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Abstract—This paper presents the algorithms for CMVSIM,
a program for performing the transient simulation of grid based
analog signal processors on a massively parallel computer. A
grid-based equation formulation approach and a block-diago-
nal preconditioned CGS algorithm are described, and it is
shown how they are used to efficiently perform transient sim-
ulation using the massively parallel Connection Machine. Ex-
perimental results using CMVSIM to simulate realistic image
processing circuits are given to demonstrate that the algorithms
presented are effective for a general class of grid-based signal
processors. In particular, the results presented demonstrate
that CMVSIM running on a full-size Connection Machine can
be as much as 650 times faster than what is, to the authors’
knowledge, the fastest serial transient simulation algorithm
running on a SUN-4/490 workstation.

I. INTRODUCTION

HE RECENT success in using one- and two-dimen-

sional resistive grids to perform certain filtering tasks
required for early vision [1] has sparked interest in gen-
eral analog signal processors based on arrays of analog
circuits coupled by resistive grids. As is usually the case,
before fabricating these analog signal processors, sub-
stantial circuit-level simulation must be performed to in-
sure correct functionality. Although desirable, simulation
of these types of signal processors is particularly difficult
because they must be simulated in their entirety at the
analog level. Ambitious circuits consist of arrays of cells
where the array size can be as large as 256 X 256, and
each cell may contain up to a few dozen devices [2].
Therefore, simulation of a complete signal processor re-
quires solving a system of differential equations with
hundreds of thousands of unknowns.

The structure of grid-based analog signal processors is
such that they can be simulated quickly and accurately
with specialized algorithms tuned to certain parallel com-
puter architectures. In particular, the coupling between
cells in the analog array is such that a block-iterative
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scheme can be used to solve the equations generated by
an implicit time-discretization scheme, and furthermore,
the regular structure of the problem implies that the sim-
ulation computations can be accelerated by a massively
parallel SIMD computer, such as the Connection
Machine' [3].

In this paper, algorithms are presented for simulating
grid-based analog signal processors on a massively par-
allel computer. In Section II, motivation is provided for
this work by way of an idealized example of a grid-based
analog signal processor, and a general model of grid-based
circuits is developed. The simulation algorithms for per-
forming transient simulation of grid-based circuits are
discussed in Section ITI and the massively parallel imple-
mentation of the algorithms is presented in Section IV.
Experimental results using the Connection Machine are
presented in Section V. Finally, conclusions and sugges-
tions for further work are contained in Section VI.

II. PROBLEM DESCRIPTION

In this section, we introduce grid-based analog signal
processors with a simple example, and then describe a
general approach to formulating the equations for grid-
based circuits. We will show in Section IV that the for-
mulation approach described below leads to an efficient
mapping of the problem onto a massively parallel proces-
sor. To end this section, we will show how the formula-
tion approach also makes it possible to easily specify grid-
based signal processors to the Connection Machine
Vision/SIMulation Program (CMVSIM), by briefly de-
scribing the program’s input files.

2.1. Motivational Problem

Consider the circuit in Fig. 1, an idealized version of a
grid-based analog signal processor used for two-dimen-
sional image smoothing and segmentation [4]. The
Kirchoff’s current law (KCL) equation for a node at grid
location (j, k) in the network is

CVix = gf(Uj,k - uj,k)

+ 8 Wik — Vi1 + &Wik — V10
+ g Wik — Vik+ D) + & Wik — Ujk-1)

'Connection Machine is a registered trademark of Thinking Machines
Corporation.
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Fig. 1. Grid of nonlinear resistors.

where u; ; and v; , represent the input and processed out-
put image data at the grid point (j, k), respectively, g is
the input source impedance, c is the parasitic capacitance
from the grid node to ground, and g,(-) is a nonlinear
“fused’’ resistor. In this circuit, the g, resistors pass cur-
rents in such a way as to force v;, to be a spatially
smoothed version of u; ,, unless the difference between
neighboring ; ,’s is large. In that case, g, no longer con-
ducts, there is no smoothing, and the image is said to be
““segmented’’ at that point.

