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Abstract— In this paper we describe an algorithm for effi-
cient SPICE-level simulation of transmission lines with arbitrary
scattering parameter descriptions. That is, the line can be rep-
resented in the form of a frequency-domain model or a table
of measured frequency-domain data. Qur approach initially uses
a forced stable decade-by-decade !; minimization approach to
construct a sum of rational functions approximation, but the
approximation has dozens of poles and zeros. This unnecessarily
high-order model is then reduced using a guaranteed stable model
order reduction scheme based on balanced realizations. Once
the reduced-order model is derived, it can be combined with
the transmission line’s inherent delay to generate an impulse
response. Finally, following what is now a standard approach,
the impulse response can be efficiently incorporated in a circuit
simulator using recursive convolution. An example of a trans-
mission line with skin-effect is examined to both demonstrate the
effectiveness of the approach and to show its generality.

I. INTRODUCTION

N the design of communication, high-speed digital, and

microwave electronic systems, the behavior of transmis-
sion lines formed from packaging and interconnect can have
an important impact on system performance. Stripline and
microstrip printed circuit board traces, interchip connections
on multi-chip modules, and coaxial cable connections all
have nonidealities in their frequency response, many of which
cannot be represented using a frequency-independent RLCG
model. Since these nonidealities may or may not negatively
impact signal integrity, depending on the driving and receiving
circuitry, verification of system performance must involve
circuit-level simulation that includes a transmission line model
which faithfully represents the frequency-domain behavior.

The most straight-forward approach to including general
frequency-domain transmission line models in a circuit sim-
ulator is to calculate the associated impulse response using
an inverse fast Fourier transform [1]. Then, the response of
the line at any given time can be determined by convolving
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the impulse response with an excitation waveform. Such
an approach is too computationally inefficient for use in
general circuit simulation, as it requires that at every simulator
timestep, the impulse response be convolved with the entire
computed excitation waveform.

An alternative approach is to approximate the frequency-
domain representation with a rational function, in which
case the associated convolution can be accelerated using a
recursive algorithm [2], [3]. Very efficient circuit simulation
programs which handle RLCG transmission lines have been
developed using such an approach, where the rational function
approximation was derived using Padé or moment-matching
methods [2], [4], [5], [6]. In this paper we describe an
algorithm for efficient SPICE-level simulation of transmission
lines with arbitrary frequency-domain scattering parameter
descriptions. The method is not as efficient as those intended
specifically for RLCG transmission lines, but it is general
enough to allow the use of any frequency-domain scattering
parameter model or a table of measured data and it can be
shown to have some important stability properties.

Our approach is a combination of several reasonably well-
known techniques. First, a decade-by-decade /o minimization
approach is used to construct a collection of forced stable
rational functions whose sum, after a final global l; mini-
mization, approximates the original frequency-domain data.
This algorithm is described in Section III, and it is shown
that the resulting approximation, though extremely accurate,
can have dozens of poles and zeros. Therefore, as described
in Section IV, a second step is performed. The unnecessarily
high-order model is reduced using a guaranteed stable model
order reduction scheme based on balanced realizations [7], [8].
Once the reduced-order model is derived, it can be combined
with the transmission line’s inherent delay to generate an
impulse response. Then, following what is now a standard
approach, the impulse response is efficiently incorporated into
the circuit simulator SPICE using recursive convolution. In
Section V, we present results of the time-domain simulation
of circuits containing a transmission line with skin-effect. The
examples demonstrates both the efficiency of the approach
and its generality, as there is no frequency-independent RLCG
representation for transmission lines with skin effects.

II. BACKGROUND

In general, a transmission line can be described in the
frequency domain using scattering parameters, in which case
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where V,(jw), I,(jw) and V(jw), I(jw) are the voltages
and currents at terminals ¢ and b of the transmission line,
Y ,(jw) is its characteristic admittance, and S1>(jw) is the
relation between the incident and reflected waves on opposite
ends of the transmission line. Note, the nonstandard choice
of Y,(jw) instead of Z,(jw) = 1/Y,(jw) is that for a
line with no shunt loss, Z,(0) = oo, which may cause
numerical difficulties in many situations. Any ideal delay
resulting from propagation along the transmission line and
which reflects itself on S2(jw) or (Y,S812)(jw) is usually
handled separately and cancelled from the above frequency de-
pendent measurements or model before they are incorporated
into the simulator. This is in general easily accomplished by
multiplying by the associated exponentials [2], [5].

