MULTIPOLE-ACCELERATED PRECONDITIONED ITERATIVE METHODS FOR
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Abstract. First and second kind surface integral equations with 1 and — 1 kernels are generated by a variety of three-
dimensional engineering problems, and are typically solved using Galerk.ln or collocatxon schemes in which the singularities
are integrated analytically. Such approaches lead to a dense N x N matrix problem, which may or may not be symmetric. In
this paper, we present an overlapping-block preconditioned GMRES iterative algorithm for solving the dense matrix problem,
where an adaptive multipole algorithm is used to compute the iterates. Experimental evidence is given to demonstrate that
in practice, the combined algorithm is nearly order N.

1. Introduction. First and second kind surface integral equations with % and %% kernels are
generated by a variety of three-dimensional engineering problems. For such problems, Nystr-type
algorithms can not be used directly, but an expansion for the unknown, rather than for the entire integrand,
can be assumed and the product of singular kernel and the unknown integrated analytically. Combining
such a substitution with a Galerkin or collocation scheme for computing the expansion coefficients gives
a general discretization technique, but leads to dense matrix problems. In this paper, we present an
overlapping-block preconditioned GMRES iterative algorithm for solving the dense matrix problem, where
an adaptive multipole algorithm is used to compute the iterates. Note that this approach follows along
lines originally suggested in [1].

The outline of the paper is as follows. The boundary-element formulation and the GMRES iterative
algorithm for solving the generated matrix problem are reviewed in Section 2. A brief description of
the hierarchical multipole algorithm is given in Section 3. The preconditioning strategy for accelerating
GMRES convergence is presented in Section 4. Experimental results using our program, FASTCAP, to
analyze a wide variety of structures are presented in Section 5. Finally, conclusions and acknowledgments
are given in Section 6.

2. Formulation. For exposition in this short paper, we consider only the first-kind formulation used
to compute electrostatic capacitances or forces in three-dimensional structures. Electrostatic capacitances
are useful figures of merit for designers of electronic packaging [2], and microelectromechanical system
designers are interested in electrostatic forces [3]. The exterior Dirichlet problem on the associated
unbounded, multiply-connected domain corresponding to the conductor surfaces in an infinite homogeneous
medium is formulated using a single layer charge density denoted o [2, 4] (for a second kind formulation
of this exterior problem see [5]). It then follows that ¢ must satisfy the integral equation

1
(1) Y(z) = / o(2")r——=rdd’, z € surfaces.
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where () is the known conductor surface potential, da’ is the 1ncremental conductor surface area, z,
2’ € R?, and ||z|| is the usual Euclidean length of z given by Vai+zi+ zl.

A standard approach to numerically solving (1) for o begins by expanding o with piece-wise constant
finite elements and then using point collocation. That is, the conductor surfaces are broken into N small
panels or tiles, and it is assumed that on each panel 7, a charge, g;, is uniformly distributed. Then for each
panel, an equation is written which relates the known potential at the center of that i-th panel, denoted

* This work was supported by the Defense Advanced Research Projects Agency contracts N00014-91-J-1698 and NO00O14-
90-J-1085, the National Science Foundation contract (MIP-8858764 A02), F.B.I. contract J-FBI-88-067, and grants from
Digital Equipment Corporation and I.B.M.

t Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139.
(ksn@rle-vlsi.mit.edu)

' Dept. of Ocean Engineering, Massachusetts Institute of Technology Cambridge, MA 02139.
(xmeyer@flying-cloud.mit.edu)

§ Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Cambridge, MA 02139.
(vhite@rle-vlsi.mit.edu)



pi, to the sum of the contributions to that potential from the N charge distributions on all N panels [4].
The result is a dense linear system,

(2) Pg=p

where P € RV*V ¢ is the vector of panel charges, p € R is the vector of known panel potentials, and
1 1

(3) Pi j — _/ T dal)
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where z; is the center of the i-th panel and a; is the area of the j-th panel. The integral in (3) can be
evaluated analytically [6], and since the discretization uses point collocation, P can be unsymmetric.