In a physical implementation of the image smoothing
and segmentation circuit, the idealized elements in the
circuit in Fig. 1 are replaced by subcircuits of physical
circuit elements. For example, in Mead’s Silicon Retina
[1], the voltage source u; ; and the source admittance g;
are replaced with a subcircuit containing transconduc-
tance amplifiers and a phototransistor; the g, nonlinear re-
sistor is replaced with a subcircuit comprised of biasing
circuitry and MOS transistors (see Section V).

2.2. General Array Description

The circuit grid can be represented generally as an
N X N array of identical subcircuits, each of which is
connected to its four nearest neighbors. Consider a single
such subcircuit, shown abstractly as a multiterminal ele-
ment in Fig. 2. Let the subcircuit have M,,, internal nodes
and let it connect to internal nodes of its nearest neighbor
to the north, east, west, and south with My, My, My, and
M; terminal nodes, respectively. For present purposes, it
is assumed that the subcircuit acts as a voltage-controlled
element with respect to its terminals.

In order to create an N X N grid circuit of subcircuits,
a single subcircuit must be replicated N 2 times, and then
each subcircuit must be connected to its four nearest
neighbors. The following proposition and its corollaries
provide a means of more formally describing the grid cir-
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Fig. 2. A single subcircuit, shown here as a multiterminal element, and a

grid constructed of such elements by attaching nodes of each element to
nodes of its neighbors.

cuit behavior, given the description of the behavior of the
individual subcircuits.

Proposition 2.1: Let € be an n + m node circuit with
node voltage vector ¥(¢) € R**™, and node charge and
current vectors §(¥(z), 1), (¥(r), 1) € R**™, respectively.
Consider a second circuit, €, which is formed from € by
joining each node j = 1, * + - , n to a set of nodes K; C
{n + 1, --+, n + m}, such that C is a well-defined
circuit and has nodal voltage vector v(f) € R", and nodal
charge and current vectors q(v(f), 1), i(v(?), 1) € R", re-
spectively. Then, there exists a topological matrix H, such
that

qv(®), H = H'gHv@), 1)
i(v(n), » = HiHv(), 1).
Proof: Define H:R"* — R"*" by:
1 ifk=j

H ;=41 if node k € K;.

¢}
0 otherwise

Obviously, substituting Hv(#) for ¥(¢) will insure that all
devices in € have the same terminal voltages as the as-
sociated devices in ©. Thus, devices contribute the same
charge to their terminal nodes whether connected as in C
or as in €. Now consider a component g; of the vector
q(v(®), 1), corresponding to the sum of charges at node j
in €. Node j in C either corresponds to a single node j in
@ or to the several nodes joined with node j when € is
constructed from €. In the former case, g; = §j, in the
latter, ¢; = (Eex; G) + §j» and therefore, q(v(®), 1) =
H’G(Hv(r), £). By an analogous argument, it follows that
(v, n = HHv(Q), 1). O

An alternative proof can be constructed using branch
incidence matrices [5].

Example: Consider the circuit graphs shown in Fig. 3.
In this case the H matrix relating the two circuits is given
by:

- -

@
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Fig. 3. Example graphs for circuits @ and C. The circuits both have
branches b1 through b 6; circuit € has nodes n1 through n S, while cir-

cuit © has nodes n1 through n 4. The topological matrix relating the nodes
for this example is given in (2).

Remark: The matrix H can be defined more generally
by relaxing the condition on the ordering of nodes in
Proposition 2.1. That is, € can be constructed from € by
joining a set of m distinct nodes {k;, -, kn} C {1,

-, n + m} to the n nodes in {1, - - - , n + m}\{ki,
«++, k,,}, and then renumbering the nodes in {, -+,
n + m}\{k,, * -+, kp} from 1 to n. This node renum-
bering implies that the generalized H matrix typically will
not have the diagonal submatrix structure of the H matrix
defined by (1).

In general, an a priori decomposition of a grid circuit
into identical subcircuits will not be given. In that case,
Proposition 2.1 provides a means for describing the con-
struction of a grid circuit from subcircuits or, equiva-
lently, the decomposition of a grid circuit into subcir-
cuits. To apply Proposition 2.1, we note that when
separating a grid into identical subcircuits, some nodes of
the original grid persist, while others become separated
into multiple nodes. Nodes that are not separated in this
decomposition are called internal nodes. When a node in
the grid is separated into a set of nodes in the decompo-
sition, one node from the set will be an internal node,
while the others are called terminal nodes. In general, it
is possible to designate any node in the set to be the in-
ternal node. We formalize this approach to equation for-
mulation in the following corollary.

