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A Precorrected-FFT Method for Electrostatic
Analysis of Complicated 3-D Structures

Joel R. Phillips and Jacob K. Whit&ssociate Member, IEEE

Abstract—In this paper we present a new algorithm for ac- used to reduce the computational cost of boundary-element
celerating the potential calculation which occurs in the inner pased methods, but these techniques are still computationally

!oop of iterative algorlthms_for solving ele_ctroma_gnetlc boundary expensive and, of more immediate consequence, memory
integral equations. Such integral equations arise, for example, exhausting

in the extraction of coupling capacitances in three-dimensional . . .
(3-D) geometries. We present extensive experimental compar- In [1], a fast algorithm for electrostatic analysis of
isons with the capacitance extraction code FASTCAP [1] and 3-D structures was presented. The computation time for the
demonstrate that, for a wide variety of geometries commonly gjgorithm was shown to grow nearly asn, wheren is the
encountered in integrated circuit packaging, on-chip interconnect number of panels used to discretize the conductor surfaces,

and micro-electro-mechanical systems, the new “precorrected- . .
FFT" algorithm is superior to the fast multipole algorithm used ~and m is the number of conductors. The algorithm of [1]
in FASTCAP in terms of execution time and memory use. At was based on the hierarchical multipole algorithm [15], which
engineering accuracies, in terms of a speed-memory product, the can perform the dense matrix-vector product associated with
new algorithm can be superior to the fast multipole based schemes gjscretized potential integral equations in oradertO(n))
by more than an order of magnitude. . . .
time and memory. In this paper, we describe a precorrected-
Index Terms—Capacitance extraction, dense matrix algebra, FFT approach which can replace the fast multipole algorithm
electrostatic analysis, fast Fourier transform, integral equation.  fqy accelerating the Coulomb potential calculation needed to
perform the matrix-vector product. The central idea of the
I. INTRODUCTION algorithm is to represent the long-range part of the Coulomb
. . . . . potential by point charges lying on a uniform grid, rather
PPLICATIONS as diverse as analysis of signal integrit yp g ying . gn
an by series expansions as in fast multipole algorithms [15].

in integrated circuit interconnect, characterization . . . )
. : . : . This grid representation allows the fast Fourier transform
electrical packaging, and design of microelectromechani - .
X . . FT) [17]-[19] to be used to efficiently perform potential
systems [2] require accurate electrostatic analysis of com- . :
. ! : computations. Because only the long-range part of the potential
plicated three-dimensional (3-D) structures. Recent work on . A
. . . . . Is_represented by the grid, the grid is not coupled to the
techniques for rapid electrostatic analysis for capacitance : . . .
derlying discretization of the structure. Decoupling the long

extraction have been based on random-walk methods [ﬁﬂ ) .
o - . . . -gHd short range parts of the potentials allows the algorithm to
partitioning heuristics combined with techniques from matrixX

extension theory [4], [5], finite-difference [6], [7] or finite- solve problems which may be discretized in a very irregular

element methods [8], [9], or method-of-moments [loﬁas‘hlon in nearly qpt|mal ‘”.“e- B Y
techniques. Numerous algorithms exist for the “n-body problem” of

Algorithms using method of moments [10] or weighte&valuaﬂng, the potential of a seF of charges at all the other
residuals [11], [12] based discretizations of integral equ harge points, such as the “particle-mesh” methods (see [20]

tion formulations, also known as boundary-element metho 5extedr15|v?t_re_f§ren;:hesé, tgi f"fll_sr: muIt_lpoIe Imet_r:;)d (';!\f/lfM)
[13], are commonly used to perform electrostatic analyzes, ]r,]an muthlgrll methods [ 1 t_elv_arlousag_orl tn;s |de_r
but such approaches generate dense matrix problems wijftiine way the long range potential Is approximated and in

are computationally expensive to solve, and this limits tge way local interactions are treated. We have attempted

complexity of problems which can be analyzed. Multipolet—o develop an algorithm which, like particle-mesh methods,

accelerated iterative methods [1], [14]-[16] have recently begﬁploits the availability of efficient discrete Fourier transform
implementations while at the same time preserves the higher
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precorrected-FFT methods are faster and use substantially less
memory.

The outline of the paper is as follows. The boundary-
element formulation and a standard iterative algorithm for
solving the generated matrix problem are briefly reviewed
in Section Il. The precorrected-FFT method is described in
Section Il and some analysis of the algorithm performed in
Section IV. Simple examples are examined in Section V to
show various aspects of the algorithm. In Section VI, our
precorrected-FFT method is compared to FASTCAP on a
variety of realistic examples, and is shown to be faster and use

SUbStamla"y less mem_ory' Fma"y’ In SQCtIOI’] VI, we dls9u§§|g. 1. Piecewise-constant collocation discretization of two conductors. Con-
some possible extensions of the algorithm and strategiesgi@tor surfaces are discretized into panels which support a constant charge
reduce the computational complexity for very inhomogeneodensity.

problems.

of (2) can be solved to compute panel charges from a given
Il. PROBLEM FORMULATION set of panel potentials and the capacitances can be derived by
The capacitance of am-conductor geometry can then besumming the panel charges.
summarized by ann x m symmetric matrixC, where the  The direct approach of solving (2) via Gaussian elimination,
entry C;; represents capacitive coupling between conductotich requiresO(n?) operations an@(n?) storage, becomes
4 ands. To determine thgth column of the capacitance matrix,computationally intractable if the number of panels exceeds
one need only solve for the surface charges on each condué@yeral hundred.
produced by raising conductgrto one volt while grounding
the rest. If the conductors are embedded in a homogeneous IIl. THE PRECORRECTEBFFT APPROACH
dielectric, thesem potential problems can be solved using

