
T H E M E  A R T I C L E

30 1070-9924/97/$10.00 © 1997 IEEE IEEE COMPUTATIONAL SCIENCE & ENGINEERING

Micromachining technologies for fabricat-
ing tiny sensors, actuators, mechanisms,
passive components, and even packages
for components—collectively called mi-

croelectromechanical systems or MEMS—are being devel-
oped successfully throughout the world.1 Examples of
these fabrication technologies include bulk microma-
chining, surface micromachining, laser-etching, micro-
electrodischarge machining, 3D printing, wafer bond-
ing, the dissolved-wafer silicon-on-glass process, LIGA
and high-aspect-ratio metal plating, and micromolding.

These methods have been used to produce many types
of MEMS products and prototype devices, including es-
pecially pressure sensors and accelerometers, but also
scanning probe tips for atomic force microscopes and
scanning tunneling microscopes, flow sensors, valves, mi-
cromotors, and chemical microanalysis systems on a chip.

Efficient MEMS simulation:
Three main computational challenges
Figure 1 shows two examples of silicon microsensors fab-
ricated by wafer bonding. At the left is an accelerometer
for out-of-plane motion, and at the right is a resonant rate
gyroscope for detecting rotations about an axis normal to
the plane of the device. The action of these MEMS de-

vices involves several physical effects: mechanical motion,
air damping, electrostatic actuation, and capacitive posi-
tion detection. Detailed knowledge of all of these effects
is a prerequisite for effective and efficient design.

While many types of micromachines are indeed being
created, design processes are cumbersome. It is fair to
say that the ability of a MEMS engineer to design a new
product is still limited in ways that were long ago over-
come in integrated circuit engineering. Except for a few
classes of pressure sensors, every new MEMS product
idea is essentially a research project. During that research
project, years can be spent developing prototypes which
are then discarded. The result is an unacceptably long
product development cycle or unnecessarily conserva-
tive design practices.

The first step in reducing design time and allowing for
aggressive design strategies is to develop simulation tools
that will let designers try “what if” experiments in hours
instead of months. Several commercial and academic ef-
forts are underway to devise such simulation systems.2–7

To provide these tools, three computational challenges
are being addressed.

First, faster algorithms are being developed for com-
puting surface forces due to fields or fluids exterior to geo-
metrically complex, flexible three-dimensional structures.

Second, since the performance of most microma-
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chined structures is due to a
complicated interaction be-
tween structural stresses, elec-
trostatic or magnetic forces,
and fluid tractions or pres-
sures, approaches for coupling
efficient domain-specific sol-
vers are under investigation.

Finally, because the ultimate
concern is the functioning of
the designed device when it is
embedded in a complete sys-
tem, designers need accurate
dynamical models that permit
rapid simulation of system per-
formance under a wide variety
of inputs and scenarios, such as
being inserted into a feedback
loop. And since direct simula-
tion of 3D structures involves
thousands of degrees of free-
dom, all coupled together, full
nonlinear direct dynamic sim-
ulation can be computationally infeasible in a
typical workstation environment. Furthermore,
designers tend to think in terms of models with
only a few degrees of freedom that are well cor-
related to modifiable parameters like dimensions
or material properties. Therefore, the third chal-
lenge is to find robust methods to project the re-
sults of detailed numerical simulations—with
their enormous number of degrees of freedom—
onto spaces spanned by a very small number of
appropriately selected dynamical variables. We
refer to this as the nonlinear macromodeling or
nonlinear model order reduction problem.

We will try to describe some of the current
successes and needed efforts associated with
these three challenges.

Fast algorithms for exterior problems
Typical micromachined structures, like the ex-
amples given in Figure 1, are geometrically
complicated and innately three-dimensional. In
addition, the performance of these structures
depends critically on exterior forces, like elec-
trostatic pressure and fluid traction, in large or
semi-infinite domains. Though it is possible to
determine these forces by using finite-element
or finite-difference discretization of the associ-
ated partial differential equations, such an ap-
proach has many difficulties.5 The most obvi-
ous problems are generating a well-behaved
exterior mesh (particularly if the structure is de-

forming), truncating the semi-infinite domain
while still ensuring accuracy, and solving an un-
structured sparse matrix with an enormous
number of unknowns.

