhibit linear, or , growth. CPU times for the
explicit-BEM approach are extrapolated from the
mesh computation, and grows as since it is a dense-
matrix method. For the mesh, with 15 776 panels, the
multipole-accelerated method is seventeen times faster than
the dense-matrix approach.

We make the additional note here that the CPU time
consumed by the interior finite-difference computation as a
percentage of the total CPU time grows with increasing mesh
refinement, but remains small as shown in Table I. This
confirms the earlier assertion that the cost of the BE calculation
is dominant.

VI. THE ARNOLDI ALGORITHM

FOR MODEL-ORDER REDUCTION

In order to fully evaluate the effects of interconnect on
overall circuit performance, it is necessary to perform a
coupledcircuit-interconnect simulation at the SPICE level. It is
impractical to incorporate the large, dense matrices associated



CHOU AND WHITE: TRANSIENT SIMULATION OF 3-D VLSI INTERCONNECT 1461

Fig. 9. Waveforms computed using various mesh refinements.

Fig. 10. Comparing CPU times.

with the 3-D interconnect directly into the circuit simulator.
Instead, reduced-order models, which use small matrices to
capture the current–voltage relations at the terminal ports of
the interconnect, can be extracted from the full model and then
used in the coupled simulation. Techniques such as asymptotic

AWE [3] and the PVL algorithm [4] have been used success-
fully for this purpose. In this section, we summarize previous
work on the similar Arnoldi [16] algorithm, a numerically
robust orthogonal-projection based scheme which generates
guaranteed stable reduced-order models [17].
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Consider the single-input-single-output (SISO), linear time-
invariant system described by a system of first-order ordinary
differential equations of the form

(24)

where the -vector represents the circuit variables or the
detailed internal voltages of the interconnect, and the
matrix represents the detailed interactions among internal
elements, is the excitation vector corresponding to
the input terminal, and is the observation vector
corresponding to the output terminal. The scalar quantities

and are the input and output terminal-port variables,
through which the linear system “interfaces” with external
circuitry. The state-space representation of (24) is

(25)

where , and denote the Laplace transforms of ,
and , respectively. The transfer function
can be written

(26)

where .
Since can be of the order of tens of thousands, it is

desirable toreduce the large and dense matrix or
in a manner that captures the low-frequency behavior of the
transfer function. This is done by matching Taylor series
terms at . It has been shown in [16] that an Arnoldi-
based orthogonalization process can be used to construct an
orthonormal basis for the Krylov subspace

span

(27)

After steps, the Arnoldi algorithm returns a set oforthonor-
mal vectors, as the columns of the matrix , where

is the size of , and typically . The reduced-order
transfer function can then be constructed as

(28)

where is a upper Hessenberg matrix. The transfer
function of the reduced th-order system (28) has been
shown in [16] to match derivatives, or moments, of
the exact transfer function in (26) at , the low-frequency
limit. The triplet is said to be thereduced-order
modelof the triplet .

It is possible to extend the present work to the multiple-
input–multiple-output (MIMO) case using block algorithms
similar to those described in [5] and [18].

VII. PRECONDITIONED MODEL-ORDER REDUCTION

Both the AWE and PVL algorithms have been success-
fully applied to reduce circuit networks for the lumped-
element model of the interconnect since the associated large,
sparse matrices can be factored to solve for the low-frequency
moments of the transfer function [19]. The difficulty with
applying the AWE, PVL, or Arnoldi algorithm to reduce
3-D interconnect models is that the associated large, dense
matrices are too expensive to store and factor. Matrix-implicit
iterative solution can also be expensive since many matrix-
vector product computations are required for ill-conditioned
problems. We recall here that the matrix ill conditioning results
from the wide range of time constants associated with typical
interconnect, and is thus independent of the problem formu-
lation. In Section VII-A, we show that the straightforward
iterative solution converges slowly, and in Section VII-B, we
reformulate the mixed surface-volume approach slightly and
derive an effective preconditioner which allows for rapid con-
vergence of the iterative solution. Section VIII describes how
to include ideal groundplanes in the problem, and Section IX
presents the computational results.

