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Abstract

In this paper, a conjugate-direction based accelera-
tion to the waveform relazation algorithm is derived
and then applied to solving the differential-algebraic
system generated by spatial discretization of the time-
dependent semiconductor device equations. In the ez-
periments included, the conjugate-direction waveform
methods are up to 15 times faster than ordinary WR.

1 Introduction

The enormous computational expense and the
growing importance of mixed circuit/device simula-
tion, as well as the increasing availability of paral-
lel computers, suggest that specialized, easily paral-
lelized, algorithms be developed for transient simu-
lation of MOS devices [1]. Recently, the easily par-
allelized waveform relaxation (WR) algorithm was
shown to be a computationally efficient approach to
device transient simulation [2], even though the WR.
algorithm typically requires hundreds of iterations to
achieve an accurate solution. In this paper we derive
a conjugate-direction based acceleration for the WR
algorithm and present experimental results in which
this acceleration reduces the computation time by up
to a factor of 15.

In the next section, we start by briefly describ-
ing the standard equations that are solved to per-
form device transient simulation. The WR algorithm
for solving these equations is given in Section 3 and
a particular waveform conjugate direction method—
waveform GCR—is derived. We present experimen-
tal results from our 2-D MOS device transient simula-
tion program in Section 4 and compare two conjugate-
direction waveform methods, waveform GMRES and
waveform GCR, with standard WR and WRN. Fi-
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nally, in Section 5 we present our conclusions and sug-
gestions for future work.

2 Device Simulation

Device transient simulation is usually performed
by numerically solving the coupled Poisson and time-
dependent electron and hole current-continuity equa-
tions. To solve this coupled system, the equations are
first discretized in space using exponentially-fit finite-
difference or finite-volume methods [3]. On an N-node
rectangular mesh, the spatial discretization yields a
differential-algebraic system of 3N equations in 3N
unknowns denoted by

Fi(u(@®),n(t),p(t)) = 0 (1)
F2(u(t),n(t),p(t)) = Ln(t) (2)
Ff3(u(t),n(t),p(t)) = Z£p(t) (3)

where t € [0,T}, and u(t), n(t),p(t) € RV are vectors
of normalized potential, electron concentration, and
hole concentration, respectively. Here, Fi.12. 15
R3Y — RV are specified component-wise as

fli(“i: ng, pi, uj) =
kT dij
7 ;z’;("i““j) —qA;i (pi —ni+ Np — N,)
Jo,(uiy i, u5,n5) =
Dy, d,'j . -
A; JZE;["J'B(% —u;) — Tl;B(u.—uJ)] - R;
f3i(ui>pi)uj9pj) =
A Xj:f;[PfB(“f—uﬂ ~ piB(uj—w)| - R.

The sums above are taken over the four nodes adjacent
to node ¢ (north, south, east, and west), L;; is the




ALGORITHM 1 (WR for Device Simulation).
guess u° n® p® waveforms at all nodes
for k=0,1,... until converged

for each node i

solve for uf“ )

1 1 1
fl.‘(u?-’.an?"-;pg“-yu} = 0

nf'H, pf'” waveforms:

1 1 1
f?.‘(u;'b+ an§+ 7“?}"';) = ditn:ﬂ-
1 1 d 1
f3.‘(u|'b+ ,P,H 1“?:1’;) Epgb+

distance from node 7 to node j, d;; is the length of the
side of the Voronoi box that encloses node 7 and bisects
the edge between nodes ¢ and j, and B(v) = v/(e’ —1)
is the Bernoulli function.

3 Waveform GCR

Typically, (1)-(8) are solved using a low-order im-
plicit time-integration scheme, combined with a New-
ton or relaxation method to solve the generated se-
quence of nonlinear algebraic equations [4, 5]. An-
other approach is to apply relaxation directly to the
differential-algebraic equation system as in the wave-
form relaxation (WR) algorithm [2, 6], given in Algo-
rithm 1. The WR algorithm has several advantages:
it is an iterative method and therefore avoids factor-
ing large sparse matrices; WR can exploit multi-rate
behavior as different solution components can use dif-
ferent timesteps; and finally, WR is well suitabed to
parallel computation. However, when applied to solv-
ing (1)-(3), the WR algorithm converges slowly. In
this section, we derive a waveform generalization of
the conjugate-direction method and show how to use
this method to accelerate the convergence of WR.. As
the derivation will make clear, waveform conjugate-
direction methods retain most of the advantages of
waveform relaxation.

