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A Precorrected-FFT Method for Electrostatic
Analysis of Complicated 3-D Structures

Joel R. Phillips and Jacob K. White,Associate Member, IEEE

Abstract—In this paper we present a new algorithm for ac-
celerating the potential calculation which occurs in the inner
loop of iterative algorithms for solving electromagnetic boundary
integral equations. Such integral equations arise, for example,
in the extraction of coupling capacitances in three-dimensional
(3-D) geometries. We present extensive experimental compar-
isons with the capacitance extraction code FASTCAP [1] and
demonstrate that, for a wide variety of geometries commonly
encountered in integrated circuit packaging, on-chip interconnect
and micro-electro-mechanical systems, the new “precorrected-
FFT” algorithm is superior to the fast multipole algorithm used
in FASTCAP in terms of execution time and memory use. At
engineering accuracies, in terms of a speed-memory product, the
new algorithm can be superior to the fast multipole based schemes
by more than an order of magnitude.

Index Terms—Capacitance extraction, dense matrix algebra,
electrostatic analysis, fast Fourier transform, integral equation.

I. INTRODUCTION

A PPLICATIONS as diverse as analysis of signal integrity
in integrated circuit interconnect, characterization of

electrical packaging, and design of microelectromechanical
systems [2] require accurate electrostatic analysis of com-
plicated three-dimensional (3-D) structures. Recent work on
techniques for rapid electrostatic analysis for capacitance
extraction have been based on random-walk methods [3],
partitioning heuristics combined with techniques from matrix
extension theory [4], [5], finite-difference [6], [7] or finite-
element methods [8], [9], or method-of-moments [10]
techniques.

Algorithms using method of moments [10] or weighted
residuals [11], [12] based discretizations of integral equa-
tion formulations, also known as boundary-element methods
[13], are commonly used to perform electrostatic analyzes,
but such approaches generate dense matrix problems which
are computationally expensive to solve, and this limits the
complexity of problems which can be analyzed. Multipole-
accelerated iterative methods [1], [14]–[16] have recently been
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used to reduce the computational cost of boundary-element
based methods, but these techniques are still computationally
expensive and, of more immediate consequence, memory
exhausting.

In [1], a fast algorithm for electrostatic analysis of
3-D structures was presented. The computation time for the
algorithm was shown to grow nearly as , where is the
number of panels used to discretize the conductor surfaces,
and is the number of conductors. The algorithm of [1]
was based on the hierarchical multipole algorithm [15], which
can perform the dense matrix-vector product associated with
discretized potential integral equations in order-( )
time and memory. In this paper, we describe a precorrected-
FFT approach which can replace the fast multipole algorithm
for accelerating the Coulomb potential calculation needed to
perform the matrix-vector product. The central idea of the
algorithm is to represent the long-range part of the Coulomb
potential by point charges lying on a uniform grid, rather
than by series expansions as in fast multipole algorithms [15].
This grid representation allows the fast Fourier transform
(FFT) [17]–[19] to be used to efficiently perform potential
computations. Because only the long-range part of the potential
is represented by the grid, the grid is not coupled to the
underlying discretization of the structure. Decoupling the long
and short range parts of the potentials allows the algorithm to
solve problems which may be discretized in a very irregular
fashion in nearly optimal time.

Numerous algorithms exist for the “n-body problem” of
evaluating the potential of a set of charges at all the other
charge points, such as the “particle-mesh” methods (see [20]
for extensive references), the fast multipole method (FMM)
[15], and multigrid methods [21]. The various algorithms differ
in the way the long range potential is approximated and in
the way local interactions are treated. We have attempted
to develop an algorithm which, like particle-mesh methods,
exploits the availability of efficient discrete Fourier transform
implementations while at the same time preserves the higher
accuracy of the multipole-based schemes, but is also (like
multigrid schemes) easily adapted to a broad class of kernels.
In addition, the algorithm is, in the way local interactions are
treated, particularly adapted to boundary-integral solvers.

The precorrected-FFT method, described below, is at best
an algorithm. It is possible to construct geometries
for which the performance of the precorrected-FFT algorithm
is inferior to the fast multipole methods, but we demon-
strate that for many structures associated with packaging,
on-chip interconnect, and micro-electro-mechanical systems,
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precorrected-FFT methods are faster and use substantially less
memory.

The outline of the paper is as follows. The boundary-
element formulation and a standard iterative algorithm for
solving the generated matrix problem are briefly reviewed
in Section II. The precorrected-FFT method is described in
Section III and some analysis of the algorithm performed in
Section IV. Simple examples are examined in Section V to
show various aspects of the algorithm. In Section VI, our
precorrected-FFT method is compared to FASTCAP on a
variety of realistic examples, and is shown to be faster and use
substantially less memory. Finally, in Section VII, we discuss
some possible extensions of the algorithm and strategies to
reduce the computational complexity for very inhomogeneous
problems.

