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Efficient Formulation and Model-Order
Reduction for the Transient Simulation of
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Abstract—Accurately accounting for three-dimensional (3-D) To overcome this difficulty, we derive a mixed surface-volume
geometry and distributed RC effects in on-chip interconnect formulation and show how it prevents the magnification of
is important for predicting crosstalk in memory cells, analog  {he multipole error. In this formulation, the interior finite-
circuits, and regions of congested routing in digital circuits. In diff thod | dt ve L I ; -
this paper we describe a multipole-accelerated, mixed surface- iierence method IS used 1o solve Laplace's equ . e
volume formulation, and a preconditioned model-order reduction  the conductors, and the boundary-element method is used to
algorithm for distributed RC, or electroguasistatic, simulation solve theexterior Laplace problem.
of 3-D integrated circuit interconnect. The difficulties arising For three-dimensional (3-D) interconnect structures to be
ferfofgztit\t‘;y"'recsoor;sg';”t');ga'”'ggrfg‘itng(‘j t?frfgzg?vrgiﬁrﬁerogfﬁo?ch included along with the actual transistors in a coupled SPICE-
Results are presented to demonstrate that the computational level circuit simulation, it is necessary to construct low-order
cost for extracting a complete reduced-order model is order Macromodels whose terminal behaviors essentially capture the
N, where N is the number of surface unknowns. Finally, the complicated 3-D field interactions among the interconnect.
multipole-accelerated code is used to investigate the accuracy ofMost model order reduction technigues, such as asymptotic
the one-dimensional diffusion equation for long RC lines. waveform evaluation (AWE) [3] and the more recent &ad

Index Terms—Diffusion equation, integral equations, Krylov- via-Lanczos (PVL) [4] and Arnoldi [5] algorithms, have been

g
subspace methods, model-order reduction, transient analysis.  successful because it is feasible to carry out an LU decom-
position of the associatesparsesystem matrix, after which
|. INTRODUCTION each solve can pe perfprmed cher?\ply.. For problems mvolvmg
) . . .. large densematrices, direct factorization is computationally
W HEN analyzing high-performance integrated circuit d&xt actaple. Iterative methods can also be expensive if many
signs, it is well known that the single lumped resistorsq)tion iterations, or matrix-vector product computations are
capacitor model of interconnect is insufficiently accurate. It h?équired for convergence, as is the case for ill-conditioned
been shown [1] that reasonably accurate electro-quasistafiear systems. We show how the surface-volume formulation
or transient interconnect, simulations could be performed Ry, he” modified slightly to allow effectivereconditioning
computing the time evolution of the electric field both insidg pich produces rapid convergence in the iterative solution.
and outside the conductors via a finite-difference discretizationype gutline of this paper is as follows. The surface-integral

of Laplace’s equation. More'recently, a boundary-elemepf.m jation of the transient-interconnect problem is briefly
approach [2] based on Green's theorem was proposed Whiglyiined in Section Il. The phenomenon of ill conditioning

performs the calculation using the same surface discretizatiQNgescribed in Section I1l. The surface-volume formulation
used for ordinary capacitance extraction, thereby avoiding tRe yarived in Section IV, and the resulting error control is

large exterior domain mesh and computation. However, themonstrated in Section V. The guaranteed stable Arnoldi
Iattergapproach generates dense matrix problems, wh2|ch reqylf§orithm for model-order reduction is reviewed in Section VI.
O(N*) operations to solve directly, and at 1ea8tN=) 10  he modified surface-volume formulation and preconditioning
solve iteratively, whereV is the number of surface unknownse chniques are presented in Section Vil. Section ViIl describes
Therefore it is necessary to accelerate such methods WRER method of images for including groundplanes. Computa-
solving Ifirge probl_ems. The direct application of &) _ tional results are presented in Section IX where we show that
fast-multipole algorithm on the boundary-element formulatiof o ~ost associated with generatingth-order model is order
produces unacceptable results because the multipole errorsare, 4 is |ess than that of performiggrapacitance extractions.
magnified by the ill conditioning in the linear system whiChpg conclusions and acknowledgments are given in Section X.
results from the wide range of time constants in the dynamiqfina”y, in the Appendix, we compare the popular diffusion
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except on conductor surfaces where charge can accumulateNBere ¥ ¢ RY, Jxt ¢ R represent the discretized panel
potentials and external supply current densities. The elements

2 _
Vi, 1) =0, vgSs (1) of the dense matrice® € RVN and P € RN are
whereS is the union of all conductor surfaces. Since Laplace’s 1 1
equation (1) holds both inside and outside of the conductors, Py = —/ T a—— da (8)
all charges in the system reside on the conductor surfces @1 Jpanel, [l = @il
Therefore, the potential is related to the conductor surface D, — i 1 ! 9
) o K= AT da )
charge density; through the superposition integral panel, 91" [|7" — x|
!
Iz, t) = / ! ps (@', 1) da (2) wherexzy is the center of théth panel, andy; is the area of
at s dmel|lz — 2| at

the ith panel. MathematicallyP;; is the potential at; due
where the regions inside and outside the conductors &oea unitchargedistributed uniformly over panél Similarly,
assumed to have uniform permittivity Charge conservation Dy, is the potential at:; due to a unitdipole oriented along

[6] at the surface yields the continuity condition the normal to and distributed uniformly over pariel The
9ps() ) integrals in (8) and (9) are often referred to single-layer
g—t = Jiternal(gy _ jexternal( ) (3) anddouble-layerintegrals [9], respectively.

) SupposeN, of the N surface panels are connected to
where Jinternal gng jexternal gre the normal current densities\,onage contacts whose potentials. € RV are known but
taken just inside and just outside the conductor surface. Insigigose supply currentd®=* e RN are unknown. It is then
a conductor, the current obeys the constitutive relation  clear that (7) is an index-one differential-algebraic equation

cntornal N (DAE), solvable with backward-differencing formulas (BDF).