. S . If, instead of Gaussian elimination, an iterative algorithm
an equivalent free space formulation in which the conductor- . ' .
dielectric interfaces are replaced by a charge layer of dens?UCh as GMRES [24] is used to_solve (2).’ then each iteration
t1y GMRES will cost n? operations. This is because the

o [22], .[23]' The chargg layer n Fhe free space p_ro_blem Whatrix in (2) is dense, and therefore evaluating candidate
be the induced charge in the original problens ifatisfies the . . : .
solution vectors involves a dense matrix-vector multiply. Sev-

integral equation eral sparsification techniques fdét are based on the idea of

_ / 1 / directly computing only those portions @tq associated with
() = o) dd, : . .
curfaces dre|lx — 2|| interactions between panels which are close to each other. The
x € surfaces (1) rest of Pq is then somehow approximated to accelerate the

. __ computation [15], [5], [21].
where(x) is the known conductor surface potentidy’ is T develop a faster approach to computing the matrix-
the differential conductor surface area,z’ € R?, ¢ is the yector product, consider the parallelepiped which contains a
dlelec_trlc constant, anflz|| is the usual Euclidean Ien_gth 0f3-D problem after it has been discretized intqpanels. The
x. This approach may be extended to the case of piecewisgrajlelepiped containing the problem could be subdivided
constant dielectrics [23]. _ . into ank x I x m array of small cubes so that each small
A standard approach [10] to numerically solving (1) for cype contains only a few panels. Fig. 2(a) shows a discretized
is to use a piecewise constant collocation scheme. That gﬁhere, with the associated space subdivided intoxa3 x
the conductor surfaces are broken imtemall panels, and it 3 array of cubes. We refer to these small cubesedls
is assumed that on each pangla charge,g;, is uniformly A possible approach to computing distant interactions is to
distributed, as in Fig. 1. Then for each panel, an equationdgp|oit the fact that potentials at evaluation points distant from
written which relates the known potential at the center of thgtce|| can be accurately computed by representing the given
ith panel, denoted';, to the sum of the contributions to thatze|'s charge distribution using a small number of weighted
potential from then charge distributions on all panels [23]. point charges. If the point charges all lie on a uniform grid,
The result is a dense linear system for example at the cell vertices, then the computation of the
Pg=T7 ) potential at the grid points due to the grid charges is a discrete
convolution which can be performed using the FFT. Fig. 2(b)
where P € R"*", ¢ € R" is the vector of panel charges,shows a possible set of grid charges for the cell subdivisions

f € R™ is the vector of known panel potentials, and shown in Fig. 2(a). Thus, a four step method for approximating
Pq is:
P. = e / b da’ (3) ; . . .
i = 0 Joanel, dre||lz; — 7| 1) project the panel charges onto a uniform grid of point

charges;
where the collocation point; is the center of theéth panel 2) compute the grid potentials due to grid charges using an
anda; is the area of thgth panel. The dense linear system FFT;
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Fig. 2. (a) Side view of a sphere discretized into 320 panels, with spatial decomposition into &3 3 array of cells. (b) Superimposed grid charges
corresponding to the cell decomposition of (a), with= 3. In each cell, a 3x 3 x 3 array of grid charges is used to represent the long range potential of

the charged panels in the cell. Some of the grid charges are shared among cells. Note that the grid is “coarser” than the triangular panels ussd to discre
the sphere. The grid extends outside the problem domain because the number of grid points is required to be a factor of two.

vector of grid potentials, ang(k) € R?’, {(k) € R¥’ denote
the restriction of; and 1/3 respectively, to grid points of cell
k. We defineN (k) to be the indexes of the set of cells which
are “near” cellk. W,V: R* — R", yet to be defined, will
refer to linear operators which projectuniformly distributed
panel charges to thé grid points, and the linear operator
H:R" — R" gives grid potentials in terms of grid charges,
ie., P = Hg. W(k,7): R — R*’ is the nonzero part of¥’
corresponding to charggin cell k, 1 < j < n(k); V(k,j) is
the similar part oft’, andH(k,): R?" — R#" is the block of
H which maps grid chargeg!) of cell [ to grid potentials of
cell k, (k) = H(k,1)§(l). A subscript indicates an index into

a matrix or vector, e.gg;(k) is the jth entry of vectorg(k).
Fig. 3. A 2-D pictorial representation of the four steps of the precor-
rected-FFT algorithm. Interactions with nearby panels (in the grey area) are
computed directly, interactions between distant panels are computed using

the grid.
B. Projecting Onto a Grid
3) interpolate the grid potentials onto the panels; The first step in the description of the algorithm is to de-
4) directly compute nearby interactions. scribe the construction of the grid projection operdtor For

This process is summarized in Fig. 3. We emphasize that {pnel charges contained within a given cell, the potentials at

grid of point charges is introduced purely as a computation%Yaluation points distant from the given cell can be accurately

aid, it is not related to the underlying discretization of thgomputed by representing the given cell’'s charge distribution
conductors with a small number of appropriately weighted point charges

on a uniform grid throughout the given cell’s volume. Fig. 2(b)

i shows the grid imposed on the cell structure of Fig. 2(a) when

A. Notation a3x 3 x 3array of grid charges is used to represent the charge
Given a set ofM/ cells which contain the set @f panels and in each cell. Note that because the grid is only used to represent

define then grid points, we now describe how to compute théhe long range part of the panel potentials, the grid may be

vector of potentials) € R™ from the vector of panel chargessignificantly coarser than the actual problem discretization.

q € R™ 9 € R™ will denote the contribution of the grid To motivate a scheme for representing panel charges with

charges to the potentials on thepanel charges:(k) denotes weighted point charges lying on a grid, consider a charge

the number of panels in a céll ¢(k) € R™*) the restriction of distributionp(x) contained entirely within some small volume

the charge vectog to the indices whose corresponding paneB. The potential outsidé? due top can be determined from

lie in cell k and+ (k) € R™* denotes the similar restrictionthe knowledge of the potential on a surfagesurroundingB

of the potential vector. The variabiedenotes the order of grid [25]. For example, supposeis contained within a spherg

approximation.j € R" is the vector of grid charges the of radiusa, as in Fig. 4. For all(r, 8, ¢) with > a, the
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Fig. 5. Two-dimensional pictorial representation of the grid projection
scheme. The black points (&) represent the grid chargeg) (being used to
represent the triangular panel’'s charge densityThe white points are the
pointsz! where the potential due to the black point charges and the potential
due to the triangular panel's charge density are forced to match. The grid
charges approximate the panel potential outside the gray region.