II. PROBLEM FORMULATION

The capacitance of an -conductor geometry can then be
summarized by an symmetric matrix , where the
entry represents capacitive coupling between conductors

and . To determine theth column of the capacitance matrix,
one need only solve for the surface charges on each conductor
produced by raising conductorto one volt while grounding
the rest. If the conductors are embedded in a homogeneous
dielectric, these potential problems can be solved using
an equivalent free space formulation in which the conductor-
dielectric interfaces are replaced by a charge layer of density

[22], [23]. The charge layer in the free space problem will
be the induced charge in the original problem ifsatisfies the
integral equation

surfaces (1)

where is the known conductor surface potential, is
the differential conductor surface area, is the
dielectric constant, and is the usual Euclidean length of

. This approach may be extended to the case of piecewise-
constant dielectrics [23].

A standard approach [10] to numerically solving (1) for
is to use a piecewise constant collocation scheme. That is,
the conductor surfaces are broken intosmall panels, and it
is assumed that on each panel, a charge, , is uniformly
distributed, as in Fig. 1. Then for each panel, an equation is
written which relates the known potential at the center of that
th panel, denoted , to the sum of the contributions to that

potential from the charge distributions on all panels [23].
The result is a dense linear system

(2)

where , is the vector of panel charges,
is the vector of known panel potentials, and

(3)

where the collocation point is the center of theth panel
and is the area of the th panel. The dense linear system

Fig. 1. Piecewise-constant collocation discretization of two conductors. Con-
ductor surfaces are discretized into panels which support a constant charge
density.

of (2) can be solved to compute panel charges from a given
set of panel potentials and the capacitances can be derived by
summing the panel charges.

The direct approach of solving (2) via Gaussian elimination,
which requires operations and storage, becomes
computationally intractable if the number of panels exceeds
several hundred.

III. T HE PRECORRECTED-FFT APPROACH

If, instead of Gaussian elimination, an iterative algorithm
such as GMRES [24] is used to solve (2), then each iteration
of GMRES will cost operations. This is because the
matrix in (2) is dense, and therefore evaluating candidate
solution vectors involves a dense matrix-vector multiply. Sev-
eral sparsification techniques for are based on the idea of
directly computing only those portions of associated with
interactions between panels which are close to each other. The
rest of is then somehow approximated to accelerate the
computation [15], [5], [21].

To develop a faster approach to computing the matrix-
vector product, consider the parallelepiped which contains a
3-D problem after it has been discretized intopanels. The
parallelepiped containing the problem could be subdivided
into an array of small cubes so that each small
cube contains only a few panels. Fig. 2(a) shows a discretized
sphere, with the associated space subdivided into a 33
3 array of cubes. We refer to these small cubes ascells.

A possible approach to computing distant interactions is to
exploit the fact that potentials at evaluation points distant from
a cell can be accurately computed by representing the given
cell’s charge distribution using a small number of weighted
point charges. If the point charges all lie on a uniform grid,
for example at the cell vertices, then the computation of the
potential at the grid points due to the grid charges is a discrete
convolution which can be performed using the FFT. Fig. 2(b)
shows a possible set of grid charges for the cell subdivisions
shown in Fig. 2(a). Thus, a four step method for approximating

is:

1) project the panel charges onto a uniform grid of point
charges;

2) compute the grid potentials due to grid charges using an
FFT;
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(a) (b)

Fig. 2. (a) Side view of a sphere discretized into 320 panels, with spatial decomposition into a 3� 3 � 3 array of cells. (b) Superimposed grid charges
corresponding to the cell decomposition of (a), withp = 3. In each cell, a 3� 3 � 3 array of grid charges is used to represent the long range potential of
the charged panels in the cell. Some of the grid charges are shared among cells. Note that the grid is “coarser” than the triangular panels used to discretize
the sphere. The grid extends outside the problem domain because the number of grid points is required to be a factor of two.

Fig. 3. A 2-D pictorial representation of the four steps of the precor-
rected-FFT algorithm. Interactions with nearby panels (in the grey area) are
computed directly, interactions between distant panels are computed using
the grid.

3) interpolate the grid potentials onto the panels;
4) directly compute nearby interactions.

This process is summarized in Fig. 3. We emphasize that the
grid of point charges is introduced purely as a computational
aid, it is not related to the underlying discretization of the
conductors.

A. Notation

Given a set of cells which contain the set of panels and
define the grid points, we now describe how to compute the
vector of potentials from the vector of panel charges

. will denote the contribution of the grid
charges to the potentials on thepanel charges. denotes
the number of panels in a cell, the restriction of
the charge vector to the indices whose corresponding panels
lie in cell and denotes the similar restriction
of the potential vector. The variabledenotes the order of grid
approximation. is the vector of grid charges, the

vector of grid potentials, and , denote
the restriction of and , respectively, to grid points of cell
. We define to be the indexes of the set of cells which

are “near” cell . , yet to be defined, will
refer to linear operators which projectuniformly distributed
panel charges to the grid points, and the linear operator

gives grid potentials in terms of grid charges,
i.e., . is the nonzero part of
corresponding to chargein cell , ; is
the similar part of , and is the block of

which maps grid charges of cell to grid potentials of
cell , . A subscript indicates an index into
a matrix or vector, e.g., is the th entry of vector .