For many micromachined device applications,
the exterior forces can be described by time-in-
dependent linear partial differential equations.
For example, quasi-static electromagnetic and
fluidic forces are frequently well approximated
by solutions to Laplace’s equation or the time-
independent Stokes equation. For such prob-
lems, boundary-element methods applied to
surface-integral formulations can be used to
avoid the exterior meshing and domain trunca-
tion problems. Boundary-element methods typ-
ically generate dense matrices, but sparsifica-
tion-accelerated iterative methods can be used
to solve such matrices extremely efficiently.8 We
next describe some of the issues associated with
using sparsification-accelerated boundary-ele-
ment methods.

Integral formulations
Many textbooks contain first-kind integral

formulations for determining electrostatic sur-
face charge, given conductor potentials, or for
determining traction forces from specified ve-
locities in Stokes flow.9,10 Such first-kind inte-
gral equations have strongly elliptic kernels, and
therefore have unique solutions when the inte-
gral operator is viewed as a map between appro-
priately selected Sobolev spaces.11 Standard dis-

Figure 1. Left: silicon microaccelerometer. Notice the holes in the proof mass for con-
trol of air damping of the motion. Right: silicon resonant rate gyroscope. The comb
drives are used to excite the structure into lateral resonance. Rotation causes out-of-
plane motion, which is detected capacitively. (Courtesy C. Hsu and M. Schmidt, MIT)
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cretization schemes for this type of first-kind
equation converge,12 but the condition number
of the discretized system grows with mesh re-
finement, making the system of equations pro-
gressively more difficult to solve. (In certain
cases, it is possible to eliminate this ill-condi-
tioning using specialized discretization schemes
based on Sobolev inner products13). In general it
is possible to derive second-kind integral for-
mulations for Laplace’s equation or Stokes flow,
and discretizations of these second-kind formu-
lations generate systems of equations whose
condition number remains bounded even as the
mesh is progressively refined. However, the
most easily derived second-kind formulations
generate intermediate quantities which must be
locally differentiated or globally integrated to
compute the desired forces.14–16

For electrostatic force calculation in micro-
machined devices, where the conducting struc-
tures enforce equipotential surfaces, a second-
kind integral equation can be directly derived for
the surface charge. To see how this done, con-
sider the first-kind equation for the charge den-
sity σ on a single conducting body at unit
potential,

(1)

where S is the surface of the body, σ is the sur-
face charge density, and G(x, y) = 1/(4πε0|x − y|)
is the Green’s function for Laplace’s equation in
the three-space. Exploiting the fact that the
electric field in the interior of the conducting
body is zero leads to a second-kind formulation
for the charge density given by17

(2)

where x1 is any point in the interior of the body.
The above second-kind formulation can be ex-
tended to multiple bodies, but not to vanishingly
thin conductors.18

Generating second-kind formulations whose
solution directly yields quantities of interest is
not a new subject, but the recent development
of accelerated boundary-element methods has
revived interest in such formulations for a vari-
ety of applications beyond simple electrostatics.
These methods can be used to investigate sur-
face-integral formulations for fluid flow that in-
cludes time-dependence, for dynamic microma-
chine analysis, and possibly for nonlinearities.10

Discretization
Most boundary-element methods for solving

surface-integral equations use a basis-function
representation of a surface unknown σ(x). An
example is

(3)

where the θ i ’s are compactly supported but not
necessarily orthogonal basis functions.9,19,20

Consider substituting Equation 3 in a general
second-kind formulation

(4)

where G(x, y) is a problem-specific Green’s func-
tion. The result of discretization (denoted D) is
a linear system of equations which can be writ-
ten in matrix form as

(5)

where α ∈ Rn is the vector of basis coefficients.
In Equation 5, MD, GD ∈ Rn × n, and f D ∈ Rn de-
pend on whether collocation or Galerkin meth-
ods are used.21,22 For collocation,

(6)

where I is the identity matrix and the ~xi’s are the
collocation points. For Galerkin methods,

(7)

The integrals in Equations 6 and 7 can be eval-
uated analytically for certain simple geometries
and basis functions.23,24 For higher-order meth-
ods and curved surfaces, the integrals are usually
evaluated by semianalytic quadrature methods,
because the Green’s functions of interest are sin-
gular, that is, limx→x′ G(x,x′) → ∞.25 It is often
useful to note that if the basis functions are or-
thonormal and a single point quadrature formula
is used to evaluate the outer integral in Equation
7, then an approximate Galerkin method is gen-
erated that is identical to a collocation method.18

  

M x x dx

G G x x x x dx dx

f f x x dx

i j
D

i j

i j
D

j i

i
D

i

,

,

( ) ( ) ,

( , ) ( ) ( ) ,

( ) ( ) .

