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Abstract

In this paper a multipole-accelerated iterative algorithm for solving the
matrices generated by panel or boundary-element method discretizations
of three-dimensional integral equations is described. The method reduces
the memory and computational cost of solving these equations from N2
to nearly order N, where N is the number of degrees of freedom in the
discretization. Experimental results from a problem in potential flow is
presented to demonstrate that the method has sufficiently low overhead
that discretizations with more than four thousand unknowns can be solved
in minutes on a scientific workstation.

1 Introduction

For a wide variety of problems in computer-aided engineering analysis, the most
computationally expensive task is solving Laplace’s equation for the potential on
a two-dimensional surface embedded in a three-dimensional problem domain. An
integral equation for the surface potential can be derived using Green'’s theorem,
from which it follows that for each point z on a piecewise smooth surface S, the
potential, 1(z), must satisfy

Imib(z) + /5 ¥(z)Go(, 2')da’ — /S ¥a(2)G(z, 2')dd' = 0. (1)

where G(z,2') = ——. Given (1), the surface potential can be determined
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uniquely if for each point z on S, the potential, ¥)(z), and its normal derivative,
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Vn(z) = Vip(z) - i, are constrained to satisfy

Al2)y(z) + v(z)bn(z) = f(2). (2)

The simplest, and still commonly used, approach to numerically solving (1)
and (2) is to divide the surface into N triangular or quadralateral panels, and then
assume that 1 and 1, are constant over each panel. Insisting that this piecewise
constant appoximation satisfies (1) and (2) at a collection of N collocation points,
denoted {z;}, leads to a system of equations of the form

27 + Pp — Dp, =0 (3)

and
Tp + Fpn = f (4)

where p, p, € R" are the vectors of coefficients of the piecewise constant approx-
imations to ¥ and ¢, respectively, T,T' € RV*V are diagonal matrices whose
diagonal elements are given by YT;; = #(z,) and I';; = v(z;). The entries in
P,D € RN*N are given by

1 1
Py=— [ (5)

a; Js, ||z — zi|

and
| 1

D,"J' = —/ 6—— ) da', ) (6)
a; Js, 7" — i

where Sj; is the surface of the j** panel, and «a; is the j** panel’s surface area.

The system composed of (3) and (4) can be solved by direct factorization,
or with an iterative technique like a Krylov-subspace method [11]. As P and D
n (3) are dense matrices, the cost of directly factoring (3) and (4) grows like
N?, and even a rapidly converging iterative method will still require computation
time and memory which grows like N?2.

In this paper, we will describe an accelerated approach, based on using a
fast-multipole algorithm, which reduces the time and memory required to solve
(3) and (4) to nearly order N. In the next section, we will briefly describe the
fast-multipole algorithm, and then in Section 3 we will give explicit formulas for
determining the multipole expansions of piecewise constant panels. In Section 4,
we will give experimental results demonstrating the accuracy and efficiency of our
multipole-accelerated algorithm applied to a problem in potential flow. Finally,
in Section 5 we give conclusions and acknowledgements.
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Figure 1: Evaluation of d distant panel potentials at d collocation points with
the multipole expansion.

2  Multipole Acceleration

Krylov-Subspace based iterative methods for solving the N equation system Az =
b select solutions from the space of vectors {r, Ar, A’r,...A*r}, where k is the
iteration index. If A is dense, then the cost of computing a (k + 1)* iteration for
most Krylov-Subspace methods is dominated by the N? cost of forming the dense
matrix-vector product A%+l — A(Ar*). In the case of equation (3), computing
the dense matrix-vector product is equivalent to evaluating potentials at N points,
{z1,...,zn} (the panel centroids), due to monopole and dipole distributions on
the N panels. Therefore, it is possible to reduce the cost of a Krylov subspace
method for solving (3) and (4) by accelerating the potential calculation.