B. Projecting Onto a Grid

The first step in the description of the algorithm is to de-
scribe the construction of the grid projection operator. For
panel charges contained within a given cell, the potentials at
evaluation points distant from the given cell can be accurately
computed by representing the given cell’s charge distribution
with a small number of appropriately weighted point charges
on a uniform grid throughout the given cell’s volume. Fig. 2(b)
shows the grid imposed on the cell structure of Fig. 2(a) when
a 3 3 3 array of grid charges is used to represent the charge
in each cell. Note that because the grid is only used to represent
the long range part of the panel potentials, the grid may be
significantly coarser than the actual problem discretization.

To motivate a scheme for representing panel charges with
weighted point charges lying on a grid, consider a charge
distribution contained entirely within some small volume
B. The potential outside due to can be determined from
the knowledge of the potential on a surfacesurrounding
[25]. For example, suppose is contained within a sphere
of radius , as in Fig. 4. For all ) with , the
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Fig. 4. Potentials (r < rc; �; �) or  (~r > rc;
~�; ~�) for r; ~r > a may be

obtained from the potential atr = rc.

potential can be written as a multipole expansion series

(4)

where the are spherical harmonics and the coefficients
of expansion [25]. Since the spherical harmonics are orthogo-
nal on a sphere, if the potential is known on any sphereof
radius , the multipole moments can be computed as

(5)

The above observation suggests a scheme for computing
the grid charges used to represent charge in a given cell.
Suppose a array of grid charges is used to represent
the charge in a cell. First, test points are selected on the
surface of a sphere of radius whose center is coincident
with the center of the given cell. Then, potentials due to the

grid charges are forced to match the potential due to the
cell’s actual charge distribution (say panel charges) at the
test points, i.e.,

(6)

where is the mapping between grid charges
and test point potentials, given by

(7)

Here and are the positions of theth test point and
the th grid point, respectively. By construction, the relative
positions of the grid charges and the test points are identical
for each cell , and therefore is the same for each cell.

Fig. 5. Two-dimensional pictorial representation of the grid projection
scheme. The black points (atx̂) represent the grid charges (q̂) being used to
represent the triangular panel’s charge density�. The white points are the
pointsxt where the potential due to the black point charges and the potential
due to the triangular panel’s charge density are forced to match. The grid
charges approximate the panel potential outside the gray region.

is the mapping between panel charges and test
point potentials and is given by

(8)

Since the collocation (6) is linear in the panel and grid charge
distributions, the contribution of theth panel in cell to
can be represented by a column vector . is
given by

(9)

where denotes the th column of and
indicates the generalized Moore–Penrose (or pseudo-) inverse
[26] of . The computation of is done using the
singular value decomposition. Since this matrix is small and
is the same for each cell, the relative computational cost of
performing the singular value decomposition is insignificant.

For any panel charge in cell , this projection operation
generates a subset of the grid charges . The contribution
to from the charges in cell is generated by summing
over all the charges in the cell. Note that panel charges outside
cell may contribute to some of the elements of in the
case of shared grid charges. The grid projection scheme is
summarized in Fig. 5. For an alternative approach, based on
matching multipole expansion coefficients directly, see [27].
A simpler approach based on polynomial interpolation may
be found in [28].

The accuracy of the above projection scheme hinges on the
proper selection of the test points. From (5), we expect
high accuracy if the test points are chosen to be abscissas of a
high-order quadrature rule [29]. It can be shown that the error
in potential due to the grid-charge approximation of a charge
distribution contained within a sphere of radius, at a distance
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from the center of the distribution, is of order
if the test points are chosen to be the nodes of a quadrature
rule accurate to order [30].

C. Computing Grid Potentials

Once the charge has been projected to a grid, the operation
, computing the potentials at the grid points due to the grid

charges, is a 3-D convolution. We denote this as

(10)

where and are triplets specifying the grid points
and is the inverse distance between
grid points and . As will be made clear below,

(0, 0, 0) can be arbitrarily defined, and is set to zero. The
above convolution can be rapidly computed by using the FFT.
In practice, each convolution requires one forward and one
inverse 3-D FFT. The discrete Fourier transform of the kernel
matrix , denoted , need be computed only once.

An efficient FFT implementation is central to the perfor-
mance of the precorrected-FFT algorithm. The FFT is a very
well-studied algorithm and many possible implementations
exist. Most FFT implementations have a fairly regular nature,
thus very efficient optimized code can be developed. Also, the
structure of the data in a multidimensional convolution can
be exploited for additional performance gains. For example,
the use of the FFT to perform a linear multidimensional
convolution involves embedding the data () to be transformed
into a larger data space, much of which is zero. The fact that
much of the transformed data is zero can be exploited to yield
a more efficient transform. In comparison, achieving optimal
machine performance with fast multipole algorithms is more
difficult, due to the less regular nature of the algorithms.

D. Interpolating Grid Potentials

Once the grid potentials have been computed, they must
be interpolated to the panels in each cell. This process is
essentially the same as the problem of representing charge
on the grid, as can be seen from the following result [28].