=

= ′ ′ ′

=

∫
∫∫
∫

θ θ

θ θ

θ

and

  

M I

G G x x x dx

f f x

D

i j
D

i j

i
D

i

=

=

=
∫
,

( ˜ , ) ( ) ,

( ˜ ),

, θ   and

  ( ) ,M G fD D D+ =α

1
2

σ σ( ) ( , ) ( ) ( ), ,x G x y y dS f x x Sy
S

+ = ∈∫

σ α θ= ∑ i i
i

n

x( ),

  

1
2

11

σ ∂
∂

σ

σ

( ) ( , ) ( )

( , ) ( )

x
n

G x y y dS

G x y y dS

x
y

S

y
S

+

+ =

∫
∫

  
G x y y dS x Sy

S
( , ) ( ) ,σ = ∈∫ 1

.



JANUARY–MARCH 1997 33

In order to develop highly accurate codes that
are more Green’s-function-independent, there
has been recent interest in locally corrected
quadrature rules.26,27 The possibility of success
in developing such quadrature rules is particu-
larly exciting because then high-order Nystrom
methods could be used to solve Equation 4. In
such a locally corrected Nystrom method, one
would need only to pick n points on a structure’s
surface and solve n equations of the form

(8)

where the xi’s are the quadrature points, the wj’s
are the quadrature weights, and the ’s are
the local corrections.

Sparsification
For compact basis functions, MD in Equation

5 is sparse, but GD is dense as it represents a dis-
cretization of the integral operator. Because the
matrices generated by discretized integral oper-
ators are typically well-conditioned, Krylov-sub-
space methods like GMRES28 are usually used
to solve Equation 5. Each iteration of GMRES
requires a matrix-vector product, but since GD

is dense, each of these matrix-vector products
will require order n2 operations. It is possible to
exploit the structure of GD so as to compute ma-
trix-vector products with GD in nearly O(n) op-
erations, provided one does not insist on the
computation being exact.

Algorithms that perform fast matrix-vector
products are often said to “sparsify” GD, even
though most of these methods only implicitly
represent the approximation to GD. For matrices
associated with discretized integral operators,
sparsification algorithms rely on a decomposi-
tion between nearby and distant interactions.
The few nearby interactions are computed di-
rectly, and the many distant interactions are
computed using approximations.

As a simple example, consider the first-kind in-
tegral formulation of an electrostatics problem,

(9)

where x ∈ surfaces, and ψ(x) is the known con-
ductor surface potential. The simplest dis-
cretization of Equation 9 is to divide the surfaces
into flat panels over which the charge density is

assumed constant. If the collocation points (the
xi’s) are selected at the centroids of each panel,
then the discretized system is

(10)

where q ∈ Rn is the vector of panel charges, 
Ψ ∈ Rn is the vector of known centroid poten-
tials, and the potential coefficient matrix P is
given by

.

This discretization is diagrammed in Figure 2.
If a Krylov-subspace method is used to solve

Equation 10, then it will be necessary to com-
pute many matrix-vector products of the form
Pq. The matrix P is dense, so computing Pq di-
rectly will cost order n2 operations. Instead, note
that computing Pq is equivalent to computing n
potentials due to n sources, and consider com-
puting distant interactions by representing clus-
ters of charged panels by a small number of
weighted point charges. Specifically, consider
dividing a problem domain into a large number
of cubes, where each cube contains a few
charged panels. The charge in each cube could
be represented using a small number of
weighted point charges. If the point charges all
lie on a uniform grid, then the fast Fourier
transform can be used to compute the potential
at these grid points due to the grid charges.29,30

Specifically, Pq may be approximated in order 
n log n operations in four steps:
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faces are discretized into panels that support a
constant charge density.
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(1) project the panel charges onto a uniform
grid of point charges,

(2) compute the grid potentials due to grid
charges using an FFT,

(3) interpolate the grid potentials onto the
panels, and

(4) directly compute nearby interactions.

Note that in step 4, it will also be necessary to
subtract the inaccurately computed direct inter-
action associated with the grid projection. The
above process is summarized in Figure 3.

