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Abstract

In this paper, a modified envelope-following method
for simulation of clocked analog circuils is described.
The modification makes the envelope-following algo-
rithm more efficient, as unnecessary numerical in-
legration is avoided when computing the envelope
of “quasi-algebraic” componenis in the solution vec-
tor. An automatic method for determining the quasi-
algebraic solution components is described, and exper-
tmental results are given which demonstrate that this
modified method reduces the number of computed clock
cycles needed to accurately determine the envelope.

1 Introduction

When used to simulate the transient behavior of

clocked analog circuits like switching power converters

and phase-locked loops, circuit simulation programs
like SPICE [1] often employ hundreds of thousands of
integration timesteps. This is because the circuit sim-
ulation timesteps are constrained to be much smaller
than a clock period, but the time interval of inter-
est to a designer can be thousands of clock periods.
The high computational cost of simulating such cir-
cuits with programs like SPICE has led designers to
explore a variety of simulation alternatives, including
specialized analog computers [2], and fast simulation
techniques based on approximating the circuit using
ideal switches and linear elements [3, 4].

Another approach to reducing the computational
cost of simulating clocked analog circuits is to exploit
the fact that a designer typically is not interested in
the details of the node voltage behavior in every clock
cycle, but rather is interested in the “envelope” of
that behavior. Specifically, we define the “envelope”
to be a continuous function derived by interpolating
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Figure 1: Envelope Definition

the sequence formed by sampling the state every clock
period T (See Fig. 1). Note our use of “envelope”
is not standard. Here, the envelope is not unique
given z(t); the envelope generated by interpolating the
sequence z(0+ 7),z(T+ 7),z(2T + 7), ... depends on
T. '

The key advantage to restricting consideration to
the envelope is that if the sequence formed by sam-
pling the state at the beginning of each clock cycle,
z(0), z(T), z(2T), .. .,z(mT),.. ., changes slowly as a
function of m, the clock cycle number, then the en-
velope can be computed accurately by detailed simu-
lation of only every I** clock cycle, where I, referred
to as the cycle-step, is large. Computational proce-
dures based on this idea are referred to as envelope-
following [5] algorithms, and are particularly efficient
when used to simulate simplified switching power con-
verters [6, 7]. The method is not effective, however,
if there there are states in the system which change
rapidly and dramatically due to small changes in much
more slowly changing states.

In this paper we describe a modified envelope-
following algorithm which circumvents the above prob-
lem, and present computational results. In the next
section, the basic envelope-following algorithm is de-
scribed, followed in Section 3 by a description of our
modified version. In Section 4, the standard and mod-
ified envelope-following algorithms are compared with




standard methods on several circuit examples. Fi-
nally, in Section 5, conclusions and acknowledgments
are given.

2 Envelope-Following

Most clocked analog circuits can be described by a
system of differential equations of the form
d
P, v() + F(=(1), u(t) =0, (1)
where z(t) € RV, the state, is the vector of capacitor
voltages and inductor currents, u(t) € RM is the
vector of input sources, p(z(t),u(t)) € RV is the
vector of capacitor charges and inductor fluxes, and
F(z(t),u(t)) € RY is the vector of resistive currents
and inductor voltages.
If the state z is known at some time g, it is possible

to solve Eqn. (1) and compute the state at some later
time ;. In general, one can write

z(11) = ¢(x(t0), to, 1) (2

where ¢ : R® x R x R — R" is a state transition
function for the differential equation.

The straight-forward approach to computing the
envelope of the solution to Eqn. (1) is to numerically
compute z(t) for all ¢ and then to sample this com-
puted solution at z(0), =(T), (2T), ... to construct
the envelope. If the envelope is smooth enough, then it
will be possible to approximately represent an interval
of sample points, z((m — 1)T), z(mT)...2((m+1)T)
with a low order polynomial in the cycle number. For
example, if over [ + 1 cycles the envelope is well ap-
proximated by a straight line, then

z((m+)T)—z(mT) = l[z(mT)—=z((m-1)T)]. (3)

The term [&(mT) — «((m — 1)T)] can be thought
of, imprecisely, as the derivative of the envelope at
2(mT), in which case Eqn. (3) is loosely analogous
to solving a differential equation by forward-Euler.
Following that analogy, [ is then the cycle-step for the
integration method.