To incorporate such a general transmission line repre-
sentation in a circuit simulator, it is necessary to compute
the inverse Fourier transforms of S2(jw), Y,(jw), and
(Y oS12)(jw) so as to determine the impulse responses s12(t),
yo(t), and (y,s12)(t). Then (1) becomes

(%o * va)(t) + 1a(t)
= ((Yos12) * vo)(t — ta) — (812 % 1) (t — ta)
(Yo * v)(2) + in(t)
= ((yo812) * va)(t ~ ta) — (s12 % 6a)(t —ta) (2)

[T

where “x” is used to denote convolution and ¢4 is the propaga-
tion delay which was extracted from the frequency dependent
model and is now explicitly introduced into the time-domain
equations.

As mentioned in the introduction, if s12(t), ¥o(¢) and
(y0512)(t) are derived by applying the inverse FFT to S12(jw),
Y ,(jw), and (Y ,S12)(jw) respectively, then the convolutions
will be expensive to compute. If, however, S12(jw), Y, (jw),
and (Y,S12)(jw) can be represented using rational function
approximations, then the convolution can be performed much
faster, and deriving this rational functions is the subject of
the subsequent sections.

III. SECTION-BY-SECTION APPROXIMATIONS

The most commonly used approaches to fitting rational
functions to frequency domain data are the Padé or moment-
matching methods. These methods compute the coefficients
of a rational function by matching that approximation to the
value of the system function and its derivatives around s = 0.

In this section we describe a sectioned approach to the prob-
lem of approximating the transfer function of a system by a
forced stable rational function. With this approach, we replace
the problem of directly computing a low order rational function
that is an accurate approximation over a wide frequency range
with that of repeatedly computing local approximations over
narrower ranges. These local approximations can then be
summed to create an accurate approximation over the wide

frequency range. This approach avoids, or at least minimizes,
the ill-conditioning of the global approximation problem. This
approach is similar in spirit to a generalization of the moment
methods which is based uponmultiple expansions around other
values of s to gather more global information [9].

We will start in Section III-A by describing a standard
constrained l; minimization approach. The shortcomings of
such an approach will be made clear, and in order to avoid
these difficulties we describe, in Section III-B, a section-
by-section algorithm which is based on a local constrained
{, minimization procedure. Finally, in Section III-C we will
present some results that show that this section-by-section
algorithm can generate rational functions which match data
very accurately.

A. Computing Global Approximants by
Weighted l; Minimization

One approach to generating a rational function which best
matches a frequency response F'(s) specified at a set of fre-
quencies {51, Sz, -, 8}, is to set up and solve, as accurately
as possible, the following set of equations:

H(s;)=F(s;) 7=12,---,m 3)

where

U(s)  ups?+ - +uis+up

H =
(s) V(s) 814+ -+ vis+ g

C))

is the low-order approximation.

Typically, the system in (3) will be over-determined as
the number of frequency points will exceed the number
of unknown coefficients in the approximation (4), that is
m > p+ g+ 1. In this case there will generally be no
exact solution, but the approximation error can be minimized
in some appropriate norm. If the 2-norm of the error is
minimized, then the coefficients of the polynomials U(s) and
V(s) are chosen such that

VIH(s1) = F(s1)? + -« + [H(sm) — F(sm)|?