There are a wide number of variations on the

above basic algorithm, which is quite well
known.31 The FFT is often replaced with a hi-
erarchy of progressively coarser grids on which
data are projected.32 More recent modifications
improve computational efficiency by using a hi-
erarchy of progressively finer grids on which data
are interpolated.11,33–37 The advantage of using
a grid hierarchy over the FFT is that such ap-
proaches can be made sufficiently adaptive to be
efficient even for problems with severe geomet-
ric inhomogeneities, like a very finely discretized
sphere.32,38,39 The advantage of using the FFT
over a hierarchy of grids is that the FFT can be
used with oscillatory kernels, like those associ-
ated with acoustics or electromagnetic waves.40

The other main refinement to the above basic
algorithm is the use of higher-order expansions
instead of point charges to represent cube dis-
tributions.8,41,42 The advantage of using higher-
order expansions is that it is possible to generate
efficient schemes that compute the matrix-vec-
tor product to machine precision. However, to
generate efficient schemes, the interactions be-
tween higher-order expansions must be diago-
nalized, and this can only be accomplished for
specific Green’s functions.8,42,43

The three ideas of using grid hierarchies,
higher-order discretization, and higher-order ex-
pansions are elegantly combined in wavelet-
Galerkin methods, though such methods are
problematic for very complicated geometries.41,44

Though there are quite a few effective codes
that use sparsification, the goal of a Green’s-
function-independent sparsification procedure
that is efficient for arbitrarily inhomogeneous
problems remains elusive.

Comb drive example
The combination of an integral formulation,

a discretization technique, and a sparsification
procedure can lead to very fast algorithms that
can analyze extremely complicated structures. In
Figure 4 shows an example of simulating the
electrostatic forces on half a comb from a mi-
cromachined accelerometer.45 Here the surface
charge was computed using the first-kind for-
mulation in Equation 1 and a piecewise-constant
collocation scheme with 20,000 unknowns. If di-
rect factorization had been used to solve the gen-
erated dense system, it would have required 66.8
CPU hours and 3.2 gigabytes of memory on the
DEC Alpha workstation (Model 600 5/333) that
was used. If GMRES were used instead of direct
factorization, the CPU time would have dropped
to 3.8 hours but 3.2 gigabytes of memory would

Figure 3. Representation of the four steps of the
precorrected-FFT algorithm.

Figure 4. Surface charge distribution on half a comb drive
structure. (Courtesy J. Gilbert, Microcosm Technologies)

.
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still have been required to store the matrix. Cal-
culating the charge distribution shown in Figure
4 using the precorrected-FFT accelerated
method to compute the matrix-vector products,
however, required only 6.7 minutes of CPU time
and only 220 megabytes of memory.

As the comb drive example demonstrates, ac-
celerated boundary-element methods can be
used to solve exterior problems with complicated
geometries very rapidly. However, coupling ef-
fects, like the mechanical bending induced by
electrostatic forces, are extremely important in
determining micromachined device behavior. So,
these fast techniques for exterior problems must
be combined in an efficient way with other sim-
ulation algorithms. We discuss this coupled sim-
ulation problem in the next section.

Coupled-domain simulation
The performance of most micromachined devices
depends critically on the interaction between
forces generated by a variety of mechanisms. For
example, in microresonator-based gyroscopes,
such as in Figure 1 and as described elsewhere,46

the dynamic performance is due to the coupling
between electrostatic, mechanical, and fluidic
forces. Simulation of these coupled-domain prob-
lems can be accomplished using generic finite-el-
ement techniques,5 but as we described earlier, for
Stokes flow or electrostatics there are much more
efficient techniques. Therefore, the efficiency of
coupled-domain simulation can be substantially
improved by using domain-specific solvers, pro-
vided the coupling between domains can be han-
dled effectively. We will describe three basic ap-
proaches to coupled-domain simulation, and give
computational comparisons between relaxation,
multilevel Newton, and full-Newton methods for
3D electromechanical analysis.

Domain solvers
Consider the problem of coupled simulation

between m domains, where in each domain a
discretization with ni degrees of freedom has
been introduced. Let  xi ∈ Rni denote the vector
of unknowns associated with domain i, where xi
is computed by solving a possibly nonlinear
residual equation

(11)

Here xj, j ≠ i, are the unknowns associated
with other domains, and are usually treated as
inputs when solving the Ri residual equation for

xi. Most domain-specific programs solve their
associated residual equations using variants of
Newton’s method, as in

(12)

where k is the Newton iteration index and

is the Jacobian with respect to xi. Of course, if
the residual equation for domain i is linear, only
one Newton iteration is required.