Corollary 2.2: Consider an N X N circuit grid of iden-
tical subcircuits, as shown in Fig. 2. Assume each sub-
circuit has M, internal nodes plus M, terminal nodes,
(M = Mg + My + My + M for the example in Fig.
2), and define M = My, + M. Let ¥,(1) € RY be the
nodal voltage vector for the subcircuit at grid location «
when that subcircuit is separated from the grid, and let
G (V. (0, 1) € RY and 1, (¥, (1), 1) € R¥ be the associated
nodal charge and current vectors, respectively. Next, de-
fine i = N2M, let ¥ € R” represent the nodal voltage vec-
tor for the N2 subcircuits separated from each other, and
let §¥(), 1) € R and 1(¥(#), 1) € R” be the associated
nodal charge and current vectors, respectively. Finally,
define n = N*M,,, + NM,,, let v(z) € R” represent the
voltage vector for the connected grid circuit, and let
q(v(®), £) € R" and i(v(2), 1) € R" be the associated nodal
charge and current vectors, respectively.
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Then, q and i can be related to § and T by a topological
matrix H:R"” = R”, such that

qvQ), 1) = H'gMHv(@),
itv(e), 1) = HiHv(Q), 1. 3)

Proof: Order the subcircuit terminals such that nodes
{1,---,n} correspond only to the internal nodes of the
subcircuits and nodes {n + 1, - - - , i} correspond to the
terminal nodes of the subcircuits. Apply Proposition
2.1.

Remark: If all N? subcircuits are identical, then /i =
N*M,, + NM,e, and n = N*Mjye + NMieon. However,
these formulas for n and 7 are not usually applicable, be-
cause in most circuit examples the subcircuits at the pe-
riphery of the grid, denoted as boundary subcircuits, are
slightly different from those internal to the grid. This dif-
ference in boundary subcircuits has implications for how
grid-based circuits are described to the program
CMVSIM, and we return to this point in Section 2.3.

Corollary 2.3: LetJ, = (3q/0v), J; = @i/av), J; =
(8§/dv), and J; = (31/0v) be the Jacobian matrices for
the functions q, i, , and T described in Corollary 2.2,
respectively, and let H be the topological matrix relating
qto anditoi. Then, J,is related to J; and J; is related
to J; by

J, v, n = HJ,(Hv(), HH
J. (v, n = HJHv(@), nH

and J, and J; are block diagonal.
Proof: The result follows directly from differentiat-

ing (3). g

Remark: Computationally, Proposition 2.1 and its cor-
ollaries demonstrate how it is possible to compute the
nodal sums of charge and current for the connected circuit
by evaluating the constitutive relations for the uncon-
nected circuit. This should not be surprising to the reader.
In a nodal formulation, the nodal charges and currents are
calculated by evaluating each device in the circuit solely
as a function of its terminal voltages. The above results
provide some formal means for extending this type of de-
vice evaluation process to a parallel implementation.

Similar results to Corollary 2.2 and Corollary 2.3 can
be constructed for other types of grid circuits as well (such
as hexagonal grids).

2.3. Describing Arrays to CMVSIM

A decomposition of the example circuit shown in Fig.
1 is shown in Fig. 4. In this decomposition, the subcir-
cuits internal to the grid have one internal node and two
terminal nodes, the subcircuits on the east and south bor-
der of the grid have one internal node and one terminal
node, and the subcircuit on the south-east corner of the
grid has one internal node and no terminal nodes. Note
that this decomposition is not unique. The basic subcircuit
for other decompositions can be obtained by rotating the
subcircuit in Fig. 4 in the plane with 90 degree incre-
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Fig. 4. Decomposition of the example circuit shown in Fig. 1. Note that
the subcircuits on the east and south borders of the grid differ from the
subcircuits elsewhere in the grid.

ments. Each rotation would thus provide a new decom-
position.