There are a wide variety of NlogNV algorithms for accelerating the evaluation
of N potentials due to N distributions, mostly based on some form of hierar-
chical panel clustering [2, 3]. The basic idea is depicted in Figure 1. Here, the
potential due to a cluster of panels is evaluated at some distant point z; by first
accumulating the panel influences into a multipole expansion, and then evaluat-
ing the single expansion. As we will describe briefly below, the fast-multipole
algorithm [6, 9] reduces the cost yet futher, to order N, by efficiently distributing
the accumulated multipole expansions through the use of local expansions. More
specifically, the use of multipole and local expansions are orchestrated by a tree-
structured hierarchy of panel clusters; multipole expansions for clusters of panels
are accumulated from the leaves of the tree to the root, and local expansions are
distributed from the root to the leaves for evaluation at collocation points. This
is accomplished in order N operations while maintaining a uniform precision.

The implementation of a multipole expansion is shown in Figure 1. Here,
the potential due to a cluster of panels is represented by a truncated multipole
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Figure 2: The conversion of several distant multipole expansions into one local
expansion for evaluation at the local collocation points.

expansion:

(ri,6i, i) Z Z T Y"‘("ué) (7)

n=0m=—n i

where [ is the expansion order and r;, 4;, and ¢; are the spherical coordinates of
the :-th evaluation point relative to the center of the multipole expansion. The
Y."(0;, ¢:) are the surface spherical harmonics [7, 8] and the M™ are the complex
multipole coefficients given by

2 [ (Yl )l (8)

where there are d panels in the cluster with constant den31ty strengths ¢;/a;. The
variables of integration are the spherical coordinates (p', o/, 8') of the differential
panel surface area da!, relative to the center of the multipole expansion.

The error in this approximation is 5],

I+1 41
< K, (5) <K (5) . (9)
ry

r

lri, 0i, ) — Z > nHY’" 0:, 1)

n=0m=-n i

The quantities » and R are as in Figure 1 and K; is a constant independent of
the multipole expansion order, .

In the fast multipole algorithm, most of the multipole expansions are not eval-
uated at collocation points. Instead, multipole expansions are either combined
to form multipole expansions which represent distributions in a greater portion
of the domain, or multipole expansions are transformed into local expansions.

The implementation of a local expansion is shown in Figure 2. Here, a number
of multipole expansions are transformed into a single local expansion. Local



expansions have the form:

l n
¢(7‘ia9i’ ¢1) ~ Z Z LTYnm(Hi,(ﬁi)r?, (10)

n=0 m=—n

where [ is the order of the expansion, r;, §; and ¢; are the spherical coordinates
of the i-th collocation point with respect to the center of the local expansion, and
the L7 are the complex local expansion coefficients.

The error in this approximation is:

lf n
b(ri, 0i,60) — > > LTY™(6;, ¢i)rt

n=0m=—n r

N I+ [+1
k(B =m(®)T W
r

where K is independent of /, and r and R are as in Figure 2.

Local and multipole expansions must be carefully applied to insure that the
potential is accurately approximated everywhere in the problem domain. The
structure which makes this possible is the hierarchical partitioning of the domain.
Consider the smallest cube which contains the entire domain, that is, all of the
panels. We refer to this cube as the level 0 or root cube. This parent cube is
subdivided into eight child cubes, and the panels are divided among these level
1 child cubes. This process is repeated down to some finest level (the leaves),
designated level L. The number of levels, L, is usually selected so that no finest
level cube contains more than some fixed small number of panels. After setting
up this hierarchical spatial decomposition, the fast multipole algorithm begins
with the finest level, where each panel distribution is represented by a multipole
expansion. These expansions are then shifted to the centers of the finest-level
cubes and combined, so that a single expansion represents all of the panels in
the cube. During an upward pass through the tree to the root, each child cube’s
multipole expansions is shifted to the child cube’s parent’s center, to generate
a single expansion which represents all of the panels in the parent cube. In an
interaction phase , at each level a local expansion is created for each cube by
accumulating multipole expansions representing distant cubes at that level. In
a downward pass, the local expansions in the parent cubes are shifted to the
centers of their children. Finally, in an evaluation phase, the local expansions
and direct contributions from nearby panels are evaluated at the points at which
the potential is required: the collocation points.

