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ACCELERATING DYNAMIC ITERATION METHODS WITH APPLICATION TO
SEMICONDUCTOR DEVICE SIMULATION*

ANDREW LUMSDAINE! AND JACOB K. WHITE!

Abstract. In this paper, we apply a Galerkin method to solving the system of second-kind Volterra integral equations
that characterize the classical dynamic iteration methods for the linear time-varying initial-value problem. It is shown
that the Galerkin approximations can be computed iteratively using conjugate-direction algorithms. The resulting iterative
methods are combined with an operator Newton method and applied to solving the nonlinear differential-algebraic system
generated by spatial discretization of the time-dependent semiconductor device equations. Experimental results are included
that demonstrate the conjugate-direction methods are significantly faster than classical dynamic iteration methods.

Key words. Conjugate-direction methods, dynamic iteration, Galerkin method, waveform relaxation

AMS(MOS) subject classifications. 65160, 65L05, 65R20, 65J10

1. Introduction. Consider the problem of numerically solving the linear time-varying initial-value
problem (IVP),

(1) | (£ +A@W)=(t) = b))
z(0) = =,

where A(t) € R¥*V b(t) € R" is a given right-hand side, and «(t) € R" is the unknown vector to be
computed over the simulation interval ¢t € [0,T]. There are several approaches to solving the IVP. The
traditional numerical approach is to begin by discretizing (1) in time with an implicit integration rule (since
large dynamical systems are typically stiff) and then solving the resulting matrix problem at each time
step. This approach can be disadvantageous for a parallel implementation, especially for MIMD parallel
computers having a high communication latency, since the processors will have to synchronize repeatedly
for each timestep.

A more suitable approach to solving the IVP with a parallel computer is to decompose the problem at
the ODE level. That is, the large system is decomposed into smaller subsystems, each of which is assigned

to a single processor. The IVP is solved iteratively by solving the smaller IVPs for each subsystem, using
fixed values from previous iterations for the variables from other subsystems. This dynamic iteration
process is known as waveform relaxation (WR) or sometimes as the Picard-Lindeldf iteration [13].

In this paper, we describe both theoretical and practical aspects of using conjugate-direction approaches
to accelerate dynamic iteration convergence. In the next section, we begin by describing the system of
second-kind Volterra integral equations obtained by applying a “dynamic preconditioner” to (1). A Galerkin
method for solving an operator equation formulation of the integral equation system over a Krylov space
is then described and a convergence result given. It is noted that certain conjugate-direction techniques
applied to the integral equation system iteratively generate the Galerkin approximations. One such method,
the waveform GMRES method, is described. In Section 3, we combine the waveform GMRES method with
an operator-Newton algorithm to create a hybrid scheme for solving nonlinear initial-value problems. In
Section 4, we present results from experiments where the hybrid scheme is used to solve the nonlinear
differential-algebraic systems generated {rom two-dimensional spatial discretization of the time-dependent
drift-diffusion equations used to describe transient phenomena in semiconductors. Finally, our conclusions
and suggestions for future work are contained in Section 5. '

* This work was supported by a grant from IBM, the Defense Advanced Research Projects Agency contract N00014-91-
J-1698, and the National Science Foundation.

! This work was conducted while the first author was in the Dept. of Electrical Engineering and Computer Science at the
Massachusetts Institute of Technology. He is now with the Department of Computer Science and Engineering, University of
Notre Dame, Notre Dame, IN 46556. (Andrew.Lumsdaine@nd.edu)

! Research Laboratory of Electronics, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA 02139. (white€rle-vlsi.mit.edu)




2. Waveform Conjugate-Direction Derivation. In (1), let A(t) = M(t) —~ N(t), and consider
the system of second kind Volterra integral equations given by

t t

(2) z(t) — D p(t,0)x(0) — / @ (t,s)N(s)z(s)ds = / P (t, 5)b(s)ds,
0 0

where @y is the state transition matrix [3] for the equation
La(t) = M(t)=(t).

We assume throughout that A, M, and N are such that (1) and (2) each have a unique solution, a
sufficient condition for which is that A, M, and IN be piecewise continuous with respect to t. Note that
(2) is obtained from (1) by the application of a “dynamic preconditioner,” to both sides of (1). More
precisely, this preconditioner, denoted M ™!, is defined by:

t

(/\/(“'I:c)(t):/0 @ (t, s)z(s)ds.