This simple example also makes clear that boundary
subcircuits differ from the subcircuits internal to the grid.
A simple, yet flexible, approach to describing how to
modify boundary subcircuits is to subdivide subcircuits
into five smaller sub-subcircuits, denoted here,
north, south, east, and west. Subcircuits
internal to the grid contain all five sub-subcircuits, and all
subcircuits contain the h e r e sub-subcircuit. Subcircuits
on the north border contain all but the nor t h sub-sub-
circuit, and the analogous sub-subcircuits are deleted from
subcircuits on the other three borders. Corner subcircuits,
of course, contain only the appropriate three sub-subcir-
cuits.

The sub-subcircuits are described to the program
CMVSIM as five separate files. Each of the files contains
a complete circuit given in SIMLAB circuit syntax (a
slight variant of the SPICE language [6]). The files are
denoted by their relationship to the border of the grid,
ie., north, east, west, or south; and as
mentioned above, the subcircuit circuitry which does not
vary on the borders of the grid is known as the here
circuitry. The files containing the circuitry are given the
extensions .rel.n, .rel.e, .rel.w,
.rel.s,and .rel.h (with the obvious associated
directions). Since the subcircuit description is divided into
separate files, CMVSIM must be told which nodes are
common to all files. This is done with a ‘‘common’’ com-
ment in the h e r e circuit file. The ‘‘common’’ comment
has the form:

; common {nodel) [{node2) - - -]

Note that when describing a subcircuit to CMVSIM, it
is not necessary to explicitly distinguish subcircuit inter-
nal nodes from terminals. Instead, special circuit ele-
ments, referred to as connector elements, are used to in-
dicate how nodes from one subcircuit are connected to
neighboring subcircuit nodes. That the ‘‘connection’’ is
from a terminal of one subcircuit to the internal node of
another is inferred by the CMVSIM program. Frequently,

lres.rel.e lres.rel.s lres.rel.h
global 0 global © global 0
ri here east r r=1k r1 here south r r=1k ; common here
c0 east here connector |jcO south here connector
‘ Tl here 1 r r=ik
vl 10 de v=2

Fig. 5. Example files for specifying a resistive circuit grid.

common nodes correspond to internal nodes to which ter-
minals from neighboring subcircuits are joined.

As a complete example, the contents of the circuit files
to specify a resistive grid are shown in Fig. 5 as the files
lres.rel.e, lres.rel.s, and Llres.
rel . h. Refer to the ““CMVSIM users’ guide’’ [7] for
more details on using CMVSIM.

III. NUMERICAL ALGORITHMS

The system of equations that describes an N X N grid
circuit, constructed as in Corollary 2.2, can be written
compactly as

d .

a qv@®, n + iv(n), ) = 0. C))
Here, v(9), q(v(9), 1), i(v(?), #) € R" are the vectors of node
voltages, sums of node charges, and sums of node resis-
tive currents, respectively, and n is the total number of
nodes in the circuit.

The transient simulation of the analog grid involves nu-
merically solving (4). Discretizing (4) with the trapezoi-
dal rule leads to the following algebraic problem for each
time step h:

2 [qvc + 0, 1+ By = a0, 0]

+ [itv(t + h), t + h) +iv@, 0] =0. (5

As is standard, the algebraic problem is solved with New-
ton’s method.

JeOV* @ + R, t + B [V + h) — V(¢ + h))

= —F™t + h), t + h) (6)
where
F(v(t + h), t + h)
= % [q(v(t + h), t + h) — q(v(D), D]
+ [i(v(t + h), t + h) + i(v(¥), D] 7
and the Jacobian Jz(v(t + h), t + h) is
20q(v(t + h), t + h)
G+t = a o
. ai(v(t + h), t + h). ®)
av

In ““classical’’ circuit simulators such as SPICE [6], the
linear system of equations for each Newton iteration is
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TABLE 1
COMPARISON OF SERIAL EXECUTION TIME FOR THE TRANSIENT SIMULATION OF THE CIRCUIT IN FIG. 1, WHEN USING
DIRECT, AND CONJUGATE-DIRECTION LINEAR SYSTEM SOLVERS?