J (z) = % on () (4) In addition to the N, elements ofJ<<¢, the unknowns also
include theN; = (N — N,) elements of#; € R/, which
correspond to the noncontact panel potentials. Discretization of
(7) in time with the backward-Euler method yields the linear

where ¢ is the conductivity andh is the outward normal to
the surfacesS.
Combining (2)—(4) results in an integral formulation

5 5 system
—AnT z/}g;’ L :/ : / 8_1/}’( 1) daf v 4T 4T
S]|-|$—-’17||17’L H<Je>{t> :T‘I’tzmh— <TI+27TI+D>
+ = / : Jexterna,l(x/7 t) dd' (5) ¢ t=(m+1)h
o JsTe =7 <0) 10
where 7 = ¢/o is the dielectric relaxation time of the ¥, t=(m+1)h

conductors,z is a point on a conductor surface; is the

outward normal to the conductor surface, dad— 2’| is the Wwhereh is the timestep. The matrix, or linear operath,e
Euclidean distance betweenand z’. Careful application of R"*", is defined by the transformation rule

Green’s theorem [2], [7] to the first integral on the right-hand

side of (5) yields H<VVV) _ (“TTIHWHD) (g) +P<VOV) (1)
—arr 2D e )+ [0 1) gy , ,
ot s on’' ||z — 2| wherev € RV andw € RM-.
n 1 Jexternal (o7 ) dd (6) Since H is defined in terms of? and D, the unknowns
o Js lz—2a] @ can be interpreted as a distribution of monopoles and dipoles,

with the panels associated with the elementd9f acting as
uniform monopoles (single layers), and the panels associated
with ¥, acting as uniform dipoles (double layers).

Let S.ontact b€ the subset df which is in contact with external
voltage sources, and & = S\Scontact b€ the noncontact
or free surfaces. Theg(z, t) for z € Scontact IS known a
priori. Since there is no external current flow at noncontact

surfaces, we also hawe priori that J**™2l(z, ¢) = 0 for 1. DIFFICULTIES WITH MULTIPOLE ACCELERATION

T € Stee- . . . . .
reer Consider using a Krylov-subspace based iterative algorithm,
To numerically solve (6) for) at noncontact surfaces and 9 y b 9

for gexternal 4t tact surf th duct ; such as GMRES [10] to solve (10) at each timestep. The
or . at contact surfaces, tne conductor Surtaces arg, jieration of the GMRES algorithm requires computing
broken intoN small tiles, or panels. It is then assumed th

h ol there i tant potenti d ; tfl‘ e matrix-vector produdu®, whereu” is the kth GMRES
onteac | pan I’ ere |sta:jcon_s anApo ITn fﬁg an ahcons aén search direction. Sinc# is dense, computingIu® directly
external supply current densitfj. A collocation scheme [8], requiresN?2 operations. However, forminBlu* is equivalent

in which (6) is enforced at the (;entroid of each panel, s us%j computing potentials av points due to a distribution a¥

Lo genel_rate a sy?tem OV equations. The result is & x N monopoles and dipoled=ast-multipolealgorithms [11]-[13]
ense linear system can be used to compute approximate values of¥htentials

in BN operations wherg is independent ofV but dependent

on the required accuracy.

- % T(t) = 2nI1 + D)T(t) + P % I (7)
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We comment here that while higher-order multipole expan-
sions can be used (at a much greater computational expense) to
improve the accuracy, it only servesdelaythe onset of error
magnification, and since the condition number is observed to
grow quadraticallywith the length of the conductors, we shall
pursue other means of resolving this difficulty.

IV. THE MIXED SURFACEVOLUME FORMULATION

We derive here a mixed surface-volume formulation which
can be multipole-accelerated without loss in solution accuracy,
although it does not change the condition of the system
matrix. Consider the interior Dirichlet-to-Neumann operator
X, defined by the linear map between the surface potential

— 1 and its normal derivativdd/0n)y, where the limit for
Fig. 1. Single wire(L = 4) connected to voltage source at one end. (8/871)1/) is approached from the interior of the conductor

surfaces
If (10) is solved by using a fast-multipole algorithm to Xip(z) = i (z), reS. (14)
approximateH in (11), then an
/T, This relation allows the surface-integral formulation (5) to be
H <je;<ft ) =b (12) written as
. Mz, t) 1
whereH is the multipole approximation t#l, b is the right- —drT 9t /s [z — /|| (', t) da!
hand-side of (10), an&@ ;, J¢** are approximations to the true 1 1 cernal )
solution ® s, J** in (10). The relative error in the computed ;/ o=l JEERE(2 1) da
potentials and currents is given by o (15)
U, W, . . .
Jest | 7 Jexe IH - ﬁ” We now discretize the conductor surfaces if¥o panels
< < <KH)——— (13) and assume uniform potentials and currents on each panel as

|IH]] described in Section Il. The resulting matrix equation is

ngt
~ d 1 ext
where ||[H — HJ| is the multipole error andC(H) is the _47”%‘1’“) =P\ X®¥(t) + ;J ®) (16)

condition number [14] of. As is clear from (13), the error
from the multipole algorithm is magnified by the conditiorwhere P is as defined in (8). The matriX € RV*N
number ofH. To see the impact of even mild ill conditioningapproximates the continuous operafdrand is defined by
in H on multipole algorithm errors, consider the first model
problem, a rectangular wire with dimensiofs: 1 : 1, which Xer=9, (17)
is connected to a step voltage source at one end, shown in
Fig. 1. The steady-state voltage at any point on the conducydpere ¥, € RV corresponds tdd/9n)y at the N panels.
surface is 1 V. Fig. 2 is a plot of the steady-state voltage &iven ¥ at the surface nodes of a conductor, Laplace’s
the Opposite end of the wire (|abe|eﬂ) versus wire |ength equation can be solved in theterior domain with an interior
Computed using a mu'tipo|e_acce|erated a|gorithm_ finite-difference method to erldI’n at each surface node.
For the algorithm used (second-order multipole expansionklence, applyingk implies solving the interior problems.
the multipole approximation errors in the potential calculation As before, a fixed-timestep backward-Euler method is used
is between 0.1-1%, but the steady-state error is much lar§@rsolve the DAE derived from (16). The resulting linear
because of the magnification due to the ill conditioningdn System Is
As further evidence of this explanation, the condition number @ At At
of H is plotted as a function of wire length in Fig. 3. A< e}{t) =— W n — <— I+ PX)
For multiconductor systems, the condition numberIbf E t=(m+1)h h h
grows as the spacing between conductors is reduced. Fig. 4 0
shows a simple two-conductor problem. Each conductor has ' <‘I’c>t=(m+1)h'
voltage boundary conditions at one end. Fig. 5 shows that
the condition number for the system increases as the spaciie new operatoA is defined by the transformation rule
between the conductors is reduced. At very large separations,