Informally, one can think of M™! as roughly being (;% + M)t
Equation (2) can be expressed as an operator equation over a space H as
(3) (I-K)z =1,
where H = Ly([0, 7], R), I : H — H is the identity operator, K : H — H is defined by

(1(::::)(t)::/O P p(t, s)IN(s)x(s)ds

and ¥ € H is given by

¢(t):QM(t,0)z(0)+/o & (t, 5)b(s)ds.

The following are standard results (see, e.g., [5, 7]) which will be used in subsequent discussions of (3).
Lemma 2.1. If M and N are piecewise continuous with respect to ¢, then X : H — H is compact, has
a spectral radius of zero, and K*, the adjoint operator for K, is given by

T
(K*2)(t) = / (B (s, ON (@) 2(s)ds,

where superscript ! denotes algebraic transposition.
It should be apparent from Lemma 2.1 that, in general, K is not self adjoint. We therefore restrict our
attention to those conjugate-direction methods which are appropriate for non-self-adjoint operators.

2.1. Classical Dynamic Iteration Methods. The classical dynamic iteration is obtained by
applying the Richardson iteration to the “preconditioned” problem (3):

4) ¥t = Kzk 4 4.
This approach is known as the method of successive approximations, waveform relaxation, or the Picard-

Lindelof iteration [1, 7, 9, 13, 24].
Ezample. Let M (t) = 0. Then $p = I so that (2) becomes

x(t) — z(O)-{-/O A(s)x(s)ds :/0 b(s)ds.

The corresponding dynamic iteration is

t
0

2F (1) = =(0) + / (b(s) — A(s)x*(s)) ds

which is the familiar Picard iteration.
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Ezample. Let M(t) be the diagonal part of A(¢). Then (4) becomes the Jacobi WR algorithm in
which we solve the following IVP at each iteration k for each zkH(t)

(& +au(®) 5O + ) _ay()ab(t) = bi(t)
J#
:L‘,'(O) = ZXp;.

As K has zero spectral radius, the a straightforward convergence result can be stated.

Theorem 2.2. Under the assumptions of Lemma 2.1, the method of successive approximations, defined
in (4), converges.

‘A more detailed analysis of convergence can be derived by considering cases for which K is defined as
T — oo, in which case K has nonzero spectral radius [13].

2.2. The Galerkin Method. Another approach to solving (3) is to apply a Galerkin method to
solving a variational formulation of the problem. This approach leads directly to the conjugate-direction
methods. Galerkin methods have been well studied for second-kind Fredholm integral equations [1,7], of
which second-kind Volterra equations are a special case, but infrequently studied for second-kind Volterra
equations in particular (see, however, [11]). With the conjugate-direction approach, instead of applying
; the Galerkin method over a space of polynomials or splines, as is typical, one applies the Galerkin method
over a Krylov space generated by (I — K). The use of a Galerkin method over a Krylov space generated
by (I - K) is discussed in [14] and [16] where the approach is called the method of moments (see also [23]).

Let X and Y be Hilbert spaces and consider the operator equation

) Az = b

where z € X, b€ Y and A : X — Y is a bounded injective operator.

By a Galerkin method, we mean any scheme by which the solution  in (5) is computed by solving
the problem in a sequence of finite-dimensional subspaces via the use of orthogonal projections. That
is, we take the subspaces X" C X and Y™ C Y with dimX” = dimY"™ = n and require the Galerkin
approximation ™ to satisfy

(6) (b—-Az™,y) =0 VyeY".
In general, it is sufficient to satisfy (6) over some basis of Y”. That is, we define X" =
span{u’, u!,... 4" !} and Y" =span{2®,v!,. .., v" 71}, so that the solution ™ must satisfy
(7 : (b—Az™ v')=0 j=0,1,...,n—1.
If we take 2™ to be

n—1 )

2" = Z ,rl,u:
i=0

then (7) generates a linear system of equations for {}:

.AZyu v?) = (b, v?).

The particular Galerkin method in which Y = X and Y™ = X" is often called the Bubnov-Galerkin
method. If A is positive definite in addition to being bounded and injective, it is well known that
the Bubnov-Galerkin method is convergent for (5) [15]. Furthermore, if A is self-adjoint, the Galerkin
approxxmatlons can be computed iteratively with the conjugate- gradxent method (appropriately extended
from R" to X, of course) [7].