Theorem 1: Given is an operator which
projects charge onto a grid of points, then may be
interpreted as an operator which interpolates potential at grid
points onto charge coordinates; conversely, given
is an operator which interpolates potential at grid points
onto charge coordinates, may be interpreted as an operator
which projects charge onto the grid coordinates. In either case,

and have comparable accuracy.
Proof: Let be the Green function for a source at

, evaluated at . Suppose that a unit charge at the pointis
represented by the vector of grid charges. The approximate
potential at a point is given by

where is the position of theth grid charge and ,
. Conversely, suppose there is a unit charge

at and the potential at is to be computed by
interpolating potentials produced by this unit charge at the
grid points . Then, if is the interpolation operator

For a symmetric Green function,
and

so that

Now suppose is assigned the value in order to represent
the unit point charge at . Then

When a collocation scheme is used to discretize the integral
equation, the operator which interpolates potential at grid
points in cell to a charge also in cell is not
defined in (9). Instead, the projection operator for
a point charge located at the collocation point is computed
which gives the interpolation operator . However,
if a Galerkin scheme is used in the discretization then the
interpolation operator is .

Thus, projection, followed by convolution, followed by
interpolation gives the grid-charge approximation to the
potentials which can be represented as

(11)

If Galerkin methods are used, (11) becomes

(12)

and therefore the precorrected-FFT method preserves the sym-
metry of the Galerkin discretization for free space problems.

E. Precorrecting

The difficulty with the above three steps is that the calcula-
tions using the FFT on the grid do not accurately approximate
the nearby interactions. In of (11), the portions of
associated with neighboring cell interactions have already
been computed, though this close interaction has been poorly
approximated in the projection/interpolation. A more accurate
calculation of interactions between nearby panels is needed,
but it is also necessary to remove or avoid the inaccurate
contribution from the use of the grid. This is a general
difficulty with grid-based potential calculation methods and a
variety of correction methods have been proposed [20], [28],
[31] the details of which usually depend on the problem being
solved, the interpolation scheme, and the nature of the grid
solver.

Because our algorithm works directly with the Green func-
tion, and because the iterative solver requires that many
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(a) (b)

Fig. 6. (a) A sphere discretized into 960 panels. The discretization is refined by subdividing the spherical triangle defined by the panel vertices into
four triangular panels, whose vertices are the midpoints of the edges of the original spherical triangle. (b) Lines show integrated charge error for the
sphere with Dirichlet condition of (17). Solid line shows errors for grid code, (x)p = 2 (*) p = 3 (+) p = 4. Dashed line connecting (o) shows
error for l = 2 multipole scheme.

potential evaluations are performed for a given panel configu-
ration, it is possible to treat nearby panel interactions exactly,
without sacrificing algorithmic efficiency. We accurately treat
interactions between panels close together by modifying the
way nearby interactions are computed, a step we refer to as
precorrection.

In particular, denote as the portion of associated
with the interaction between neighboring cellsand ,
and the matrices formed from the columns and

, respectively, and denote as the panel potentials
in cell due to the charges in cell . Then

(13)

is the grid-approximation to , which is inaccurate. Sub-
tracting this approximation and then adding the correct con-
tribution

(14)

produces the accurate result .
This may be efficiently accomplished by defining

(15)

to be the “precorrected” direct interaction operator. When
used in conjunction with the grid charge representation
results in exact calculation of the interactions of panels which
are close. Assuming that the product will be computed
many times in the inner loop of an iterative algorithm,will
be expensive to initially compute, but will cost no more to
subsequently apply than .

F. Complete Algorithm

Combining the above steps leads to the precorrected-FFT
algorithm, which rapidly computes the dense matrix-
vector product. Using the above notation, the algorithm can
be described as two steps. The first step is to compute

(16)

and are sparse interpolation operators andcan be
represented in a sparse manner via the FFT. The second step

is to add in the corrected direct interactions, to obtain the panel
potentials for each cell

(17)

Because for each, is a small set and each matrix
is also small, this second step is also a sparse operation. The
complete algorithm follows in pseudocode form:

Precorrected-FFT Algorithm to Compute
/* Projection Step */

Set 0
For each cell 1 to

For each panel in cell , 1 to
Add

/* Convolution Step */
Compute FFT( )
Compute
Compute FFT ( )

/* Interpolation Step */
Set 0
For each cell 1 to

For each panel in cell , 1 to
Add

/* Nearby Interactions */
For each cell 1 to

For each cell in

Thus, the effect of this algorithm is to replace the operation

where is a dense matrix, with the operation
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(a) (b)

(c) (d)

Fig. 7. The cube example. (a) Discretization of the cube. (b) CPU time, in seconds, needed for the fast multipole (dashed line connecting “�”) and
precorrected-FFT algorithms (“*”) to compute a matrix-vector product. For the precorrected-FFT algorithm, different results are possible depending on
whether speed or memory usage is to be optimized. The solid line connects runs with grid sizes chosen to minimize memory use. Note the speed-memory
product is fairly independent of grid size. (c) Memory, in Mb, needed by the fast multipole and precorrected-FFT algorithms. (d) Product of (b) and (c).

where all the matrices and possess sparse repre-
sentations.

