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Abstract

In this paper we present a few theoretical and experiment results on applying multi-
rate integration algorithms to solving the differential-algebraic equations generated by
spatial discretization of the semiconductor device equations.

1 Introduction

Spatial discretization of the time-dependent partial differential equations used to model
semiconductor devices generates large sparsely-coupled systems of index one semi-explicit
differential-algebraic equations (DAE’s)[1]. The solution to these systems can be computed
using the waveform relaxation (WR) method, a technique which is a generalization of
algebraic relaxation schemes to differential equations[2]. As the WR algorithm decomposes
systems of differential equations into subsystems which can be solved independently, the
algorithm has easily exploited parallelism[3]. When using WR on a parallel computer, it is
likely that the different subsystems will be assigned to different processors. In that case,
communication can be avoided, and overall computational efficiency improved, if each of
the separated subsystems can be solved with independently determined timesteps.

Using different timesteps for different subsystems implies that a multirate integration
method has been used to solve the systém. In this paper, we present a few theoretical and
experimental results about using multirate integration to solve semiconductor equations.
We start in the next section with background material on semiconductor equations, WR,
and multirate integration. In section 3, we give a multirate WR convergence theorem, and
then use it to prove a multirate A-stability result in Section 4. In Section 5, we give some
experimental results on using multirate WR to simulate MOS semiconductor devices, and
in Section 6 we give conclusions and acknowledgements.

2 Background Material

The drift-diffusion model for transport in a semiconductor is a coupled system consisting
of the Poisson equation and electron and hole current-continuity equations,

(1) Viu+e(p-n+D) = 0
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(2) Vin - VaVu - Vi = Cz%
(3) Vip+ VpVu + pV3iu = 03%

where u is the normalized electrostatic potential, n and p are electron and hole concentra-
tions, D is a background doping concentration, and ¢;, ¢z, and ¢3 are physical constants [4].

A common approach to spatially discretizing (1), (2), and (8) is to use a finite-difference
formula to discretize the Poisson equation, and an exponentially-fit, finite-difference formula
to discretize the continuity equations [5]. At each node of an m-node uniform mesh,

(4) Z [Ui“‘Mj] — w261 (p,' -n; + D:))
(5) Z [n:B(ui—u;) — 7; B(uj—u;)] = %‘;_?
(6) Z [piB(u;—u;) — p; B(u;—u;)] = %%’

where w is the spatial discretization step; now u,n, p € R™ are vectors of normalized
node potential, electron concentration, and hole concentration; and the sums in the three
equations are over either two, four or six neighboring nodes for one, two or three dimensional
analysis respectively. The Bernoulli function, B(z) = z/(e® — 1), is used to exponentially
fit the potential variation to electron and hole concentration variations, and effectively
upwinds the current-continuity equations.

To analyze multirate stability, we will consider linearizations of the spatially discretized
drift-diffusion model of the form

(7 Di(t) = Az(t) z(0) = zo

where ¢t € [0,00), z(t) e RV, D, A € RVXN and D is a diagonal matrix whose diagonal
entries are either one or zero, where the zeros correspond to the algebraic equations
associated with the discretized Poisson equation.

If A is partitioned (possibly after reordering equations) as in

’

Al A .. Alm
(8) A=

Apmy, Amz .. Ap oM

where A;; € RVixNi and E,A_’[__l N; = N, then the above partitioning is said to be stable if
D;;zi(t) = A;izi(t) is a stable DAE. The characterization of the partitioned matrix given
below is a slight generalization of block diagonal dominance [6].

DEFINITION 2.1. The partitioned matriz A is said to satisfy the dominance condition
with respect to a given norm if the positive matriz P € RM*M  yhose diagonal elements
are zero and whose off-diagonal elements are given by

(9) Pi; = Az 1A,

has a spectral radius less than one.
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When Gauss-Jacobi Waveform Relaxation[2] (WR) is applied to solve (7) given a
partitioning of A, the iteration update equation for zF*1 given z* is

(10) Dyaft (1) = Ausft () + > Ayl ().
i

where the superscript k is the WR iteration index, ¢ € {1,..., M} is the partition index,
ok (1), zF (1) € RM:, and z5*1(0) = z;,. If the partitioned A satisfies the dominance
condition, then results from [7] can be used to easily prove the following theorem.