For our particular problem, the operator (I — K) is not self-adjoint, yet we still seek a conjugate-
direction method appropriate for solving (3). Such methods can be derived by considering the Galerkin
method where Y = A(X) and Y" = A(X"). That is, we require " to satisfy

(b— A", Aw) =0 j=0,1,...,n—1.
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Algorithm 2.1 (WGMRES).

set r0=b—(I-K)z%, B= |Iro}}, and ©° =r/B
For k=1,2,... until vk, 7F) <,

hj,k = ((I——)C)vJ,vk), 1= 1,2,...,’6

o = (I- }C)vk - 2?___1 hj,kvj

hesr = 18"l

pEtl = f’k+1/hk+1,k
set zF =z + vEyk

Here, y© minimizes l|Be1 -I_Ikykn where

HF is the (k+ 1) x k matrix gith nonzero entries hij»
vE=[v',...,v"], and
e; =[1,0,...,0T

We have the following convergence result for such Galerkin methods, and we refer the reader to [10]
for the proof. ’

Theorem 2.3. Let X be a Hilbert space and let A: X —+Xbea bounded bijective linear operator.
Let X" ¢ X be a finite-dimensional subspace with X" C Xnt! for all n € N. If z is in the closure of
§ = U, X", then the Galerkin method for (5) is convergent. Moreover, there exists the estimate

e — 2|l < Clib— A"

A\ Y

for some constant C depending only on A.
Corollary 2.4. The Galerkin method described in Theorem 9.3 is convergent for (I-K)z= 3 in the
space H, with finite-dimensional subspaces H" = {¢,KY, .. K*~14p)} for alln € N.

We again refer to [10] for the proof of the corollary. However, note that to show x € cl S, we need only
realize that

o0

m:U—KYW:§:W¢

j=0
where the Neumann series for (I — K)~! converges, since the spectral radius of K is zero.

2.3. Iterative Algorithms. Various iterative algorithms exist which can be used to implement the
~ Galerkin method described in Corollary 2.4. For example, the generalized minimum residual algorithm
(GMRES) [18] can be adapted quite readily to the space H instead of RN . The resulting algorithm,
WGMRES (waveform GMRES) is given in Algorithm 2.1.

The two fundamental operations in Algorithm 2.1 are the operator-function product, (I — K)p, and
the inner product, {-,-). When solving (3) in the space H, these operations are as follows:
Operator-Function Product: To calculate w = (I - K)p:

1. Solve the IVP

N()p(t)
po=0

Il

(4 + M)y
y(0)

for y(t), t € [0,717; this gives us y = Kp.
2. Setw=p—Y
Inner Product: The inner product {z, y) is given by

N T
) =Y [ m@OwO
i=1Y0

ot
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Algorithm 3.1 (Nonlinecar WGMRES).

Pick 20, ¢, v<1

For m=0,1,... until (" ™) < ¢,
Linearize (8) to form (9)
Solve (9) with Algorithm 2.1 using ™
Update ™! and r™+!

Set ™t =™ .y

Step 1 of the operator-function product is equivalent to one step of the classical dynamic iteration,
hence WGMRES can be considered as a scheme for accelerating the convergence of dynamic iterations.
This also implies that computing the operator-function product in the conjugate-direction based methods
is as amenable to parallel implementation as classical dynamic iteration methods. Also, the inner products
required by the WGMRES algorithm can be computed by N separate integrations of the pointwise product
z;(t)y;(t), which can be performed in parallel, followed by a global sum of the results.

3. Hybrid Methods for Nonlinear Systems. Many interesting applications are not necessarily
described by a linear system of ODEs, but rather by a nonlinear system of ODEs:

0

xg.

) L a(t) + F(=z(t),t)
(8) z(0)

To solve (8), we apply Newton’s method directly to the nonlinear ODE system (in a process sometimes
referred to as the waveform Newton method (WN) [19]) to obtain the following iteration:

a 2™)) 2™ = ™™ — z™
’ et = arenian - re

Here, Jp is the Jacobian of F. We note that (9) is a linear time-varying IVP to be solved for

- &™*! which can be accomplished with a waveform conjugate direction method. The resulting operator

Newton/conjugate-direction algorithm, a member of the class of hybrid Krylov methods [4], is given in
Algorithm 3.1.

For the WGMRES algorithm applied to solving (9), the required operator-function product can be
computed using the formulas in Section 2.3, with the substitution

M(t) - N(t) = Jp(=™(1)).

It is also possible to use a Jacobian-free approach, but the nature of the linearization in the operator-Newton
algorithm makes that approach somewhat unreliable [10].