= |H(s) - F(s)llz = “38 _F(s)

&)

2

is minimized. However, this is a nonlinear optimization prob-
lem whose solution is difficult to compute. Instead, the prob-
lem can be made linear by weighting the 2-norm by V(s).
Then, the minimization problem becomes
& U(s) = V(s)F(s)ll2 (©)
Note that the solution to (6) is not in general the same as the
solution of (5), but is instead a weighted /5 minimization.
The above l» minimizing solution of the over-determined
system minimizes the global error in a weighted I, sense
instead of being very accurate at s = O or at any particular
expansion point. However, to guarantee that the steady-state
will be accurately computed when the rational function is used
as a model in a circuit simulator, it is essential to constrain the
minimization so that U(0) = V(0)F(0). Similar constraints
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can be imposed at high frequencies if necessary. The resulting
constrained minimization can then be summarized as
V2 — Fo)
min ||{U(s) — V(s)F(s
B 10(s) =V FG)l: -

lim LZ) = lim F(s).

The global minimization in (7) has two major drawbacks,
namely the large dynamic range of the numbers involved and
the over-emphasizing of high-frequency errors. The dynamic
range of the number in the equation presents a difficulty
especially in the case when the natural frequencies of the
problem span a wide range, as is usual in transmission line
problems. In that situation, (7) can easily lead to extremely
ill-conditioned matrix problems. To see this, consider the
structure of the matrix one obtains from the minimization
portion of (7), which can be written as:

-1
811) 81 1 —Fl.s"f —F181 —Fl
P . _F.e11 _F.q. _F.
s; s; 1 Fjs; s F;
q—1
sb o 8y, 1 —FpsL —Fonsm —-Fp,
Cup T
q
F131
ul :
Uo ' q
= Fjsj (8)
Vg—1 .
F,, s
m mom
L Vo J

Each row of this matrix corresponds to computing U(s;) —
V(s;)F(s;) at some frequency value s;. The matrix is there-
fore a transposed Vandermonde-like matrix in the sense that
the entries along each row are simple powers of the corre-
sponding frequency value. If the span of frequencies being
considered is large, then the magnitude of the entries on
some of those rows will be much larger than those in rows
corresponding to low frequency values.

Even if the conditioning of the matrix in (8) is tolerable,
the resulting solution will be skewed to minimizing high-
frequency errors. To understand this problem, consider the
case p = ¢ — 1, and recall that an [, minimization attempts to
minimize the sums of the squares of the error at each point,
that is:

m
ezz el +eZ+---+e2, (&)
i=1

where
ej = [U(s) = V(s)F(s)|l2
b tusi g
- S?Fj — vlstj - 'U()Fjl
= |- siFj + (ug-1 - vq_lF,-)s;_l

+ -+ (ur — v Fj)s; + (up — voFy)|

= qu_ls

(10)

is the error for the jth equation, corresponding to the frequency
value s;.

From (10) one can immediately see that the sensitivity
of the error for the jth equation, e;, with respect to any
coefficient is a polynomial in s;. Hence, the contribution of
an error at s; to the global cost function is a polynomial in
sj. This implies that for a high frequency value s;, small
changes in the values of the coefficients translate into large
errors and e; will be large. Therefore, minimizing the total
error requires that the error components e; corresponding
to higher frequencies be carefully minimized, while those
corresponding to lower frequencies, which have less impact on
the global error, will not deserve so much attention. Though
it is possible to introduce a weighting function that minimizes
the high-frequency predominance effect, the precise weighting
is difficult to determine a-priori.

B. Computing Section-by-Section Approximants

In order to avoid the numerical ill-conditioning and the
uneven frequency weighting mentioned above, it is desirable to
limit the frequency range for the l; minimization. Computing
a low-order local approximation has the added advantage
that the orders of the polynomials in the rational function
approximation may be chosen small without compromising
the accuracy of the approximation for a small frequency
range. Moreover, if unstable poles are obtained from the local
minimization procedure it is likely that using some simple
heuristic, such as simply discarding the unstable poles and
associated residues, will not have a profound effect on the
accuracy over the small range of frequencies involved. In other
words, it is possible that a very low-order approximation is
accurate enough to capture the local behavior of F(s) without
instability, numerical or otherwise, playing a significant role.

The idea of computing local approximations leads to a
sectioning algorithm in which only accurate local approx-
imations are computed. The remaining problem is how to
incorporate all the local information resulting from the various
approximations into a global approximant.