THEOREM 2.1. If the matriz A in (7) is stably partitioned, and the partitioning satisfies
the dominance condition in definition (2.1), then given any two arbitrary waveforms z¥
and y* on [0,00) which match the initial conditions of (7), the 51 and y*+t1 waveforms
computed from (10) satisfy

(11) 2" — ¥+ < qlle® - |

where v < 1 is independent of z* and y*.
Approximately solving (10) with a fixed-timestep backward-difference formula results
in a discretized WR iteration update equation,

P
12) Y aDuztm 1) = b | At m) + 3 AL ({25})

1=0 J#i
where p is the order of the integration method, the a;’s are the integration method
coefficients, h; is the timestep used to compute z,, a:f-‘“[m] is the discrete approximation to
¥ (mhy), and It({xf}) is some interpolation operator which maps t € ®* and sequence
{:cf} on ®Ni to a vector in R,
If the iteration in (12) converges, the resulting sequence, {z}, will satisfy

2
(13) ZaID,-;:c,'[m =N l: Ajizilm] + Z Al ({IJ}) :l
1=0 J#4
for i € {1,..., M}, and this discrete system is said to be a multirate integration method for
solving (7) [8].
There are no general multirate A-stability results which hold given any partitioning
of a stable system, and counter-examples exist even for the backward-Euler algorithm [9].
Instead, we will consider results that depend on the properties of the partitioned matrix.
DEFINITION 2.2. A multirate method of the fo;"m of (13) is A-stable for a given
partitioned A € RVXN if for any set of positive timesteps {hi,...,hm} and any initial
conditions

(14) lim z;{m] =0

m—+00
forallie {1,...,M}.

Though multirate integration methods don’t necessarily inherit the stability properties
of the integration methods used in solving the subsystems, the A-stability of the subsystem
integration methods is essential for multirate A-stability.

DEFINITION 2.3. A multirate method of the form of (13) is partition-by-partition A-
stable for a given partitioned A € R"*" if the solution to

P
(15) Z ajDyziim — 1] = hyAjzi[m]
1=0
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is such that for all i € {1,...,M}, limy, .o zim] = 0 for any initial condition and any
positive h;.

The following lemma and theorem are used in subsequent sections.

LEMMA 2.1. If the a’s in (12) correspond to the first or second order backward-difference
formulas, then

P
(16) lnlllri Re (Z alzl) >0

where z is a complex scalar and Re(-) denotes the real part.

THEOREM 2.2. A multirate integration method of the form of (13) is multirate A-stable
for any stable and stably partitioned system of the form of (7) if the multirate method is
partition-by-partition A-stable, and if the iterations defined by (10) and (12) converge to the
ezact solution of (7) and (13) respectively, uniformly on [0,00) and {0, 1, ..., 00} respectively.

The proofs of Lemma (2.1) and Theorem (2.2) are quite straightforward, and can be
found in [10]. Note that the proof of Theorem (2.2) involves interchanging limits, hence
uniformity of convergence on the infinite interval is required.

3 A Multirate WR Convergence Theorem

Most results about multirate A-stability approach the problem directly, and either
require some form of timestep synchronization, or apply only to first-order integration
methods [8, 11]. Theorem (2.2) connects multirate A-stability to multirate WR convergence,
and as we will show in the next section, this connection can be exploited to prove multirate
A-stability for unsynchronized second-order schemes. First, however, it is necessary to
verify multirate WR convergence, and that is the subject of this section.

To prove the convergence theorem, we will use the following specialized norm.

DEFINITION 3.1. Given an infinite sequence {z} on RN, the quantity

a7 =}l = =)l + J 7 3 {(elm] - z{m — 1), slm] - 2l — 1))

18 @ norm for any positive h. In addition, if

(18) {2}l < oo,

we say that {z} has bounded variation.

The theorem below is a minor generalization of a result in [10].

