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Abstract

In this paper we compare accelerated waveform relaz-
ation algorithms to pointwise methods for the transient
simulation of semiconductor devices on parallel ma-
chines. Ezperimental results are presented for simula-
tions on small clusters of workstations and on an Intel
iPSC/860. The results show that accelerated waveform
methods are competitive with standard pointwise meth-
ods on serial machines, but are significantly faster on
loosely-coupled MIMD machines.

1 Introduction

The computational expense and growing impor-
tance of performing semiconductor device transient
simulation, along with the increasing availability of
parallel computers, suggest that parallel algorithms be
developed and used for these simulation problems. Al-
though SIMD type parallel machines have been shown
to be effective for device transient simulation [1, 2],
as MIMD machines become increasingly more popular
and cost-effective, it is important that efficient algo-
rithms be developed for them as well. To obtain high-
est performance on a MIMD parallel computer, it is
critical that a numerical method avoid frequent paral-
lel synchronization [3]. The waveform relaxation (WR)
approach to solving time-dependent problems is such
a method, because in parallel WR, iterates are com-
municated between processors only after having been
computed over a time interval [4, 5, 6]. Parallel point-
wise methods, on the other hand, must communicate
iterates after each timestep computation.

As with any iterative scheme, efficiency of WR
depends on rapid convergence, and there have been
several investigations into accelerating WR, including
multigrid [7], Krylov-subspace [8, 9], and convolution
SOR techniques {10, 11]. In this paper we extend the
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results in [8, 9, 10, 11] and provide experimental results
using waveform methods on two different parallel ma-
chines for performing transient simulation on a variety
of MOS devices.

2 Device Transient Simulation

Charge transport within a semiconductor device is
assumed to be governed by the Poisson equation, and
the electron and hole continuity equations [12, 13].
Given a two-dimensional rectangular discretization
mesh, the device equation system is typically dis-
cretized with a finite-difference formula applied to
the Poisson equation, and an exponentially-fit finite-
difference formula applied to the continuity equations
(the Scharfetter-Gummel method [13]). On an N-
node mesh, this spatial discretization yields a sparse
differential-algebraic initial-value problem (IVP) con-
sisting of 3N equations in 3N unknowns, denoted by

Fi(u(t),n(t),p(t))
£ n(t) + Fa(u(t), n(t), p(t))
7 P(t) + Fa(u(t),n(t), p(t))
Fi(u(0),n(0), p(0))

where ¢ € [0, T, and u(t), n(t), p(t) € RN are vectors
of normalized potential, electron concentration, and
hole concentration. Here, F'y, F5, F3 : R3N — RV are
specified component-wise as
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The sums above are taken over the silicon nodes j adja-
cent to node i. For each node j adjacent to node ¢, L;;
1s the distance from node ¢ to node j, d;; is the length
of the side of the Voronoi box that encloses node ¢ and
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bisects the edge between nodes i and j, and €if, tny;
and pp,; are the dielectric permittivity, electron and
hole mobility, respectively, on the edge between nodes
i and j. The Bernoulli function, B(z) = z/(e® — 1),
is used to exponentially fit potential variation to elec-
tron and hole concentration variations, and effectively
upwinds the current equations.

3 Accelerated Waveform Methods

The standard approach used to solve the
differential-algebraic equation (DAE) system (1) is to
discretize the system in time with a low-order implicit
integration method. The resulting sequence of non-
linear algebraic systems is typically solved with some
variant of Newton’s method and/or relaxation [12, 14].
This approach can be disadvantageous for a parallel
implementation, especially for MIMD parallel comput-
ers having a high communication latency, since the
processors will have to synchronize repeatedly (at ev-
ery Newton iteration) for each timestep.

A more effective approach to solving (1) with a par-
allel computer is to use waveform relaxation (WR) to
decompose the DAE system into subsystems before
time discretization [6]. The WR algorithm has sev-
eral computational advantages. Since it is an itera-
tive method, WR avoids factoring large sparse matri-
ces. WR can exploit multi-rate behavior, using differ-
ent timesteps to resolve different solution components.
Finally, WR is well suited to parallel computation,
because of a low communication/computation ratio.
However, when. applied to solving the device equa-
tion system (1), the WR algorithm converges slowly
unless acceleration techniques, such as convolution
SOR [10, 11] or waveform GMRES (8, 9], are used.