Size Direct CG ILUCG CGS ILUCGS
16 x 16 11.2 18.4 23.0 34.2 27.4
32 x 32 231 197 148 395 268
64 X 64 4480 2260 1550 4910 2500
128 x 128 82000 24200 13900 51700 27400
16 x 16 0.010 0.019 0.014 0.032 0.024
32 x 32 0.104 0.092 0.065 0.185 0.115
64 x 64 1.04 0.530 0.366 1.22 0.609

128 x 128 11.7 3.41 2.01 7.19 3.95

2For this example, g = 3.0 X 107° 27" and g, has a conductance of 1.0 x 107> Q7! when linearized about zero.
The first chart shows the CPU seconds required for all linear system solutions during the entire simulation; the second
chart shows the average number of CPU seconds required for each linear system solution. All execution times are
CPU seconds for an IBM RS/6000 model 530 workstation with 128 megabytes of memory.

solved by some form of sparse Gaussian elimination.
Sparse Gaussian elimination is an effective strategy for
typical large circuits, because such circuits generate Ja-
cobians which are extremely sparse, and have an almost
tree-like associated graph. Therefore, these Jacobians can
be factored with very little fill-in, and experimental data
suggests that for these typical circuits, the number of op-
erations required to compute a factorization increases
nearly linearly with the number of circuit nodes [8]. How-
ever, problems like the grid circuit in Figure 1 generate
Jacobians which, when factored, generate substantially
more fill-in than is typical for large circuit problems. In
fact, it is well-known that such Jacobians require order
n/? operations to factor, where » is the number of nodes
in the grid [9].

Reducing serial computational complexity is only one
reason for considering an iterative matrix solution method
rather than sparse Gaussian elimination for our class of
circuit problems. Since the goal was to develop a simu-
lator which could efficiently exploit a massively parallel
SIMD machine, iterative methods are more appealing be-
cause they are more easily paralielized on SIMD ma-
chines than, for example, parallel nested dissection [10].
In addition, iterative methods like conjugate-direction al-
gorithms [11] are well-suited to solving our class of prob-
lems, because only low accuracy is required, and an ef-
fective preconditioner is easily extracted from the problem
structure (see Section 4.3). Also, if timesteps are made
small enough, convergence can be further improved. In
that case, the capacitive portion of the Jacobian in (8) will
dominate, and it is typically better conditioned and closer
to normal than the conductive portion (see [12]).

There are several conjugate-direction algorithms which
are suitable for use as a linear system solver for grid cir-
cuits. Since, in the general case, the grid circuits may be
constructed from non-reciprocal elements (e.g., MOS
transistors), methods suitable for non-symmetric matrices
must be considered, e.g., CGNR, GCR, GCR(k), OR-
THOMIN, CGS [11], [13]. The present discussion will
be restricted to CGS, presented in [13], since experience

has shown that it is the most efficient of the methods ex-
amined (see also [14], [15]).

To demonstrate the effectiveness of the conjugate-di-
rection algorithm, in Table I the CPU time required to
compute the transient analysis of the network in Fig. 1 is
compared using several different matrix solution algo-
rithms to solve (6). These results were obtained using the
simulation program and experimental setup described in
Section V. The conjugate-direction methods shown in Ta-
ble I are conjugate gradient, conjugate gradient squared
(CGS), incomplete LU preconditioned CG (ILUCG), and
incomplete LU preconditioned CGS (ILUCGS). The first
chart shows the CPU seconds required for all linear sys-
tem solutions during the entire simulation; the second
chart shows the average number of CPU seconds requirec
for each linear system solution. The table does not include
the time required to perform the initial ordering and sym-
bolic factorization of the matrix.

The total linear system solution time in Table I is not
particularly useful for determining the solution time
growth with problem size; the number of timesteps, and
therefore the number of system solutions, is also increas-
ing with problem size. Instead, consider comparing the
different methods using the average CPU time per linear
system solution. These average times indicate that solu-
tion by sparse Gaussian elimination is much slower than
the conjugate-direction algorithms, especially for the
larger problem sizes. As can be determined from the ta-
ble, the computation time growth with problem size using
sparse Gaussian elimination is approximately O (N'") (for
N circuit nodes), and correspondingly, the computation
time growth for ILUCG is approximately O (N'"®).