\ (7.0, 9)

Fig. 4. Potentials)(r < 7., 8, ¢) or (7 > r.,8,) for r,# > a may be
obtained from the potential at = r..

0

Pt ¢ RN-X™ is the mapping between panel charges and test
point potentials and is given by

(a9} { .
P ) =3 D S Vin(6.9) @) P = / g ®)
p

anel j ||‘/E§ - $/||

where theY},, are spherical harmonics and the, coefficients Since the collocation (6) is linear in the panel and grid charge

of expansion [25]. Since the spherical harmonics are orthodliStributions, the contribution of thth panel in cellk to q(k)
nal on a sphere, if the potential is known on any spheref  can be represented by a column vectbik, j). W(k,j) is

radiusr. > a, the multipole moments;,,, can be computed as 9'Ven by

potential¢ can be written as a multipole expansion series

=0 m=-—1

W (k,j) = [P ptd (9)
Clm = T<l:+1 / dQ letnd)(TC? 97 d)) (5) .
s where P?:J denotes thejth column of P? and [P¢!]

The above observation suggests a scheme for computiﬂgicates tttwe generalized M(_)ore—Perzros_e (or pseudo-) inverse
the grid charges used to represent charge in a givenkcelll26] of P¥'T. The computation of P*']" is done using the
Suppose @ x p x p array of grid charges is used to represerﬁmgmar value decomposition. Since this matrix is small and
the charge in a cell. Firsty, test points are selected on thds the same for each cell, the relative computational cost of
surface of a sphere of radius whose center is coincidentPerforming the singular value decomposition is insignificant.
with the center of the given cell. Then, potentials due to the FOr @ny panel chargg in cell £, this projection operation
p* grid charges are forced to match the potential due to tH§Nerates a subset of the grid chargels). The contribution

cell's actual charge distribution (say panel charges) at the 0 4(k) from the charges in cel is generated by summing
test points, i.e. over all the charges in the cell. Note that panel charges outside

cell £ may contribute to some of the elementsggk) in the
P9t 4(k) = P%q(k) (6) case of shared grid charges. The grid projection scheme is
. ) _ summarized in Fig. 5. For an alternative approach, based on
where P9* € RN-*¥" is the mapping between grid chargegnatching multipole expansion coefficients directly, see [27].

and test point potentials, given by A simpler approach based on polynomial interpolation may
gt 1 be found in [28].
i A (7) The accuracy of the above projection scheme hinges on the

proper selection of the test pointg. From (5), we expect
Here z! and 2; are the positions of théth test point and high accuracy if the test points are chosen to be abscissas of a
the jth grid point, respectively. By construction, the relativdnigh-order quadrature rule [29]. It can be shown that the error
positions of the grid charges and the test points are identigalpotential due to the grid-charge approximation of a charge
for each cellk, and thereforeP¢t is the same for each cell. distribution contained within a sphere of radiusat a distance
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r from the center of the distribution, is of order/r)(™+1)/2  at 4, and the potentiall,(z¢) at z, is to be computed by
if the test points are chosen to be the nodes of a quadratimerpolating potentials produced by this unit charge at the
rule accurate to ordeis [30]. grid points;. Then, if V7 is the interpolation operator

/ — T 7. P
C. Computing Grid Potentials Wy (o) = Z Vi (0, 2:)G(2i, 90)-

Once the charge has been projected to a grid, the operation , )
H, computing the potentials at the grid points due to the grfg?™ & Symmetric Green function},(zo) = G(zo,40) =

charges, is a 3-D convolution. We denote this as G(yo,20) = Ya(yo), and
~ vl - -, (7T
Bk =Hi= S hi—ij— i k- k)3 k) 2 Vo, ) Gldio) = Vg
i/,j/7 k/ ®

(10) so that

wherei, j, k andé, j, k' are triplets specifying the grid points ¥} (z0) — ¥y(z0) = V g — Uy (z0) = g7V — Vo (o).
andh(i —i',j — j'.k — k') is the inverse distance between N ) .

grid pointsi, j,k andi’, 7/, . As will be made clear below, Now supposgj is assigned the valu¥ in order to represent
K(0, 0, 0) can be arbitrarily defined, and is set to zero. THBE unit point charge ato. Then

above cpnvolution can be r.apidly cqmputed by using the FFT. W (yo) — W (yo) = (gqu) — T, (y0)

In practice, each convolution requires one forward and one T

inverse 3-D FFT. The discrete Fourier transform of the kernel =gV = La(n)

matrix H, denotedH, need be computed only once. I%(UUO) = Wy (o). u

An efficient FFT implementation is central to the perforWhen a collocation scheme is used to discretize the integral

mance O].c the precprrected-FFT aIgonthm. The FFTis a .Vegﬁuation, the operator which interpolates potential at grid
well-studied algorithm and many possible implementations

. . . . . K T
exist. Most FFT implementations have a fairly regular natur oints m_cellk to a charggj also n c_ellk IS not [W(k."])]
- S efined in (9). Instead, the projection operald(k, ) for
thus very efficient optimized code can be developed. Also, the . . N
. L : . a point charge located at the collocation point is computed
structure of the data in a multidimensional convolution can, - . : : T
which gives the interpolation operat¥ (%, j)]*. However,

be exploited for additional performan.ce gains. qu exa.mplﬁ,a Galerkin scheme is used in the discretization then the
the use of the FFT to perform a linear multidimensiona : . T
convolution involves embedding the datd {o be transformed hterpolation operator ishV (k, j)]"
) 9 37 Thus, projection, followed by convolution, followed by
into a larger data space, much of which is zero. The fact tha . ; : N

) . : |p erpolation gives the grid-charge approximatigg to the
much of the transformed data is zero can be exploited to yie . ;
. ; s ; tentials which can be represented as
a more efficient transform. In comparison, achieving optlmglO
machine performance with fast multipole algorithms is more g = VIHWY. (11)
difficult, due to the less regular nature of the algorithms. )

If Galerkin methods are used, (11) becomes

D. Interpolating Grid Potentials Ve =WITHWq (12)

Once the grid potentials have been computed, they must
be interpolated to the panels in each cell. This process%@d therefore the precorrected-FFT method preserves the sym-

essentially the same as the problem of representing Chapé%try of the Galerkin discretization for free space problems.
on the grid, as can be seen from the following result [28].