3.1 Convolution SOR

Convolution SOR (CSOR) is a generalized wave-
form extension of the well-known successive over-
relaxation (SOR) method used to accelerate the con-
vergence of relaxation methods for solving linear sys-
tems of equations [15]. To abbreviate the description
of the CSOR algorithm, we will consider the problem
of numerically solving the linear initial-value problem,

(2)

where A € R**" b(t) € R™ is given for all t € [0,T],
and z(t) € R" is to be computed.

A waveform relaxation algorithm using CSOR for
solving (2) is shown in Algorithm 1. In iteration & +1,
each waveform :i:f‘“ is computed as in ordinary Gauss-

Seidel WR, and then is moved slightly farther in the

&(t) + Az(t) = b(t) with =(0) = =,
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iteration direction by convolution with a CSOR pa-
rameter, function w(t). The convolution allows the
CSOR method to correctly account for the frequency-
dependence of the spectrum of the Gauss-Jacobi WR
operator by, in effect, using a different SOR parameter
for each frequency.

Algorithm 1 (Convolution SOR)

1. Imitialize: Pick x(t) with «°(0) = =o.
2. Herate: For k = 0,1,... until converged

e Solve for 27 (t) with 51 (0) = =zo,,

i-1 n
(4 +ai) &P (1) = bi(t)—Za;jxf“(t)—Za.-jxf(t)

ji=1 j=i+1

o Overrelaz to compute =5 (t),

M () =i (t) +/Otw(7')' [-‘ifﬂ(i‘r)—zf(t—r)] dr

3.2 Waveform GMRES

The basic iteration used by WR for solving (2) (with
the splitting A= M — N) is

¥ +1(1) + MzF+Hi(t) = NzF(t) + b(t)

The solution = to (2) is thus a fixed point of the WR
algorithm, satisfying the integral operator equation

I-K)x=1. (3)

Here, we define (3) on the space H = Ly([0,T],RV),
I : H — H is the identity operator, K : H — H is
defined by

b4
(K=z)(t) =/ =M N o (5)ds,
0
and 1) € H is given by
, .
Y(t) = e"tM:c(O) +/ e(’_t)Mb(s)ds.
0

Krylov-subspace methods can be used to accelerate
the convergence of WR, but as K is not self-adjoint,
a variant suitable for non-self-adjoint operators must
be used [8, 9]. One such method, shown in Algo-
rithm 2, is waveform GMRES (WGMRES), an exten-
sion of the generalized minimum residual algorithm
(GMRES) [16] to the space HL




Algorithm 2 (Waveform GMRES)

1. Start: Set v° = ¢ — (I — K)=z°, v! = »0/|}r%|

2. Iterate: For k = 1,2,..., until satisfied do:

A hjlk = ((I— K:)vk,vj)’ j = 1!2)“ "k
o ¥ = (I = K)ok = TF_ | by o
o hpprs = [B5FY|

o ML= 98 Ry,

3. Form approzimate solution: ¥ = 20 + VFEyk,
. "k
where y* minimizes ||fe; — H y¥||,

To apply WGMRES to the nonlinear device sys-
tem (1), the system is linearized with waveform New-
ton (WN) [17] and WGMRES is used to solve the re-
sulting sequence of time-varying linear IVPs [9].

4 Parallel Implementation

Various parallel solution methods have been im-
plemented in the WR-based device transient simu-
lation program pWORDS, which supports computa-
tion on the Intel iPSC/860 as well as workstation
clusters running the Parallel Virtual Machine (PVM)
software [18]. The pWORDS program uses a man-
ager/worker scheme in which a host program assigns
tasks to compute nodes and gathers their results when
they are finished.