It has been shown both experimentally and theoretically
that the cost of sparse Gaussian elimination applied to
square grid problems grows as O (N'3) [9]. The somewhat
faster growth of factorization time with problem size
demonstrated in the above table may be due to the fact
that the Sparse 1.3 package from the Berkeley SPICE3
program [16], [17] is not optimized to best exploit a
workstation’s cache. Therefore, the percentage of mem-
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ory references which generate cache misses almost cer-
tainly increases with problem size, and this could easily
explain the faster than expected growth in factorization
time. It should also be noted as coincidental that the
measured computation time growth of ILUCG for the grid
circuit problem matches the theoretical result for a 2-D
discretized Laplacian (see [18]). The conductance and ca-
pacitance to ground in the circuit implies that the linear
system at each timestep is more diagonally dominant than
the 2-D discretized Laplacian, and therefore ILUCG con-
verges faster for these examples. That this accelerated
convergence doesn’t reflect itself in reduced computation
time we again attribute to reduced cache performance with
increasing problem size.

Finally, note that this example problem has a symme-
tric Jacobian, and therefore the more efficient CG algo-
rithm can be used instead of CGS. However, the more
realistic array examples in the next section use transistors,
and therefore do not have symmetric Jacobians. For those
examples CGS can not be replaced by CG.

IV. IMPLEMENTATION

For an algorithm to approach peak parallel performance
on a SIMD machine, it must satisfy three requirements.
First, the problem must have enough parallelism to effec-
tively use the available processors. Second, the algorithm
should depend only on local or infrequent interprocessor
communication. And third, the algorithm must be mostly
data-parallel, meaning:

¢ one can identically map individual pieces of data to
individual processors for all relevant processors, and

® one can operate identically on the data with all the
relevant processors.

The general circuit simulation problem violates all three
of the above constraints, and previous attempts at using a
SIMD machine to accelerate circuit simulation have
yielded only limited success [12], [19]. As will be shown
in the rest of this section, simulation of grid-based analog
signal processors is well suited to SIMD architectures.
These circuits are large enough to keep a large number of
processors active, and they can be simulated with algo-
rithms that depend on nearest-neighbor communication
between processors.

4.1. Data to Processor Mapping

The two-dimensional nature of grid-based analog sig-
nal processing circuits maps naturally onto a two-dimen-
sional grid-connected processor network so that data par-
allelism and locality are maintained. In particular, assume
that it is desired to simulate an N X N grid circuit that is
constructed by replicating identical subcircuits as de-
scribed in Section II. The problem is mapped onto an
N X N processor array by assigning the data for one sub-
circuit to each processor (see Fig. 6).

The characteristics of the grid circuit can be obtained
with this mapping by using Corollary 2.2, as described in
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Fig. 6. Mapping of subcircuits to processor grid. Each processor, repre-
sented by a single box, contains the data necessary for simulating a single
subcircuit. The lines connecting the boxes represent the inter-processor
communication network.

Sections 4.2 and 4.3. Note that ¥, q(¥), and 1(¥) can be
completely represented by keeping (M;,, + M.,) com-
ponents of these vectors on each processor. However,
representing v, q(v), and i(v) requires only M;, compo-
nents of each vector on each processor. Therefore, the
convention is adopted that the components of ¥, §(¥), and
i(¥) which correspond to the internal nodes are stored in
locations {1, - - - , M;,,} and the components which cor-
respond to terminal nodes are stored in locations {M;, +
1, - -+, My, + M..,}. With this convention, the vectors
v, q(v), and i(v) are simply the first M;, locations of the
vectors ¥, q(¥), and 1(¥), respectively.

4.2. Device Evaluation

The device evaluation stage of circuit simulation in-
volves the computation of the right-hand side and the Ja-
cobian for the Newton iteration (7), i.e., computing F and
Jr as in (7) and (8). Since the linear system solver is a
conjugate-direction iterative method, Jr is not needed ex-
plicitly, rather, it is only necessary to have the result of
the matrix-vector product y = Jrx. If (by definition) Jg
= (2/h) J; + J;, then by Corollary 2.3, the result of the
matrix-vector product y = Jgx can be calculated accord-
ingtoy = H” JzHx. Therefore, only J; is calculated dur-
ing the device evaluation process.

