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Algorithms for Coupled Transient Simulation
of Circuits and Complicated 3-D Packaging
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Abstract— Techniques are described for coupled simulation
of complicated 3-D interconnect and nonlinear transistor
drivers and receivers. The approach is based on combining:
multipole-accelerated  method-of-moments  techniques for
extracting frequency-dependent inductances and resistances for
the interconnect; a sectioning method for fitting the frequency-
domain data with a rational function; a balanced-realization
approach to reducing the order of the rational function in
a guaranteed stable manner; and an implementation of fast
recursive convolution to incorporate the rational function in
SPICE3. Results are presented to demonstrate some of the
frequency-dependent effects in a packaging analysis problem.

Index Terms— Interconnect, packaging, simulation, multipole,
balanced realization, recursive convolution.

I. INTRODUCTION

HE DENSE 3-D PACKAGING now commonly used

in compact electronic systems may préduce magnetic
interactions which interfere with system performance. Such
effects are difficult to simulate because they occur only as a
result of an interaction between the field distribution in a com-
plicated geometry of conductors, and the circuitry connected
to those conductors. Effective simulation techniques which
combine interconnect and circuitry have been developed based
on simplified physical models and Padé style methods [1], but
in this paper we examine an approach more tuned to packaging
problems. In particular, multipole accelerated algorithms are
used to efficiently compute frequency-dependent coupling
resistances and inductances of the complicated 3-D packaging.
Then, a section-by-section plus balancing approach is used to
approximate the frequency-dependent elements with a rational
function. Finally, the rational function is converted to a SPICE-
compatible circuit model and combined with the connecting
circuitry to perform the coupled simulation.

II. INDUCTANCE EXTRACTION

The frequency dependent resistance and inductance matrices
describing the terminal behavior of a set of conductors can
be rapidly computed with the multipole-accelerated mesh-
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formulation approach as implemented in FastHenry [2], {3].
To describe the approach, consider that each conductor is
approximated as piecewise-straight sections. The volume of
each straight section is then discretized into a collection of
parallel thin filaments through which current is assumed to
flow uniformly. The interconnection of these current filaments
can be represented with a planar graph, where the n nodes
in the graph are associated with connection points between
conductor segments, and the b branches in the graph represent
the current filaments into which each conductor segment is
discretized (Fig. 1).

A. Mesh Formulation

To derive a system of equations for the filament currents
we start by assuming that the applied currents and voltages
are sinusoidal, and that the system is in sinusoidal steady-
state. Following the partial inductance approach in [4], [5],
the branch current phasors can be related to branch voltage
phasors (hereafter, phasors will be assumed and not restated)

by

ZL, = Vy, 1)

where V3, I, € C®,b is the number of branches (number of
current filaments), and Z € C®*® is the complex impedance
matrix given by

Z =R+ jwL, V)]

where w is excitation frequency. The entries of the diagonal
matrix R € R?*® represent the dc resistance of each current
filament, and L € R’<® is the dense matrix of partial
inductances [6].

Kirchhoff’s voltage law, which implies that the sum of
branch voltages around each mesh (a mesh is any loop of
branches in the graph which does not enclose any other
branches) in the network is represented by

MV, =V, 3

where V), is the vector of voltages across each branch, V; €
R™ is the mostly zero vector of source branch voltages, and
M € R™*® is the mesh matrix. The mesh currents, that is the
currents around each mesh loop, satisfy

M, =1, @

where the superscript ¢ denotes matrix transpose, and I, €
R™ is the vector of mesh currents. Note that one of the
entries in the mesh current vector will be identically equal
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Fig. 1. One conductor. (a) Piecewise-straight sections. (b) Discretized into filaments. (c) Modeled as a circuit.

to the source branch current, shown as L, _source in Fig. L.
Combining (4) with (3) and (1) yields

MZM',, = V,. (&)

The complex admittance matrix which describes the terminal
behavior of the conductor system, denoted Y, = Z, 1 can by
derived from (5) by noting that

i.=Y.V,, 6)

where is and \78 are the vectors of terminal source currents
and voltages. Therefore, to compute the ith column of Y,
solve (5) with a V, whose only nonzero entry corresponds
to I,, and then extract the entries of I,,, associated with the
source branches.