It is important to note that all expansion shifting and transforming can be
represented as translation matrices whose elements depend only on the geometry
of the surface and the cube hierarchy. If the fast-multipole algorithm is used to
evaluate matrix-vector products as part of an iterative procedure, efficiency can be
improved by forming the translation matrices once and then reusing them for each
matrix-vector product. Based on this observation, the fast multipole algorithm
can be summarized as in Figure 3, where Q2M denotes the matrix which maps
panel distribution coefficients to multipole expansion coefficients, M2M denotes
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the matrix which shifts a multipole expansion’s center, M2L denotes the matrix
which transforms multipole expansion coefficients to local expansion coefficients,
L2L denotes the matrix which shifts a local expansion’s center, and L2P denotes
the matrix which evaluates the local expansion at the collocation points.
Finally, note that as panels are generated by discretizing a surface in the
three-dimensional problem domain, for practical examples most of the cubes at
level 2 and finer in the spatial hierarchy will be empty. For this reason, adaptive
versions of the multipole algorithm are commonly used [4]. An adaptive strategy
particularly well suited to panel or boundary element methods is detailed in [9].

cube 2
M2M
QM
2
cube 1 MZL
L2L /
AN O
@ = local expansion
L2p @ = multipole expansion

Figure 3: The basic operations of the fast-multipole algorithm.

3 Expansions for Singularity Distributions

Unlike NV particle problems, panel or boundary element methods require multi-
pole expansions for the panel distributions . In principle, these distributions may
be any order of approximation of the unknown, but higher-order panels are more
complicated to represent, and since the overall algorithm is nearly order N, the
use of many simple panels has little penalty. We do not in fact evaluate the finest
level multipole coefficients by (8) directly but rather compute the multipole coef-
ficients for the singularity distributions on each panel in local panel coordinates,
and then shift these coefficients with an M2M operation to the centers of the
finest-level cubes. A local cartesian coordinate system, with the origin coincident
with the panel centroid and the z,, z, plane coplanar with the panel, is chosen for
convenience. This necessitates a rotation of the expansion as well as a translation
when panel expansions are accumulated at the centers of the finest-level cubes.
Formulas for rotating spherical harmonics are already well known, particularly in
the context of quantum angular momentum (for example, see [12]).
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We require the coefficients of a multipole expansion such that:
3 0= [ S, (12)

The definition of these multipole coefficients for the constant source distribution
on a planar panel is derived in [9]:

n—|m
2

n—im |m} |ml -
M:ln :1&’;” _ 2 . (-sgn( ))lml —k T e , 13
];J ("—3@~1> kzz;) (|m|—k) 2j—kn—(25+k),  (13)
where
. (n — |m|)! i
e ~ . plm
E=Nmxzmy O, (14)

in which the PI™l are the Legendre functions, and the terms
Ij,k = / J:jykda (15)
Q

are the moments of the panel, recursion relations for which can be found in [10].
In the local panel coordinate system described above, we require for the dipole

distribution: 5 1
> S e = [f Lt 1o

n=0m=—n

Taking this derivative of (13) is straightforward because of the choice of coordinate

system and simply requires the recurrence relations for the derivatives of the
Legendre functions [1]. The result is:

= Vn F mEM™ (17)

4 An Example Problem

To demonstrate the efficiency of the adaptive, multipole-accelerated, precondi-
tioned iterative algorithm for solving the boundary integral equations with a
combination of Neumann and Dirichlet boundary conditions, a model problem
1s selected to which the solution is known in closed form. The problem is the
representation of a sphere translating in an ideal, infinite fluid.