Solution alternatives
One approach to solving the coupled system

(13)

is to use the simple nonlinear Gauss–Seidel re-
laxation scheme diagrammed in Figure 5. The
relaxation algorithm does not always converge,
particularly when the different domains are
tightly coupled.47 Sufficient conditions for non-
linear relaxation convergence have been exten-
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sively analyzed.48

A more robust approach than nonlinear re-
laxation is to use a full-Newton method, as dia-
grammed in Figure 6, possibly combined with a
continuation or a homotopy scheme.49,50 The
difficulty with the full-Newton approach is that
the off-diagonal, or coupling, derivatives
∂Ri /∂xj, i ≠ j, may not be available explicitly. If
an iterative method like GMRES is used to solve
the linear system, then only matrix-vector prod-
ucts are required. Therefore, the off-diagonal

derivatives need not be explicitly computed, and
can be approximated by finite differences. For
example, if ∆uj is a part of the vector generated
by GMRES, then

(14)

where we have assumed that the ∆uj vector has
been scaled to be small in magnitude.51

If Krylov-subspace methods like GMRES are
used to solve the system in Figure 6, then the
diagonal blocks should be explicitly factored and
used as a preconditioner.52

Programs that perform domain-specific
analysis are not usually organized so that one can
efficiently determine the residual equation dif-
ferences required in Expression 14. In addition,
the explicitly computed parts of ∂Ri /∂xi, which
are needed for preconditioning the full-Newton
iteration equations, are often unavailable. So, to
create a robust full-Newton method, the indi-
vidual solvers must be modified somewhat, and
this means the coupled method is not really a
“black box” approach in which domain-specific
solvers can be easily interchanged. Consider in-
stead that a program which solves a domain-spe-
cific residual equation, as in Equation 11, can be
thought of as producing xi given xj, j ≠ i . We de-
note the input/output description as

(15)

With Equation 15 in mind, consider a third ap-
proach, the multilevel Newton method given in
Figure 7, which can be used to determine the
solution to the coupled system. We refer to this
as a multilevel Newton method because appli-
cation of the Hi operator implies solving residual
equation Ri, and this is typically done with an
inner Newton’s method. Note that in the multi-
level Newton method, the Jacobian block diag-
onals are already identity matrices and need not
be preconditioned. Also, application of

can be performed using finite differences and
multiple calls to the domain-specific solver with-
out modification.

An electromechanical example
Again we will use a MEMS comb drive as an
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example. The device consists of a deformable
comb structure, a drive structure, and a ground
plane. As shown in Figure 8, the F-shaped finger
structure is the comb, the E-shaped finger struc-
ture is the drive, and the rectangular-shaped
structure is the ground plane. When a positive
potential is applied on the drive structure, and
zero potential on the comb and the ground
plane, the comb structure deforms out of plane.
The deformation of the comb structure for an
applied bias of 85 volts is shown in Figure 9.
Note that only the comb structure deforms and
the drive and the ground plane do not move.

This coupled electromechanical problem can
be simulated by self-consistently solving for the
electrostatic surface charges given the structure
deformation, and solving for the elastostatic de-
formation given the electrostatic pressure. For
this example, the exterior electrostatic analysis
was performed using the accelerated boundary-
element method discussed earlier, and the inte-
rior elastostatic analysis was performed with a
standard parabolic-brick finite-element
method.52 The comb was discretized into 172
parabolic elements, the drive into 144 linear
bricks, and the ground plane into 2,688 four-
node elements.