B. Multipole Acceleration

To solve (5) by Gaussian Elimination would require order
m? operations. To improve the situation, FastHenry uses a
preconditioned GMRES iterative algorithm [7]. In general,
the cost for each iteration of an iterative algorithm applied to
solving (5) is order m2. This follows from the fact that each
iteration requires computing the dense matrix-vector product,
(MZM?*)I,,,. However, it is possible to approximately com-
pute MZM'I*, in order b operations using a hierarchical
multipole algorithm [8]. Such algorithms also avoid explicitly
forming MZM?, and so reduce the memory required to order
b.

To show how a multipole algorithm can be applied to
computing MZM!'I%,, consider expanding the matrix-vector
product using (2),

MZM'I¥, = MRM'IX, + juMLM'T},. Q)

Except for LM'IZ,, all of the products in (7) involve sparse
matrices and can be computed in order m operations. To

compute LM*I¥, or equivalently LI, it is shown in [3] that

(LL); = 1

A(X;) - L(X)dPx,
@i Js),;

®
where X; € R® is the position in filament i, A(X;) is
the vector potential at X;, l; € R3 is the unit vector in
the direction of current flow in the filament, a; is the cross
sectional area, and fil i represents the volume of filament .
Furthermore,

Ho I, / (1j(xj))k 3
A(X) = PO b Gl e g3, (9)
k( ) 4n j @j Jfilament; lX—le !

where Ay, is the kth component of the vector potential. Thus
by viewing (Is,/a;)1;(X;)x as a ‘charge’ then computing
each component of A to eventually give LI, involves the
evaluation of electrostatic potential along b filaments due to b
filament charges for three separate sets of filament charges.
It is the evaluation of these electrostatic potentials which
can be accelerated to order b operations with the hierarchical
multipole algorithm [8].

To see roughly what the multipole algorithm exploits to
achieve its efficiency, consider the two configurations given in
Figs. 2 and 3, depicted in 2-D for simplicity. In either figure,
the obvious approach to determining the electrostatic potential
at the n; evaluation points from the ny point-charges involves
n1 * ng operations; at each of the n; evaluation points one
simply sums the contribution to the potential from ny charges.

An accurate approximation for the potentials for the case
of Fig. 2 can be computed in many fewer operations using
multipole expansions, which exploit the fact that » > R
(defined in Fig. 2). That is, the details of the distribution of
the charges in the inner circle of radius R in Fig. 2 do not
strongly affect the potentials at the evaluation points outside
the outer circle of radius r. It is also possible to compute
an accurate approximation for the potentials at the evaluation
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Fig. 2. Evaluation point potentials are approximated with a multiple expan-
sion.

n, charge points

Fig. 3. Evaluation point potentials arc approximated with a local expansion.

points in the inner circle of Fig. 3 in many fewer than n * ny
operations using local expansions, which again exploit the fact
that » > R (as in Fig. 3). In this second case, what can be
ignored are the details of the evaluation point distribution. This
brief description of the hierarchical multipole algorithm is only
intended to make clear that the algorithm’s efficiency stems
from coalescing charges and evaluation points using multipole
and local expansions.

III. RATIONAL FUNCTION APPROXIMATION

The most commonly used approaches to fitting rational
functions to frequency domain data are the Padé or moment-
matching methods. These methods compute the coefficients
of a rational function by matching that approximation to the
value of the system function and its derivatives around s =
0 or s = co. Here, we describe a different approach to the
approximation problem which is more suitable when matching
tabulated data like that produced by FastHenry.

B. Sectioned {5 Minimization

One approach to generating a rational function which best
matches a frequency response F(s) specified at a set of fre-
quencies {51,582, -+, 5m}, is to set up and solve, as accurately
as possible, the following set of equations:

where
U(s)  ugs?+ -+ +uis+ug
H(s) = =1 1
(s) V(s) vpsP+---+uvs+1 an

is the low-order approximation.