the two conductors are decoupled, and the condition number A<V) _ a7 <V> + P{X<V> + <0 )} (19)
approaches that of the single-wire example in Fig. 1. w h \0 0 w

(18)
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Fig. 2. Steady-state voltage afl versus wire length.
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Fig. 3. Condition number grows with wire length.

The computation associated with applyid can be per- from applying P, which is adensematrix operation since
formed efficiently. Since the interior Laplace problem is solveitl couples every panel to all panels on all conductors. But as
independentlyor each conductor, the action of tBe operator described in Section 11, the application Bfto a vector can be
corresponds to solving élock-diagonal and sparse linear multipole-accelerated. Therefore the combined surface-volume
system. Thus the dominant cost of applyiAgin (19) comes approach can be made very efficient.
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the limit as the mesh becomes very fine, (i.87, — ~),
the discretized versions of these operators approach each
other, PX = (271 + D). Since ¢/(x) = constant implies
Xip(x) = (8/0n)y(z) = 0, both PX and (271 + D) are
singular matrices with the vector {1, %,-, 1} in the null
space. The surface-volume formulation essentially factors the
matrix (271 + D) into the product of a singulaX and a
well-conditioned, nonsingulaP. When the action ofP is
multipole accelerated in the mixed formulation, errors are
introduced only in the capacitance matrix of the surface panels
which does not alter the physical character of the system. This
error appears only during the transient and will be shown
experimentally to be small and independent of condition
number. This is expected since approximations are made only
The mixed surface-volume method provides an importaoh P, the well-conditioned part. The null space BfX is
guarantee on the solution accuracy. This is stated in theeserved. The same is not true for the Green’s theorem based
theorem below. pure-boundary formulation, since multipole approximations
Theorem 1: If the steady-state solution of (15) is such thaare made orD which alters the null space ¢2x1+ D).
the surface potential on each conductor is a constant, and none
of the conductors is floating, then the steady-state solution

Fig. 4. Parallel wireg L = 8), each with voltage contacts at one end.

computed by the mixed surface-volume method is exact, V. COMPUTATION RESULTS
regardless of multipole approximation error and discretizationTo show that both the pure boundary-element (BE) for-
error. mulation and the mixed finite-difference/boundary-element
Proof: Consider first the single conductor problem. Fronep/BE) formulation produce similar resultgthoutmultipole
(16), the steady state solution satisfies acceleration, we performed simulations on the single-wire
d 1 conductor in Fig. 1 using the dimensiods = 4, W = 1,
pr T=0=P <X\IJ + p Jext) (20) and H = 1. Here we introduce a discretization parameter

which represents the number of sections into which each unit-
From the theory of fractional Sobolev spaces, it can be shol@fdth is divided. For exampley = 3 in Fig. 1. One end of
that the potential coefficient matri® is nonsingular given the conductor is connected to a step voltage source, and the
a sufficiently fine discretization [15]. It then follows that/0ltage waveform at the other end is shown in Fig. 6. For the
X®-+(1/5)Je= = 0in the steady state. In the finite-differencé&0arse mest = 3, both methods produce small discretization
implementation ofX, this is equivalent to a resistor networkerrors. For the fine mest = 7, the two methods converge
connected to external voltage sources [1]. Assuming that gﬂ the same waveform. This confirms the validity of the new

voltage sources are at 1 V, the solution satisfies mixed formulation. .
Multipole acceleration is performed on both techniques for
@ 0 the double-wire example in Fig. 4, with actual discretization
X< 1 ) + 1 Jext =0. (21) (m = 3) shown. At their near ends, one wire is connected to a
o © step-voltage source, while the other is grounded. Simulated

In the equivalent resistor network pictur®, of the surface Voltage waveforms at their far ends are shown in Fig. 7.
nodes are connected to unit-voltage sources while the remdi! the mixed FD/BE formulation, the multipole-accelerated
ing N, surface nodes are left open-circuited. Network analysigsult produces the correct steady state, and is practically
immediately yields® ; = 1 and J&<¢ = 0, the exact steady- indistinguishable from the nonaccelerated explicit calculations.
state solution. For many-conductor problems, the same resif¢ Mmultipole-accelerated pure BE technique is seen to pro-
holds since each conductor is treated independently btheduce obviously erroneous results, as reported in Section IIl.
operator. m Experimentally, for the mixed surface-volume formulation, we

Since (6) and (15) are both derived from (5), the Greenfthd that second-order multipole acceleration always produces
theorem based and the surface-volume based formulations §@/lts matching those of the explicit calculations, independent
equivalent in their integral equation form. If we define th€' the condition number.

integral operator?X’ and D as A fairly complex 3-D interconnect example is presented
here to demonstrate that the multipole-accelerated surface-

_ 1 0 N volume method is necessary for large problems. The GMRES

Pri(e) = /5 ||l = '|| on’ (') da (22) [10] iterative method without preconditioning is used to solve

3 1 the linear systems (10) and (18). Polysilicon resistivity of

Dy(x) E/ <8_n’ M)V’(wl)da/ (23) p = 0.02 Q-cm is assumed for all conductors, and oxide

s permittivity of ¢, = 3.2 is assumed throughout space. All com-

then formally PX = (2xI + D) by Green’s theorem [7], putations are performed on a 266 MHz DEC AXP3000/900
where [ is the identity operator. Thus it follows that inworkstation with one gigabyte of physical memory.