We begin the derivation by first considering the
linear time-varying inital-value problem (IVP),

(5 +A®)=z(@) b(t)
z(0) o,

where A(t) € RV*N | b(t) € RN is a given right-
hand side, and z(¢) € RN is the unknown vector to
be computed over the simulation interval ¢ € [0,T7].
Since the -% operator is not self-adjoint, and since,
in general, A(t) may be non-symmetric, only wave-
form extensions of conjugate-direction methods suit-
able for non-symmetric problems need be considered

(4)

i

117

ALGORITHM 2 (GCR).

Set pP’=r"=b— Az°
For k=0,1,... until (r¥ r¥) <¢
Minimize (rf+! pk¥+!) ip direction of p*
_ (AE",T,‘!
~ (Ap+,Ap)
2t = 2k 4 apt
PEHl = ok g gpk
pFHl = pbtl 4 Z;f:o ﬂ§k)pi
vhere {,BJ(-")} are chosen so that
(Ap*ti Api) =0 tor 0<j <k

a

for solving (4). In particular, we extend the gener-
alized conjugate residual algorithm (GCR), given in
Algorithm 2, since GCR is the prototypical conjugate-
direction method for solving non-symmetric linear al-
gebraic systems [7].

The difference between algebraic GCR and wave-
form GCR (WGCR) is that the inner products and
the matrix-vector products in Algorithm 2 must in-
stead refer to waveform inner products and operator-
waveform products, respectively. For the waveform
inner product, {z,y), we use the familiar L, inner

_product given by

N T
(@9) =Y /0 2:(t)ui(t)dt. 5)

For this version of WGCR, which can be interpreted as
using a Gauss-Jacobi dynamic preconditioner (Gauss-
Seidel preconditioning is used in the actual implemen-
tation), computing the operator-waveform product in-
volves solving a differential equation. Specifically, if

w = Ap, (6)
then w is computed by first solving
(&+e@®)w®)+d_a;®pit) = 0 (7)
Jj#i
yt(o) = 0;
for y, and then setting w = p — y.
The initial residual, #° in Algorithm 2, can be
computed by first solving
(£ +ai(®) w(t) +d_ai; )W) —bit) = 0 (8)
Jj#i
yl(o) = O,




ALGORITHM 3 (Nonlinear Waveform GCR).

Pick 2%, €, v <1

For m=0,1,... until (»™,r™) < ¢,
Linearize (1)—(3) to form (9)
Solve (9) with Algorithm 2 using €™
Update z™*! and rm+!
Set e™tl =¢™ .y

for y, and then setting r® = y — 2°. Subsequent up-
dates to the residual are computed using the formula
given in Algorithm 2.

Note that one iteration of linear Gauss-Jacobi wave-
form relaxation is embedded in both (7) and (8).

For nonlinear problems, the WGCR algorithm can
be combined with a waveform-Newton algorithm [8,
9, 10]. Applying the waveform-Newton algorithm to
solving (1)-(3), we obtain the following iteration:

d 0 2 qu qu fos- um+i
d_nm+ | Jts T Jpas nm+l = 9)
E{pm+1 Jf:n stz fas pm+

Jf:x Jfa: szs

f2 (um’nmy m)

qu me fos u™
n™|—
pm _fs(um7nm) m)

where m is the Newton iteration index. Each step
of (9) requires the solution of a linear time-varying
differential-algebraic system, which can be accom-
plished with WGCR.. This WN/WGCR algorithm, re-
ferred to as nonlinear WGCR, is shown in Algorithm 3,
and we note the method is in the class of hybrid Krylov
methods [11}.