Because of the preconditioning, the initial residual for the WGMRES algorithm must be computed,
and this computation must be performed for every operator-Newton iteration. If the initial guess for ™+1
in the WGMRES part of the hybrid algorithm, denoted £™*1.0 is given by ®™, then the initial residual
for the WGMRES algorithm, denoted #™*19, can be computed using a two-step approach as follows:

1. Solve the IVP I

(£ + M)yt M(t)z™(t) - F(zm(i))
y(0) = =

for y(t), t € [0,77].
2. Set pmtL0 = ¢ g™




4. Device Transient Simulation. A device is assumed to be governed by the Poisson equation, and
the electron and hole continuity equations:

kT
f—q—v2u+q(p—n+ND—NA) = 0
on
Op

where u is the normalized electrostatic potential, n and p are the electron and hole concentrations, J, and
J, are the electron and hole current densities, Np and N4 are the donor and acceptor concentrations, R is
the net generation and recombination rate, ¢ is the magnitude of electronic charge, and ¢ is the dielectric
permittivity [2, 21].

The current densities J, and J, are given by the drift-diffusion approximations:

Jo = —¢Dp(nVu—-Vn)
Jp —¢D, (p Vu+ Vp)

Il

where D,, and D, are the diffusion coefficients, which are assumed here to be related to the electron and
hole mobilities by the Einstein relations, that is D = %71/1. J, and J, are typically eliminated from
the continuity equations using the drift-diffusion approximations, leaving a differential-algebraic system of
three equations in three unknowns, u, n, and p. '

Given a rectangular mesh that covers a two-dimensional slice of a MOSFET, a common approach to -
spatially discretizing the device equations is to use a finite-difference formula to discretize the Poisson
equation, and an exponentially-fit_finite-difference formula to discretize the continuity equations (the
Scharfetter-Gummel method) [20]. On an N-node rectangular mesh, the spatial discretization yields a
differential-algebraic system of 3N equations in 3N unknowns denoted by

(10) fl(u(t),n(t),p(t)) =0
(11) f2(u(®),n(t),p(t)) = gn()

)

(12) f3(u(t),n(t),p(t)) = £p(t)
where t € [0, T}, and u(t), n(t), p(t) € R" are vectors of normalized potential, electron concentration, and
hole concentration, respectively. Here, f,, f,, f5: R — R" are specified component-wise as

kT d;;
Sro(ui, ni, piy uy) —-q—Z—iJ—(ui—uj) = qA;i (pi —ni + Np — Ny)

7 Lis \
D, d;;
le(u,',n,‘,u_,',nj) = _A:;L_‘é_[njB(Uj-—u,’)——-T‘L,'B(u,'—u]')] —R,’
D di;
fa,(ui, pi,uj,p;) = ‘jzj:Li;[ij(ui“‘uj)_PiB(Uj—Ui)]"‘Ri-

The sums above are taken over the four nodes adjacent to node i (north, south, east, and west), L;; is
the distance from node 7 to node j, d;; is the length of the side of the Voronoi box that encloses node
¢ and bisects the edge between nodes i and j, and B(v) = v/(e” — 1) is the Bernoulli function, used to
exponentially fit potential variation to electron concentration variation.

The standard approach used to solve the differential-algebraic system generated by spatial discretization
of the device equations is to discretize the d/dt terms with a low-order implicit integration method such as
the second-order backward difference formula. The result is a sequence of nonlinear algebraic systems in
3N unknowns, each of which can be solved with some variant of Newton’s method and/or relaxation [12].
Another approach is to apply relaxation directly to the differential-algebraic equation system with a WR
algorithm [8, 17], as given in Algorithm 4.1. '

3
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Algorithm 4.1 (WR for Device Simulation).

guess uo,no,po waveforms at all nodes

for k=0,1,... until converged
for each node i
solve for uf“,nf“,pf“ waveforms:
fo@ nf e = 0
fz,(ufﬂ ’ nf“ ’ u;‘, n;? — _;i_tn:ﬂ—l
f3.(uf+1 ) p?-H ) u;?: p;‘c = aé{pf.*-l

In our approach, we apply the hybrid Krylov method described in Section 3 to solving (10)-(12).
Therefore we use the WGMRES algorithm to solve the following IVP on each operator Newton iteration

m.
0 I It I umt!
%nm-{.l + | Jr J fa3 Jfas nmtl
'ﬁpm+l It J s J s pm+1
[ I J 1 J 11 u™ [ h (um’nm,pm)
= ‘Ifn an Jfaa n" - fz (um’nm, m)
stl sta Jf:ss " fa(“m,nm,Pm)
u™*1(0) [ o
nm+1(0) = ng
pm+1(0) L Po

4.1. Experimental Results. To apply the nonlinear WGMRES algorithm described in Section 3 to
solving the system of differential-algebraic equations (10), (11) and (12), the algorithm was implemented
using WORDS [17], a WR-based device transient simulation program. In addition, a waveform-relaxation-

-Newton algorithm (WRN), a waveform generalized-conjugate—residual (WGCR), and a waveform conjugate-
gradient-squared algorithm (WCGS) were implemented for comparison purposes [22, 24]. 1t should be noted
that the WORDS program uses a red/black vertical line Gauss-Seidel scheme, and that our conjugate-
direction based implementations use the corresponding preconditioner.