Typically, the system in (10) will be over-determined as
the number of frequency points will exceed the number of
unknown coefficients in the approximation (11), that is if
m > p+ q+ 1. In that case there will be, in general, no
exact solution, and the best that we can expect is that the
approximation error be minimal in some sense. For instance
we can force the 2-norm of the error to be minimized, that is,
make sure that the coefficients of the polynomials U(s) and
V(s) are chosen such that

U(s)
() - B0l = | G - P a2
v "¢,
is minimized for all s € {s1,s2,- -+, s, }. However, this is a

nonlinear optimization problem whose solution is difficult to
compute. Instead, the problem can be made linear by weighting
the 2-norm by V(). Then, the minimization problem becomes

min|[U(s;) = V(s;)F(s;)ll2

Minimizing this weighted 2-norm does not guarantee that the
resulting rational function will be accurate at any particular
frequency, and this is unacceptable for use in circuit simula-
tion. In order to insure that the steady-state will be computed
exactly, the £, minimization must be constrained as follows:

O

V) - F(0) |

miny,v ||U(s;) = V(s;)F(s;)llz j=1,---,m (14)
lims 00 Wj) = 811’1210 F(s)

This constrained {>-minimization however presents some
difficulties, especially in the case when the natural frequencies
of the problem are spread out over a wide range. In that situa-
tion, the minimization can become ill-conditioned, and also the
weighted £2 minimization improperly focuses too much atten-
tion on the high frequencies. To avoid both these problems, it is
possible to perform local approximations in a repeated fashion.
Initially, the frequency range of interest, @ = [Wmin, Wmax],
is partitioned into small sections, §21, €25, -- -, €2y, such that
Q= Uf‘il Q;, where each §2; is a decade or two long. Then,
starting with the lowest frequency range €2;, with frequency
values F(w11), F(wi2),- -+, F(w1m, ), a constrained £5 mini-
mization is performed and a local approximant is computed.
Once the first local approximation, H;(s), is obtained in
the form of a collection of poles and their corresponding
residues, it is examined and the stable poles are retained
while the unstable ones are discarded, leaving us with a
Jforced stable approximation, H (s). Next, the second section
2, the values F(ws;), F(wszz), -, F(wayy,,) are computed
and fit again using the constrained weighted £2 minimization.
Note that since the previous fit at the lower frequencies has
captured the low frequency dynamics, F(s) — H;(s) will
contain primarily the higher-frequency error information. This
results in a new approximation for F(s) — H;(s), Ha(s) and
therefore F(s) ~ H;(s) + Hz(s). The procedure is repeated
until data in the last frequency section, £/, is approximated.
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B. Model Order Reduction

The section-by-section approach just described is reliable
in that it obtains a stable collection of pole-residue pairs
which form an accurate approximation to F(s). Unfortunately
since H(s) is represented as a sum of local approximations
the approach introduces redundancies resulting in many more
poles than necessary. However it is possible to further reduce
the order of the approximation using robust model order
reduction techniques.