G. Grid Selection

Before the algorithm has been completely specified, it
necessary to specify how panels are selected for inclusion in
direct interaction regions and how the grid size is selected.
That is, for each cell the set must be specified.
To insure that interactions between panels which are close
together are treated accurately, at a minimum it is necessary
to compute interactions between panels in cells which are
near-neighbors of each other via direct products. The near-
neighbors of a cell are defined to be all the cells which have
a vertex in common with cell (thus a cell is a near-neighbor
of itself). We have included only near-neighbor interactions in
the computational experiments of Sections V and VI.

The worst case accuracy of the grid representation is a
function of the ratio of the cell radius to the radius of the direct
interaction region [30]. Thus, once the direct-interaction region
has been specified to be near-neighbor cells, the selection of
the cell size, and hence the grid spacing is purely a matter of
computational efficiency. The cost of direct interactions will
decrease monotonically as the cells are made smaller, but the

number of grid points will increase, so the cost of the FFT
will increase monotonically. This implies that the total cost of
the algorithm will have an easily determined global minimum
for some grid spacing. For a given grid spacing and panel
configuration, the memory and computation time needed by
the precorrected-FFT algorithm can be estimated cheaply, so
the optimal grid spacing can be obtained by starting with a
small number of grid points and increasing the number until a
minimum CPU or memory estimate, as appropriate, is reached.
In addition, we have generally required that the number of grid
points be a factor of two, in order to exploit the most efficient
FFT implementations.

It is interesting that the optimal grid size may occasionally
be such that the number of grid charges,, is larger than the
original number of panel charges. This may be the case even
when the grid spacing is larger than the underlying panel sizes,
that is, when the grid is “coarser” than the panel discretization.
Such a case may occur, for example, for a finely discretized
cube surface, where the grid must fill the 3-D space of the
cube’s interior. However, the overall algorithm may still be
quite effective, since the cost of the FFT is , with
a constant factor of . Thus if and is large, the
cost of the FFT is less than that of the direct product by a
factor of nearly , and so the algorithm may have
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(a) (b)

(c) (d)

Fig. 8. The bus crossing example. (a) Larger problems are generated by adding more bus lines. (b) CPU time, in seconds, needed for the fast multipole
(dashed line connecting “�”) and precorrected-FFT algorithms (solid line connecting “*”) to compute a matrix-vector product. (c) Memory, in Mb, needed
by the fast multipole and precorrected-FFT algorithms. (d) Product of (b) and (c).

by a fairly significant factor and still possess an advantage
over the direct computation.

IV. A NALYSIS OF THE PRECORRECTED-FFT ALGORITHM

In this section, we analyze the complexity of the
precorrected-FFT algorithm and give some comparisons
with other approaches.

A. Comparison to Fast Multipole Algorithms

First we compare the efficiency of the grid representation
used in the precorrected-FFT algorithm to the multipole ex-
pansions used in the fast multipole method. Both the fast
multipole algorithm and the precorrected-FFT algorithm obtain
efficiency by representing the long-range part of the potential
of a group of charges by an expression which can be used at
multiple evaluation points, but the algorithms differ in the way
they cluster sets of charges together to form single expressions.

Again consider subdividing the parallelepiped containing
the entire 3-D problem domain into a array of
cells. Then, the collocation approach above can be used to
generate point charge approximations for charge distributions
in every cell, effectively projecting the charge density onto a
3-D grid. For example, if the representative point charges are
placed at the cell vertices, then the panel charge distribution
will be projected to a uniform grid.
Fast multipole algorithms also effectively create a uniform grid
by constructing multipole expansions at the center of each

cell, but due to sharing, the point charge approach can be
more efficient. For example, when representing the potential
of a panel by charges at the cell vertices, there are eight
free coefficients which may be varied to obtain an optimal
representation, and there will be terms
in the entire domain. On average, there is only one grid-charge
per cubic cell, since a point charge at a cell vertex is used to
represent charge in the eight cells which share that vertex. By
contrast, as no sharing occurs in the multipole representation,
if there are coefficients in the multipole expansion which
represents the potential of the charges in the cell, the total
number of terms in the domain will be .
For an equivalent number of total terms in the domain, we
expect the grid representation to be more accurate. Conversely,
for roughly equivalent accuracy, we may choose , but
then the total number of multipole terms will be significantly
higher than for the grid representation.

B. Performance for Homogeneous Problems

From the analysis of the preceding section, we expect the
grid representation to be locally more efficient than the use of
multipole expansions. However, our current implementation of
the precorrected-FFT algorithm may be globally less efficient,
as the grid representation is introduced throughout space, even
where no panels are present. Thus, whereas for a problem
containing panels, the fast multipole algorithm can perform
a potential evaluation for all of the panels in operations,
regardless of the panel distribution [32], no such guarantee
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(a) (b)

(c) (d)

Fig. 9. Several realistic capacitance extraction problems. (a) The woven bus example (woven 5� 5). (b) The comb drive example (comb). (c) The
via example (via). (d) The SRAM example (SRAM).

is available for the precorrected-FFT algorithm. However, it
is possible to establish a weaker complexity result for the
precorrected-FFT method.

Theorem 2: For a homogeneous distribution of panels
and a given prescribed accuracy, the precorrected-FFT method
requires operations to perform a potential calcula-
tion.