As circuit problems are stiff, the cycle-step will be
severely restricted due to stability considerations un-
less an implicit integration method is used to compute
the envelope. The simplest implicit envelope-following
scheme is based on backward-Euler and is given by

2((m+)T)~=z(mT) = llz((m+)T)—x((m+1— 1)7(2%

where 2(mT) is known from the previous cycle-step,
z((m+1—1)T) must be computed, and z((m+1)T) is
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determined from z((m + ! — 1)T') by solving Eqn. (1)
over one cycle. Using the state transition function
defined in Eqn. (2), the relation between z((m +1)T)
and z({m + ! — 1)T) can be written as

2((m+NT) = ¢(z((m+1-1)T), (m+1-1)T, (m+)T).

()
Using this relation in Eqn. (4) yields the nonlinear
algebraic equation

¢() —2(mT) = [¢() —z((m+1-1)T)] (6)

from which z((m + 1 — 1)T) can be determined given
2(mT). Note that the arguments for ¢ are omitted in
(6) for brevity, but are the same as in (5).

An iterative Newton’s method can be applied to
solving (6) for =((m + ! — 1)T), in which case the
iteration update equation is

™

where k is the Newton iteration count, F(z¥) is given
by :

F(a*) = ¢() - g + 7=y =(mT)

I p(*)[z**! — 2*] = ~F(=*),

(8)
and J g is given by

i} l
where Iy is the identity matrix of size N.

The most time-consuming computation in this
Newton iteration is evaluating J p and F, which in-
volves computing the state transition function and
its derivative. The state transition function can be
evaluated by numerically integrating Eqn. (1) from
(m+1-1)T to (m+ )T given 2((m +1—1)T). The
derivative of the state transition function, referred to
as the sensitivity matrix, represents the sensitivity of
z((m + )T) to perturbations in ((m + ! —1)T) and
can be computed with a small amount of additional
work during the numerical integration, as is described

in [8]

3 Removing Quasi-Algebraic Variables

If the backward-Euler envelope-following algorithm
in Section 2 is used unmodified, the cycle-step will be
constrained by the component of ® with the fastest
changing envelope. This can be unnecessarily conser-
vative, as components of z which have rapidly chang-
ing envelopes are likely to be nearly algebraic func-
tions of other, more slowly changing components, at
least over the time scale of one clock period. That is,



these nearly, or quasi-, algebraic components of  can
be computed directly, and therefore envelopes associ-
ated with quasi-algebraic nodes need not be computed
with a formula like Eqn. (4).

Which components of z are quasi-algebraic can be
determined using the same sensitivity matrix already
required to solve Eqn. (6) with Newton’s method. To
see this, note that a component z; in z is quasi-
algebraic in one clock period if all components of z
are insensitive to z;’s value at the beginning of a
period. By definition, entry (i, ;) in the sensitivity
matrix represents the sensitivity of z;((m + I)T) to
perturbations in z;((m + I — 1)T). Therefore, z; is
a quasi-algebraic component if the i** column of the
sensitivity matrix is nearly zero.

Now let the components of z be divided into two
vectors: z,, the vector of true states, and z,, the
quasi-algebraic vector. Then the sensitivity matrix
can be reordered so that

0o(zs(T), za(T)) _ [ 33550 353 T] 0
9(=:(0),z4(0)) [%i’.o 350 (10

By the definition of a quasi-algebraic component, the

dP(T,(T), & (T)) -
second column of =3 Z.(0), 2. (0))~ 1S nearly zero. The

standard envelope-following algorithm can then be
applied to a subset of the circuit variables, using
as the sensitivity matrix the Z‘;“%‘ block diagonal
submatrix. As the sensitivity matrix is updated
every cycle, that g::"g and g";:%' remain small
can be verified, and a decision can be made about
which variables should be considered quasi-algebraic
for subsequent cycle computations. This provides an
automatic algorithm for determining quasi-algebraic
components.