Four N-channel MOSFET examples were used to compare the performance of the relaxation and
conjugate-direction waveform methods:
kG: 2.2 um channel-length; 50 psec, 0-5V ramp on the gate with the drain at 5V.
kD: 2.2 um channel-length; 50 psec, 0-5V ramp on the drain with the gate at 5V.
jG: 0.17 pm channel-length; 5 psec, 0-1V ramp on the gate with the drain at 1V.
jD: 0.17 pm channel-length; 5 psec, 0-1V ramp on the drain with the gate at 1V.

The parameters used with the conjugate-direction methods were: €9 = 0.1, v = V0.1, and ¢ = 1x 1018,
To simplify comparisons, 32 equally-spaced timesteps were used in all experiments.

Table 1 shows the number of function evaluations and the CPU time required for each of the waveform
methods to reduce the max-norm of the drain terminal current error below 0.01% of the max-norm of the
drain terminal current. The graphs in Figures 1 and 2 compare the convergence of WR, WRN, WGCR,
WGMRES, and WCGS for the jD and kD examples, respectively. In the graphs, the terminal current

error versus number of function evaluations is plotted, and clearly demonstrates the rapid convergence of
the conjugate-direction methods.

As Table 1 indicates, conjugate-direction methods significantly reduced the number of function
evaluations and CPU time over WR, and WRN. In fact, in the jG example, WCGS is 22 times faster
than ordinary WR. Like the algebraic case, WGMRES and WGCR perform similarly in terms of function
evaluations, but WGMRES is computationally more efficient because it avoids several waveform inner
products on each iteration. Also like the algebraic case, WCGS performs very well on most problems, but
can also exhibit convergence difficulty on others. Note that the CPU time reductions are not as large as the

7
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TaBLE 1
Comparison of WR, WRN, WGCR, WGMRES, and WCGS. CPU times shown are for an IBM RS/6000 model 540.

Example Method FEvals CPU sec
jD WR 8.43x10° 14469
WRN 3.77x 108 7088
WGCR 2.21x10° 1138
WGMRES | 2.21x10° 991
WCGS 2.77x10° 820
iG WR 7.48 x 108 12615
WRN 3.41x10° 6214
WGCR 1.97x10° 1011
WGMRES | 1.97x108% 877
WCGS 1.97x10% 568
kD WR 1.22x10° 1526
WRN 3.94%10° 559
WGCR 9.03x 104 315
WGMRES | 9.03x10* 280
WCGS 9.92 x 10* 214
kG WR 1.43x10° 1756
WRN 4.09x 108 578
WGCR 1.03x10° 353
WGMRES | 1.03x10% 316
WCGS Non-Convergence

Drain Current Accuracy (percent/100)

0.5

1.5

2 2.5

Function Evaluations x106

Fia. 1. Convergence comparison between WR (dotted), WRN (dashed), WGCR/WGMRES (solid), and WCGS (dash-

dotted) for jD example. The maz-norm of the relative drain terminal current error is plotted against the number of function
evaluations.
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FIG. 2. Convergence comparison between WR (dotted), WRN (dashed), WGCR/WGMRES (solid), and WCGS (dash-
dotted) for kD ezample. The maz-norm of the relative drain terminal current error is plotted against the number of function
evaluations.

function evaluation reduction, and this is partly due to the cost of inner product computations required for
each iteration of the conjugate-direction methods. The difference is especially apparent with WGMRES
and WGCR, because the number of inner products which must be computed on each iteration grows
linearly with the number of iterations. On the other hand, WCGS requires constant work per iteration
but can become unstable and fail to converge. For this reason, we are currently investigating generalizing
the recently developed QMR algorithm [6].

5. Conclusion. In this paper we presented some new dynamic iterative methods to accelerate the
“convergence of the WR algorithm. The methods are based on the application of the Galerkin method
to an operator equation formulation of the linear time-varying initial-value problem. Experimental
results demonstrated that this acceleration significantly reduces the computation time for device transient
simulation. '

Future work is primarily focused on improving the theoretical results about the convergence of linear
and nonlinear conjugate-direction methods for differential-algebraic systems of equations. In addition, the
effect of using multirate integration must also be examined. Finally, we are investigating function-space
generalizations of the QMR algorithm.
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