-fl (um’nm:pm)}

Jf:n J!az Jfaa

4 Experimental Results

Two waveform conjugate-direction methods were
implemented in the WR-based device transient sim-
ulation program WORDS [2]: the nonlinear WGCR
algorithm described in Section 3 as well as a nonlin-
ear waveform GMRES (WGMRES) algorithm {11, 12].
The WORDS program uses red/black block Gauss-
Seidel WR and WRN {8], where the blocks correspond
to vertical mesh lines; the corresponding Gauss-Seidel
preconditioner is used for the WGCR and WGMRES
implementations. For all methods, the equations gov-
erning nodes in the same block are solved simultane-
ously using the second-order backward-difference for-
mula. The implicit algebraic systems generated by
the backward difference formula are solved with New-
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Figure 1: Convergence comparison between WR (dot-
ted), WRN (dashed), and WGCR/WMRES (solid) for
jD example. The max-norm of the relative drain ter-
minal current error is plotted against the number of
function evaluations.

ton’s method and the linear equation systems gener-
ated by Newton’s method are solved with sparse Gaus-
sian elimination. Note that for the nonlinear WGCR
and WGMRES algorithms, the linear algebraic equa-
tions at each timestep require only one algebraic New-
ton iteration.

Four N-channel MOSFET examples were used to
compare the performance of the WR, WRN, nonlinear
WGCR, and nonlinear WGMRES algorithms:

kG: 2.2 um channel-length; 50 psec, 0-5V ramp on
the gate with the drain held at 5V.

kD: 2.2um channel-length; 50 psec, 0-5V ramp on the
drain with the gate held at 5V. :

jG: 0.17 um channel-length; 5 psec, 0-1V ramp on the
gate with the drain held at 1V.

jD: 0.17 um channel-length; 5 psec, 0-1V ramp on the
drain with the gate held at 1V.

The parameters used with the conjugate-direction
methods were: €© = 0.1, v = /0.1, and ¢ = 1x 10718,
To simplify comparisons, 32 equally-spaced timesteps
were used in all experiments.

Table 1 shows the number of function evaluations
and the CPU time required for each of the wave-
form methods to reduce the max-norm of the drain
terminal current error below 0.01% of the max-norm
of the drain terminal current. As Table 1 indicates,
conjugate-direction methods significantly reduced the
number of function evaluations and CPU time over
WR and WRN. In fact, in the jD example, WGM-
RES was 15 times faster than ordinary WR. As is



Example Method FEvals CPU sec
D WR 8.43x10° 14469
WRN 3.77x108 7088
WGCR 2.00x 105 1050
WGMRES | 2.04x10% 915
G WR 7.48x10° 12615
WRN 3.41x10° 6214
WGCR 1.97x10°8 1011
WGMRES | 1.97x10° 877
kD WR 1.22x10° 1526
WRN 3.94x10° 559
WGCR 9.03x104 315
WGMRES | 9.03x104 280
kG WR 1.43x10% 1756
WRN 4.09x10° 578
WGCR 1.03x10° 353
WGMRES | 1.03x10°% 316

Table 1: Comparison of WGCR, WGMRES, and WR.
CPU times shown are for an IBM RS/6000 model 540.

common in the algebraic case, WGMRES and WGCR
perform similarly, but WGMRES is computationally
more efficient because it avoids several waveform in-
ner products on each iteration. The graph in Figure 1
compares the convergence of WR, WRN, WGCR, and
WGMRES for the jD example. In the graph, the ter-
minal current error versus number of function evalu-
ations is plotted and clearly demonstrates the rapid
convergence of the conjugate-direction methods.

5 Conclusion

In this paper we derived waveform conjugate-
direction methods for accelerating waveform relax-
ation. Experimental results demonstrated the effec-
tiveness of the acceleration when solving the large,
sparsely-connected algebraic and differential system
generated by standard spatial discretization of the 2-
D time-dependent semiconductor device equations. In
the experiments included, the waveform conjugate-
direction methods were up to 15 times faster than or-
dinary WR.

Future work is primarily focused on developing
theoretical results about the convergence of linear
and nonlinear WGCR, although a preliminary result
for linear WGCR can be obtained by realizing that
WGCR is a Galerkin method, known to converge for
problems of this type [13].
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