CHOU AND WHITE: TRANSIENT SIMULATION OF 3-D VLSI INTERCONNECT

Two parallel wires

1459

140

130

120

—_ Y
o —_
[=] (=]

Condition Number
©
o

80

70

60

T T T T T T T T T

L 1 1 1 1 1 1 1

50
0

1
10 20 30 40 50 60 70 80 90

100
Separation between two wires
Fig. 5. Condition number increases as wire separation decreases.
Voltage at far end of bar
1 T T T T T T g
0.9- T ]
0.8F i :
s
. Ve
7
0.7+ Z Dash: m=3, FD/BE .
S g
Y/,

0.6F Al Solid: m=7, FD/BE 1
[} 9
o A
% 0.5+ -/’ Dash-dot: m=3, Pure BE s
> /'/

04r ./,/ Plus: m=7, Pure BE .

#

0.3F .

0.2+ -

0.1F b

G 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160

time (units of tau)

Fig. 6. Without acceleration, both techniques produce correct results.

Fig. 8 displays a model of a six-conductor SRAM cell. Thavith Fig. 8 corresponding ton{ = 3). The pair of L-
groundplane is shown but not used in this example. Eashaped conductors (1 and 2) are the clock lines, while the
conductor is connected at a port labeled 1-6. An additior@édir of II-shaped conductors (5 and 6) are the data lines.
port, labeled 7, is connected to conductor 3. Table | lists tie third pair of intertwined, interior conductors (3 and 4)
number of surface unknowns for four successive refinementsake interconnections between transistors in the cell. Assume
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Double Wire Problem, L=8, m=3
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Fig. 7. Multipole errors get magnified only in the pure BE method.

1 TABLE |
ProBLEM Size AND FD TiIME FOR SRAM
m | 1 [ 2 [ 3 ] 4

panels | 986 | 3,944 | 8,874 | 15,776
FD time | 0.3% | 1.0% | 2.5% | 6.7%
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is used only for the coarsest megh = 1). From the voltage
5 waveformsv5 and o7, it is seen that thgm = 1) mesh
results in significant discretization error. The finer meshes
generate large numbers of unknowns which necessitates using
the multipole-accelerated FD/BE method. CPU times for the
multipole-FD/BE method are plotted in Fig. 10, which can be
¢ Seento exhibit linear, 0©(N), growth. CPU times for the
explicit-BEM approach are extrapolated from the = 1)
mesh computation, and grows @§/N?) since it is a dense-
matrix method. For thém = 4) mesh, with 15776 panels, the
multipole-accelerated method is seventeen times faster than
the dense-matrix approach.
We make the additional note here that the CPU time
consumed by the interior finite-difference computation as a
Fig. 8. SRAM cell (» = 3 mesh). percentage of the total CPU time grows with increasing mesh
refinement, but remains small as shown in Table I. This
onfirms the earlier assertion that the cost of the BE calculation
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that ports 3 and 4 are grounded and that ports 5, 6, and )
are floating during a particular fetch cycle. We simulate tHg dominant.
cross-talk noise induced on these lines by a unit-step voltage
source on both ports 1 and 2. Such spurious signals must be
minimized at the design phase to ensure error-free operation.

Results of the time-domain backward-Euler simulation are In order to fully evaluate the effects of interconnect on
shown in Fig. 9. The multipole-FDBE method is applied toverall circuit performance, it is necessary to perform a
four successively finer meshés: = 1, 2, 3, 4), while the coupledcircuit-interconnect simulation at the SPICE level. Itis
explicit-BE method, due to CPU time and memory limitationgmpractical to incorporate the large, dense matrices associated

VI. THE ARNOLDI ALGORITHM
FOR MODEL-ORDER REDUCTION
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with the 3-D interconnect directly into the circuit simulatorAWE [3] and the PVL algorithm [4] have been used success-
Instead, reduced-order models, which use small matricesftdly for this purpose. In this section, we summarize previous
capture the current—voltage relations at the terminal ports wbrk on the similar Arnoldi [16] algorithm, a numerically
the interconnect, can be extracted from the full model and thesbust orthogonal-projection based scheme which generates
used in the coupled simulation. Techniques such as asymptagfi@ranteed stable reduced-order models [17].
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Consider the single-input-single-output (SISO), linear time-  VII. PRECONDITIONED MODEL-ORDER REDUCTION
invariant system described by a system of first-order ordinarygoih the AWE and PVL algorithms have been success-

differential equations of the form fully applied to reduce circuit networks for the lumped-
x(t) = Ax(t) + bu(t) element model of the interconnect since the associated large,
sparse matrices can be factored to solve for the low-frequency
moments of the transfer function [19]. The difficulty with
applying the AWE, PVL, or Arnoldi algorithm to reduce

where theN-vector x represents the circuit variables or th%-D interconnect models is that the associated large, dense

detailed internal voltages of the interconnect, andshe N . ; N
. : ) : . m|atr|ces are too expensive to store and factor. Matrix-implicit
matrix A represents the detailed interactions among mternlta\

i o . erative solution can also be expensive since many matrix-
elementsb € RV is the excitation vector corresponding tQ P y

: . [ . vector product computations are required for ill-conditioned
the input terminal, ancc € R" is the observation vector P P d

. . ...problems. We recall here that the matrix ill conditioning results
corresponding to the output terminal. The scalar quantltlgs

; . . fom the wide ran f tim nstan i with typical
u(t) andy(¢) are the input and output terminal-port variables om the wide range of time constants associated with typica

