Proc. Custom Integrated Circuits
Conference, San Diego, CA, 5/93

AN FFT-BASED APPROACH TO INCLUDING NON-IDEAL GROUND
PLANES IN A FAST 3-D INDUCTANCE EXTRACTION PROGRAM

Joel R. Phillips, Mattan Kamon, and Jacob White
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139.

Abstract

Finite ground-plane conductivity can have an enor-
mous effect on inductive coupling between signal lines.
However, including non-ideal ground planes in 3-D in-
ductance extraction programs is computationally ez-
pensive, as the ground plane must be finely discretized
to insure the current distribution throughout the plane
is accurately computed. This makes standard volume-
element algorithms unsuitable because they require n?
computation time and storage, where n is the number
of filaments into which the ground plane is discretized.
In this paper we show that by using a preconditioned it-
erative method combined with an FFT-based algorithm
to compute the iterates, we can reduce the computation
time to effectively nlogn, and substantially reduce re-
quired storage. Ezperimental results are presented to
show that using the FFT-based approach is more than
an order of magnitude faster than computing the it-
erates explicitly, even on problems with as few as a
thousand volume-filaments.

1 Introduction

In [1], it was shown that an equation formula-
tion based on mesh analysis can be combined with
a GMRES-style iterative matrix solution technique to
make a reasonably fast 3-D frequency dependent in-
ductance and resistance extraction algorithm. Unfor-
tunately, both the computation time and memory re-
quired for that approach grow faster than n?, where n
is the number of volume-filaments. This rapid growth
in memory and computation makes the approach in [1]
unsuitable when ground planes with finite conductiv-
ity are included because a large number of volume-
filaments are needed to accurately model the ground
plane current distribution. Although multipole algo-
rithms have been applied in an attempt to reduce the
memory and computation time required [2], there is a

large overhead and a variety of approximations asso-
ciated with the multipole algorithm. In this paper, we
describe an FFT-based algorithm which avoids both

~ the approximations and high overhead associated with

the multipole algorithm, and is more than an order of
magnitude faster than an explicit GMRES-style algo-
rithm on problems with as few as a thousand volume-
filaments.

2 The Mesh-Based Formulation

One approach to computing the frequency depen-
dent inductance and resistance matrix associated with
the terminal behavior of a collection of conductors in-
volves first approximating each conductor with a set of
piecewise-straight conducting sections. The volume of
each straight section is then discretized into a collec-
tion of parallel thin filaments through which current
is assumed to flow uniformly. The interconnection of
these current filaments can be represented with a pla-
nar graph, where the n nodes in the graph are asso-
ciated with connection points between conductor seg-
ments, and the b branches in the graph represent the
current filaments into which each conductor segment
is discretized.

To derive a system of equations from which the re-
sistance and inductance matrix can be deduced, we
start by assuming the applied currents and voltages
are sinusoidal, and that the system is in sinusoidal
steady-state. Following the partial inductance ap-
proach in [3, 4], the branch current phasors can be
related to branch voltage phasors (hereafter, phasors
will be assumed and not restated) by

ZIb = ‘/b) (1)

where V3, I € C®, b is the number of branches (num-
ber of current filaments), and Z € C**? is the complex
impedance matrix given by

Z =R+ jwlL, )



where w is excitation frequency. The entries of the
diagonal matrix R € R2*? represent the dc resistance
of each current filament, and L € R°*? is the dense
matrix of partial inductances Specifically,
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where X;, X; € R3 are the positions in filament i and
J respectlvely, and l;,1; € R3 are the unit vectors in
the direction of current flow in filaments ¢ and j.

Now assume that sources attached to the conduc-
tor system’s terminals generate explicit branches in
the graph representing the discretized problem. Kir-
choff’s voltage law, which implies that the sum of
branch voltages around each mesh (a mesh is any loop
of branches in the graph which does not enclose any
other branches) in the network is represented by

MV, =V, (4)

where V; is the vector of voltages across each branch,
except for the source branches, V, € ®™ is the mostly
zero vector of source branch voltages, and M € $mx?
is the mesh matrix, where m is the number of meshes.

The mesh currents, that is the currents around each
mesh loop, satisfy

M'I, = I, (5)

where the superscript ¢ denotes matrix transpose, and
I, € R™ is the vector of mesh currents. Note that one
of the entries in the mesh current vector will be iden-
tically equal to the source branch current. Combining
(5) with (4) and (1) yields

MZM'I, <V,. (6)

The complex admittance matrix which describes
the terminal behavior of the conductor system, de-
noted Y, can by derived from (6) by noting that

I, =Y,V,, (7

where I, and V, are the vectors of source currents
and voltages. Therefore, to compute the i** column
of Y, solve (6) with a V, whose only nonzero entry
corresponds to I_, , and then extract the entries of I,,,
associated with the source branches.