A comparison of the relaxation, multilevel
Newton, and full-Newton algorithms for the
comb example is summarized in Table 1. At low
voltages the deflection of the comb is small, the
coupling between the electrical and mechanical
systems is weak, and the relaxation algorithm
works very well. At low voltages, both the mul-
tilevel Newton and full-Newton algorithms take
fewer iterations than the relaxation algorithm
but the simulation time for the Newton algo-
rithms is a little longer. For higher voltages, the
Newton algorithms converge
much faster than the relaxation
algorithm. For a bias of 80
volts, the multilevel Newton
algorithm is about 7.7 times as
fast and the full-Newton algo-
rithm is about 5 times as fast as
relaxation. The convergence
of the relaxation, multilevel
Newton, and full-Newton al-
gorithms at 80 V bias is shown
in Figure 10. For an applica-
tion of 85 V on the drive, the
relaxation algorithm fails to
converge, while the multilevel Newton and full-
Newton algorithms converge very rapidly and
take 3 and 10 iterations, respectively. This is il-

lustrated in Figure 11.
Fast domain-specific solvers and efficient ap-

proaches for coupled-domain simulation can

Figure 8. Comb drive example.

Figure 9. Deformation of the comb (not to scale)
for an applied bias of 85 volts.

Table 1. Comparison of three algorithms in simulating a MEMS comb drive. (An
asterisk indicates that the algorithm fails to converge for the voltage bias applied.)

Number of iterations           CPU time (seconds)              
Voltage Multilevel Full Multilevel Full 
applied Relaxation Newton  Newton    Relaxation    Newton  Newton
25 7 3 6 3,595 5,802 5,590
50 16 4 8 9,138 10,195 11,834
75 70 4 10 42,160 12,053 18,591
80 142 3 9 81,827 10,660 16,670
85 * 3 10 * 10,768 18,491

.
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make it possible to perform realistic analyses of
single micromachined devices in a few hours on
a scientific workstation. However, such simula-
tion times are still far too long to be used for de-
sign exploration or as part of a system-level sim-
ulation. Instead, these tools can be used to help
generate macromodels.

Nonlinear macromodeling
The modeling level described as macromodeling
plays several roles in the overall design scheme.
First, consider that a designer might want to use
a macromodel to explore a design space, that is,
to predict easily how behavior will change as di-
mensions or material properties are changed.
This argues strongly for an analytical model that

has a minimal number of degrees of freedom—
essentially a “lumped” model. Second, the
macromodel will represent the MEMS device
in a system-level simulator. Therefore, the
macromodel must be dynamic, and must be sim-
ple enough to permit hundreds or thousands of
dynamical simulations under a variety of excita-
tions in reasonable time. Third, because MEMS
devices are usually transducers involving multi-
ple energy domains, the macromodel should
correctly account both for energy conservation (a
quasi-static property), and energy dissipation (a
dynamic property). Finally, and most important
from our point of view, the macromodel should
agree with the results of more detailed numeri-
cal simulation over some design space of inter-
est, and should be based on approximations that
have been compared carefully with experiment
on suitably designed test structures.

The only models at present that meet all these
requirements are hand-built. Our goal is to find
those steps in the macromodel development
process that can be effectively automated, and
to seek algorithms which speed up macromodel
formulation and use. We will first describe what
has proved to be a very successful approach to
quasi-static macromodeling, and then present
some suggestions on how to approach dynamic
macromodeling.

Quasi-static macromodeling
We have had very good success in creating

quasi-static macromodels starting from simpli-
fied analytical formulations.53,54 The procedure
is roughly as follows:

(1) Select an idealized structure that is close
to the desired model.

(2) Model the idealized problem analytically,
either by solving the governing differential
equation, or by approximating the solution with
Rayleigh-Ritz energy minimization methods.

(3) Identify a set of nondimensionalized nu-
merical constants that can be varied within the
analytical form of the solution.

(4) Perform meshed numerical simulations of
the desired structure over the design space of in-
terest, and adjust the nondimensionalized nu-
merical quantities in the macromodel for agree-
ment with the numerical simulations.

Membrane load-deflection. As an example,
consider the pressure-deflection behavior of a
thin elastic membrane, suspended on a rigid
frame (Figure 12). If a differential pressure is ap-
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plied to this structure, it deforms out of plane.
The center-deflection d is related to the applied
pressure P through an equation that depends on
the geometry of the membrane and the material
constants (Young’s modulus E, Poisson ratio ν,
and residual stress σ). If the membrane is mod-
eled as a pure membrane (with no bending stiff-
ness), closed-form analytical solutions can be
found for circular geometries, and both power-
series and Rayleigh-Ritz approximants can be
found for square and rectangular geometries. In
this case, the Rayleigh-Ritz form is quite help-
ful, because it yields closed-form expressions
with explicit dimensions and material constants.
The resulting form of the pressure–deflection
relation, including the added nondimensional-
ized adjustable parameters, is expressed as