The dense linear system of (2) can be solved to compute panel charges from a given set of panel
potentials, and the electrostatic capacitances can be derived by summing the panel charges. If Gaussian
elimination is used to solve (2), the number of operations is order N3. Clearly, this approach becomes
computationally intractable if the number of panels exceeds several hundred. Instead, consider solving the

linear system (2) using a conjugate-residual style iterative method like GMRES [7]. Such methods have
the form given below:

Algorithm 1: GMRES algorithm for solving (2)

Make an initial guess to the solution, ¢°.
Set k = 0.
do {
Compute the residual, 7* = p — P¢*.
if ||r|| < tol, return ¢* as the solution.
else {
Choose a’s and 8 in
¢t = e + prt
to minimize |r¥+1|.
Set k =k + 1.

The dominant costs of Algorithm 1 are in calculating the N2 entries of P using (3) before the iterations
begin, and performing N? operations to compute P¢* on each iteration. Described below is our adaptive
hierarchical multipole algorithm which, through the use of carefully applied approximations, avoids forming
most of P and reduces the cost of forming Pg¢* to order N operations. This does not necessarily imply
that each iteration of the GMRES algorithm can be computed with order N operations. If the number
of GMRES iterations required to achieve convergence approaches N, then to perform the minimization in
each GMRES iteration will require order N2 operations. This problem is avoided through the use of a
preconditioner, also described below, which reduces the number of GMRES iterations required to achieve
convergence to well below N for large problems.

3. The Multipole Algorithm. Low order multipole and local expansions can be used to accurately
compute the potentials at N evaluation points due to N panel charges in order N operations, regardless of
the evaluation point and charge distributions. Below, we summarize the hierarchical multipole algorithm,
in a somewhat modified form from that originally presented in [8, 9]. The multipole algorithm computes an
approximation to the potential due to a charge distribution, but the approximation is still a linear function
of the charges. It is possible to represent this linear transformation directly, in terms of transformation
matrices whose entries are functions only of geometry. This is an important observation for two reasons:
the transformation matrices need be computed only once, but can then be reused many times in the inner
loop of the GMRES algorithm; and the formulation in terms of matrices will make transparent a simple
adaptive multipole algorithm.



To begin, the smallest cube that contains the entire collection of panels for the problem of interest is
determined. This cube will be referred to as the level 0, or root, cube. Then, the volume of the cube is
broken into eight equally sized child cubes, referred to as level 1 cubes, and each has the level 0 cube as
its parent. The panels are divided among the child cubes by associating a panel with a cube if the panel’s
center point is contained in the cube. Each of the level 1 cubes is then subdivided into eight level 2 child
cubes and the panels are again distributed based on their center point locations. The result is a collection
of 64 level 2 cubes and a 64-way partition of the panels. This process is repeated to produce ! levels of
cubes, and [ partitions of panels starting with an 8-way partition and ending with an 8'-way partition. The
number of levels, I, is chosen so that the maximum number of panels in a finest, or I-th, level cube is less
than the number of coefficients in a the multipole expansion (see below).

Remark As the charges in this problem are not point charges, but are distributed on panels, it is necessary
to ensure that each panel is mostly contained in a finest level cube.

The following terms are used to concisely describe the multipole algorithm, Algorithm 2.

Definstion 3.1. Evaluation Points of a Cube: The center points of the panels associated with the cube.

Definition 3.2. Nearest Neighbors of a Cube: Those cubes which have a corner in common with the
given cube.

Definition 3.3. Second Nearest Neighbors of a Cube: Those cubes which are not nearest neighbors but
have a corner in common with a nearest neighbor. Note that there are at most 124 nearest and second
nearest neighbors of a cube, excluding the cube itself.

Definition 3.4. Interaction Cubes of a given cube: Those cubes which are either the second nearest
neighbors of the given cube’s parent, or are children of the given cube’s parent’s nearest neighbors, excluding
nearest or second nearest neighbors of the given cube. There are a maximum of 189 interaction cubes for
a given cube, roughly half are from a level one coarser than the level of the given cube, the rest are on the
same level.