THEOREM 3.1. If the partitioned matriz A € RNXN in (12) is stably and normally
partitioned, and if the multirate method in (12) uses linear interpolation and a first or
second-order backward-difference integration formula, then for any two sets of sequences
with bounded variation, {z¥}, {y¥}, i€ {1, .., M}, such that z*[0] = y*[0] = =,

(19) ¥ = 9 Yl < 5 IAZH I A" - ¥ Hila,
i

k1 and y“‘l

where z; i are given by (12).
Proof. Given {z*} and {y*}, the difference between {z**1} and {y**'} can be derived ‘

from (12) and is

P
(20) ZaID,',-éf“[m - I] = h,' A;,-éf“[m] + Z AijImh.' ({(55})
=0 J#i
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where 6F[m] = z¥[m] - y¥[m).
Subtracting (20) at m — 1 from (20) at m yields

(21) Zaz Dy(8f m - ) - & m - 1-1]) =

hiAs (65 m] — 65 m — 1) + b 3 Aij (T, ({65)) - I(m—-l)h (16F 1)
J#

Applying the z-transform to (21) and reorganizing,
(22) Z(8FH(m] -6t m—1)) =
P -1 '
({ alz‘ll Dy - h,.A,-,-) b 3 AGZ (b, ({653) = Tomvs (163)) -
1=0 J#i

Taking the I; norm of both sides and applying the Cauchy-Schwarz inequality leads to

(23) | Z(65+1[m) - 65+ [m — 1)l, <
M; 3 N AslL|| 2 (Tt (£853) = Tomins (te)],-
JF
where .
(24) G W]H-AQ
2

From Parseval’s relation and Definition (3.1),

(25) 1Z2(651[m) = 6 {m = D), = VRS Hn,s
as 6¥[0] = 0 for all i and k.
Combining (24) and (25),
(26) 1 Hllne < M: 5" 1Aslls (Tma ($65) M < MY l1Aslz IS5,
J# i#i
where the term {Imk; ({6"})} is used informally to denote the sequence whose m'" element

is given by Inp, ({5j }) and the rightmost mequahty follows from the lemma in the
appendix of [10].
To bound M;, we note that as A;; is normal and D;; is a diagonal matrix of either ones

oI zeros,
P -1 -1
([Z 012-'] D;; - hiAii) < fnaxp( ([ oz ] i hiAii) ) .
=0 2 z

where p(-) denotes the spectral radius of the argument. From Lemma (2.1) and the stability
of Aii’

(28)  maxp ( ([Za:z ] - hiAii> ) <p((hidi)™ )= hlllA 2,

(27)
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The bound on M then implies
(29) IE6EF 3 lne < Do UAZM I Assllz HI{EEHILs,

J#i
proving the theorem. 0
CoRroLLARY 3.1. If A in (12) is stably and normally partitioned so that the partitioned
A has the dominance property with respect to the l; norm, and if the multirate method in
(12) uses linear interpolation and a first or second-order backward-difference integration

Jormula, then the multirate WR algorithm converges uniformly on the infinite interval.
Corollary (3.1) follows directly from Theorem (3.1) and Definition (2.1).

4 Near-zero Current

When analyzing semiconductor devices which operate using small currents, (1), (2) and
(3) can be solved efficiently by iterating between a modified Poisson equation and the
current-continuity equations [5]. The modification of the Poisson equation involves a
change of variables motivated by exact analysis of the zero current case, and this change of
variables yields a nonlinear Poisson equation, but leaves the current-continuity equations
unmodified [12]. Note also that in the case where the currents are very close to zero, the
potential derived by solving the nonlinear Poisson equation can be used as a given in the
current-continuity equation. With this as motivation, in this section, we consider using a
multirate method to solve (5) given u.

To begin, note the following about equation (5).

LEMMA 4.1. For any given u, (5) represents a linear ODE of the form

(30) n(t) = A(w)n(t)

where a partitioning of A(u) into scalar equations is both a stable partitioning, and satisfies
the dominance condition (Definition (2.1).

Proof. Since the Bernoulli function B(z) > 0 for all z, A(u);; < 0 for all 4, and therefore
a scalar partitioning of A(u) is a stable partitioning. The transpose of A(u) is irreducibly
diagonally dominant [6], and therefore a scalar partitioning of A(u) has the dominance
property.