A. Application of Arnoldi

To simplify the notation in (16), let and
, which results in

(29)

Since is singular, the steady-state voltage is not
uniquely determined by the external current . Thus
we recast (29) as a DAE system. This is done by using
voltage sources instead of current sources and then computing
the resulting -port frequency-dependent admittance matrix,
which is then well behaved near zero frequency. Recall that
the unknowns are the first entries in the potential vector

corresponding to the free potentials plus the nonzero
externally supplied currents . The last entries in
are givena priori and correspond to external voltage sources.
In frequency domain, the result is a system of equations

(30)

where , , ,
and are partitions of the matrix

(31)

Similarly, , , ,
and are partitions of the matrix. The
subscript denotes the free-floating panels and the subscript

denotes panels in contact with voltage sources. Since the
contacts are typically at the ends of long conductors, the
number of contact panels is typically much smaller than that
of floating panels. Therefore, is a small matrix and can be
inexpensively inverted. Using allows (30) to be recast in
the standard form for reduced-order modeling. Let ,

be vectors of ones and zeros which selects the
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TABLE II
MATRIX-VECTOR MULTIPLIES REQUIRED PERORDER VERSUSLENGTH OF WIRE

input voltage and output current panels, respectively. Then
and , where is

the scalar voltage input and is the scalar current output.
After some amount of algebra, the admittance transfer function

is

(32)

where

(33)

,
and are scalar constants.

Rewriting the second term in (32) as
, with , we apply the Arnoldi

method to reduce the triplet by matching low-
frequency moments. For each additional order in the model,
a new vector in the Krylov subspace in (27)
is generated by applying GMRES to perform an iterative
solution of the system

(34)

using only multipole-accelerated matrix-vector multiplication
as described in Section II.

As a numerical experiment, we directly apply the above
Arnoldi algorithm to the simple interconnect in Fig. 1, a
single wire, with the supply voltage as input variable
and the supply current as the output variable . The
same calculation is performed for wires of varying lengths,
keeping the other two dimensions fixed. Our numerical results,
summarized in Table II, show that the number of iterations,
or matrix-vector product calculations, required for GMRES
convergence in solving (34) grows quickly as the wire length,
or aspect ratio, is increased. This is caused by the system
matrix becoming more ill-conditioned as the range of time
constants, or eigenvalues, grows with the wire length. It is
well-known that the rate of convergence for Krylov-subspace
style algorithms deteriorates with growing matrix condition
number [20].

B. Preconditioned Formulation

We derive here a slightly modified version of (16), which
can be easily preconditioned to accelerate convergence of the
iterative method used to compute the Krylov subspace vectors.
In this formulation, we assume that the panels in contact
with voltage sources store no charge, or equivalently, that the
contact capacitances have been removed. This model may also
be supported based on physical arguments: terminal ports of
interconnects are not exposed surfaced when the connections
to transistors or other circuitry have been made. The contact
panels in practice existinside conducting material where
Laplace’s equation holds, and hence cannot store charge.

We start from the original integral formulation of (5). By
writing the surface integrals overas a direct sum of integrals
over the contact and noncontact surfaces and ,
(5) becomes

(35)

The assumption that the charge densityis zero at contact
surfaces , combined with the continuity condition (3)
and the constitutive relation (4), implies

(36)

Thus, the second surface integral in (35) vanishes. In addition,
since there are no external supply currents at noncontact
surfaces, . The unknown
potentials on then satisfy

(37)

where (4) has been used in the second equality.
As before, we discretize into elements and into

elements using the collocation scheme. The interior Dirichlet-
to-Neumann operator defined in (17) can be rewritten as

(38)

where and correspond to normal
current densitiesjust insidethe noncontact panels and the

contact panels, respectively. Discretization of (37) yields
the system

(39)

where has been defined previously. Com-
bining (38) and (39) and again letting and

, we have the state-space form

(40)

(41)

where

(42)

, , and .
The new expression for in (42) is to be compared
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Fig. 11. Compare formulations with and without contact-port capacitances.

Fig. 12. Solution converges with discretization.

with that in (33). Notice that
. Time-domain solutions show that for

reasonably long wires, the two formulations yield the same
results since the capacitances associated with the contact ports
are comparatively small. See Fig. 11 for the far-end voltage

waveforms computed for a length = 64 wire, in the absence
of a groundplane, excited by a unit-step voltage source at
the near-end.

Proceeding with the Arnoldi algorithm as in Section VII-
A, the central task is to solve linear systems of the form
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Fig. 13. Reduced-order models converge in frequency domain.

Fig. 14. Port 2 current versus time computed with reduced models.

for arbitrary right-hand sides. Since the operator
has now a product form, it is easy to reduce its condition

number by making the substitution

(43)

where is a sparsematrix approximation to the inverse
of the densematrix and is constructed by explicitly
inverting local, overlapping blocks of . For details on this
computation, which fits naturally in the fast-multipole algo-
rithm as demonstrated in the capacitance extraction program
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Fig. 15. Port 2 voltage versus time computed with reduced models.

Fig. 16. Poly-to-poly coupling voltage noise in frequency domain.