The standard approach to solving the complex lin-
ear system (6) is Gaussian elimination, but the cost
is O(m®) operations. For this reason, iterative meth-
ods like GMRES [5] are often used. Such methods are
still computationally expensive when applied to solv-
ing (6), because each iteration requires forming the
product M ZM*I,, which, as M ZM? is dense, requires
O(m?) operations.

Toeplitz blocks.

3 FFT Acceleration

It is possible to reduce the computational cost of
calculating M ZM*I,,,, and reduce the memory re-
quired to store M ZM?®, by exploiting the fact that
ground planes are typically discretized uniformly.
Consider writing the matrix M ZM? as

Mmﬁ:[ﬁ : (8)
where T € C*** represents the effects of ground
plane mesh currents on ground plane mesh voltages,
F € C**! represents the effect of meshes outside the
ground plane on mesh voltages in the ground plane,
and D € C'™! represents the effect of mesh currents
outside the groundplane on mesh voltages outside the
groundplane. If the ground plane is discretized uni-
formly, then the elements of T' are functions only of
relative mesh positions; i.e. T is block Toeplitz with
Thus the part of MZM*I,, associ-
ated with the ground plane mesh interactions is a 2D
linear discrete convolution, which can be performed in
O(klog k) operations by use of the Fast Fourier Trans-
form (FFT). Therefore, the cost of the entire matrix-
vector product will be O(klogk) + O(I(k + I)). Also,
as T, being Toeplitz, can be represented implicitly, the
total memory required is O(I(k +1)). Note that this
approach is only effective if the structures outside the
ground plane are simple, as then ! is much smaller
than k.

It is desirable to accelerate the convergence of the
GMRES algorithm by using preconditioning. We ap-
ply GMRES to the problem

MZM'Py=Y, 9)

and then obtain I,, = Py. GMRES will converge
quickly if MZM?*P is close to the identity matrix. An
effective preconditioner is

P=5 ph ] (10)

where K € C*** is a doubly circulant matrix obtained
from T by copying the central diagonals, similar to the
approach discussed in [6]. We assume that D € C** is
small and therefore easily inverted. As K is circulant,
its inverse can also be computed quickly by use of the
FFT.

Finally, we note that the matrix-vector product as-
sociated with the interactions in an irregular planar
collection of conducting segments can be accelerated
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Figure 1: Example problem of two bars over a ground
plane.

by the FFT technique. It is simply necessary to em-
bed the irregular geometry into a larger regular rect-
angular region (thus introducing fictitious zero mesh
currents in the part of the rectangular region with no
conductors) before performing the FFT. The ineffi-
ciency introduced by including fictitious mesh currents
is likely to be insignificant compared to the savings in
using the FFT if the conductors cover a significant
fraction of the rectangular region.

4 Results

To demonstrate both the importance of finite
ground plane conductivity and the effectiveness of the
FFT-accelerated iterative algorithm, consider the ex-
ample in Figure (1). In this example, two conductors
are placed parallel to each other, just above a ground
plane with conductivity 5.8 x 107 mho/m. We ex-
tract the equivalent circuit impedance matrix elements
211,212 and z; by applying unit voltages to each of
the conductors in succession. The return path for cur-
rent in each of the conductors is through the ground
plane. To accurately model the current distribution,
the ground plane was discretized into a 32 x 32 array
of filaments. At low frequencies, the real part of the
current is dominant. Figure (2) shows the real part of
the computed ground plane current distribution at 100
Hz. At higher frequencies, say 10 MHz, the imaginary
part of the current dominates, and is shown in Figure
(3). Notice that at low frequencies the current spreads
through the ground plane, but at high frequencies the
current is concentrated under a conductor. The effect
on the mutual inductance between conductors is dra-
matic, as shown in Figure (4). At high frequencies the
inductance is more than an order of magnitude smaller
than its value at low frequencies

To demonstrate the slow computation growth of the
FFT-accelerated algorithm, the ground plane in Fig-
ure (1) was progressively refined, to make problems
with successively more mesh current unknowns. As
the plot in Figure (5) clearly indicates, for a ground-

Figure 3: Imaginary part of the ground plane current
at 107 Hz.
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Figure 4: Mutual inductance between the bars of Fig-
ure (1).
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Figure 5: CPU time per frequency point for the ex-
ample of Figure (1).
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Figure 6: Norm of residual when GMRES is applied
to the example of Figure (1). Dashed line shows norm
of residual without preconditioning, solid line shows
norm of residual when preconditioning is used.

plane discretized into a 32 x 32 array of filaments, the
FFT-accelerated method is nearly twenty times faster
than an iterative method with the matrix-vector prod-
ucts computed explicitly. Finally, Figure (6) shows
that the preconditioner given above is effective in ac-
celerating GMRES convergence.

5 Conclusions and Acknowledgments

In this paper we demonstrated that the time.to
compute the effects of ground plane resistance on cou-
pling inductance can be substantially reduced through
the use of an FFT-accelerated preconditioned GM-
RES algorithm. Future work is on extending the

approach to more general ground plane structures
and discretizations through the use of embedding and
mapping techniques.
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