For the j-th cube on level i: its parent’s index on level i — 1 is denoted F(i, j); its associated set of
child-cube indices is denoted C(%, j); its set of interaction-cube index pairs is denoted I(3, j); the vector of
multipole-expansion coefficients representing the panel charges in the cube is denoted M; ;; the vector of
local-expansion coefficients representing the evaluation point potentials in I(3, j) is denoted L; ;; and if the
cube is a finest-level cube, N(I,) is its set of nearest and second-nearest neighbor cube indices, and qQ,;
and p;; are its panel charge and panel potential vectors, respectively. The matrices Q2M, M2M, M2L,
L2, and L2P represent charge to multipole, multipole to multipole, multipole to local, local to local, and
local to potential transformation operators [10].

A general approach to making Algorithm 2 adaptive is to break up the problem domain nonuniformly,
leading to finest-level cubes of different sizes, where the sizes are chosen so that each finest-level cube
has roughly the same number of panels [11]. For the kinds of charge and evaluation point distributions
common to boundary-element problems, such an approach can sometimes require more computation than
a nonadaptive algorithm [12]. Instead, a more effective approach in this setting is to avoid transformation
from panel charges to multipole expansions, and to avoid forming local expansions, whenever such
representations are inefficient. For example, consider computing M;; from Q2M (I, j)q; ;. If the number
of entries in vector ¢ ; is smaller than the number of multipole coefficients in M; ;, which for a v-th order
multipole expansion is (v + 1)%,then ¢ ; is a more efficient representation of the charge distribution, and
that representation can be propagated through the algorithm instead of M;;. Note that using such an
approach requires some rather straight-forward bookkeeping and a few more transformation operators.

4. Preconditioning the Iterative Method. In general, the GMRES iterative method applied
to solving (2) can be significantly accelerated by preconditioning if there is an easily computed good

approximation to the inverse of P. We denote the approximation to P~! by C, in which case preconditioning
the GMRES algorithm is equivalent to using GMRES to solve

4) PCz = p.



Algorithm 2: Multipole Algorithm for Computing p = Pyq

/* THE UPWARD PASS: Computes Multipole expansions for every cube at every level. */
For each finest-level cube j = 1 to 8 {

M; = Q2M(1, j)q;

For each level i =1 —1t0 2 {
For each level i cube j =1to 8 {
M;; = Z]ec(i,j) M2M(i, 5,1+ 1aj)Mi+1,]
}

/* THE DOWNWARD PASS: Computes Local expansions for every cube. */
For each level i = 2 to [ {
For each level i cube j = 1 to 8¢ { .
Li,j = L2L(l) ja i— 1: F(Z) j))Li—-l,F(i,j) + ZE,;EI(L]') M2L(i,], Z)J)Mi,]
}

/* EVALUATION: Evaluates the potential in each finest-level cube. */
For each finest-level cube j = 1 to 8 { 5
b = L2P(1)J)Ll,] + Z_}:EN(I,]‘) Q2P(l;]; I;j)ql,j
}

for the unknown vector z, from which the charge density is computed by ¢ = Cz. Clearly, if C is precisely

P! then (4) is trivial to solve, but then C will be very expensive to compute.

In [13] and [14], it was suggested that a good approximation to P~! can be derived by solving over-
lapping subproblems. Such an approach fits naturally with the hierarchical multipole algorithm because
the preconditioner can be constructed and applied in a cube-by-cube fashion. First, C is computed by
inverting a sequence of reduced P matrices, one associated with each finest-level cube, as in Algorithm 3

below.

Algorithm 3: Forming C.

For each finest-level cube i = 1 to 8' {

Form P?, the potential coefficient matrix for the
reduced problem considering only the panels contained
in cube ¢ and cube ¢’s neighbors.
Compute C¢ = (Pi)~!.
For each panel k in cube ¢ or cube 7’s neighbors {

if panel k is not in cube 7 {

delete row k from C?.
}

}
}

The C¢ matrices taken together form a convenient representation of € with each of the N rows in €
appearing as a row in one of the C matrices. Comparing Algorithm 3 with Algorithm 2 indicates that
the association of each C* = (P?)~! with a particular finest-level cube in Algorithm 3 guarantees the use
of only those elements of the full P matrix which are already required in Algorithm 2, and therefore the
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additional computation involved in calculating the preconditioner is only the inversions of the small P?
matrices.