In particular, the high order model can be converted to a
state-space form as in

x=Ax+Bu, xeR*,ueR™

y = Cx, y € RP as

whose transfer function is G(s) = C(sI — A)™'B. Since
we assume that (15) corresponds to passive interconnect, the
transfer function is stable, i.e., all the poles (or equivalently
all the eigenvalues of the matrix A) are in the left half plane.
It is well known [9] that for a given transfer function, the
choice of the triplet [A, B, C] is not unique. Indeed, a linear
coordinate transformation T in the state space modifies the
triplet [A, B, C] to [A,B, C) without modifying the transfer
function. For the specific purpose of extracting stable reduced-
order models from the state-space representation, it is desirable
that the new triplet [A, B, C] be in a form that allows such an
extraction using simple state truncation. In a seminal paper
in the field of system theory, Moore has shown [10] that
such a triplet exists and called it a “balanced realization”
of the transfer function G(s). The balancing transformation
T can be computed explicitly for any triplet [A,B,C]|. The
numerical cost of such a computation is that of solving
two matrix Lyapunov equations, one Cholesky factorization,
and one symmetric eigenvalue problem. The resulting triplet
[A, B, C] has the remarkable property that simple reordering
and truncation of the state vector X with the corresponding
reordering of the system matrices necessarily produces stable
reduced-order models at any desirable order. Let k be this
order, and let [Ag, By, Ci] be the reduced-order model with
a transfer function G(s). It can then be shown [10], [11] that
the impulse response of the error transfer function E¢(s) =
G (s)— G (s) has a norm that monotonically decreases to zero
as k is increased to n, the order of the original model.
Judging the validity of the reduced-order model depends not
only on meeting the error criterion mentioned above but also
on meeting the goals of the circuit simulation task for which
this reduced model is used. Typically, in circuit simulations, it
is essential that the reduced model match the original transfer
function at s = O so that the steady-state behavior of both
the reduced and full models is identical. To achieve this,
we apply a least-squares/collocation technique to match the
reduced-order model with the full model at zero frequency.

IV. RESULTS

In this section we describe an example that demonstrates the
value of using the reduced order models with the frequency
dependent data acquired with FastHenry. The example is an
investigation of crosstalk between a small set of package pins
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Fig. 4. Seven pins of a cerquad pin package.
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Fig. 5. General configuration for the connection between received and driver
chips. All the circuit elements inside the same chip share that chip’s power
and ground.

connecting on-chip drivers to off-chip receivers. The frequency
dependent resistance and inductance data for the package pins
computed with FastHenry is approximated with low order
rational functions, and then the time domain responses are
computed with recursive convolution [12] implemented in
SPICE3 [13].

Consider the crosstalk between seven adjacent pins of a
68-pin cerquad package as shown in Fig. 4. Assume the five
middle lines carry output signals from the chip and the two
outer pins carry power and ground. The signals are driven
and received with CMOS inverters. The drivers are capable
of driving a large current to compensate for the impedance of
the package pins. The inductance of the pins is computed with
FastHenry and the capacitance is assumed to be 8 pF. The
interconnect from the end of pin to the receiver is modeled
with a capacitance of 5 pF. The overall configuration is
illustrated in Fig. 5 and a more detailed view for a single pin
is given in Fig. 6. A 0.1 pF decoupling capacitor is connected
between the driver’s power and ground to minimize supply
fluctuations.
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Fig. 6. Detailed view of the connection between driving and receiving chips,
showing the power and ground connections. Decoupling capacities between
the power and ground lines are also shown. Pin capacitance and receiver
interconnect capacitance are also modeled as small capacitive loads.
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Fig. 7. Magnitude of the self-admittance term at pin 4. Shown in the plot
are data points computed with FastHenry, the 12th order section-by-section
approximant and the 3rd order reduced model computed by truncating the
balanced realization. The error in both approximations is less than 0.5%.

To compute the resistance and inductance matrix at each
frequency with FastHenry, the pins were discretized into
five filaments along their height and nine along their length.
This allows accurate modeling of changes in resistance and
inductance due to skin and proximity effects. Matrices were
generated for the frequency range 1 MHz to 10 MHz, with
three points per decade.

The frequency dependence of each element in the admit-
tance matrix is fit with a rational approximation using the
algorithms described in Section III. First, the section-by-
section approach is used to obtain approximations which have
orders in the range of 12 to 24. Following the section-by-
section algorithm a realization is determined and balanced. We
have found that truncated models of 3*4 order are sufficiently
accurate to provide approximation with less than 5% error. The
following two figures demonstrate this fact. Fig. 7 shows the
magnitude of the self-admittance term at pin 4. Shown in the
plot are data points computed with FastHenry, the 12th order
section-by-section approximant and the 3rd order reduced
model computed by truncating the balanced realization. As
can be seen on the plot, the three curves match each other
very closely.

gnitude of mutual pins 3and 4
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frequency (rad/s)

Fig. 8. Magnitude of the mutual admittance term between pins 3 and 4.
Shown in the plot are data points computed with FastHenry, the 20th order
section-by-section approximant and the 3rd order reduced model. The error
in both approximations is less than 1%.
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-,
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Fig. 9. Pin 4’s receiver when four adjacent pins switch 1 ns after pin 4.