. . PR |‘1terconnect, and is thus independent of the problem formu-
through which the linear system “interfaces” with external .. . .
oo : . ation. In Section VII-A, we show that the straightforward
circuitry. The state-space representation of (24) is

iterative solution converges slowly, and in Section VII-B, we
sX(s) = AX(s) + bU(s) refqrmulate the. mixed surffa_ce-volume approach slightly and
¥ (s) =T X(s) (25) derive an eﬁectlye precondmo-ner wh|ch allows for rgp|d con-
vergence of the iterative solution. Section VIII describes how
to include ideal groundplanes in the problem, and Section 1X
presents the computational results.

y(t) =cT'x(t) (24)

where X, U, andY denote the Laplace transforms =f u,
andy, respectively. The transfer functidfi(s) = Y(s)/U(s)

can be written L .
A. Application of Arnoldi

N .
F(s)=c (I-sA™!) .p= Z Vk 26) . To simplify the notati_on in (16), _IeP = (—1/4we)P and
= 5= A D = (-1/4n7)PX, which results in
d A .
wherep = —(A7!) - b. 7 U(t) = DP(t) + PI™(¢). (29)

Since N can be of the order of tens of thousands, it is .
desirable toreducethe large and dense matriA or A—! Since D is singular, the steady-state voltage(¢) is not
in a manner that captures the low-frequency behavior of theiquely determined by the external curreft*(¢). Thus
transfer function. This is done by matching Taylor seriese recast (29) as a DAE system. This is done by using
terms ats = 0. It has been shown in [16] that an Arnoldi-voltage sources instead of current sources and then computing
based orthogonalization process can be used to constructlan resultingn-port frequency-dependent admittance matrix,
orthonormal basis for the Krylov subspace which is then well behaved near zero frequency. Recall that
the V unknowns are the firs¥; entries in the potential vector
K,(A™", p) =spa{p, A™'p, A™?p, ---, A= Upl. g corresponding to the free potentials; plus theN, nonzero
(27) externally supplied currentE**. The lastN. entries®, in ¥
are givena priori and correspond to external voltage sources.

After ¢ steps, the Arnoldi algorithm returns a sefyadrthonor- |n frequency domain, the result is a system of equations
mal vectors, as the columns of the matiy € R >4, where

N is the size ofA, and typicallyq < N. The reduced-order s })fo _gfc} BI;Q(S) } = { ]A)chqlf(‘;) }(30)
transfer function can then be constructed as Doy —Pee | [JT(s) (Dec = sD)®e(s)
where D,y € RVOXNr Dy € RNV D e RVXNT

F(s) =& . (I-sH) ™" - p 2 XN, i Y matri
(s)=¢” - (I—sH,) " -p andD,. € ®N-*N gre partitions of théd matrix

H,=VI(A™Y)V,

~ a ﬁff ﬁfc

B =VTp — [plle: D= [ A } (31)
~T Tq Dcf Dcc
¢t =c'V, (28)

Similarly, Py € RN Nr P RVXNe P g RNx N7
where H, is a ¢ x ¢ upper Hessenberg matrix. The transfeand P.. € RN-*Ne are partitions of theP matrix. The
function F(s) of the reducedjth-order system (28) has beersubscriptf denotes the free-floating panels and the subscript
shown in [16] to match(q — 2) derivatives, or moments, of ¢ denotes panels in contact with voltage sources. Since the
the exact transfer function in (26) at= 0, the low-frequency contacts are typically at the ends of long conductors, the
limit. The triplet [H,, p, €] is said to be theeduced-order number of contact panels is typically much smaller than that
modelof the triplet[A~1, p, c]. of floating panels. Therefor@® .. is a small matrix and can be

It is possible to extend the present work to the multiplenexpensively inverted. Usinﬁc—c1 allows (30) to be recast in
input—multiple-output (MIMO) case using block algorithmghe standard form for reduced-order modeling. ket RV,
similar to those described in [5] and [18]. w € R be vectors of ones and zeros which selects the
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TABLE I We start from the original integral formulation of (5). By
MATRIX-VECTOR MULTIPLIES REQUIRED PERORDER VERSUSLENGTH OF WIRE Writing the surface integrals ovéras a direct sum of integrals
Wire Aspect Ratio [16 [32]64] 128 over the contact and noncontact surfacgs,iact and Stece,
Mat-Vecs (Direct apply) 24 | 37 | 60 | 102 (5) becomes
Mat-Vecs (Preconditioned) | 4 | 5 | 5 | 6 (z, t) 1
—47TT —_ = / TSI
ot e
input voltage and output current panels, respectively. Then (oY | T
W.(s) = vu(s) and y(s) = wT - J=(s), where u(s) is g @D+ (', ) |da
the scalar voltage input angls) is the scalar current output. Sy 1 }
After some amount of algebra, the admittance transfer function + / — 7
— i Scontact ||$ - ||
g(s) = y(s)/u(s) is - ;
T 1 81/) / t 1 Jexternal / ld /
9(s) = (ko+ kys) +c¥ - (sI—A)"L b (32) g @D+ (2", ) | da’.
where (35)
A=D;; -P; P D, (33) The assumption that the charge dengityis zero at contact

R N foa T T surfacesS qutact, COMbined with the continuity condition (3)
b = (Dye = PP Dee + APpP) v, €8 = —w and the constitutive relation (4), implies
P;}Dcf and kg, k1 are scalar constants.