Theorem 1:Given V € R™*! is an operator which E- Precorrecting

projects charge onto a grid ofi points, thenV? may be The difficulty with the above three steps is that the calcula-

interpreted as an operator which interpolates potential at gtidns using the FFT on the grid do not accurately approximate

points onto charge coordinates; conversely, givéne R!*™ the nearby interactions. Ira/? of (11), the portions ofF,

is an operator which interpolates potentialratgrid points associated with neighboring cell interactions have already

onto charge coordinate¥, may be interpreted as an operatobeen computed, though this close interaction has been poorly

which projects charge onto the grid coordinates. In either casg@proximated in the projection/interpolation. A more accurate

V and VT have comparable accuracy. calculation of interactions between nearby panels is needed,
Proof: Let G(x,y) be the Green function for a source abut it is also necessary to remove or avoid the inaccurate

1y, evaluated ax. Suppose that a unit charge at the paiptis contribution from the use of the grid. This is a general

represented by the vector of grid chargesThe approximate difficulty with grid-based potential calculation methods and a

potential ¥’ (y) at a pointyy is given by variety of correction methods have been proposed [20], [28],
, a T [31] the details of which usually depend on the problem being
W2 (vo) = Z G(yo, 2:)§ =9 q solved, the interpolation scheme, and the nature of the grid
‘ solver.
where ; is the position of theth grid charge ang € R™, Because our algorithm works directly with the Green func-

g; = G(yo,2;). Conversely, suppose there is a unit charge®n, and because the iterative solver requires that many
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Fig. 6. (a) A sphere discretized into 960 panels. The discretization is refined by subdividing the spherical triangle defined by the panel vertices into
four triangular panels, whose vertices are the midpoints of the edges of the original spherical triangle. (b) Lines show integrated chargeherror for t
sphere with Dirichlet condition of (17). Solid line shows errors for grid code,(x3= 2 (*) p = 3 (+) p = 4. Dashed line connecting (0) shows

error for I = 2 multipole scheme.

potential evaluations are performed for a given panel configis-to add in the corrected direct interactions, to obtain the panel
ration, it is possible to treat nearby panel interactions exactlyotentials(k) for each cellk
without sacrificing algorithmic efficiency. We accurately treat

interactions between panels close together by modifying the p(k) = pa (k) + Z Pk, Dar (17)
way nearby interactions are computed, a step we refer to as teN k)
precorrection. Because for each, N (k) is a small set and each matd¥(k, )

In particular, denote a#’(k,!) the portion of P associated is also small, this second step is also a sparse operation. The
with the interaction between neighboring celisand, V(k) complete algorithm follows in pseudocode form:
and W (I) the matrices formed from the columi®g%, j) and

W(k, j), respectively, and denotgy ;) as the panel potentials  Precorrected-FFT Algorithm to Compute Pq

in cell & due to the chargeg in cell [. Then [* Projection Step */
Setg =0
o =VkRTHEOW( 13 1
ba, iy = VI(E)" Hk,DW (D (13) For eachcell & — 1 to M {
is the grid-approximation t@;), which is inaccurate. Sub- For eachpanelj incellk, ; =1ton(k) {
tracting this approximation and then adding the correct con- Add G(k) = g(k) + W (k, j)g; (k)
tribution 1
Yoy = Ve, wkly + (P, = VIR Hy, W) (14) [ éonvolutiop Step */
produces the accurate resut(k, [)q;. Compute Q = FFT(g)
This may be efficiently accomplished by defining Compute ¥ =HQ
. T Compute v = FFT ()
Pk, 1) = P(k,1) = V(k)" H(k, W (1) (15) [* Interpolation Step */
to be the “precorrected” direct interaction operator. When Sety =0
used in conjunction with the grid charge representafgh, [) Foreachcellk =1toM {
results in exact calculation of the interactions of panels which For eachpaneljin cell £, j =1 ;OA”(I“) {
are close. Assuming that thBq product will be computed Add o; (k) = (k) + [V (k, DI 95(k)
many times in the inner loop of an iterative algorithi will }
be expensive to initially compute, but will cost no more to . } i .
subsequently apply tha#. [* Nearby Interactions */
For eachcellk =1toM {
F. Complete Algorithm For eachcell I in NV (k)

b(k) = (k) + Pk, Dq(l
Combining the above steps leads to the precorrected-FFT VR =9(k) Uk Da(l)

algorithm, which rapidly computes thé&’q dense matrix- }

vector product. Using the above notation, the algorithm can

be described as two steps. The first step is to compute Thus, the effect of this algorithm is to replace the operation
Ve = VIHWY. (16) P Pq

W and V are sparse interpolation operators aHdcan be where P> is a dense matrix, with the operation

represented in a sparse manner via the FFT. The second step P — [P +VTHW]q
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Fig. 7. The cube example. (a) Discretization of the cube. (b) CPU time, in seconds, needed for the fast multipole (dashed line caoabjeatidg “
precorrected-FFT algorithms (“*”) to compute a matrix-vector product. For the precorrected-FFT algorithm, different results are possihileg depend
whether speed or memory usage is to be optimized. The solid line connects runs with grid sizes chosen to minimize memory use. Note the speed-memory
product is fairly independent of grid size. (c) Memory, in Mb, needed by the fast multipole and precorrected-FFT algorithms. (d) Product of (b) and (c)