(16)

where a is the radius/half-edge length of the
membrane and t is the thickness. The dimen-
sionless constants C1 and C2 and the dimension-
less function f(ν) are determined from fitting
Equation 16 to the results of extensive finite-el-
ement simulations over a range of dimensions
(length and thickness) and material constants.53

Note that a factor (1 − ν) appears in the denom-
inator, with the rest of the ν-dependence cap-
tured by f(ν), which is a slowly varying function,
changing only 6 percent for a variation of ν over
the physically interesting range 0.3–0.5. The
numerical constants obtained for variously
shaped membranes are provided in Table 2, in
which “rectangular” refers to rectangular shapes
with a width-to-length ratio of greater than 8:1.

The load-deflection behavior captured in
Equation 16 using the constants in Table 2 has
been very successfully applied to a wide variety
of microfabricated structures, both for predic-
tion of performance and for the extraction of
material constants from test devices.

Electrostatic pull-in of beams. This same
method can be used to analyze the instability
point of an electrostatically actuated elastic
structure. Figure 13 illustrates a conducting
beam of thickness t, length L, and width W,
clamped at both ends by dielectric supports, and
suspended over a ground plane by a gap go.
When a voltage is applied between the beam
and the ground plane, the charges on the beam
and the ground plane produce an attractive force
between them, which causes the beam to bend
toward the ground plane. Figure 14 shows the
normalized dependence of the deflection of the

center of the beam on applied voltage. At a crit-
ical voltage, called the pull-in voltage or VPI, the
linear elastic restoring force is overwhelmed by
the nonlinear attractive force, and the beam col-
lapses. This pull-in event is sharp, and readily
observed experimentally. It depends strongly
both on the beam’s geometry and on its material
constants. This has made possible the develop-
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ment of a method for material-property mea-
surement that we call M-Test.54

The models for the dependence of pull-in
voltage on geometry and material properties
within M-Test were derived initially from ana-
lytical beam theory, with three adjustable con-
stants added for extensive fitting to the results
of fully meshed coupled-energy domain simu-
lations, using the procedure described earlier
under “Quasi-Static Macromodeling.” The re-
sult can be summarized as follows:

(17)

where fPI (S,B,L) is a lengthy but closed-form
function of the beam length L and two compos-
ite parameters, the stress parameter S and the
bending parameter B, given by

(18)

(19)

where σ is the residual axial stress in the beam and 
Ê is the effective stiffness of the structure. (The
reader is referred elsewhere for details.54)

By measuring the variation of VPI with beam
length, and fitting the results to the functional
form of fPI, numerical values of B and S can be ob-
tained, which when coupled with geometric data
on t and go permit determination of σ and Ê .

Dynamical macromodels
Dynamical macromodels are much more

challenging than quasi-static ones, particularly
when the design space involves large motions
and nonlinear forces. Explicit dynamical formu-
lations for meshed structures are perfectly pos-
sible, at least in principle, but have many draw-
backs. First, they are typically relatively slow
(compared to the better alternatives described
below). Second, being fully numerical, explicit
dynamical simulations of meshed structures
make it difficult for the designer to probe sen-
sitivities to variations in geometry or material
constants without simply performing multiple
analyses and building up a large database. Third,
fully meshed models are too computationally ex-
pensive to insert in system-level simulators.

For all these reasons, we have been seeking
methods which permit projection of the results of
fully-meshed analyses onto physically meaning-
ful reduced variable sets, preferably already con-
taining the appropriate algebraic dependences on
structural dimensions and material constants.55

One obvious choice, suitable for cases where
the device can be decomposed into a combina-
tion of rigid bodies, ideal springs, and ideal vari-
able capacitors, is to represent the rigid bodies as
lumped elements and the springs as lumped lin-
ear elastic elements, and to use 3D electrostatic
simulation to build a macromodel for the very
nonlinear relationship between electrostatic force
and device geometry. In particular, fast electro-
static analysis algorithms, like those described
above,37 can be used to determine the system’s ca-
pacitance matrix as a function of the displace-
ments and rotations of the rigid bodies relative
to one another.56 Then, a total energy function
is built by fitting the various components of the
capacitance matrix to suitably formulated analyt-
ical expressions with added nondimensionalized
constants (as in the previous section), capturing
the electrostatic stored energy, elastic stored en-
ergy, and kinetic energy, from which either La-
grangian or Hamiltonian mechanics quickly
yields relatively simply dynamical equations.