Rewriting the second term in (32) ag(s) = cT . %(a{’ t)+ljextemal($/7 t) =0, 7' € Scomact. (36)
(I-sA™1) . p, withp=—(A~!) b, we apply the Arnoldi on’ 4
method to reduce the tripltA=1, b, p] by matching low- Thus, the second surface integral in (35) vanishes. In addition,
frequency moments. For each additional order in the modsince there are no external supply currents at noncontact
a new vector in the Krylov subspadé, (A1, p) in (27) surfaces, Jextemal(y/ ) = 0 Va' € Sgee. The unknown

is generated by applying GMRES to perform an iterativeotentials onSy.. then satisfy

solution of the system A o (x, ) / 1 N oy
—ArT —(— = — 75 &, a
A -x=RHS (34) ot Sneo |[& = || O
using only multipole-accelerated matrix-vector multiplication =— / % 1 Jiternal (47 4y g/
as described in Section II. Sieee 2=l 0
As a numerical experiment, we directly apply the above T € Shree (37)

Arnoldi algorithm to the simple interconnect in Fig. 1,

single wire, with the supply voltage as mpu_t variafals) As before, we discretizg into Ny elements and,. into V,
and the supply gurrent as the out.put Va“a@l@)' The elements using the collocation scheme. The interior Dirichlet-
same calculation is performgd fori wires of varying Iengthffo-Neumann operator defined in (17) can be rewritten as
keeping the other two dimensions fixed. Our numerical results, .
summarized in Table Il, show that the number of iterations, U, Xy Xpl[®] 1 J}m
or matrix-vector product calculations, required for GMRES |:lIlc:| = [ch XCJ |:lIlc:| - Jint
convergence in solving (34) grows quickly as the wire length, c
or aspect ratio, is increased. This is caused by the systemere Ji** ¢ RV and J™ € R correspond to normal
matrix A becoming more ill-conditioned as the range of timeurrent densitiegust insidethe Ny noncontact panels and the
constants, or eigenvalues, grows with the wire length. It ¥, contact panels, respectively. Discretization of (37) yields

well-known that the rate of convergence for Krylov-subspathe Ny x N; system

Rvhere (4) has been used in the second equality.

] (38)

g

style algorithms deteriorates with growing matrix condition d . .
number [20]. pr U p(t) = =Py JP(t) (39)
B. Preconditioned Formulation where P;; € R *Nr has been defined previously. Com-

We derive here a slightly modified version of (16), whicfpining (33) ancﬂ (39) and again lettingr.(s) = vu(s) and
can be easily preconditioned to accelerate convergence of 311%) =w" - J2*(s), we have the state-space form
iterative method used to compute the Krylov subspace vectors. sW1(s) = AW 4(s) + bu(s) (40)
In this formulation, we assume that the panels in contact (5) = - W (s) +d - uls) (41)
with voltage sources store no charge, or equivalently, that the 4 s
contact capacitances have been removed. This model may alé@re
be supported based on physical arguments: terminal ports of ) 1
interconnects are not exposed surfaced when the connections A=0PsXyp = <H>Pffxff (42)
to transistors or other circuitry have been made. The contact
panels in practice exisinside conducting material where b = (1/477)P;X.v, ¢!’ = wiX y, andd = wi'X,.v.
Laplace’s equation holds, and hence cannot store charge. The new expression forA in (42) is to be compared
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Compare formulations with and without end—face capacitors
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Fig. 11. Compare formulations with and without contact-port capacitances.

Convergence with discretization
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Fig. 12. Solution converges with discretization.
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frequency (1/s)

11

10

with that in (33). Notice thatD;; = [1/(4n7)PX];; # waveforms computed for a length = 64 wire, in the absence
(1/4n7)P;;X;;. Time-domain solutions show that forof a groundplane, excited by a unit-step voltage source at
reasonably long wires, the two formulations yield the sanmbe near-end.
results since the capacitances associated with the contact por8roceeding with the Arnoldi algorithm as in Section VII-
are comparatively small. See Fig. 11 for the far-end voltage the central task is to solve linear systems of the form
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Convergence of reduced models
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Fig. 13. Reduced-order models converge in frequency domain.

x10°° Current at port 2 (grounded)
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Fig. 14. Port 2 current versus time computed with reduced models.

A .x = RHS for arbitrary right-hand sides. Since the operatovhere H;} is a sparsematrix approximation to the inverse
A has now a product form, it is easy to reduce its conditioof the densematrix P;; and is constructed by explicitly
number by making the substitution inverting local, overlapping blocks @ ;. For details on this
computation, which fits naturally in the fast-multipole algo-

_ —1y7—-1
x =Xy (43)  rithm as demonstrated in the capacitance extraction program
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Open-—circuit voltage at port 2
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voltage (V)
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Fig. 15. Port 2 voltage versus time computed with reduced models.

0 Two-wire coupling noise example
10 T T T T T T L T
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full

1074 - DLBON3Z1 poly wires with GNDPLANE

10 s Lol L1 ov gl M TSN e | L t—iaaaal el
10° 10"
frequency (1/s)

Fig. 16. Poly-to-poly coupling voltage noise in frequency domain.

FASTCAP, see [12]. The operatd(;} is the exact inverse free-panel potentialsP ; are computed along witljif’flt as a
of Xys, and its action is effected by solving the interioby-product.

Laplace problem with mixed boundary conditions: Dirichlet Using thepreconditionerX; ;II;;, we apply GMRES to
on the contact panels¥, = 0) and Neumann on the freesolve fory in

panels Jifm arbitrary). As in the pure Dirichlet-to-Neumann

problemX, the mixed problem is solved by LU-factoring the 1 ( ffH;}) .y — RHS (44)

associated sparse matrix generated from finite differences. The vy
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Two-wire coupling noise
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Fig. 17. Poly-to-poly coupling voltage noise in time domain.

Two-wire coupling noise example
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Fig. 18. Metal-to-poly coupling voltage noise in frequency domain.

and then compute the final solutionby applying (43). This is much smaller than that oA and nearly independent of
preconditioned Arnoldi algorithm is applied to the single-wireonductor length. The ill conditioning caused by the wide
interconnect test case in Section VII-A. Table Il displays thenge of time constants has been removed by explicit solution
number of iterations, or matrix-vector product calculations, ref the interior probIemX;}, and the ill conditioning caused
quired for the iterative solution of (44). The rapid convergend®y the proximity of conductors is removed by the overlapping
shows that the condition number of the operaRffH;} preconditionerH;}.
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Two-wire coupling noise
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Fig. 19. Metal-to-poly coupling voltage noise in time domain.