where all the matrice®, V, H, and W possess sparse reprenumber of grid points will increase, so the cost of the FFT
sentations. will increase monotonically. This implies that the total cost of
the algorithm will have an easily determined global minimum
for some grid spacing. For a given grid spacing and panel
G. Grid Selection configuration, the memory and computation time needed by
Before the algorithm has been completely specified, the precorrected-FFT algorithm can be estimated cheaply, so
necessary to specify how panels are selected for inclusiontfi¢ optimal grid spacing can be obtained by starting with a
direct interaction regions and how the grid size is selectegMall number of grid points and increasing the number until a
That is, for each celli the set N(k) must be specified. Minimum CPU or memory estimate, as appropriate, is reached.
To insure that interactions between panels which are clo$eaddition, we have generally required that the number of grid
together are treated accurately, at a minimum it is necess@Bjnts be a factor of two, in order to exploit the most efficient
to compute interactions between panels in cells which ar&T implementations.
near-neighbors of each other via direct products. The neardt is interesting that the optimal grid size may occasionally
neighbors of a celB are defined to be all the cells which havde such that the number of grid chargésjs larger than the
a vertex in common with cel§ (thus a cell is a near-neighbororiginal number of panel charges This may be the case even
of itself). We have included only near-neighbor interactions When the grid spacing is larger than the underlying panel sizes,
the computational experiments of Sections V and VI. that is, when the grid is “coarser” than the panel discretization.
The worst case accuracy of the grid representation isS&ich a case may occur, for example, for a finely discretized
function of the ratio of the cell radius to the radius of the directube surface, where the grid must fill the 3-D space of the
interaction region [30]. Thus, once the direct-interaction regigube’s interior. However, the overall algorithm may still be
has been specified to be near-neighbor cells, the selectiomuite effective, since the cost of the FFT (g7 log#), with
the cell size, and hence the grid spacing is purely a matteratonstant factor of(10). Thus if # ~ n andn is large, the
computational efficiency. The cost of direct interactions wilkost of the FFT is less than that of the direct product by a
decrease monotonically as the cells are made smaller, but thetor of nearlyO(n), and so the algorithm may have> n
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Fig. 8. The bus crossing example. (a) Larger problems are generated by adding more bus lines. (b) CPU time, in seconds, needed for the fast multipole
(dashed line connectingx™) and precorrected-FFT algorithms (solid line connecting “*) to compute a matrix-vector product. (¢) Memory, in Mb, needed
by the fast multipole and precorrected-FFT algorithms. (d) Product of (b) and (c).

by a fairly significant factor and still possess an advantagell, but due to sharing, the point charge approach can be
over the direct computation. more efficient. For example, when representing the potential
of a panel by charges at the cell vertices, there are eight
free coefficients which may be varied to obtain an optimal
representation, and there will §& + 1)(I + 1)(m + 1) terms

In this section, we analyze the complexity of thén the entire domain. On average, there is only one grid-charge
precorrected-FFT algorithm and give some comparisoper cubic cell, since a point charge at a cell vertex is used to

IV. ANALYSIS OF THE PRECORRECTEBFFT ALGORITHM

with other approaches. represent charge in the eight cells which share that vertex. By
contrast, as no sharing occurs in the multipole representation,
A. Comparison to Fast Multipole Algorithms if there areq coefficients in the multipole expansion which

represents the potential of the charges in the cell, the total

First we compare the efficiency of the grid representati . L
used in the precorrected-FFT algorithm to the multipole e?é_hmber of terms in the domain will btk +1)(I +1)(m + 1).

. d in the fast ltinol thod. Both the f ?r an equivalent number of total terms in the domain, we
rpnatjnltsiloor:: al]lsgri tr:rrln ar? d tﬁz rrgléolregciemle;F'?' a.l ochi thim :btsgxpect the grid representation to be more accurate. Conversely,
eﬁiciSncy b?/ representing tEe long-range part gf the potenti%lr roughly equivalent accuracy, we may c;hoape_: 8’. .bUt
of a group of charges by an expression which can be use n the total number.of multipole tgrms will be significantly

. . ) . e her than for the grid representation.
multiple evaluation points, but the algorithms differ in the way
they cluster sets of charges together to form single expressions.

Again consider subdividing the parallelepiped containing: Performance for Homogeneous Problems
the entire 3-D problem domain into /a x [ x m array of From the analysis of the preceding section, we expect the
cells. Then, the collocation approach above can be usedgrid representation to be locally more efficient than the use of
generate point charge approximations for charge distributiomailtipole expansions. However, our current implementation of
in every cell, effectively projecting the charge density onto the precorrected-FFT algorithm may be globally less efficient,
3-D grid. For example, if the representative point charges aas the grid representation is introduced throughout space, even
placed at the cell vertices, then the panel charge distributiefnere no panels are present. Thus, whereas for a problem
will be projected to gk+1) x (I+1) x (m+ 1) uniform grid. containingn panels, the fast multipole algorithm can perform
Fast multipole algorithms also effectively create a uniform grid potential evaluation for all of the panels@i{n) operations,
by constructing multipole expansions at the center of eaobgardless of the panel distribution [32], no such guarantee
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Fig. 9. Several realistic capacitance extraction problems. (a) The woven bus example (woves).5b) The comb drive example (comb). (c) The
via example (via). (d) The SRAM example (SRAM).