The product PCz*, which is used in a preconditioned GMRES algorithm applied to solving (4), is
computed in two steps. First, the preconditioner is applied to form ¢* = Cz* using Algorithm 4 below.
Then, Pq* is computed using Algorithm 2 in the previous section.

Algorithm 4: Forming ¢ = Cz.

For each finest-level cube i = 1 to 8! {
For each panel j in finest-level cube 7 {
For each panel & in cube ¢ or its neighbors {
Add é’;kzk to gqj.
}
}
}

5. Experimental Results. In this section, results from computational experiments using our
program FASTCAP are presented to demonstrate that the preconditioned, adaptive, multipole-accelerated
(PAMA) 3-D capacitance extraction algorithm described above really deserves a four-letter mnemonic [12].
The structures described below were created with the solid-modeling program PATRAN, or by computer
program, and all capacitance calculations were performed using FASTCAP. The multipole-accelerated
algorithms in FASTCAP use, by default, second-order multipole expansions and a GMRES convergence
tolerance (see Algorithm 1) of 0.01.

Fi1G. 1. The Spherel discretization of the unit sphere.

To demonstrate absolute accuracy, the FASTCAP program was used to compute the capacitance of
a unit sphere, discretized as in Figure 1, and a unit cube, discretized as in Figure 2. In Table 1, the
capacitances computed using the PAMA algorithm are compared with the capacitances computed using
direct factorization of P in (2) (Direct), and with analytic results for the unit sphere and with reference
results for the unit cube. As can be seen from the table, the results using the PAMA algorithm are easily
within one percent of the analytic or reference results.



F1G. 2. The Cubel discretization of the unit cube.

Method Problem
Spherel Cubel
768 panels | 150 panels

Direct 110.6 73.26

PAMA 110.5 73.28

Other 111§ 73.5,73.4
TABLE 1

Capacitance values (in pF) illustrating FASTCAP’s accuracy. 1By analytic caleulation. 3 From [2], [15].

Wovenl

Woven2

Woven3

(b)
FiG. 3. The 2 x 2 woven bus problem: bars have ImX1m cross sections. The three discretizations are oblained by
replacing each square face in (a) with the corresponding set of panels in (b).



The PAMA algorithm is nearly as accurate as the direct factorization method even on more complex
problems, such as the 2 x 2 woven bus structure in Figure 3. The capacitances computed using the two
methods are compared in Table 2, using coarse, medium, and fine discretizations of the woven bus structure,
also shown in Figure 3. Note that the coupling capacitance Ci2 between conductors one and two, which
is forty-times smaller than the self-capacitance Cy;, is computed nearly as accurately with the PAMA
algorithm as with direct factorization.

Method Problem

Wovenl Woven?2 Woven3

1584 Panels 2816 Panels 4400 Panels
Cu Cha Cuy Ci2 Cut Cio
Direct 251.6 | —6.353 | 253.2 | —6.446 | 253.7 | —6.467
PAMA | 251.8 | —6.246 | 253.3 | —6.334 | 253.9 | —6.377

ABLE 2
Capacitance values (in pF) illustrating FASTCAP’s accuracy for the complicated geometry of Figure 3.
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F1G. 4. Ezecutione time as a funciion of mn for the MA, AMA, and PAMA algorithms applied solving to progessively
finer discretizations of the 2 X 2 woven bus problem.

The computational cost of using the FASTCAP program is roughly proportional to the product of
the number of conductors, M, and the number of panels N. This is experimentally verified by computing
the capacitances of the 2 x 2 woven bus structure in Figure 3, with progressively finer discretizations. In
Figure 4, the execution times required to compute these capacitances are plotted as a function of M N,
and as the graph demonstrates, the execution time does grow nearly linearly.