FASTCAP, see [12]. The operator is the exact inverse
of , and its action is effected by solving the interior
Laplace problem with mixed boundary conditions: Dirichlet
on the contact panels ( ) and Neumann on the free
panels ( arbitrary). As in the pure Dirichlet-to-Neumann
problem , the mixed problem is solved by LU-factoring the
associated sparse matrix generated from finite differences. The

free-panel potentials are computed along with as a
by-product.

Using thepreconditioner , we apply GMRES to
solve for in

(44)
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Fig. 17. Poly-to-poly coupling voltage noise in time domain.

Fig. 18. Metal-to-poly coupling voltage noise in frequency domain.

and then compute the final solutionby applying (43). This
preconditioned Arnoldi algorithm is applied to the single-wire
interconnect test case in Section VII-A. Table II displays the
number of iterations, or matrix-vector product calculations, re-
quired for the iterative solution of (44). The rapid convergence
shows that the condition number of the operator

is much smaller than that of and nearly independent of
conductor length. The ill conditioning caused by the wide
range of time constants has been removed by explicit solution
of the interior problem , and the ill conditioning caused
by the proximity of conductors is removed by the overlapping
preconditioner .
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Fig. 19. Metal-to-poly coupling voltage noise in time domain.

Fig. 20. Convergence with discretization for SRAM.

We make a note here that the starting Arnoldi vector
in (27) is computed by rather than an
iterative solve involving . Hence, a -order reduced model
requires GMRES iterative solutions rather than
solutions.

VIII. G ROUND-PLANE IMPLEMENTATION

The potential variation of the grounded silicon substrate is
typically of the order of tens of millivolts due to the many
local, grounded body-plugs. Since this is small compared
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Fig. 21. Reduced-order models for SRAM.

with the 3- or 5-V power supply, we will assume anideal
groundplane in this paper. To include the groundplane in
the preconditioned formulation of the previous section, the
only modification to make is the charge-to-potential operator

. The interior Dirichlet-to-Neumann operator remains
unaffected. Let the groundplane be approximated by a finite
sheet, and assume it is explicitly discretized into panels.
Let be the vector of ground panel potentials, and
let be the vector of corresponding panel currents.
To include the groundplane, additional terms are introduced
into (39)

(45)

where , ,
describe capacitive interactions among conductor surfaces
and the groundplane, and are similarly defined as . The
condition in the dynamic (45) implies that

(46)

(47)

where is the new charge-to-potential operator
in the presence of a groundplane. Sincemay be large, it is
impractical to factor , and since is applied multiple
times in an iterative solve, it is impractical to apply via
an inner-loop iterative solve. Hence we will use themethod-of-
images[7] to apply the operator . Fictitious image charge
panels are created by reflecting real charge panels across the
groundplane and are always assigned the opposite charge. A
similar procedure applies to the overlapping preconditioning

Fig. 22. Three-level interconnect (m =1 mesh).

operation. Since the fast-multipole algorithm is used,
the net cost is twice that of the problem without the ground-
plane.

It would also be possible to use precorrected-FFT
methods with a modified Green’s function to include the
groundplane [21].

IX. M ODEL-ORDER REDUCTION RESULTS

In this section, we present numerical results of our
multipole-accelerated, preconditioned model-order reduction
algorithm and demonstrate its accuracy and efficiency.
Throughout, polysilicon conductivity and oxide permittivity
will be assumed unless otherwise noted. The groundplane
is also included in all following examples. Fig. 12 shows
the frequency response for a 2 port, computed from the full
model, for a rectangular conductor with aspect ratios 1m

1 m 64 m, sitting one m above the groundplane.
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Fig. 23. Convergence with discretization for three-level interconnect.

Fig. 24. Reduced-order models for three-level interconnect.

Two discretizations are used: the coarser one divides each unit
square into nine equal panels, and the finer one divides each
unit square into 16 panels. It is seen that up to a frequency of
10 THz (10 ), the results for the two discretizations are nearly
identical. Henceforth, we shall use the coarser discretization.

Fig. 13 is a plot of the frequency response of the reduced-
order models for the same conductor and shows that a
twentieth-order model produces virtually identical results as
the full model of order 2304. Time-domain data generated
by the full-order models and the reduced-order models are
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Fig. 25. CPU time grows linearly with problem size.

also given for comparison. Fig. 14 displays the short-circuit
current in port 2 (held at ground), and Fig. 15 displays the
open-circuit voltage at port 2 for various reduced models; the
excitation in both is a unit-step voltage source at port 1. We
see from Figs. 13 and 14 that third-order models are accurate
enough if there are no signals in the system faster than 10–30
ps. Fig. 15 shows that the third-order model captures most of
the essential features of the true response, while the first-order
model, which is equivalent to a single-lumped RC model,
fails miserably.