is available for the precorrected-FFT algorithm. However, fhany structures arising in practice satisfy this “coarsely
is possible to establish a weaker complexity result for tH®omogeneous” condition.
precorrected-FFT method.
Theorem 2: For a homogeneous distribution af panels
and a given prescribed accuracy, the precorrected-FFT metléodComparison to Other Grid-Based Methods

requiresO(n logn) operations to perform a potential calcula- |n order to solve the underlying potential-theoretic prob-
tion. lem, the precorrected-FFT algorithm introduces a uniform
Proof: Given that the computational domain is a paragrid which covers the problem domain volume and so it is
lelepiped containing: panels, again assume space has begitructive to compare the precorrected-FFT algorithm with
divided into an array of: x [ x m cells, and that the panel gther methods that introduce volumetric grids.
distribution is homogeneous on the scale of the cell size. Thatrirst, most other methods which use a grid to represent the
is, the number of panels per cel,, is bounded independentsolution throughout space, such as finite-difference methods,
of n, with klm of ordern. Finally, assume that the grid infinite-element methods, or integral equation methods which
each cell is @ x p x p array. There are three components igirectly exploit the convolutional properties of the kernel via
the cost of the precorrected-FFT algorithm: the cost of diregie FFT [33]-[35], introducing a space-filling grid which must
interactions, the cost of grid projection and interpolation, anglso accurately represent the complicated problem geometry.
the cost of the FFT. The cost of the direct interactions wilfhese two conflicting requirements generally result in either
be O(N?2 x klm) = O(klm) = O(n). The cost of the grid restricted geometries or a very large number of unknowns that
projection will be O(np®) = O(n). Finally, the cost of the in turn limits the size of the problem that can be effectively
FFT will be O(pkimlogp®*klim) = O(nlogn). Summing solved.
these costs results in the final complexity@fnlogn). m In contrast, as shown in Fig. 2, the grid introduced by the
Since the grid spacing is typically less fine than thprecorrected-FFT algorithm is geometrically unrelated to the
underlying surface discretization, for a typical problem thenderlying surface discretization of the geometry. In general
precorrected-FFT algorithm ha@(n log n) complexity for the number of panels in a surface discretization is much
problems with considerable inhomogeneity in the fine surfasenaller than the number of elements in a volume representa-
discretization, as long as the panel distribution is homogenedish, so we expect the precorrected-FFT algorithm to be more
at a very coarse level. As will be seen in Section Vkfficient, than, for example, finite-difference approaches.
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TABLE |
SraTisTics FORFASTCAP (RDER-2, GRID-2,3 GoDES FOR1/r GREEN FUNCTION. SETUP, SoLVvE, AND CPU TiMES ARE IN SECoNDS oNDEC AXP 3000/900,
MEMORY IN MEGABYTES. . |S NUMBER OF CONDUCTORS IN PROBLEM, EACH CONDUCTOR REQUIRES A SEPARATE LINEAR SYSTEM SOLUTION

Example[m] 1 Panels l Code ' Setup ’ Solve | CPU ‘ Memory | % err/rel ’ % err/diag
via [4] 6120 | FFT[p=2] | 10.85 |22.18 |33.03 |15.83 |1.41 0.81
FFT[p=3] | 10.60 | 61.96 |72.56 | 20.92 0.068 0.026
FASTCAP | 18.56 | 101.32 | 119.88 | 55.82 0.369 0.152
woven5x5[10] | 9360 FFT[p=2] | 5.8 125.2 | 131.0 | 20.35 7.06 1.65
FFT[p=3] | 32.63 | 282.4 | 315.03 | 49.49 1.60 0.048
FASTCAP | 37.37 | 656.3 | 693.67 | 103.8 16.9 0.431
cube[1] 14406 | FFT[p=12] | 480 |3.80 13.6 25.03 0.105 0.105
FFT[p=3] | 14.37 | 9.93 24.3 36.55 0.003 0.003
FASTCAP | 34.59 | 28.78 | 63.37 | 113.81 0.024 0.024
bus3x6[6] 6480 FFT[p=2] | 6.38 18.52 | 24.9 11.92 1.30 0.99
FFT[p=3] | 6.39 44.70 | 51.29 | 15.74 0.033 0.015
FASTCAP | 21.75 | 184.2 | 205.95 | 75.49 1.89 0.164
bus3x8[6] 11520 | FFT[p=2] | 5.67 52.1 57.77 | 20.22 1.10 0.416
FFT[p=3]|152 |82.86 |93.06 |32.64 0.021 0.021
FASTCAP | 30.52 | 328.38 | 358.9 | 119.9 1.96 0.177
SRAMI6] 3944 FFrIp=2]{392 |11.83 | 1575 | 7.71 0.90 0.45
FFT[p=3] 830 |28.02 |36.32 |16.70 0.046 0.023
FASTCAP | 11.89 |81.22 |93.11 | 38.92 0.62 0.032
combl[3] 19424 | EFTp=2] | 289 |95 |1203 |50.3 2.1 1.74
FFT{p=3] 232 |3158 |339.0 |T7L.1 0.056 0.043
FASTCAP | 70.2 399.3 1 469.5 | 211.0 0.12 0.11

woven15[30] | 82080 | FFT[p=2] | 1312 | 6152.8 | 62870 | 2163 |- |-

cube[l] | 126150 ] FFT[p =2)

736 |1215 [2000 [o207 |- E

Additionally, most other 3-D grid-based approaches nece=xactly, but more distant interactions are approximated by
sarily have a complexity of?, if k is the number of basis extrapolation, convolution, and then interpolation using the
elements along a side. The precorrected-FFT method analyged. To demonstrate that the errors due to using the grid are
here use®(n ~ k?) basis elements in the underlying surfacevell controlled, we present an empirical error study based on

discretization, and the complexity ©(n) — O(n'?) = an analytically solvable potential problem borrowed from [32].
O(k*) — O(k**) (see Sections IV-B and V-B, and [30]).If (1) is solved on a sphere with given potential

At k = 50 basis elements per dimension, corresponding only cos 0

to a 15000 panel problent?© exceedst2+ by more than a V0, ¢) = -—; (18)

factor of 20. the analytically computable charge distribution is
In short, because of the decoupling of short range interac- Y y P g

tions from the long range interactions treated by the grid, the o (8, ¢) = _3cos 9_ (19)
precorrected-FFT method can efficiently utilize fast potential 8
solvers without sacrificing the ability to represent complicated To estimate the error introduced by the grid approximations
surface geometries in a compact manner. in the precorrected-FFT method, the sphere can be discretized,
as in Fig. 6, and the chargeg on each panef computed.
The approximations introduced by the grid-charge approxi-
In this section, we examine a variety of simple examples tpation to long-range interactions will become evident as the
evaluate the performance of the precorrected-FFT algorithdiscretization is refined, since eventually these errors will
We start by examining the errors introduced by the gridominate over the discretization error. One relative measure
projection method and then we examine the efficiency of tlu the error is
overall precorrected method.