Our proposed solution is to perform the local approxi-
mations in a repeated fashion using a constrained weighted
local {; minimization procedure. Initially, the frequency range
of interest, omega = [omega,,;,, omega,,,], is partitioned
into small sections, omega,, omegay,---,0mega,,, such
that omega = Uf‘il omega;, where each omega, =
[omega;,, omega,,, | is a decade or two long. Then, starting
with the lowest frequency range omega,, with frequency
values F(wi1), Fwi2), -, F(wim,), a constrained [
minimization is performed and a local approximant is
computed. Once the first local approximation, Li(s), is
obtained in the form of a collection of poles and their
corresponding residues, it is examined and the stable poles
are retained while the unstable ones are discarded, leaving us
with a forced stable approximation, H(s). Since the fit at the
lower frequencies has captured the low frequency dynamics,
F(s) — Hq(s) will contain primarily the higher-frequency
error information and is then approximated. To this end,
frequency values in the second section 2, are approximated.
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Fig. 1. Applying the sectioning algorithm to measured or tabulated frequency
data, The example llustrates the sequence of operations that are performed to
compute a local approximation, add it to the current global approximation
and recompute the current error function.

The value of Hy(s) at every point wei, Wz, -, Wam,
is computed, subtracted from the corresponding values
F(wa1), Fwss), -, F(w2m,) and the resulting data is again
fit using a constrained weighted /o minimization. This results
in a new local approximant Lo(s), from which a stable
approximation, H>(s) can be obtained. H(s) is then a new
approximant to F(s) — Hy(s) on £2; U £2,, and therefore
F(s) ~ Hi(s) + Ha(s) on that frequency interval. The
procedure is repeated until data in the last frequency section,
12,s, is approximated. A simplified form of this sectioning
algorithm is shown in pseudo-code form in Algorithm 3.1,
and diagrammatically in Fig. 1.

When the procedure terminates, the result is a forced
stable global approximation which consists of all the stable
poles and their corresponding residues obtained from the
sequence of local minimizations. We should point out that the
sectioning algorithm is aimed at computing approximations
which match successively higher frequency ranges. However,
while subtracting the already computed approximations from
the exact data, some erroneous dynamics may be introduced
at low frequency. To eliminate the associated errors, a final
constrained global l; minimization is performed in which
the computed poles are used to recalculate their residues in
order to match the exact data points. This final step does not
suffer from the numerical problems mentioned in Section III-A
regarding the global [, minimization. In fact, the matrix one
obtains in this case is better behaved because its (¢, j) entries
are of the form (s; — p;)~".

The algorithm just described reliably obtains a stable collec-
tion of pole-residue pairs which form an accurate approxima-
tion to F(s). Unfortunately, since H(s) is represented as a sum
of local approximations, the approach introduces redundancies
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Fig. 2. Accuracy of the section-by-section fit for the magnitude of the S;2
transfer function with respect to the transmission line data points. The two
curves are almost indistinguishable.
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Fig. 3. Accuracy of the section-by-section fit for the magnitude of the Y,
transfer function with respect to the transmission line data points. The two
curves are almost indistinguishable.

resulting in many more poles than necessary. With such a large
number of terms, even fast recursive convolution may prove
to be inefficient. However it is possible to further reduce the
order of the approximation using robust model order reduction
techniques, which are described in Section IV.

C. Section-by-Section Approximant: Numerical Example

In order to test the accuracy of the approximant obtained
with our section by section algorithm, consider the example
of a transmission line where skin effects are significant, as
shown in Figs. 2 and 3. The approximations to S;2(jw) and
Y,(jw), after removing the ideal delay, have respectively 21
and 24 poles. In Figs. 2 and 3, we compare the magnitude
plots of the transfer functions of, respectively, S12(jw) and
Y ,(jw) with the transmission line data points.