Many structures, however, such as the mem-
brane and beam examples, do not lend them-
selves to treatment as lumped elements. In that
case, we seek to perform some kind of modal ex-
pansion. We will describe one example of this.

Nonlinear dynamics using linear modes. The
basic approach here is to formulate the dynam-
ical behavior of a device in terms of a finite set of
orthonormal spatial basis functions {sn(x)}, each
with a time-dependent coefficient qn(t).57 To de-
rive this basis from an initially meshed structure,
we take advantage of the fact that FEM pack-
ages typically are very fast at solving for the
small-amplitude (linear) modes of a structure.
That the structure of interest actually undergoes
large-amplitude motions and experiences non-
linear forces is not a problem—we are simply
using the mode shapes as a convenient geomet-
ric basis set.

Formally (and for notational simplicity, in one
spatial dimension), if y ∈ Rn is the vector con-
taining the nodal displacements of a fully
meshed structure, where n is the number of
nodes, the undamped dynamical behavior of the
structure is written as

(20)

where M is the global inertial matrix, K is the
global stiffness matrix, fe(y, t) is the nonlinear ex-
ternal force, and ÿ is the second derivative of the
displacements with respect to the time t (that is,
the acceleration).

  M y Ky f y te˙̇ ( , ),+ =

  B Et go= ˆ ,3 3
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The modal matrix S is the matrix whose
columns are the orthonormal mode-shape vectors
for this system. It has the useful properties that

♦ STMS = MG (the generalized inertia matrix)
♦ STKS = KG (the generalized stiffness matrix)

where MG and KG are diagonal.
If we expand the displacements y in terms of

the modes, we obtain

(21)

where components of the vector q are the (time-
dependent) mode amplitudes of the n modes.
Inserting Equation 21 into Equation 20 and
multiplying by ST yields

(22)

The advantage of this formulation is that the ma-
trices on the left-hand side are now diagonal and
time-independent, so the only coupling of the
various qi’s is through the nonlinear force term
fe. Finally, since in practice only a few modes are
actually needed to describe the deformation of
real structures, the n × n set of equations repre-
sented by Equation 22 is truncated to a much
smaller number, m. When applying this to a sim-
ple beam example with various placements of
electrodes under the beam so as to be certain to
excite higher modes, we found that adequate ac-
curacy could be obtained using only four modes.
Once this macromodel is constructed, it can be
used to simulate structure performance in a wide
range of scenarios. And of course, the macro-
model is orders of magnitude less expensive to
evaluate than performing explicit dynamics on
even relatively coarsely meshed structures.57

Besides the speedup, which is important, lin-
ear modes have the advantage of being sensibly
connected to physical features such as dimen-
sions and material constants. Thus, even if one
lacks an explicit formula for the exact eigenfre-
quency for a given mode, one can usually rea-
son analytically how that frequency will depend
on a structural dimension or on the value of an
elastic modulus. Therefore, these linear modes
provide a very useful set of basis functions for
dynamical macromodels.

If one seeks to include dissipative properties,
such as fluid damping, the problem becomes
much more difficult. Quasi-static representations
of the fluid cannot typically be used. In this case
one is faced with two choices: either include the

damping force as an additional term on the right-
hand side of Equation 20, or find a new set of geo-
metric basis functions that include the space ex-
ternal to the structure where the fluid damping is
occurring. In addition, one would like to improve
on the formulation of the right-hand side of
Equation 22 because, as stated, a conversion from
q-space to y-space is required at each time point
in order to evaluate fe, and then the resulting fe
must be reconverted back into q-space. Our group
is working on all three of these issues, and we
hope to report positive results in the near future.

In spite of the large challenges ahead, the future
of effective micromachine design is very bright.

Forecasts predict that the market for microma-
chine devices and systems will grow exponentially
in the coming decade. As total product volume
grows, and as the time-to-market in a competi-
tive industry becomes more crucial, there will be
an increasing need for effective design tools that
permit meaningful “what if” experimentation be-
fore committing to costly and slow microfabrica-
tion. Successful research in the areas of faster al-
gorithms, coupled-domain simulation, and
nonlinear macromodeling, when carried out in
close collaboration with process and device de-
velopment, will accelerate the conversion of
MEMS product ideas into real products. ♦
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