Proof: Given that the computational domain is a paral-
lelepiped containing panels, again assume space has been
divided into an array of cells, and that the panel
distribution is homogeneous on the scale of the cell size. That
is, the number of panels per cell, , is bounded independent
of , with of order- . Finally, assume that the grid in
each cell is a array. There are three components in
the cost of the precorrected-FFT algorithm: the cost of direct
interactions, the cost of grid projection and interpolation, and
the cost of the FFT. The cost of the direct interactions will
be . The cost of the grid
projection will be . Finally, the cost of the
FFT will be . Summing
these costs results in the final complexity of .

Since the grid spacing is typically less fine than the
underlying surface discretization, for a typical problem the
precorrected-FFT algorithm has complexity for
problems with considerable inhomogeneity in the fine surface
discretization, as long as the panel distribution is homogeneous
at a very coarse level. As will be seen in Section VI,

many structures arising in practice satisfy this “coarsely
homogeneous” condition.

C. Comparison to Other Grid-Based Methods

In order to solve the underlying potential-theoretic prob-
lem, the precorrected-FFT algorithm introduces a uniform
grid which covers the problem domain volume and so it is
instructive to compare the precorrected-FFT algorithm with
other methods that introduce volumetric grids.

First, most other methods which use a grid to represent the
solution throughout space, such as finite-difference methods,
finite-element methods, or integral equation methods which
directly exploit the convolutional properties of the kernel via
the FFT [33]–[35], introducing a space-filling grid which must
also accurately represent the complicated problem geometry.
These two conflicting requirements generally result in either
restricted geometries or a very large number of unknowns that
in turn limits the size of the problem that can be effectively
solved.

In contrast, as shown in Fig. 2, the grid introduced by the
precorrected-FFT algorithm is geometrically unrelated to the
underlying surface discretization of the geometry. In general
the number of panels in a surface discretization is much
smaller than the number of elements in a volume representa-
tion, so we expect the precorrected-FFT algorithm to be more
efficient, than, for example, finite-difference approaches.
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TABLE I
STATISTICS FOR FASTCAP ORDER-2, GRID-2,3 CODES FOR1=r GREEN FUNCTION. SETUP, SOLVE, AND CPU TIMES ARE IN SECONDS ONDEC AXP 3000/900,

MEMORY IN MEGABYTES. m IS NUMBER OF CONDUCTORS IN PROBLEM, EACH CONDUCTOR REQUIRES A SEPARATE LINEAR SYSTEM SOLUTION

Additionally, most other 3-D grid-based approaches neces-
sarily have a complexity of , if is the number of basis
elements along a side. The precorrected-FFT method analyzed
here uses basis elements in the underlying surface
discretization, and the complexity is

(see Sections IV-B and V-B, and [30]).
At 50 basis elements per dimension, corresponding only
to a 15 000 panel problem, exceeds by more than a
factor of 20.

In short, because of the decoupling of short range interac-
tions from the long range interactions treated by the grid, the
precorrected-FFT method can efficiently utilize fast potential
solvers without sacrificing the ability to represent complicated
surface geometries in a compact manner.

V. REFERENCEEXAMPLES

In this section, we examine a variety of simple examples to
evaluate the performance of the precorrected-FFT algorithm.
We start by examining the errors introduced by the grid
projection method and then we examine the efficiency of the
overall precorrected method.

A. Empirical Error Analysis

As described above, in the precorrected-FFT algorithm, the
interaction between panels in neighboring cells is computed

exactly, but more distant interactions are approximated by
extrapolation, convolution, and then interpolation using the
grid. To demonstrate that the errors due to using the grid are
well controlled, we present an empirical error study based on
an analytically solvable potential problem borrowed from [32].
If (1) is solved on a sphere with given potential

(18)

the analytically computable charge distribution is

(19)

To estimate the error introduced by the grid approximations
in the precorrected-FFT method, the sphere can be discretized,
as in Fig. 6, and the charges on each panel computed.
The approximations introduced by the grid-charge approxi-
mation to long-range interactions will become evident as the
discretization is refined, since eventually these errors will
dominate over the discretization error. One relative measure
of the error is

(20)

where the sum runs over all panels, is the centroid of
panel , the area of that panel, the charge on the panel,
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and the exact total charge on the sphere. Fig. 6(b) shows
that for the low-order piecewise-constant collocation scheme,
as the discretization of the sphere is refined [see Fig. 6(a)], the
integrated error decreases proportional to . The multipole
or precorrected-FFT approximation errors are evident when
ceases to decrease asis increased. For example, for the 2
2 2 grid-charge representation is used in each cell (2),

ceases to decrease below about 0.05. This indicates that the
2 grid charge scheme introduces errors into the integrated

charge calculation of about 5%. Similarly, we expect the
3 scheme to be accurate to almost a tenth of a percent. We
have also shown results for the 2 multipole approximation,
which from this experiment we expect to be intermediate in
accuracy between the grid 3 and 2 approximations.