Using the topological matrix described in Corollary 2.3,
the computation and communication required to compute
F and J;z can be described by the following, where the
dependence on ¢ is omitted for clarity:

1) Calculate v = Hv. In this step, the values of ¥ cor-
responding to terminal nodes are set with nearest-
neighbor communication operations.

2) Calculate the Jacobian, Jz(¥) = 2/h) J;(¥) + J:(¥)
and ‘‘right-hand side’’ components, (¥) and 1(¥),
by evaluating the cell devices in parallel.

3) Calculate q(v) = H’§(¥) and i(v) = Hi(¥). In this
step, the values of q(¥) and 1(¥) corresponding to
terminal nodes are communicated with nearest-
neighbor communication operations and added into
the appropriate locations of q(v) and i(v).
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An explicit representation of H is not needed to accom-
plish the communication operations—a local representa-
tion of how nodes are connected to each other across the
processor boundary is the only requirement.

4.3. Linear System Solution

There are two parts of a conjugate-direction iteration
which involve parallel data: the vector inner product and
the matrix-vector product. The vector inner-product is
computed with an in-place multiply and a global sum. The
matrix-vector product y = Jpx is computed according to
y = H"J;Hx, using the result of Corollary 2.3, with the
following sequence of operations:

1) Calculate ¥ = Hx.

2) Perform parallel block matrix-vector multiplica-
tion, § = JgX.

3) Calculate y = H§.

Here, X, %, y, and ¥ are stored and Hx and H'§ are cal-
culated just as in the device evaluation process above.
Again, steps 1 and 3 involve explicit communication op-
erations, but 2 does not involve any communication, since
J i is block diagonal.

4.3.1. Block Diagonal Preconditioning  An effec-
tive technique for improving the performance of conju-
gate-direction iterative methods is the use of precondi-
tioners. That is, instead of solving Ax = b directly, the
conjugate-direction method is applied to the equivalent
system

P ' Ax = P'b.

Typically, P is chosen so that the system Pz = r is easy
to solve for z and so that the conjugate-direction method
applied to the preconditioned system converges faster than
when applied to the non-preconditioned system.

For array processors of the form of Fig. 2, the structure
of the Jacobian matrix J is that of a block diagonal matrix
with block off-diagonal bands. The diagonal blocks are of
size M,,, X M,,; the block off-diagonal bands are of size
My X My, Mg X Mg, My X My, and Mg X Ms. This
suggests a block iterative method for solving (6), using
the diagonal blocks of Jr as the preconditioner. A block
iterative scheme is particularly well suited to a SIMD im-
plementation, since each block can be solved simulta-
neously in parallel. Note that although J is already block
diagonal, inverting its blocks is not the same as inverting
the block diagonal portion of Jr.

Rather, let J- = P + R, where P is the block diagonal
part of Jz. To use P as a preconditioner in the CGS al-
gorithm, it must be formed from Jz. Let R; ; be the part
of J; corresponding to the coupling between internal and
terminal nodes of the same subcircuit—this coupling will
become the oﬂ':diagonal coupling blocks in Jz. Define P
by J; = P + R (see Fig. 7). Using Corollary 2.3, note
that

P = H'PH. )
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Fig. 7. Definition of P. Since the coupling between internal nodes and

terminal nodes will become off-diagonal blocks in Jr, these coupling ele-
ments are removed from Jz to form P.

Solving the linear system Pz = r for z is then accom-
plished by:

1) Form P = H'PH.
2) Solve Pz =r.

V. EXPERIMENTAL RESULTS

In this section, experimental results are presented that
compare serial and parallel execution times for several
types of grid-based analog signal processors. To make the
results as meaningful as possible, the fastest serial algo-
rithm is compared with the fastest parallel algorithm. The
programs used to test the serial and parallel programs both
use the SIMLAB program—a SPICE-like circuit simula-
tor developed at MIT [20], [21]—as a base. In other
words, to a large extent the serial and parallel programs
are the same program. This is done to guarantee that the
code is as similar as possible for the two programs.