For the unit sphere translating at unit velocity in an ideal fluid, in this case
parallel to the z3 axis and in the direction of its positive sense, the potential is

known to be: )

Z3
() = - :
2 |z|]?

To test the algorithm for the direct formulation with both types of boundary
conditions, a Dirichlet boundary condition is imposed on the leading hemisphere,

(18)
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Figure 4: The convergence of the added-mass coefficient for a translating sphere
as the discretization is refined. The added-mass of a sphere in an infinite fluid is
known in closed form to be equal to §7r

and a Neumann boundary condition is imposed on the trailing hemisphere. The
solution, then, is the complimentary function on each hemisphere.

The convergence of the computed solution to the exact solution is demon-
strated in Figure 4. This figure plots the computed added-mass coefficient as a

function of the number of panels used to discretize the sphere. The added-mass
coefficient is defined as:

Q33 = //;’Dusw Y(z')nada’, (19)

where n3 is the component of the unit surface normal in the direction of sphere
translation. From equation (18), it is easy to see that (19) may be written as

(33 = / /S o, Bl () | (20)

Therefore, from (20), the added-mass may be computed as a sum over all the pan-
els of the product of the boundary condition, the solution, and the panel area.
In Figure 4 the convergence of the added-mass is linear in % if the multipole
expansions are carried out to a sufficiently high order, which for the coarser two
discretzations of 512 and 1152 panels is order 2, and for the finer two discretiza-
tions of 2048 and 4608 panels is order 3. It should be noted that the increased
accuracy of the order 2 result for 4608 panels is fortuitous.



Number of | Number of | Depth | Number of | CPU Time | Memory
Spheres Panels Iterations Seconds Mb
1 1152 4 6 58 16.8
2 2304 6 13 105 31.2
4 4608 6 14 228 65.9
1 1152 0 6 104 11(est.)

Table 1: Computation requirements on a DECStation 5000/240 for a fictitious
Neumann-Dirichlet problem of multiple spheres. The spheres each have 1152
panels. The order of the multipole expansions is 3, and the convergence tolerance
on the GMRES algorithm is 0.001. The Depth column gives the value of L, the
number of levels in the spatial hierarchy. For reference to an order N? solution,
in the last line of the table, where the depth is zero, the solution has no multipole
acceleration. The storage typically required by an order N2 approach is estimated
simply as N x N x 8 bytes, while the storage reported for the solutions by the
multipole accelerated algorithm are the actual total memory allocations.

Table 4 shows the linear growth in the computational effort required for a fic-
titious problem of multiple spheres. The problems are posed by setting the Neu-
mann and Dirichlet conditions for the single translating sphere on hemispheres
of one, two, and four spheres, which are arrayed with one half radius separation
in the cases of the multiple spheres. This demonstrates the increase in compu-
tational effort as problems increase in complexity, rather than simply increase in
the number of unknowns on a fixed geometry.

5 Conclusions and Acknowledgements

In this paper, we demonstrated that multipole-accelerated iterative algorithms
are extremely effective for solving three-dimensional surface integral equations.
The results show that the computation time of the method grows linearly with
problem size, and that the fast-multipole algorithm has an advantage even on
problems with as few as 500 panels, and is nearly an order of magnitude faster
on typical 4000 panel problems. Currently we are using the algorithm on a work-
station to investigate the physics of free-surface waves. The simulation of the
evolution of gravity waves on a free-surface can require hundreds of solutions of
large Laplace problems with a mix of Neumann and Dirichlet boundary condi-
tions. Hitherto this work has only been done on supercomputers. Future work
1s on incorporating higher-order panels, as well as trying to exploit the multipole
algorithm’s structure to efficiently adapt the surface discretization.

This work is supported by the Defense Advanced Research Projects Agency
(N00014-91-J-1698), the Office of Naval Research (N00014-90-J-1085), the Na-
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tional Science Foundation (MIP-8858764 A02), the F.B.L (J-FBI-88-067,) and
grants from Digital Equipment Corporation and [.B.M.
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