B. Effects of Inhomogeneity

The fast multipole algorithms used in the FASTCAP pro-
gram compute matrix-vector products in operations
regardless of the distribution of panels on the discretized
surfaces [32], but this is not true of the precorrected-FFT
method. As described, the use of the FFT implies that the al-
gorithm computes matrix-vector products in at best
operations, and attains this optimum only for fairly homoge-
neous distributions of panels (see Section IV-B). That is, for
problems where the panels are distributed in a roughly uniform
manner throughout space, the precorrected-FFT method should
be efficient. In contrast, for inhomogeneous problems which
consist of clusters of panels separated by large areas of
open space, inefficiency may be expected. Therefore it is
important to quantify the performance penalty induced in the
precorrected-FFT method by problem inhomogeneity.

A simple approach to generating an example which is inho-
mogeneous is to refine the discretization of a cube. The cube
example is intended to serve as a model for typical boundary-
element discretizations of surfaces. As the discretization is
refined, problems with increasing numbers of panels will be
generated. The precorrected-FFT algorithm must place grid
charges in the empty interior of the cube, which causes the
CPU time and memory required by the algorithm to increase
faster than . As increases, relatively more panels
are near the surfaces of the cube relative to the interior,
i.e., the problem inhomogeneity increases. Thus, at some
large , the fast multipole methods will be superior to the
precorrected-FFT method. We wish to determine how effective
the precorrected-FFT method is for reasonable size problems,
and at what it would become advantageous to use the
fast-multipole methods.

Fig. 7 shows the comparison of the precorrected-FFT
method at 3 to the fast-multipole based code FASTCAP,
at 2, for the cube example. The discretization of the cube
is refined to generate more panels, and the performance of
the two codes compared as the problem size increases. Three
figures are shown. Fig. 7(b) shows the time required for each
code to compute a matrix-vector product, Fig. 7(c) shows the
amount of memory needed by each code, and Fig. 7(d) shows
a figure of merit which is the product of required memory
and the time needed for a potential calculation. The product

TABLE II
COMPARISON OFFASTCAP AND GRID CODES. FIGURES ARE RATIOS OF

REQUIRED RESOURCES. “PRODUCT” I S PRODUCT OF CPU AND MEMORY FIGURE

is important to consider when analyzing the precorrected-FFT
method because, as is clear from the figure, speed can be
traded for memory by manipulating the size of the region
the grid-charge approximation covers. The CPU and memory
figures for the precorrected-FFT method are observed to grow
irregularly with problem size. This is because our specific
implementation of the method requires the number of grid-
charges along one side of the computational domain to be
a power of two. The solid line in the figures shows results
when the number of grid charges along a side was selected
to optimize (see Section III-G) the speed-memory product,
which is observed to grow smoothly. Two cases in Fig. 7(a)
are evident where the code would have been considerably
faster had a different number of grid-charges been used.
However, as Fig. 7(b) shows, the memory required would
have been greater in each case.

Analysis of the trend of Fig. 7(a) reveals that the CPU time
needed to solve the cube problem grows as about ,
where is the number of panels, faster than the expected
asymptotically for the fast multipole method. However, for
all the problems analyzed, the precorrected-FFT method was
superior in terms of CPU time and memory required. We may
obtain the approximate point at which the algorithms cross
over by extrapolating the data in Fig. 7(c). Assuming that
the CPU time and memory of the multipole method grow as

, and that the CPU time and memory required by the
precorrected-FFT method grows as [30], then in terms
of the speed-memory product the precorrected-FFT method
will be superior to the fast-multipole method until is, at
least, several million panels. We estimate over 30 gigabytes of
memory would be needed to solve such a problem.

The cube example demonstrates that problems exist for
which the precorrected-FFT algorithm is inferior to the fast-
multipole methods. This example, however, is somewhat ar-
tificial, as very large capacitance extraction problems are not
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TABLE III
COMPARISON OF CAPACITANCE EXTRACTION ALGORITHMS. FIGURES IN PARENTHESESARE ESTIMATES

usually due to very fine discretizations of a few surfaces, but
rather by fixing a discretization level, and solving problems
which involve increasingly more complicated structures. For a
situation which better models problems from VLSI intercon-
nect analysis, consider a bus crossing example, as in Fig. 8. In
this example, a series of stacked bus problems are solved. The
faces of each bus line are broken into quadrilateral sections,
and the quadrilaterals discretized by division into a central
panel and five edge panels. In order to generate larger and
larger problems, we considerlevels of bus wires, each level
having wires.

From Fig. 8 it is clear that the computational cost of
the algorithm grows nearly linearly with problem size, as
predicted in Section IV-B. For the size problems considered,
the precorrected-FFT method with 3 enjoys an advantage
of more than a factor of three in terms of computational
cost and roughly a factor of four in memory utilization over
the fast multipole method using order-2 expansions. With
these parameter values, however, from Fig. 6 we expect the
precorrected-FFT method to be considerably more accurate.