Fig. 8 shows the magnitude of the mutual admittance term
between pins 3 and 4. Again, shown in the plot are data
points computed with FastHenry, the 20th order section-by-
section approximant and the 3rd order reduced model. As on
the previous plot, the three curves match each other almost
perfectly. ,

As a sample time domain simulation, imagine that at time
to = 4 ns the signal on pin 4 of Fig. 5 is to switch from high to
low and pins 2, 3, 5, and 6 are to switch from low to high but
that due to delay on chip, pins 2, 3, 5, and 6 switch at ; = 5
ns. In this case, significant current will suddenly pass through
the delayed pins, 2, 3, 5 and 6 while pin 4 is in transition.
Due to crosstalk, this large transient of current has significant
effects on the input of the receiver on pin 4, as shown in
Fig. 9. Note that the input does not rise monotonically. Fig. 9
also shows that the bump in the waveform is carried through
to the output of receiver, as a large glitch.
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Fig. 10. Pin 4’s receiver using frequency dependent data (full), constant

value from low frequency (low), and constant value from high frequency

(high).
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Fig. 11. Pin 4’s receiver with ground pin 7 and signal line 5 swapped.

As a demonstration of the importance of frequency depen-
dent analysis, consider the same scenario but with constant
inductance and resistance matrices. That is, each pin will be
modeled as a single resistor in series with an inductor whose
values do not change with frequency. Fig. 10 is a comparison
of the waveforms from Fig. 9 to waveforms resulting from
simulations using constant resistance and inductance values
corresponding to the high or low frequency limit. Note that for
the receiver input waveforms, the large voltage bump swings
by approximately 0.5 V more for the full frequency-dependent
case. While this is small on the input, this is a very sensitive
region for the receiver and doubles the size of the output glitch.

Now consider changing the design by swapping the ground
pin, pin 7, with signal pin 5. Now the ground pin sits between
signal lines and adds greater separation between pin 4 and
the signals which are now on lines 6 and 7. As might be
expected, the crosstalk is significantly reduced and the voltage
bump does not exceed 1.5 V as shown in Fig. 11.

Input to receiver of pin 4 Output from receiver of pin 4

&
6y

6 12 4 10 12

8 6 8
time (nS) time (nS)

Fig. 12. Pin 4’s receiver with ground pin 7 and signal line 5 swapped but
no current through ground pin.

- ground

0.2 4

4 6 8 10 12 14
time (nS)

Fig. 13. Total current traveling toward drivers on the four late signal lines
(signal), and the current traveling back along ground pin (ground).

Next, consider adding many extra ground and power pins
outside of seven pins of this example. This would effectively
eliminate the inductance and resistance effects of the power
and ground pins. For the above example, this could be modeled
by letting V34 and ground for both the drivers and the receivers
be 5 V and 0 V, respectively, and then no current will flow
along power pin 1 or ground pin 5. In this case, the crosstalk
appears to have worsened as shown in Fig. 12. This effect can
be explained by realizing that current through the ground pin
flows in the opposite direction to the curre nt in the delayed
pins, as shown in Fig. 13. Then since the ground path is now
adjacent to pin 4, its current counteracts the inductive effects
on pin 4 from the other pins’ current.

V. CONCLUSION AND ACKNOWLEDGMENTS

In this paper techniques are described for coupled simula-
tion of complicated 3-D interconnect and nonlinear transistor
drivers and receivers. The approach is based on combining
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multipole-accelerated method-of-moments techniques for ex-
tracting frequency-dependent inductances and resistances for
the interconnect, and a sectioning plus balancing method for
fitting the frequency-domain data with a rational function.
Results are presented to demonstrate both the effectiveness of
the algorithms and some of the frequency-dependent effects in
a particular packaging problem.

The authors gratefully acknowledge the help of Ignacio

McQuirk, Michael Tsuk, and Robert Armstrong in finding

relevant examples.
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