Next, we perform two-conductor coupling experiments us-
ing the same configuration as in Fig. 4, with the driven
conductor connected to a voltage source and the “victim”
conductor grounded at the near ends. We are interested in the
voltage noise . Both wires have dimensions 1m 1 m

80 m and sit 1 m above the groundplane. Fig. 16 shows
the magnitude of in the frequency domain generated from
several reduced models. It is seen that a fifth-order model is
necessary to capture the full model up to 10 GHz. Fig. 17
shows the time-domain response to a unit-step voltage
source. The fifth-order model is nearly indistinguishable from
the full model. Similar experiments were performed with the
driven polysilicon line replaced by aluminum and the victim
line material unchanged. Results are shown in Figs. 18 and 19.
The metal line introduces a much smaller timescale due to its
high conductivity and, as a result, the coupling noise remains
significant up to a much higher frequency 10 THz. The time
response also shows a much faster risetime. For purposes of
SPICE-level simulation in which the excitation is bandwidth-
limited to, for example, below 10 GHz, a fifth-order model
is sufficient.

TABLE III
TOTAL (REAL+IMAGE) PANEL COUNT

Next, we apply our algorithm to two large interconnect ex-
amples. The first is the six-conductor SRAM structure shown
in Fig. 8. The structure is treated as a six-port problem, with
the excitation ports labeled 1–6 in the figure. The simulation
is now run with the groundplane with its approximate position
shown in the figure. (Refer to Section IV for the discretization
scheme and labeling.) Total panel counts, including real and
image panels, are shown in Table III. Fig. 20 shows the
frequency response of the conductance computed using
various discretizations. It is seen that up to 10Hz, the
results are nearly identical for the mesh refinements
and ; refer to Section V for the definition of the
mesh parameter . The coarser meshes and
may be used for quick estimates. The model-order reduction
results for is plotted in Fig. 21, which shows that
a sixth-order model is necessary to capture the firstknee in
the frequency response at100 GHz. We make a note here
that the straight-line section of Fig. 21 corresponds to the
low-frequency approximation

(48)

where are the admittance and capacitance matrices,
respectively. Resistance plays no part in the interconnect con-
ductance until the higher-frequency components are excited.
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Fig. 26. Memory use grows linearly with problem size.

Fig. 27. RC ladder circuit.

A three-level interconnect structure with a coarse discretiza-
tion is shown in Fig. 22, in which each unit square
is 1 m 1 m and the groundplane is 1m below the
bottom-level interconnect. Polysilicon is used for the bottom
level and aluminum for the top two. Each interconnect layer
is excited at a single port, as shown in the figure. In this
example, we compute the first column of the admittance matrix
by connecting port 1 to a voltage source and grounding ports
2 and 3. Three discretizations were used , and
the total panel count is shown in Table III.

Fig. 23 shows the convergence with discretization of the
frequency response for , and Fig. 24 shows results of
reduced-order modeling. Although the frequency dependence
is complicated, a third-order model is accurate up to 1 GHz,
and a sixth-order model accurate up to 10 GHz.

To demonstrate that the entire multipole-accelerated pre-
conditioned model-order reduction algorithm has order
complexity, we plot CPU time and memory used versus
the total number of panels (real and image) in computing
a single-input–multiple-output (SIMO), sixth-order model for
the SRAM and the three-level interconnect examples. See
Figs. 25 and 26.

Since a SIMO reduced-order model corresponds to one col-
umn of the frequency-dependent admittance matrix, we com-
pare this cost to that of computing one column of the capac-
itance matrix using FASTCAP [12], a multipole-accelerated

Fig. 28. Global capacitive coupling model.

TABLE IV
RATIO OF REDUCED-MODEL TO CAPACITANCE-EXTRACTION CPU TIMES

capacitance extraction program. Table IV displays the ratio
of the CPU times. While a sixth-order model essentially
solves the capacitance problem six times, the actual CPU
time overhead is seen to be only a factor of two to three.
This is because the significant set-up time associated with
the multipole algorithm, common to both procedures, is better
amortized in the reduced-order model computation. Memory
requirements are nearly identical in both cases.

X. CONCLUSIONS

We have shown that while the boundary-element
formulation of the transient interconnect problem eliminates
the need for exterior volume meshing, it produces large
errors when multipole-accelerated due to the somewhat
poor conditioning of the problem. The ill conditioning is
inherent to problems with a large range of time constants,
or natural frequencies. This magnified error is eliminated in
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Fig. 29. Voltage attenuation: diffusion model versus 3-D.