V. REFERENCE EXAMPLES

e = % S i = o) (20)

A. Empirical Error Analysis

As described above, in the precorrected-FFT algorithm, tiMdiere the sum runs over all panéglsz; is the centroid of
interaction between panels in neighboring cells is computedneli, a, the area of that paned; the charge on the panel,
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and @) the exact total charge on the sphere. Fig. 6(b) shows TABLE I
that for the low-order piecewise-constant collocation scheme, CoMPARISON OF FASTCAP AND GRID CODES FIGURES ARE RATIOS OF

. . . . . . REQUIRED RESOURCES “PRopucT’ | s PRobucT oF CPU AND MEMORY FIGURE
as the discretization of the sphere is refined [see Fig. 6(a)], the

integrated errot decreases proportional tgn. The multipole Example | Grid Order | Setup ‘ Solve

CPU } Memory } Product

or precorrected-FFT approximation errors are evident when b2 058 1022 1028 | 098 0.078
ceases to decreasesass increased. For example, for the 3 o5 1ot Toel oar 0.3
2 x 2 grid-charge representation is used in each gel (2), P= il : : - =
e ceases to decrease below about 0.05. This indicates that th&ovensx5 | p = 2 0.16 10.19 }0.19 |0.20 0.037
p = 2 grid charge scheme introduces errors into the integrated p=3 0.87 1043 1045 1048 0.22
charge calculation of about 5%. Similarly, we expect the cube p=2 0.14 | 031 |021 | 022 0.046
3 scheme to be accurate to almost a tenth of a percent. We p=3 042 | 031 1038 |0.32 0.12
haye also shoyvn resuIFs for the- 2 multipole ap_prommat!on,  busisb | pe2 029 |o10 lo1z o016 0.019
which from this experiment we expect to be intermediate in : . B ”
accuracy between the grid= 3 andp = 2 approximations. p=3 0430 1024 0.2 | 021 0.052
bus3x8 p=2 0.19 | 0.16 |0.16 |0.17 0.027
=3 0.50 025 |027 |0.27 0.074
B. Effects of Inhomogeneity SRAM |p=2 033 1015 |0.17 {020 0.034
The fast multipole algorithms used in the FASTCAP pro- p=": 0.70 034 039 |043 0.17
gram compute matrix-vector products i@(n) operations "y b2 041 1023 026 |024 0.062
regardless of the distribution of panels on the discretized - = -
p=3 0.33 |080 {072 |0.34 0.24

surfaces [32], but this is not true of the precorrected-FFT
method. As described, the use of the FFT implies that the al-

gorithm computes matrix-vector products in at b@gtlogn) g important to consider when analyzing the precorrected-FFT

operations, and attains this optimum only for fairly homog‘?ﬁethod because, as is clear from the figure, speed can be

neous distributions of panels (see Section IV-B). That is, f?rraded for memory by manipulating the size of the region

problems where the panels are distributed in a roughly uniform =~ . - L
manner throughout space, the precorrected-FFT method shcim%l grid-charge approximation covers. The CPU and memory

be efficient. In contrast, for inhomogeneous problems Whicwures for the precorrected-FFT method are observed to grow

consist of clusters of panels separated by large areas!r(r) gularly with problem size. This is because our specific

open space, inefficiency may be expected. Therefore it implementation of the method requires the number of grid-

i ; . )
important to quantify the performance penalty induced in thc(fiarges along one side of the computational domain to be

precorrected-FFT method by problem inhomogeneity. a power of two. The solid line in the figures shows results

A simple approach to generating an example which is inhw-hen .th? number of g”d charges along a side was selected
mogeneous is to refine the discretization of a cube. The cutlg)e_Opt'_m'Ze (see Section lll-G) the speed-memo_ry product,
example is intended to serve as a model for typical bounday"Ch IS observed to grow smoothly. Two cases in F'.g' /(@)
element discretizations of surfaces. As the discretization 5° evident where the code would have been considerably

refined, problems with increasing numbers of panels will Hstér had a different number of grid-charges been used.

generated. The precorrected-FFT algorithm must place gfi@Wwever, as Fig. 7(b) shows, the memory required would

charges in the empty interior of the cube, which causes tAgve Peen greater in each case. _
CPU time and memory required by the algorithm to increaseAnalysis of the trend of Fig. 7(a) reveals that the CP}J time
faster thanO(nlogn). As n increases, relatively more paneld'®€ded to solve the cube problem grows as alop(at' ),
are near the surfaces of the cube relative to the interidfheren is the number of panels, faster than ) expected
i.e., the problem inhomogeneity increases. Thus, at someymptotically for the fast multipole method. However, for
large n, the fast multipole methods will be superior to the&ll the problems analyzed, the precorrected-FFT method was
precorrected-FFT method. We wish to determine how effectigglPerior in terms of CPU time and memory required. We may
the precorrected-FFT method is for reasonable size probler@gtain the approximate point at which the algorithms cross
and at whatn it would become advantageous to use th@ver by extrapolating the data in Fig. 7(c). Assuming that
fast-multipole methods. the CPU time and memory of the multipole method grow as
Fig. 7 shows the comparison of the precorrected-FF¥(n), and that the CPU time and memory required by the
method atp = 3 to the fast-multipole based code FASTCAPprecorrected-FFT method grows@sén'-?) [30], then in terms
at! = 2, for the cube example. The discretization of the cus¥ the speed-memory product the precorrected-FFT method
is refined to generate more panels, and the performancewdf be superior to the fast-multipole method until is, at
the two codes compared as the problem size increases. THe@st, several million panels. We estimate over 30 gigabytes of
figures are shown. Fig. 7(b) shows the time required for eagtemory would be needed to solve such a problem.
code to compute a matrix-vector product, Fig. 7(c) shows theThe cube example demonstrates that problems exist for
amount of memory needed by each code, and Fig. 7(d) shomkich the precorrected-FFT algorithm is inferior to the fast-
a figure of merit which is the product of required memorynultipole methods. This example, however, is somewhat ar-
and the time needed for a potential calculation. The produdicial, as very large capacitance extraction problems are not
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CoMPARISON OF CAPACITANCE EXTRACTION Zﬁf(;:?ﬂ:lnlns. FIGURES IN PARENTHESES ARE ESTIMATES
Example CPU Usage Memory Usage
Name Panels[cond] | P/FFT FASTCAP Dir. Iterative LU Decomp | P/FFT Direct
via 6120[4] 1.1 min 2.0 min (5.6 min) (1.9 hrs) | 21 Mb (286 Mb)
wovendx5  9360{10] 5.2 min 12 min (42 min) (6.9 hrs) | 50 Mb (668 Mb)
wovenld  82080{30] 1.7 hrs - (11.5 days) (194 days) | 246 Mb  (50.2 Gb)
cube 126150(1] 3.3 min - (8.4hrs) (2.7 yrs) | 225 Mb (119 Gb)