In Algorithm 1, we give the complete modified
envelope-following algorithm. Note that in Algorithm
1, at the beginning of every cycle-step, the quasi-
algebraic components, z,, are computed from the
state components, #,, and this involves computing a
DC solution with the state components held fixed.

4 Implementation and Results

Both the standard and a modified version of the
envelope-following method have been implemented in
the Nitswit simulation program. The program uses
a trapezoidal-rule based envelope-following algorithm
with local-truncation error cycle-step control. In Ta-
ble 1, we compare the cpu time required to simu-
late the start-up transient from four different circuits
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ALGORITHM 1.
Nitswit Modified Envelope-Follower

Divide = into x, (States) and
za (quasi-algebraic) using the
Sensitivity matrix.
m=0
While mT < STOPTIME {
Select the cycle-step {
Predict a first guess, z3((m+1-1)T)
Compute z3((m+1—1)T) from z%((m+1-1)T).
Numerically integrate Eqn. (1) from
(m+1-1)T to (m+ 1T to compute
2°((m +DT) and ZEUrmtD)
Compute J p(z°((m +1—1)T) as in Eqn. (9)
Redivide z into z, (States) and
z, (quasi-algebraic) using the new
Sensitivity matrix.
Set k=0
Until Newton Converges {
Solve the Newton update equation for
it ((m +1-1)T).
Compute z5*!((m +1—1)T) from
it ((m +1-1)T).
Numerically integrate
Eqn. (1) from (m + 1~ 1)T to (m + )T
to compute z*((m + I)T)

}

m=m+1!

by classical direct methods, the standard envelope-
following algorithm and our modified algorithm. The
circuits presented are: a resonant converter quasi [9],
an open-loop buck converter circuits, dbuck, a closed
loop converter, closed and a switched capacitor fil-
ter, scop. In each case, the clocking is provided by
a user-defined source. As can be seen from the table,
the envelope-following method can be very efficient,
particularly when the simulation interval is long com-
pared to the clock period. In particular, from the re-
sults presented it is clear that the standard envelope
following algorithm is very efficient when simulating
open-loop circuits.

The results obtained when comparing envelope-
following to classical methods for a closed-loop buck
converter closed does not produce equally encouraging
results. The difficulty simulating the closed-loop con-
verter is that it includes control circuitry which rapidly
responds to small changes in the converter output.
However, variables associated with the controller are




Circuit | N | Cycles | Clas. Std EF Mod EF
quasi 7 200 188 | 69.4 (33) | 16.5 (13)
scop 13 | 200 156 65 (30) | 27.6 (15)
dbuck 4 1000 | 359 | 34.5 (50) | 29.0 (48)
closed b 600 79 47 (124) | 10.8 (31)

Table 1: CPU Time (in seconds on a SUN4 260)
Comparisons for Classical and Standard Envelope-
Following Simulation versus Modified Envelope Fol-
lowing. The number of cycles shown corresponds to
the simulation interval divided by the clock period.
For the envelope following approaches, the number of
effectively simulated cycles is also shown.

quasi-algebraic, and therefore the modified algorithm
performs substantially better. Note also that the re-
sults in Table 1 shows that modified envelope following
is always faster than the standard envelope-following,
due to the reduction in the number of computed cy-
cles. Most noticeably, for the most difficult example,
namely the closed loop converter, a speedup of a factor
of over four is obtained over standard envelope follow-
ing, and this makes the modified envelope following
algorithm almost an order of magnitude faster than
the classical direct approach.

5 Conclusions and Acknowledgments

In this paper it is shown that a modified envelope-
following approach to the simulation of switching
power and filter circuits can provide substantial speed
improvements over classical simulation methods even
for closed-loop converters. Several aspects of the mod-
ified method are still under investigation; of particular
importance is finding faster techniques for updating
the algebraic variables when leaping over some cycles.
In addition, the effectiveness of the envelope following
is somewhat dependent on where the cycle boundaries
are placed, and an automatic selection method is de-
sirable.
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