VI. REALISTIC EXAMPLES

In this section, we present results comparing the FASTCAP
program to the precorrected-FFT method for computing ca-
pacitances of several 3-D geometries. As a preconditioner has
not yet been implemented in the precorrected-FFT algorithm,
all comparisons were performed without FASTCAP’s precon-
ditioner. Fig. 9 shows four realistic 3-D structures: a woven
bus structure, a bus crossing structure, a via structure, and part
of an SRAM memory cell. We have compared the multipole-
based code FASTCAP, using multipole expansion order2,
to the grid based methods with 2 and 3. To estimate
the accuracy of the computed capacitances, we have compared
the results to the grid-code run using 6, which we expect
to introduce errors into the calculation which are very small
compared to the 2, 3 grid codes or the multipole
2 code. As a check on this assumption we also performed the
calculations using the fast multipole algorithm and sixth order
multipole expansions. Taking the 6 capacitances to be
exact, we have calculated both the maximum relative errors in
the computed capacitance coefficients, as well as the maximum
over all rows of the capacitance matrix of the largest error
in the row as a fraction of that row’s diagonal capacitance.
Table I shows the computation times, memory required, and
error estimates for each problem. All experiments were run
on a DEC AXP3000/900, with 256 megabytes of physical
memory.

The table indicates that multipole expansions of order 2
are usually enough to give relative accuracy of one percent
or so in the calculated capacitances. In terms of relative
errors in the computed capacitances, the 2 grid code
appears to be comparable to the 2 multipole code, and
somewhat inferior when the error is measured as a percentage
of the diagonal capacitance. The 3 grid code clearly has
uniformly superior error properties. These results are in accord
with the sphere example considered previously in Fig. 6.

Table II shows explicit performance comparisons of the
2 multipole code to the 2 grid code, which has comparable
accuracy, as well as to the more-accurate 3 grid codes.
At 3, the precorrected-FFT method can be as much as
four times faster and can use as little as one fifth the memory
of FASTCAP. In terms of the speed-memory product, the
grid-based code at 3 was superior by a factor ranging
from four to 20. At 2, the performance advantage of the
grid-code was even more significant. The CPU advantage of
the method ranged from nearly four to more than eight, the
memory advantage from four to six, and the product from 12
to 52.

The two final entries in Table I are worthy of note. Using the
2 grid representation, from which we expect about 2–4%

accuracy, it was possible to analyze two very large problems.
The first is a 15 15 wire woven bus crossing, shown in
Fig. 10, which has over 80 000 panels in the discretization.
The second is the cube, discretized into about 125 000 panels.
The precorrected-FFT method was able to perform a single
solution (one row in the capacitance matrix) in only about
3 min. More importantly, both problems could be solved in
the available physical memory, which was not possible using
FASTCAP.

We note that all the examples considered here generate
fairly well conditioned linear systems, so no preconditioner
was necessary to secure convergence in a reasonable time.
However, use of a preconditioner could further reduce the
computation times required for the linear system solution, and
enable solution of less well conditioned problems.

Finally, we wish to emphasize that, regardless of whether
the precorrected-FFT or fast-multipole based approaches are
used, the advantage of the accelerated schemes over tra-
ditional algorithms is tremendous. Table III compares the
computation time and memory needed by algorithms based on
LU-factorization via Gaussian elimination, iterative solution
using direct (explicit) matrix-vector products, and iterative
solution using accelerated matrix-vector products, as described
in this paper. The statistics for the direct algorithms were
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Fig. 10. The large woven bus structure. The 30 conductor structure is formed from fifteen conductors woven around fifteen straight conductors. The actual
discretization is finer than shown in the above figure. There are 82 080 panels in the actual discretization.

estimated by extrapolating timings of computations performed
by MATLAB, and by assuming that storage is in double
precision floating point words. For the largest problems, the
speedups can be two orders of magnitude over iterative solu-
tion with direct products, and nearlysix orders of magnitude
over Gaussian-elimination, with memory savings of a factor
of 500.

VII. CONCLUSION

In this paper, we presented a precorrected-FFT approach
to reducing the CPU time required to compute accurate cou-
pling capacitances of complicated 3-D structures. As the
examples above demonstrate, the precorrected-FFT method
is well tuned to the problems associated with integrated
circuit packaging, on-chip interconnect, and micro-electro-
mechanical systems. In particular, the CPU time-memory
product for the precorrected-FFT algorithm can be more than
an order of magnitude smaller than that of the FASTCAP
program.

A major advantage of this method is that it is based on
the FFT and local interpolation operators, rather than on
spherical-harmonics based shifting operators as in the fast
multipole method. Thus, a range of kernels can be treated in
the method while still preserving the high order of accuracy
of multipole-based representations. For example, the approach
can be combined with modified Green function techniques for
handling ground planes, symmetry planes, or flat dielectric
interfaces, with only minimal modification to the algorithm
[36]. The algorithm is also capable of handling the Helmholtz
kernel associated with full-wave electromagnetic analysis [30].

The major drawback of our algorithm is its poor perfor-
mance on very inhomogeneous problems. The use of the FFT
to evaluate the grid potentials is very inefficient in this case,
since most of the data in the transform is zero. Future work
will focus on more efficient algorithms to evaluate the grid
potentials in the very inhomogeneous case, such as applying
the algorithm of Section III recursively to obtain a multigrid-

like algorithm. Such an algorithm would, in principle, inherit
the efficiency of the grid-based representation discussed in
this paper, while at the same time achieving the near
complexity of the fast multipole methods.
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