As one can see, the match is almost perfect, and the error
is smaller than 0.5%. Moreover the low-frequency error is
nearly zero.
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Algorithm 3.1
(Section-by-Section Approximations):

sectioned (Wmin, Wmax, F)
{
partition the frequency range into sections £2, - - -
with associated frequencies {w;1, -, wim, },
i =1,---,M, and function values
{Fwilv' T 7Fwim,-}
for (k =1k < M;k+ +){
if (k> 1){
subtract previous approximants from exact data:

7nM

Fi(s;) = F(si;) — Y00y Hilswg) =
F(skj) H(s,w),
J=1,- 0 My, Sk = Wk
telse{
Fi(s1,;) = F(s1,5)

}

compute local approximant at the kth section,
Ly(s) using the corrected data Fi(s;, ;)

examine the approximation and keep the stable poles
and residues of Ly (s)inH(s)

add the new stable approximation to the current
global approximant H(s) — H(s) + Hy(s)

while keeping the locally computed dynamics, perform
a final global constrained /> minimization over
the whole frequency range to recompute the
residue

IV. MODEL-ORDER REDUCTION BY
TRUNCATED BALANCED REALIZATION

The frequency-domain data fitting method described in
the previous section resulted in a stable transfer function
H(s) with a large number of poles. Incorporating such a
model (or equivalently its impulse response) directly in a
circuit simulator will be computationally expensive. Instead,
the model is reduced using an algorithm with three main steps.
First, the model is converted to a well-conditioned and robust
state-space realization. Second, a state-space transformation is
used to balance the state-space realization. Third, the balanced
realization is truncated. Using this type of balanced realization
approach has a key advantage: the resulting reduced H(s) is
guaranteed stable if H(s) is stable.

A. State-Space Realization

To reduce the order of the transmission line model de-
rived in the previous section, first we consider its state-space
representation

t=Arz+Bu, zeR", ueR, AeR"*™ BeR"

y€R, CeR"”

such that H(s) = C(sI — A)"!B.
Converting H(s) in pole-residue form to state-space form
is a standard problem [10], and it is tempting to use one of

y =Cz, (11)

the common techniques (canonical controllability realization,
canonical observability realization, etc.) to find the matrices A,
B, and C. However, these approaches can result in a system
matrix A which is poorly scaled and therefore unsuitable for
computations.

Instead, when all the poles are simple and real, the matrix
A can be chosen equal to a diagonal matrix having the real
poles as diagonal coefficients [10]. The control and observation
matrices B and C can then be chosen based on the residues
of the poles. More explicitly, given

n

H(s) =

(12)
1

where all the poles are negative reals and all the residues are
real,

A = diag (p1,- -+, pn)

B:(\/Wv"'v\/W)T

C = (sign (r)V/Irl, - sign () V/[ra])

When H(s) has pairs of complex conjugate poles, a block
diagonal matrix A can be constructed where the blocks are all
2 x 2 and correspond to pairing the complex conjugate poles
in state-space realizations of order 2. It is also possible to find
suitable state-space realizations when some of the poles are
repeated. For transmission line examples there are only real,
simple poles, and therefore the purely diagonal realization can
be used.

B. Balanced Realizations

Once the state-space representation is adopted, it has to be
internally balanced [7], [11]. That is, given H(s) = C(sI —
A)71B, the choice of the triplet [A, B, C] is not unique.
Indeed, a linear coordinate transformation £ = Tz modifies
the triplet [A, B, C] to [A, B, €] without modifying H(s).

For the specific purpose of extracting stable reduced-order
models from the state-space representation, it is desirable that
the new triplet [A, B, C] be in a form that allows such
an extraction using some simple operation on the new state

= T'z. The easiest conceivable such operation would be
51mp]e state truncation. Moore has shown [7] that such a trans-
formation exists and he called the corresponding triplet (A, B,
€] a balanced realization of the transfer function H{(s). The
word “balanced” refers to the fact that the controllability and
observability gramians of the triplet [A, B, €] are both equal
to the same diagonal matrix. The balancing transformation T
can be computed explicitly for any triplet [A, B, C], and in
particular for the diagonal realization that we have proposed
in the previous paragraph. The numerical cost of such a
computation is that of solving two matrix Lyapunov equations
to obtain the controllability and observability gramians and one
symmetric eigenvalue problem to diagonalize their product.
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C. Truncated Realization