4.1 Parallel Waveform Methods

The waveform solution methods in the pWORDS
program use a vertical mesh-line blocking scheme in
which the variables for the nodes in each vertical mesh
line are computed together. To maximize paralleliza-
tion for CSOR, the blocks are processed in red/black
order [15] — WGMRES also uses this ordering to de-
termine the splitting A = M — N.

To begin a parallel WR computation, the host pro-
gram reads an input file that specifies the device ge-
ometry and discretization mesh as well as the voltage
boundary conditions. The host program then parti-
tions the device mesh into non-overlapping blocks of
adjacent mesh lines and assigns one block to each com-
pute node. The WR iteration performed by each com-
pute node overlaps communication and computation
in order to minimize the effect of communication time
and is shown in Algorithm 3.
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Algorithm 3 (Parallel Red/Black WR)

Choose waveforms that satisfy initial conditions.

Rterate:

1. Send black line solutions needed by other
nodes.

2. Solve (1) for red lines that do not require black
line solutions from other nodes.

Receive black line solutions (BLOCKING).
Solve (1) for remaining red lines.

Send red line solutions needed by other nodes.

S O e W

Solve (1) for black lines that do not require red
line solutions from other nodes.

Receive red line solutions (BLOCKING).

. Solve (1) for remaining black lines.

% =

Each iteration of Algorithm 3 contains only two
blocking communications — steps 3 and 7. Little syn-
chronization between the compute nodes is therefore
required, and communication that is required consists
of large packets of information, i.e., entire waveforms.

4.2 Pointwise Newton-GMRES

In our experience, the most efficient serial algo-
rithm for device transient simulation was the point-
wise Newton-GMRES algorithm. In this algorithm,
block-Jacobi preconditioned GMRES [16] is used to
solve the linear systems arising at each Newton iter-
ation of each timestep of an implicit integration for-
mula applied to (1). The pointwise Newton-GMRES
method in pWORDS uses the same vertical-line blocks
as the waveform methods, but communication is re-
quired for each GMRES iteration. Although many of
these communication operations are overlapped with
local computation, the communication latency may
be so large that it cannot be hidden by the (rela-
tively) small amount of computation done at a single
timestep. Furthermore, a significant amount of syn-
chronization results from the inner-product computa-
tions within each GMRES iteration.

5 Experimental Results

The three different MOS devices of Figure 1 were
used to construct six simulation examples, each device
being subjected to either a drain voltage pulse with
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device description mesh | unknowns
1dd lightly-doped drain | 15x20 656
soi silicon-on-insulator | 18x24 856
kar abrupt junction 19x 31 1379
Sv
S5v
bl ! oo
] L1 0 psec 512 psec
—
2.2 microns

1

Figure 1: Description of devices and illustration of the
drain-driven karD example.

the gate held high (the D examples), or a gate voltage
pulse with the drain held high (the G examples). The
(karG64 and soiG64) examples were constructed by
refining the meshes of karG and soiG to contain 64
vertical lines. Zero-volt Dirichlet boundary conditions
were imposed by ohmic contacts at the source and
along the bottom of the substrate and Neumann re-
flecting boundary conditions were imposed along the
left and right sides. The drain-driven karD example
is shown in Figure 1. :

The experiments compared parallelized pointwise
Newton/GMRES, WRN [17], WN/WGMRES, and
WRN with CSOR acceleration. The backward Euler
method with 256 fixed timesteps was used for all exper-
iments, on a simulation interval of 51.2 or 512 picosec-
onds. Although the use of global uniform timesteps
precludes multirate integration (one of the primary
computational advantages of WR on a serial machine},
it also simplifies the problem of load-balancing. The
convergence criterion for all experiments was that the
maximum relative error of any terminal current over
the simulation interval be less than 10~%. The ini-
tial guess for WRN and for the accelerated waveform
methods was produced by performing 16 or 32 WR it-
erations beginning with flat waveforms extended from
the initial conditions.

