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Abstract

In this paper, two approaches to self-consistent
electromechanical analysis of three-dimensional micro-
electro-mechanical structures are described. Both ap-
proaches combine finite-element mechanical analysis
with multipole-accelerated electrostatic analysis, the
first using a relaxation algorithm and the second us-
ing a surface/Newton generalized conjugate-residual
scheme. Examples are given to demonstrate the rela-
tive merits of the two approaches.

"1 Introduction

Electrostatic microactuators, such as the suspended
polysilicon comb drive [2] and the electrostatatic mi-
cropump [1], are typically controlled by applied volt-
ages that create electrostatic forces which then deform
As the structure deforms, the elec-
trostatic forces change, making the final structure’s
shape difficult to predict. For this reason, design-
ers of microelectromechanical systems (MEMS) are
interested in using computer simulation tools to per-
form this self-consistent analysis. In theory, the finite-
element method (FEM) commonly used for mechani-
cal analysis can be used to perform self-consistent elec-
tromechanical analysis, but three-dimensional mesh-
ing problems make using FEM impractical. Specifi-
cally, an FEM mesh is needed in the interior of struc-
ture to determine mechanical forces, and an FEM
mesh is needed in the exterior of the structure to
determine electric fields. Resolving fields quantities
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on, and maintaining the alignment of, a large three-
dimensional exterior mesh is extremely computation-
ally expensive.

Another approach is to exploit the fact that elec-
trostatic forces can be determined using only the nor-
mal electric fields at the structure surfaces. This im-
plies that electrostatic forces can be computed us-
ing boundary-element methods (BEM), in which only
structure surfaces are discretized and only surface
quantities computed [4]. Though standard BEM
methods generate dense matrix problems which are
expensive to solve, recently developed multipole-
accelerated iterative methods reduce the cost of solv-
ing BEM matrices associated with electrostatic anal-
ysis to order N operations, where N is the number of
elements in the surface discretization [6].

In this paper, we describe two efficient approaches
to combining finite-element mechanical analysis with
multipole-accelerated electrostatic analysis. The first
method is the obvious relaxation algorithm and
the second method is a more sophisticated sur-
face/Newton generalized conjugate-residual scheme.
We start, in the next section, by describing self-
consistent analysis, and give these two methods.
Then in Section 3, examples are given to demon-
strate that the methods are accurate, and that the
Surface/Newton-GCR algorithm converges more reli-
ably than the relaxation algorithm. ' Conclusions and
acknowledgements are given in Section 4.

2 Self-Consistent
Analysis

Electromechanical

Elastic deformation analysis performed by finite-
element programs like ABAQUS [5] involves solving a




system of equations of the form

2, S(x) = Fym(zi, S(x:), P) (1)
where z € R is the vector unknown of discretization
mesh node positions associated with a force-balanced
state, S(z) € RM is a vector of element stresses as-
sociated with the position z, z; € ®" is a vector of
given initial node positions, S(z;) € M is a vector of
element stresses associated with the given initial posi-
tion z;, and P € RL is the vector of applied pressure
forces. Here, N is the number of nodes, L is the num-
ber of surface faces, and M is the number of degrees
of freedom associated with the elements.

The electrostatic pressure, P, acts in the direction
of the structure surface normal and is given by P =
%En * 0, where o is the surface charge density and E,
is the normal electric field at the surface. Given the
applied potential, V', P can be determined from an
equation of the form

P = Fg(z,V), (2)
where P € RL is the unknown vector of surface
pressures, £ € RV is the vector of given discretiza-
tion mesh node positions, and V is the applied volt-
age. The multipole-accelerated boundary-element
based electrostatic analysis program, FASTCAP [6],
can be used to efficiency solve (2) even for complicated
three-dimensional structures.

The problem of self-consistent electromechanical
analysis is then to find the node displacements, z*,
and the associated electrostatic pressures, P*, such
that

z*,5(z") = Fu(z*, S(=*), P*)
P* = FE(:B‘,V).

)

2.1 Solution Algorithms

Given a program like ABAQUS to solve (1), and
a program like FASTCAP to solve (2), the nonlinear
Gauss-Seidel relaxation algorithm below can be used
to combine the two programs into a procedure for solv-

ing (3).

Algorithm 1: Relaxation Procedure for Solving (3).
k=1zF=0.
Repeat
Prt+l — Fg(z", V).
zk+1’S(zk+1) = FM(:C",S(:I:"), Pk'H).
k=k+1;
until [|z* - z¥+!|| < e.
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As will be shown subsequently, Algorithm 1 does
not always terminate because the Gauss-Seidel relax-
ation often fails to converge. To derive an algorithm
with superior convergence properties, consider reorga-
nizing (3) by eliminating P*, and then expressing the
problem as

F(z) = z — Fy(z,S(z), Fe(z,V)) (4)
where F(z*) = 0.