THEOREM 4.1. When applied to solving (5) partitioned into scalar equations, a multirate
integration method which uses linear interpolation and a first or second order backward-
difference integration formula is multirate A-stable.

Proof. From Lemma (4.1), partitioning of (5) into scalar equations is a stable
partitioning, and first and second-order backward difference methods are partition-by-
partition A-stable. Also from Lemma (4.1), the scalar partitioning of (5) satisfies the
dominance property, and therefore Theorem (2.1) and Corollary (3.1) imply that both
the continuous and discretized WR algorithms converge uniformly on the infinite interval.

All the conditions of Theorem (2.2) are therefore satisfied, thus guaranteeing multirate
A-stability. a

5 Experimental Results

In this section we compare the computational efficiency of using a WR-based multirate
algorithm to a more standard direct method of solving the two-dimensional semiconductor
device equations given in (4),(5) and (6). The WR-based algorithm is a block red/black
Gauss-Seidel waveform-relaxation Newton scheme using vertical line blocks, where the
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equations governing nodes in the same block are solved simultaneously using the first
and second-order backward-difference formulas, an iterative timestep refinement strategy,
Newton’s method and sparse Gaussian elimination [13, 14, 15). For the direct method, the
first and second-order backward-difference formulas, Newton’s method and sparse Gaussian
elimination were applied to the entire problem. The program was written in C, and all
experiments were run on an IBM RS/6000 model 540 workstation.

The three MOS devices of Figure 1 were used to construct six simulation examples,
each device being subjected to either a drain voltage ramp with the gate held high (the
D examples), or a gate voltage ramp with the drain held high (the G examples). Each
device was spatially discretized on an irregular tensor-product mesh, i.e. the mesh lines
were placed closer together at points where u, n and p were expected to exhibit rapid
spatial variation. Dirichlet boundary conditions were imposed by a gate contact and by
ohmic contacts at the drain, the source, and along the bottom of the substrate. Neumann
reflecting boundary conditions were imposed along the left and right edges of the meshes.
For all examples, the source and substrate contacts were fixed at 0 V. The drain-driven kD
test setup is illustrated in Figure 2.

device ” description | mesh pa! ]
kar abrupt junction 19 x 31 ‘
1dd lightly-doped drain | 15 X 20 2.2 microns
soi silicon-on-insulator | 18 x 24 1
F1G. 1. Description of MOS devices. Fic. 2. Illustration of the drain-driven kD
ezample.
example “ direct l WRN/r (iters) :): | ' 1 ‘
kD || 697.08 | 501.66 (315) %m |
kG 2622.29 | 563.75  (215) Eol 1 1_ ~
1D 14747 | 296.48  (353) § 40
1G 439.22 | 253.19  (268) E
sD 208.77 | 96.68  (235) ; ”” """"
sG 130.75 | 95.61 (161) I

Fic. 3. CPU times for direct and the mul- FK 4 Numb " » - vertical
tirate WRN method, simulating a drain ramp I?‘ ) ?m er of m.tepozn s pe.r ve. rea
. . mesh line, showing the multirate behavior in the
and a gate ramp applied 1o the three devices.
kD ezample.

The table of Figure 3 shows the CPU times required by direct solution and the multirate
WRN algorithm with timestep refinement. The results show that in most cases, WRN
with timestep refinement is competitive with direct methods, and as noted in [3], waveform
relaxation methods are more easily parallelized.

Figure 4 shows that the blocks consisting of different vertical mesh lines required
different numbers of timesteps, because more timepoints were needed to resolve the
widening of the drain depletion region than are needed to resolve the source end of the
device. This indicates that in practice some multirate behavior exists within a device that
can be exploited by a multirate integration method.
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6 Conclusions and Acknowledgements

In this paper we demonstrated that the multirate WRN algorithm may be a practical tech-
nique for parallel semiconductor device simulation, and that WR is also a useful analytic
tool for analyzing the stability properties of multirate integration methods. The authors
apologize for several somewhat cryptic sections, but space was limited. F inally, the authors
wish to thank A. Elfadel for a valuable discussion on Lemma 1, and S. Skelboe for several
valuable discussions.
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