Table 1 shows a comparison of the execution times
(in wall clock seconds) required to complete a tran-
sient simulation of the karD example using WRN,
WN/WGMRES, and CSOR on an Ethernet-connected
PVM workstation cluster consisting of eight IBM
RS/6000 workstations as compute nodes and one Sun
SparcStation 2 as host. Despite differences in com-
pute node processing power, the mesh was divided as
evenly as possible among the nodes — no load bal-
ancing was attempted. Note that the execution time
for pointwise Newton-GMRES increased by a factor of

Method # Procs Time
Pointwise (Direct) 1] 2462.48
Pointwise (GMRES) 1} 1221.98
Pointwise (GMRES) 2 | 6931.86
WRN 11 8230.23
WRN 2 | 4469.91
WRN .4 | 2712.58
WRN 8 | 1571.92
WN/WGMRES 1 *
WN/WGMRES 2 *
WN/WGMRES 41 925.60
WN/WGMRES 8| 504.50
WRN with CSOR 1| 1665.58
WRN with CSOR 2| 884.64
WRN with CSOR 4| 541.76
WRN with CSOR 8| 316.08

Table 1: Execution times (in wall clock seconds) for
transient simulation of the karD example on a PVM
workstation cluster. A * indicates that the experiment
could not run because of memory limitations.

5.67 when parallelized on two processors.

Table 2 shows a comparison of the execution times
(in wall clock seconds) required to complete a tran-
sient simulation of the karD example using WRN
and CSOR on the Intel iPSC/860 hypercube. Here,
pointwise Newton-GMRES does exhibit some speed-
up when parallelized, but the speed-up flattens out
after four processors.

Table 3 shows a comparison of the best serial and
the best parallel execution times (in wall clock sec-
onds) for the eight examples on the iPSC/860. The
waveform methods display a remarkable scalability,
with a roughly linear speedup up to 32 processors (the
so0iG64 and karG64 examples). Of the examples not

Method # Procs Time
Pointwise (GMRES) 1] 1333.07
Pointwise (GMRES) 2] 83741
Pointwise (GMRES) 4 643.92
Pointwise (GMRES) 8| 674.72
Pointwise (GMRES) 16 |- 757.19
WRN 4 | 4378.82
WRN 8 | 2256.21
WRN 16 | 1224.32
WRN with CSOR 4| 895.50
WRN with CSOR 8| 460.27
WRN with CSOR 16 | 248.93

Table 2: Execution times (in wall clock seconds)
for transient simulation of the karD example on the

iPSC/860.
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Newton- CSOR (Blocks/Proc)
Example || GMRES 8 4 2
1ddD 1184.68 NA | 382.77 | 201.23
1ddG 989.74 NA | 235.67 | 128.59
soiD 366.11 405.93 | 225.41 | 120.15
s0iG 401.42 417.40 | 225.74 | 117.31
karD 1262.49 895.50 | 460.27 | 248.93
karG 1492.17 590.88 | 308.29 | 165.61
soiG64 * 987.17 | 507.20 | 260.13
karG64 * || 1386.32 | 713.97 | 373.53

Table 3: Execution times (in wall clock seconds)
for single processor pointwise Newton-GMRES and
parallel CSOR simulation of eight examples on the
iPSC/860. A * indicates that the experiment could
not run because of memory limitations.

limited by the memory of a single iPSC/860 node, par-
allel CSOR was nearly an order of magnitude faster
than serial Newton-GMRES in the best case.

6 Conclusion

The comparison of accelerated waveform relaxation
algorithms to pointwise methods showed that acceler-
ated waveform methods are competitive with standard
pointwise methods on serial machines, and that accel-
erated waveform methods are significantly faster on
commonly available loosely-coupled MIMD machines.
In particular, parallel accelerated waveform methods
achieved a nearly linear speed-up on the 32 processor
Intel iPSC/860 hypercube, whereas parallel versions
of standard pointwise methods exhibited only limited
parallel speed-up. These results suggest that as MIMD
machines and cluster-based computing become more
prevalent, accelerated waveform methods will gain in
importance for solving time-dependent problems.

Current work is focused on refining the theory for
CSOR and WGMRES, developing a multirate im-
plementation of pWORDS, and applying accelerated
waveform methods to new application areas.
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