The triplet [A, B, €] obtained by applying the balancing
transformation T to the triplet [A, B, C] has the property that
simple reordering and truncation of the state vector Z with the
corresponding reordering of the system matrices necessarily
produce stable reduced-order models at any desirable order.
Let & be this order, and let [zik, ﬁk, C"k] be the reduced-order
model with a transfer function H(s). It can then be shown
{71, [8] that the error transfer function Ex(s) = H(s)— H(s)
has an L., norm that consistently decreases to zero as k is
increased to 7, the order of the original model. This Lo
norm corresponds to the peak of the magnitude Bode plot
of Ei(s). Note that Padé approximation methods [4] do not
enjoy such an error reduction property, and there is in fact
ample experimental evidence that the Padé methods produce
unstable reduced-order models.

Truncating the balanced-realization has the same flavor but
is radically different from a spectral truncation, i.e., one that
is based on neglecting the “fast” modes. Indeed, the latter
method looks only at the state matrix A without taking
into account how controllable or observable the neglected
modes are. This is exactly what is achieved by truncating the
balanced realization where the controllability and observability
properties of the modes are taken into account through the
gramian matrices.

D. Time-Domain Constraints

Judging the validity of the reduced-order model depends
not only on meeting the L, error criterion mentioned above
but also on meeting the goals of the circuit simulation task
for which this reduced model is used. Typically, in circuit
simulations, it is essential that the reduced model match the
original transfer function at s = 0 so that the steady-state
behavior of both the reduced and full models are identical.
Moreover, when the objective is to have a good match between
the time-domain responses of the two models, it is essential
that their transfer functions match at s = oc so that their initial
behavior is the same [12]. To ensure the recovery of the steady-
state behavior a final least-squares/collocation technique is
used to match the reduced-order model with the full model
at zero frequency [13].

E. Truncated Balanced Realization: Numerical Example

In order to test the accuracy of the order-reduction algo-
rithm, the method was applied to the transfer function obtained
using the section-by-section procedure (see Section III-C). It
was found that reduced models with seven poles each were
sufficient to approximate the full transfer functions of both
S12(jw) and Y,(jw). In Figs. 4 and 5, the magnitude plots
of the reduced transfer functions of S12(jw) and Y ,(jw) are
compared with the transmission line data points. As is clear
from the figures, the match is very accurate and the error is
within 1%.

However in contrast to the section-by-section approximation
the low-frequency error is more noticeable. In Figs. 6 and 7,
the magnitude plots of the frequency dependent fitting errors
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Fig. 4. Accuracy of the reduced-order model fit for the magnitude of the
S12 transfer function with respect to the transmission line data points.
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Fig. 5. Accuracy of the reduced-order model fit for the magnitude of the Y,

transfer function with respect to the transmission line data points.

from the section-by-section approximation and the reduced-
order model are shown for S15(jw) and Yo(jw), respectively.

V. EXPERIMENTAL RESULTS

In this section, we present results from an implementation of
our algorithm for efficient time-domain simulation of transmis-
sion lines with arbitrary scattering parameter descriptions. The
implementation is based on a modified version of SPICE3 [14],
and uses a combination of sectioning, reduced-order modeling,
and fast recursive convolution. We first show that the reduced-
order model produces nearly the same time-domain waveforms
as the more complete sectioning based model, but with many
fewer poles. For completeness we will also apply a more |
traditional FFT-based method to this problem and compare the
results in terms of accuracy and computational cost. Second,
we show an example with realistic transistor drivers and
receivers, to demonstrate the ability of the method to simulate
complete circuit descriptions.
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Fig. 7. Magnitude plots of the errors with respect to the transmission line data
points of the section-by-section approximant and the reduced-order transfer
function for Yo,.