SRAM example with groundplane (6 conductors)
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Fig. 20. Convergence with discretization for SRAM.
We make a note here that the starting Arnoldi vegtor VIIl. G ROUND-PLANE IMPLEMENTATION

in (27) is computed by = —X;}Xfc - v rather than an _ o . .
iterative solve involvingA. Hence, ag-order reduced model ~ The potential variation of the grounded silicon substrate is
requires¢ GMRES iterative solutions rather thafy + 1) typically of the order of tens of millivolts due to the many
solutions. local, grounded body-plugs. Since this is small compared
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SRAM example with groundplane (6 conductors)
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Fig. 21. Reduced-order models for SRAM.

with the 3- or 5-V power supply, we will assume &teal
groundplanein this paper. To include the groundplane in
the preconditioned formulation of the previous section, the
only modification to make is the charge-to-potential operator
P ;. The interior Dirichlet-to-Neumann operat3 remains
unaffected. Let the groundplane be approximated by a finiteg
sheet, and assume it is explicitly discretized ifg panels.
Let ¥, € RN+ be the vector of ground panel potentials, and
let J, € RYs be the vector of corresponding panel currents.
To include the groundplane, additional terms are introduced
into (39)

Py Py [[IP] __d ‘I’f (45)
P,y Pyl Jy T dt Fig. 22. Three-level interconnecty( =1 mesh).

where Py, € RV Mo, Pyp € RV Py, € RYN gperation. Since th@(IV) fast-multipole algorithm is used,

describe capacitive interactions among conductor surfaGgRa net cost is twice that of the problem without the ground-
and the groundplane, and are similarly definedPas. The plane.

condition (d/dt)®,(t) = 0 in the dynamic (45) implies that |t would also be possible to use precorrected-FFT
d methods with a modified Green’s function to include the
7 Y= —PysJy (46)  groundplane [21].
Py =Py - Png Py (47) IX. MODEL-ORDER REDUCTION RESULTS
whereP;; € RV *Ns s the new charge-to-potential operator In this section, we present numerical results of our
in the presence of a groundplane. Siég may be large, it is multipole-accelerated, preconditioned model-order reduction
impractical to factorP,,, and sincef’ff is applied multiple algorithm and demonstrate its accuracy and efficiency.
times in an iterative solve, it is impractical to apﬂ]’yg‘gl via Throughout, polysilicon conductivity and oxide permittivity
an inner-loop iterative solve. Hence we will use thethod-of- will be assumed unless otherwise noted. The groundplane
images[7] to apply the operatof’ff. Fictitious image charge is also included in all following examples. Fig. 12 shows
panels are created by reflecting real charge panels acrossthigefrequency response for a 2 port, computed from the full
groundplane and are always assigned the opposite chargenédel, for a rectangular conductor with aspect ratiogm
similar procedure applies to the overlapping preconditioning 1 zm x 64 um, sitting oneum above the groundplane.
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Three-level interconnect with groundplane
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Fig. 23. Convergence with discretization for three-level interconnect.
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Fig. 24. Reduced-order models for three-level interconnect.

Two discretizations are used: the coarser one divides each unifig. 13 is a plot of the frequency response of the reduced-
square into nine equal panels, and the finer one divides eactler models for the same conductor and shows that a
unit square into 16 panels. It is seen that up to a frequencytefentieth-order model produces virtually identical results as
10 THz (103), the results for the two discretizations are nearlthe full model of order 2304. Time-domain data generated
identical. Henceforth, we shall use the coarser discretizatiohy the full-order models and the reduced-order models are
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CPU time vs. problem size
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Fig. 25. CPU time grows linearly with problem size.

also given for comparison. Fig. 14 displays the short-circuit TABLE Il

current in port 2 (held at ground), and Fig. 15 displays the TotaL (REAL+IMAGE) PANEL COUNT
open-circuit voltage at port 2 for various reduced models; the m [ 1 [ 2 | 3 [ 4
excitation in both is a unit-step voltage source at port 1. We SRAM | 1,952 | 7,808 | 17,568 | 31,232
see from Figs. 13 and 14 that third-order models are accurate 3-level | 5,078 | 20,312 | 45,702 | NA

enough if there are no signals in the system faster than 10-30
ps. Fig. 15 shows that the third-order model captures most of

the essential features of the true response, while the first-ordeNeXt: We apply our algorithm to two large interconnect ex-
model, which is equivalent to a single-lumped RC modefmples. The first is the six-conductor SRAM structure shown
fails rr;iserably in Fig. 8. The structure is treated as a six-port problem, with

Next, we perform two-conductor coupling experiments uébe ex0|tat|oth§)r1rts Iabelt(ajdll—B m.t;[]h.? figure. The t3|mulit'|on
ing the same configuration as in Fig. 4, with the drive nowrun wi € groundplane with Is approximate position

shown in the figure. (Refer to Section IV for the discretization

conductor connected to a voltage source and the “victim X . .
. . sgheme and labeling.) Total panel counts, including real and
conductor grounded at the near ends. We are interested in e . .
) . . ) image panels, are shown in Table lll. Fig. 20 shows the
voltage noisev2. Both wires have dimensions;im x 1 um :
frequency response of the conductariég computed using

x 80 pm and sit 1um above the groundplane. Fig. 16 ShOW\S/arious discretizations. It is seen that up to'’LHz, the

the magnitude ob2 in the frequency domain generated fron}esults are nearly identical for the mesh refinements= 3
several reduced models. It is seen that a fifth-order modela| dm = 4 refer to Section V for the definition of the
necessary to capture the full model up to 10 GHz. Fig. ]rZesh parametem. The coarser meshes = 1 andm = 2
shows the time-domain response to a unit-step voltage oy phe ysed for quick estimates. The model-order reduction
source. The fifth-order model is nearly indistinguishable fromq\its form = 4 is plotted in Fig. 21, which shows that
the full model. Similar experiments were performed with thg qivth-order model is necessary to capture the kratein
driven polysilicon line replaced by aluminum and the victiMne frequency response atl00 GHz. We make a note here
line material unchanged. Results are shown in Figs. 18 and §iht the straight-line section of Fig. 21 corresponds to the
The metal line introduces a much smaller timescale due to jgy-frequency approximation

high conductivity and, as a result, the coupling noise remains

significant up to a much higher frequency 10 THz. The time Y = jwC (48)
response also shows a much faster risetime. For purposes of

