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We consider the influence of self-induced magnetic fields on dynamic properties of arrays of resistively and capac-
itively shunted Josephson junctions. Self-field effects are modeled by including mutual inductance interactions
between every cell in the array. We find that it is important to include all mutual inductance interactions in order
to understand the dynamic properties of the array, in particular subharmonic structure arising under AC current

bias.

I. Introduction

To date, studies of Josephson junction arrays
have generally neglected the effects of magnetic
fields induced by currents flowing in the array.
When these self-field effects are considered, it has
often been assumed that the induced magnetic
field in an array cell is produced by currents flow-
ing only in that cell or its near neighbors [1,2].
Recently, we have shown that to correctly de-
scribe the static properties of vortices in arrays
with no applied currents, it is necessary to in-
clude the inductive interactions of each array cell
with all the currents flowing in the array [3].

It has been suggested that self-induced mag-
netic field effects may be responsible for sub-
harmonic Shapiro step structure observed in rf-
driven arrays [4]. Studies by Dominguez and
José using an approximate treatment of the self-
induced fields support this view [2]. In this paper,
we show that subharmonic zero-field steps are ob-
served in Josephson junction arrays when a com-
plete treatment of mutual inductance interactions
is considered, and that the I-V characteristics of
the arrays are qualitatively different than when
the inductive interactions are approximated. We
have considered the usual case of strongly over-
damped junctions (McCumber parameter g. = 0)
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corresponding to SNS arrays, as well as critically
damped systems (3. = 1) which might be a better
model for some arrays of SIS niobium junctions
with resistive shunts.

II. Analysis

The general aspects of a mesh-based analysis
of the Josephson array have been previously de-
scribed in Ref. [3]. Briefly, we define two sets of
variables: loop (mesh) currents, I, flowing in each
array cell, and gauge-invariant phase differences ¢
across each junction. The difference in mesh cur-
rents between two adjoining cells must equal the
current through the junction dividing the cells,
which in the resistively-capacitively shunted junc-
tion (RCSJ) model is given by Iy = B.9+v+sin .
Here, current is normalized to the junction crit-
ical current I, v is the voltage normalized to
I.R,, time is normalized to the Josephson char-
acteristic time . = 2e R, I./h, and the damping
is determined by 8. = 27 R,C/7.. In these units
the time-evolution of the junction phase is simply
¢ = v. To relate the junction phases to the mag-
netic flux, we take a loop-sum of the phase differ-
ences around a cell so that ) ¢ + 27®/®o = 0.
The flux through a cell i, ®;, consists of an ex-
ternally applied flux &%t and an induced part
oind = Y. Lij I;, where the summation runs over
all cells in the array and the matrix L is the induc-
tance matrix. The diagonal entries of L are the
self-inductances of the cells, and the off-diagonal
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entries the mutual inductances. The models of
Ref. [1,2] correspond to setting most of the L;;
to zero. In this paper we retain all terms in L.

Applied currents are injected uniformly into
each node along one side of the array. These in-
jected currents can be modeled by adding addi-
tional meshes corresponding to current sources.
Since the current through these meshes is known,
the variables corresponding to the current source
meshes can be eliminated from the system of
equations that describes the augmented array cir-
cuit. This analysis produces a nonlinear sys-
tem of differential-algebraic equations which can
be discretized in time by standard techniques
[5). The linear systems which result from time-
discretization of the differential equations can be
solved either by LU-decomposition (for small,
non-stiff systems) or through use of the FFT-
accelerated iterative algorithm presented in Ref.

(3.
III. Results
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Figure 1: Zero-field I-V characteristics of AC-
driven 11 x 11 array, 8. = 0.0

Figs. 1 and 2 show results of simulations of
N x N junction arrays driven with an AC cur-
rent of frequency 0.1/r. and amplitude I, per
node, in zero applied magnetic field. The DC
current injected into each node, I4., was varied
between 0 and 2I.. Results for the overdamped
array (3. = 0, N = 11) are shown in Fig. 1. The
solid curve corresponds to the full inductance ma-
trix, and an effective penetration depth AL =1
(AL = 2mpol./®o in units of the lattice spacing

p). The first and second giant (integer) Shapiro
steps at V; = Nhv/2e are clearly visible, as are
subharmonic steps at %Vl and %Vl. When Ay
is increased to 10, the order of the system size,
the subharmonic structure essentially disappears,
as can be seen from the dashed curve of Fig. 1.
When the inductance matrix is approximated by
retaining only self and nearest-neighbor induc-
tances, a qualitatively different I-V characteristic
is obtained, as shown in the dashed-dotted curve
of Fig. 1.
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Figure 2: Zero-field IV characteristics of AC-
driven 11 x 11 array, B, = 1.0

Fig. 2 shows results for a critically damped
(B. = 1) array. The effect of the induced fields is
essentially the same as in the §. = 0 case. The
main distinction is that the addition of the ca-
pacitive term to the array dynamics broadens the

subharmonic } step.
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