To demonstrate the effectiveness of various aspects of the PAMA algorithm on a range of problems,
in Table 3 the execution times required to compute the capacitances of six different examples using four
different methods are given. The examples Cube2 and Sphere2 are finer discretizations of the unit cube
and sphere in Figures 1 and 2; the 2 x 2 Woven Bus example is the Woven3 discretization of the Figure 3
problem; the 5 x 5 Woven Bus is the geometry of Figure 3(a) extended to five conductors crossing five
conductors and discretized as for Wovenl (Figure 3(b)); the example Via, shown in Figure 5, models a pair
of connections between integrated circuit pins and a chip-carrier; and the example Diaphragm, shown in
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Fi1c. 5. Two signal lines passing through conducting planes; via centers are 2mm appart.

1pm

1000pm
10600pm

F1c. 6. A schematic illustration of the diaphragm problem. The two plates are 0.02um appart at the center.



Figure 6, is a model for a microsensor [16].

Comparing the execution times for the larger, realistic examples in Table 3, it can be seen that using
the adaptive multipole algorithm (AMA) improves FASTCAP’s execution time by a factor of two over
using the multipole algorithm (MA) alone, and that using the preconditioner can reduce the execution
time by nearly a factor of five. The improvement due to the adaptive algorithm is small because it is being
compared to the MA algorithm in [10], which ignores empty cubes, and is therefore already somewhat
adaptive. Exploiting empty cubes is trivial to implement, and makes an enormous difference. For the
largest problem, the 5 x 5 Woven Bus, more than 252,000 out of 262,000 cubes used to partition the
problem domain are empty.
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Fi16. 7. The GMRES residual norms for the linear system solution corresponding to the Diaphragm problem (Figure 6)
with the top conductor at unit potential. As is evident here, the AMA method generally makes the iterate caleulation more
efficient, while the PAMA algorithm leads to fewer iterations.

The reduction in execution time afforded by the adaptive algorithm (AMA) over the normal multipole
algorithm (MA) stems from more efficient Pq product computation in each iteration of the GMRES
algorithm. Using the preconditioner reduces execution time by decreasing the number of iterations required
to achieve convergence. Because of various program overheads, comparing total execution times can hide
the sometimes dramatic effect the preconditioner can have on GMRES convergence. To show the impact
of the preconditioner more directly, in Figure 7 we plot the norm of the residual, ||p — P¢*||, as a function
of iteration for the MA, AMA, and PAMA algorithms applied to solving the Diaphragm problem. As
is evident in the figure, the MA and AMA algorithms converge nearly identically, as expected, but the
residuals computed with the PAMA algorithm drop considerably faster. It is this rapid convergence that
easily offsets the fact that one PAMA iterate requires slightly more computation than an AMA iterate.

6. Conclusions and Acknowledgments. In this short paper, a preconditioned, adaptive, multipole-
accelerated approach to solving first-kind surface integral equations with % and %% kernels was described,
and shown to be effective for several engineering problems. Also, experimental evidence is given to
demonstrate that in practice, the combined algorithm is nearly order N. Several analytical issues have
not been addressed in this short paper, but will be considered more carefully in forthcoming work. The
calculation of multipole expansion coefficients for the charge distribution over panels can be performed
analytically, though the derivation is lengthy. The preconditioner has a stronger theoretical justification,
and is in fact more robust in practice, than the presentation would suggest.



Method Cube2 Sphere2 2x2 Woven Bus Via Diaphragm | 5x5 Woven Bus
294 Panels | 1200 Panels 4400 Panels 6185 Panels | 7488 Panels 9630 Panels
Direct 0.11 3.2 185 (490) (890) (1920)
MA 0.06 0.3 6.0 11 8.7 42
AMA 0.05 0.2 3.3 4.7 5.9 23
PAMA 0.05 0.2 2.3 3.2 1.3 11
TABLE 3

CPU times in minutes on an IBM RS6000/540. Times in parentheses are extrapolated.

The authors would like to thank Prof. Senturia for many valuable discussions on various approaches

to preconditioning, and for his and Brian Johnson’s help in linking FASTCAP with the PATRAN solid-
modeling program. The authors would. also like to thank David Ling and Albert Ruehli of the L.B.M. T.
J. Watson Research Center for their helpful suggestions about capacitance calculations.
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