Now consider that z is a vector of discretization
mesh node positions throughout the volume of the
structure being analyzed. However, once the node po-
sitions on the structure surface are known, both the
surface pressure and the interior node positions can be
determined by decoupled electrostatic and mechanical
analysis. This suggests that to reduce the dimension-
ality of the coupled problem, (4) can be rewritten as

Fy(z,) =
=Surf [Fy(Fu(zs), S(Fum(z,)), Fe(zs, V)] (5)

where z, € R* is the vector of surface node positions,
the function Surf extracts z, from z, and Fup(z,) is
used to denote the fact that mechanical analysis alone
is sufficient to determine all the node positions given
the surface node positions.

A Newton method combined with the generalized-
conjugate-residual method (GCR) can be used to solve
(5), as given below.

Algorithm 2: Surface/Newton procedure
k=1,zF=0.
Repeat
Solve J(z*)6; = —F,(z*) using GCR.
Set z5+l = 2% 4 ¢,
k=k + 1; »
until [|zf — 25+ <

Here, J(z,) = F/(z,) is the system Jacobian.

Since GCR is used to solve J(z¥)8; = —F,(zF),
the Jacobian is never needed explicitly. That is, only
matrix-vector products, J * ri, are needed, and they
can be approximated by

F(z+0xr) —F(:c)

J(z)*r = ; (6)
where .
6 = sign(z ) * min(1, sﬁl, ﬂ!%(lﬂﬂ)
a € (0.01,0.5) b€ (0.1, 13
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Figure 1: The beam structure

3 Demonstration Examples

To begin, consider a structure whose behavior can
be determined analytically, so that the simulation re-
sults can be verified. The structure consists of an elas-
tic beam attached to the top plate of a parallel plate
capacitor, as shown in Figure 1. The top of the beam
is held fixed, as is the bottom plate of the capacitor.
When a voltage is applied to the parallel plate capaci-
tor, the induced electrostatic pressure will pull the top
plate down and stretch the attached beam. The plate
will he displaced to the point where the electrical and
mechanical forces are in balance, and this point can
be approximately determined analytically. Ignoring
fringing fields, the electrostatic force is given by

A, V2
fe_ ek

- m) (7)

where €g is the permitivity, A, is the plate area, V is
the applied voltage, D is the “at rest” plate separa-
tion (with V = 0), and z the displacement of the top
capacitor plate. The mechanical restoring force due to
stretching the beam also has a simple form,

Y As

fm:kx_L+x

z, (8)
where Y is the Young’s Modulus of the beam, A; is
the beam cross sectional area, and L is the beam’s
length.

For the case V = 70 volts, Y = 1GPa, Ay = 2um?,
D = lum, A, = 100um?, the analytical and the sim-
ulation results are plotted in Figure 2. As is clear
from the plot, the analytical results (the solid line)
is in good agreement with the simulation results (the
stars).
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Figure 2: Beam structure displacement versus applied
voltage

The example in Fig. (3) is of two silicon bars
whose potentials differ by 1000 V. Here, each bar
is 0.5um x 0.5um x 10pm, the minimum distance
between the two bars is 0.5um, the Young’s modu-
lus of silicon is 162.7GPa, the density of silicon is
2.328 x 103K g/m3, and the Poisson ratio is 0.223. In
Fig. (4), the convergence characteristics of relaxation
and surface-Newton-GCR are compared, and as the
graphs show, the relaxation fails to converge but the
surface-Newton-GCR algorithm converges rapidly.

Figure 3: Silicon bars at different potentials.

Comb drive resonantors often fail to function prop-
erly because the ground plane induces a levitation
force. For example, we consider a comb structure over
a ground plane, shown slightly levitated in Fig. (5).
For this experiment, the dimension of the structure is
20pm x8umx 3.5um, and the distance between fingers
is 1um. The ground plane and the two fingers struc-
ture are assumed to be fixed, and a voltage is applied
on the two fingers structure. The one finger structure
is fixed at one side and aluminium material properties
are assumed (the Young’s modulus is 77.4G Pa, the




density is 2.7 x 103K g/m3 and the Poisson ratio is
0.346). When a positive potential is appled to the two-
fingered structure, there will be a repulsive electro-
static force between the one-fingered structure and the
ground plane, even if both are at zero potential. This
repulsive force is due to the induced negative charge
on both the one-fingered structure and the ground
plane. In Fig. (6) the convergence versus CPU time for
the relaxation method and the surface/Newton-GCR
method are compared, and as can be seen from the
convergence cutve, the surface/Newton-GCR method
is more than two orders of magnitude faster than the
relaxation method.

4 Conclusions

In this paper it is shown that efficient electrome-
chanical analysis can be performed by combining
a standard finite-element based mechanical analysis
program with a fast boundary-element based elec-
trostatic solver. Also, we demonstrated that our
surface/Newton-GCR algorithm is faster and more ro-
bust than the simplier relaxation scheme.
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Figure 4: Convergence characteristics of Relaxation
and Surface-Newton-GCR.
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Figure 6: Comparision of CPU times for the relaxation
and surface/Newton-GCR methods (The applied po-
tential is 420 volts).
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