Fig. 30. Diffusion model less accurate for largeZ.

the alternative mixed surface-volume formulation, in which
the ill-conditioned interior Laplace problem is separated
from the well-conditioned capacitance problem and solved
explicitly at a small additional cost.

To construct reduced-order models by matching Taylor
series terms of the transfer function at , iterative solutions
of a linear system must be performed repeatedly. A large num-Fig. 31. Coupled RC ladders.
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Fig. 32. Coupling noise(Z = 1): diffusion model versus 3-D.

Fig. 33. Diffusion model less accurate for largeZ.

ber of iterations are required for ill-conditioned problems, such
as those involving long wires. By reformulating the surface-
volume approach slightly, we found natural preconditioners
which produce rapid convergence in the iterative solve. We
presented results which demonstrate that the cost of computing

a fixed-order reduced model is order , independent of
condition number, and is only several times that of a multipole-
accelerated capacitance extraction.

Finally, we used our multipole-accelerated code to investi-
gate the accuracy of the one-dimensional diffusion equation
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for long RC lines. Our simulations show that the diffusion
equation is accurate up to relatively high frequencies, unless
the line is some distance from the groundplane.

APPENDIX

COMPARING DIFFUSION AND 3-D MODELS

For analyzing 2-D interconnect problems, such as a single
long wire or a collection of parallel wires, thediffusion
equationis often used in the electro-quasistatic approximation,
or RC regime. In the context of interconnect analysis, the basic
single-conductor diffusion equation can be written as

(49)

where are the resistance and capacitance, respectively,
per unit length, and is the electric potential along the
wire as a function of position and time. Equation (49) can be
easily derived by taking the continuous limit of the discrete RC
ladder circuit shown in Fig. 27. Similarly, numerical solutions
which are accurate up to a given excitation frequency can
be obtained from a circuit solution of the discrete RC ladder
network if a large enough number of sections or lumps are
used.

The diffusion model differs from the full 3-D model in
several ways. First, the diffusion equation assumes capacitive
coupling only between each node and the groundplane and
not among the nodes themselves, whereas the 3-D picture
models capacitive coupling among all panels as well as the
groundplane. Fig. 28 displays the capacitive interaction be-
tween one particular node and all other nodes. Second, the
diffusion picture models only current flow parallel to the wire,
whereas the 3-D picture models current flow in all three
directions in the conductor produced by possible potential
differences in the transverse directions. Results from the two
models approach each other as the conductor approaches the
groundplane and as the excitation frequency is lowered, since
the former effectively reduces the relative strength of panel-to-
panel interactions and the latter makes the conductor potential
more uniform in both transverse and longitudinal directions.

We present results from numerical experiments which com-
pare the diffusion and the 3-D models. A 3-D capacitance
extraction is performed on a single, rectangular wire over a
groundplane using the mesh in Fig. 1. A long enough wire is
used to ensure that the capacitance per unit length is within one
percent of the long-wire limit. This capacitance value, along
with the wire resistance computed from its cross-sectional
area, is used in the diffusion model. For all experiments in
this section, the conductor dimensions are 80m 1 m

1 m, with a distance above the groundplane at 1m
or 10 m . First, we perform the single-

wire experiment in which the near-end of the conductor is
excited by a voltage source and the resulting far-end voltage
is measured as a function of frequency. The setup is similar to
that in Fig. 1. The results from the diffusion and 3-D model
are shown in Fig. 29. A close-up view is shown in Fig. 30. It is
seen that up to a frequency of 100 GHz (10Hz), the diffusion
results give a fair approximation to the 3-D results. Also, the

approximation becomes worse as the distance between the wire
and groundplane is increased.

Next, we perform the two-conductor coupling experiment
in a set up similar to that of Fig. 4. The parameters used
for the diffusion model are extracted from the two-conductor
capacitance matrix, computed with the groundplane included,
and the coupled diffusion equation is solved numerically with
the coupled RC ladders shown in Fig. 31. The noise voltage

is plotted as a function of excitation frequency for the case
in Fig. 32, and a magnified view is shown in Fig. 33

for both the and cases. The same observations
can be made here as in the single-wire experiments. The low-
frequency, straight-line section in the figures correspond to the
capacitive limit described by (48) where the wire resistance
plays no role.

We conclude from the above experiments that the diffusion
model and the 3-D model yield similar results when the
conductors are in close proximity to the groundplane, in which
case, the relative importance of global capacitive coupling is
minimized.
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