In Fig. 8 we present the time-domain results of applying a
5V step to a 502 terminated transmission line with significant
skin-effect. The pulse has a 1ns rise time, is applied at £ = 50ns
and the delay of the line is 250ns. In the figure, we compare
the time response of the 7th order reduced-order model with
the time response obtained using the full sectioning based
approximant, which has more than twenty poles. The fact that
the two responses are indistinguishable in the figure shows
that an excellent match has been obtained. In the same figure
we show the time response obtained using a full convolution
method applied to an impulse response obtained via inverse
fast Fourier transform (iFFT) on 2048 frequency data points.
As can be seen from the figure, the iFFT-derived response
is equally accurate as expected since a fairly large number of
frequency points were used. In Table I we show the CPU times
required for obtaining the three time responses shown. The
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Transmission Line Response with Resistive load
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Fig. 8. Time response obtained from applying a 5 V pulse with a 1 ns rise
time at ¢ = 50 ns to a resistively terminated transmission line. The figure
shows the response of a line modeled with a 7 pole reduced-order model and
that of a line modeled with the approximation resulting from our sectioning
algorithm, which has more than 20 poles. The figure also shows the response
of the line computed using full convolution with an impulse response obtained
via inverse fast Fourier transform. For this example 2048 frequency points
were used for the iFFT algorithm. The three waveforms are indistinguishable.
The delay of the transmission line is 250 ns.

TABLE I
CPU TIME COMPARISONS FOR FULL CONVOLUTION
VERSUS RECURSIVE CONVOLUTION METHODS

Algorithm CPU time (s)
Full convolution 133
Section-by-section 13
Reduced-order model 8

total number of timesteps required for obtaining the solution
in the interval shown was 1004. From the results in the table,
we can see that simulation of the reduced-order model is most
efficient, as expected. Since the cost of recursive convolution
is roughly proportional to the number of poles in the reduced-
order model, the 7th order model is over one and a half
times more efficient than the sectioning approach. Both of
these methods are over an order of magnitude faster than
the full convolution method which shows that the recursive
convolution procedure is extremely efficient. For a simulation
on a longer interval, the difference in CPU times would tend to
increase since, as we saw, the cost of a recursive convolution
method is linear in the number of timesteps while the cost
of a full convolution method is quadratic on the number of
timesteps.

In Fig. 10 we present the time-domain results obtained from
the circuit in Fig. 9, using the transmission line from the
previous example. The driver and the load are both CMOS
inverters, where the transistors are described using SPICE3’s
default level 2 model with W/L = 750 for the p-type pullup
devices and W/L = 400 for the n-type pull-down devices.
The simulation results show clearly that the improper line
termination causes reflections to transmit back and forth on
the line.
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Fig. 9. CMOS driver and load connected by a transmission line with
skin-effect.

Response of Driverl.oad transmission line connected pair

©

8 —— input pulse
; : - - driver output
7+ : --- load input
: B - - - load output
6 4
1 n N L . L
0 05 1 1.5 2 25 3
time x10°

Fig. 10. Time response obtained from a nonlinear circuit with a transmission
line connecting driver and load. The transmission line is modeled with a 7
pole reduced-order model.

VI. CONCLUSIONS

In this paper, we have proposed a robust algorithm for de-
riving stable, low-order, and accurate models for transmission
lines based on realistic scattering data.

The main highlights of our algorithm are as follows: First,
a stable, high-order transfer function is fitted to the scattering
data using a two-step algorithm:

1) The frequency range is sectioned, and a section-by-
section constrained /3, forced stable rational function
approximation is fitted to the data in each frequency
section.

2) The section transfer functions are combined using a
global {5 criterion to obtain a stable, accurate, high order
model valid for the whole frequency range.

Second, a guaranteed stable, low-order model is obtained
from the high-order model using the method of truncated
balanced realizations.

Third, the DC gain of the low-order model is matched to that
of the full model using a constrained /, minimization scheme.

We have shown that our section by section approximation is
very accurate and that the final stable low-order approximation
derived using the truncated balanced realization has excellent
match with the frequency response of the full model.

The resulting rational transfer function was incorporated
in a circuit simulator, and the numerical experiments us-
ing a transmission line with skin-effects indicates that the

time-domain responses match those obtained using the more
computationally expensive convolution procedures currently
in use for transmission line simulations. Moreover a reduction
by over an order of magnitude in the computation time was
observed.
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