SPICE-level simulation in which the excitation is bandwidthwhere Y, C are the admittance and capacitance matrices,
limited to, for example, below 10 GHz, a fifth-order modetespectively. Resistance plays no part in the interconnect con-
is sufficient. ductance until the higher-frequency components are excited.
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Memory use vs. problem size
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Fig. 26. Memory use grows linearly with problem size.
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A three-level interconnect structure with a coarse discretizZa9- 28 Global capacitive coupling model.
tion (m = 1) is shown in Fig. 22, in which each unit square

is 1 pm x 1 um and the groundplane is gm below the TABLE IV

bottom-level interconnect. Polysilicon is used for the bottom RAT© OF REDUCED-MODEL TO CAPACITANCE-EXTRACTION CPU TiES
level and aluminum for the top two. Each interconnect layer [ m=1] m=2 | m=3 [ m=4

is excited at a single port, as shown in the figure. In this 3level | 1.6 | 1.6 | 24 | NA

example, we compute the first column of the admittance matrix SRAM | 1.8 | 22 | 30 | 31

by connecting port 1 to a voltage source and grounding ports

2 and 3. Three discretizations were uged = 1, 2, 3), and _ _ ) )
the total panel count is shown in Table III. capacitance extraction program. Table IV displays the ratio

Fig. 23 shows the convergence with discretization of tfyf the CPU times. While a sixth-order model essentially
frequency response fofis;, and Fig. 24 shows results ofSolves the capacitance problem six times, the actual CPU
reduced-order modeling. Although the frequency dependerftB€ Overhead is seen to be only a factor of two to three.
is complicated, a third-order model is accurate up to 1 GH-ﬂ“S is because the significant set-up time associated with
and a sixth-order model accurate up to 10 GHz. the multipole algorithm, common to both procedures, is better

To demonstrate that the entire multipole-accelerated pfnortized in the reduced-order model computation. Memory
conditioned model-order reduction algorithm has order 'eduirements are nearly identical in both cases.
complexity, we plot CPU time and memory used versus
the total number of panels (real and image) in computing X. CONCLUSIONS

a single-input-multiple-output (SIMO), sixth-order model for \\e have shown that while the boundary-element
the SRAM and the three-level interconnect examples. Sg@mulation of the transient interconnect problem eliminates
Figs. 25 and 26. the need for exterior volume meshing, it produces large
Since a SIMO reduced-order model corresponds to one cghrors when multipole-accelerated due to the somewhat
umn of the frequency-dependent admittance matrix, we cofpor conditioning of the problem. The ill conditioning is
pare this cost to that of computing one column of the capagherent to problems with a large range of time constants,
itance matrix using FASTCAP [12], a multipole-acceleratedr natural frequencies. This magnified error is eliminated in
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Comparing 3D to diffusion results: voltage attenuation
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Fig. 29. \oltage attenuation: diffusion model versus 3-D.

0 Comparing 3D to diffusion results: voltage attenuation
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the ill-conditioned interior Laplace problem is separated® - N\ T %\ %#\
from the well-conditioned capacitance problem and solved” = : -

L < = = - ==L
explicitly at a small additional cost. WMM]L ......... MNI]_

To construct reduced-order models by matching Taylor | T~ T 7 T T T
series terms of the transfer functionsat 0, iterative solutions N ) ) N - N
of a linear system must be performed repeatedly. A large nufig. 31. Coupled RC ladders.

the alternative mixed surface-volume formulation, in which?qw\ vy
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Diffusion model less accurate for large

ber of iterations are required for ill-conditioned problems, such fixed-order reduced model is ordéY, independent of
as those involving long wires. By reformulating the surfacesondition number, and is only several times that of a multipole-
volume approach slightly, we found natural preconditioneesccelerated capacitance extraction.

which produce rapid convergence in the iterative solve. WeFinally, we used our multipole-accelerated code to investi-
presented results which demonstrate that the cost of computgade the accuracy of the one-dimensional diffusion equation
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for long RC lines. Our simulations show that the diffusiompproximation becomes worse as the distance between the wire
equation is accurate up to relatively high frequencies, unlesmsd groundplane is increased.
the line is some distance from the groundplane. Next, we perform the two-conductor coupling experiment
in a set up similar to that of Fig. 4. The parameters used
for the diffusion model are extracted from the two-conductor
capacitance matrix, computed with the groundplane included,
and the coupled diffusion equation is solved numerically with
For analyzing 2-D interconnect problems, such as a singlg coupled RC ladders shown in Fig. 31. The noise voltage
long wire or a collection of parallel wires, thdiffusion 42 js plotted as a function of excitation frequency for the case
equationis often used in the electro-quasistatic approximatio; — 1 in Fig. 32, and a magnified view is shown in Fig. 33
or RC regime. In the context of interconnect analysis, the basit both theZ = 1 and Z = 10 cases. The same observations

APPENDIX
COMPARING DIFFUSION AND 3-D MODELS

single-conductor diffusion equation can be written as can be made here as in the single-wire experiments. The low-
P 52 frequency, straight-line section in the figures correspond to the
RC 5 Oz, t) = 97 O (x, t) (49) capacitive limit described by (48) where the wire resistance

£

plays no role.

where R, C are the resistance and capacitance, respectivelyWe conclude from the above experiments that the diffusion
per unit length, andb(z, t) is the electric potential along themodel and the 3-D model yield similar results when the
wire as a function of position and time. Equation (49) can gonductors are in close proximity to the groundplane, in which
easily derived by taking the continuous limit of the discrete REas€, the relative importance of global capacitive coupling is
ladder circuit shown in Fig. 27. Similarly, numerical solutiongninimized.

which are accurate up to a given excitation frequency can
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