usually due to very fine discretizations of a few surfaces, butThe table indicates that multipole expansions of order 2
rather by fixing a discretization level, and solving problemare usually enough to give relative accuracy of one percent
which involve increasingly more complicated structures. Fora so in the calculated capacitances. In terms of relative
situation which better models problems from VLSI intercorerrors in the computed capacitances, the= 2 grid code
nect analysis, consider a bus crossing example, as in Fig. 8appears to be comparable to the= 2 multipole code, and
this example, a series of stacked bus problems are solved. Sbenewhat inferior when the error is measured as a percentage
faces of each bus line are broken into quadrilateral section$,the diagonal capacitance. The= 3 grid code clearly has
and the quadrilaterals discretized by division into a centrahiformly superior error properties. These results are in accord
panel and five edge panels. In order to generate larger amith the sphere example considered previously in Fig. 6.
larger problems, we considérevels of bus wires, each level Table Il shows explicit performance comparisons ofthe
having b wires. 2 multipole code to the = 2 grid code, which has comparable

From Fig. 8 it is clear that the computational cost chccuracy, as well as to the more-accurate: 3 grid codes.
the algorithm grows nearly linearly with problem size, aat p = 3, the precorrected-FFT method can be as much as
predicted in Section IV-B. For the size problems considerefdur times faster and can use as little as one fifth the memory
the precorrected-FFT method with= 3 enjoys an advantageof FASTCAP. In terms of the speed-memory product, the
of more than a factor of three in terms of computationgfrid-based code gt = 3 was superior by a factor ranging
cost and roughly a factor of four in memory utilization ovefrom four to 20. Atp = 2, the performance advantage of the
the fast multipole method using order-2 expansions. Wiltid-code was even more significant. The CPU advantage of
these parameter values, however, from Fig. 6 we expect @ method ranged from nearly four to more than eight, the
precorrected-FFT method to be considerably more accuratgaemory advantage from four to six, and the product from 12

to 52.
VI. REALISTIC EXAMPLES The two final entries in Table | are worthy of note. Using the

In this section, we present results comparing the FASTCAP= 2 grid representation, from which we expect about 2-4%
program to the precorrected-FFT method for computing caccuracy, it was possible to analyze two very large problems.
pacitances of several 3-D geometries. As a preconditioner H¥ first is a 15x 15 wire woven bus crossing, shown in
not yet been implemented in the precorrected-FFT algorithfd- 10, which has over 80000 panels in the discretization.
all Comparisons were performed without FASTCAP'’s precoﬂ—he second is the cube, discretized into about 125000 panels.
ditioner. Fig. 9 shows four realistic 3-D structures: a wovehhe precorrected-FFT method was able to perform a single
bus structure, a bus crossing structure, a via structure, and g@f!tion (one row in the capacitance matrix) in only about
of an SRAM memory cell. We have compared the multipoled min. More importantly, both problems could be solved in
based code FASTCAP, using multipole expansion otder2, the available physical memory, which was not possible using
to the grid based methods with= 2 andp = 3. To estimate FASTCAP.
the accuracy of the computed capacitances, we have compare/e note that all the examples considered here generate
the results to the grid-code run usipg= 6, which we expect fairly well conditioned linear systems, so no preconditioner
to introduce errors into the calculation which are very smalas necessary to secure convergence in a reasonable time.
compared to the = 2, p = 3 grid codes or the multipole= However, use of a preconditioner could further reduce the
2 code. As a check on this assumption we also performed g@mputation times required for the linear system solution, and
calculations using the fast multipole algorithm and sixth ordénable solution of less well conditioned problems.
multipole expansions. Taking the = 6 capacitances to be Finally, we wish to emphasize that, regardless of whether
exact, we have calculated both the maximum relative errorstite precorrected-FFT or fast-multipole based approaches are
the computed capacitance coefficients, as well as the maximused, the advantage of the accelerated schemes over tra-
over all rows of the capacitance matrix of the largest errdlitional algorithms is tremendous. Table Ill compares the
in the row as a fraction of that row’s diagonal capacitanceomputation time and memory needed by algorithms based on
Table | shows the computation times, memory required, ahtl-factorization via Gaussian elimination, iterative solution
error estimates for each problem. All experiments were rwsing direct (explicit) matrix-vector products, and iterative
on a DEC AXP3000/900, with 256 megabytes of physicalolution using accelerated matrix-vector products, as described
memory. in this paper. The statistics for the direct algorithms were
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Fig. 10. The large woven bus structure. The 30 conductor structure is formed from fifteen conductors woven around fifteen straight conductoas. The actu
discretization is finer than shown in the above figure. There are 82080 panels in the actual discretization.

estimated by extrapolating timings of computations performdite algorithm. Such an algorithm would, in principle, inherit
by MATLAB, and by assuming that storage is in doubl¢he efficiency of the grid-based representation discussed in
precision floating point words. For the largest problems, thiis paper, while at the same time achieving the neéan)
speedups can be two orders of magnitude over iterative sotemplexity of the fast multipole methods.

tion with direct products, and nearbix orders of magnitude
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