The parallel algorithms were executed on the Connec-
tion Machine model CM-2—a single-instruction multiple
data (SIMD) parallel computer which, in its largest con-
figuration, contains 65,536 bit-serial processors and 2048
Weitek floating-point units (FPU’s) [22]. The bit-serial
processors are clustered together into groups of 16 within
a single integrated circuit, and these IC’s are connected
together in a 12-dimensional hypercube. Two IC’s, or 32
processors, share a single Weitek FPU. Note that a fully
configured CM-2 contains 2048 times as much floating
point hardware as a conventional computer containing a
single Weitek FPU (e.g., a SUN-4).

The Connection Machine (CM) allows the user to map
problems which are larger than the actual number of phys-
ical processors through a software emulation process
which creates virtual processors. All CM experiments re-
ported here used a virtual processor ratio of one, i.e., the
problems were the same size as or smaller than the actual
number of physical processors on the CM.

The serial experiments were run using the VSIM (Vi-
sion SIMulation) program. The VSIM program is essen-
tially SIMLAB with idealized nonlinear elements and im-
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TABLE 11
TOLERANCES USED IN SIMULATIONS REPORTED IN SECTION V
Tolerance Relative Absolute
Local Truncation Error 1 x 1072 5x 1073
Newton-Raphson voltage 1 x107? 1x1073
Newton-Raphson current 1 x 1072 1x10°°
Linear system (current) 1 x107* 1 x 107
TABLE III
EXPERIMENTAL RESULT: LINEAR CIRcUIT GRID
Serial
CM
Size Direct CG ILCG CG
16 X 16 9.95 5.6 4.55 10.30
32 x 32 107.15 30.0 25.57 10.46
64 X 64 1322.28 126.25 113.22 9.26
128 x 128 (1.63 x 10% (531 (501) 9.54
256 x 256 (2.01 x 10°) (2236) (2220) 10)

age 1/0 support added. The parallel experiments were run
using the CMVSIM program [23], [7]. Implementation of
the CMVSIM program required major enhancements to
SIMLAB to support the parallel algorithms. The parallel
portions of the code were written in C* Version 6.0, a
CM superset of C [24], [25]. In those cases where the
parallel code was to be a parallel version of code already
existing in serial form in SIMLAB, care was taken to make
it as much like the serial code as possible.

Both serial and parallel transient simulations used
trapezoidal integration with local truncation error (LTE)
timestep control. The LTE tolerances and the conver-
gence tolerances for the Newton-Raphson and linear so-
lution iterations are shown in Table II. The serial direct
method solver used sparse Gaussian elimination with
Markowitz ordering and diagonal pivoting. The CPU time
required for the initial ordering and symbolic factoriza-
tion are not included in the reported linear solution times.

The serial experiments were run on a SUN-4/490 work-
station, and the CM results were obtained on a 16K
CM-2 with double-precision floating point hardware, us-
ing a SUN-4/490 as a front-end. The serial execution
times were run on the same machine which was used as
the front-end for the parallel experiments. All computa-
tions were performed in double precision arithmetic.

Because some of the larger grid problems either re-
quired too much memory, or simply took too long, some
of the serial times were extrapolated. To perform the ex-
trapolation, it was assumed that each increase by a factor
of two in array dimension resulted in a fixed ratio increase
in total simulation time. This ratio was then determined
using simulation times for the smaller, more quickly sim-
ulated, arrays. Note also, it was not possible to get access
to a full-size CM-2, and such a machine would have been
necessary to achieve peak efficiency in simulating the
largest grid size (256 X 256). For this reason, the simu-
lation times for these largest grids where estimated as
well.

5.1. Linear Resistive Grid

Table III shows the results obtained while simulating
the linear resistive circuit grid shown in Fig. 8. The cir-
cuit for which the results are shown had a 1 kQ resistance
between neighboring nodes, a 33.33 kQ resistance to
ground, and a parasitic capacitance of 1 X 107 '° F at each
node. A random image was introduced to the network and
the startup transient of the first 1 x 10™> s was simulated.

For the 128 x 128 grid—which is the largest that will
fit directly on the 1/4 size CM-2—the CM achieved a
speedup of about a factor of 50. If the serial and parallel
results are extrapolated to a 256 X 256 grid—which is the
largest that will fit directly on a full size CM-2—the CM
should be able to achieve a speedup of over a factor of
200.

5.2. Nonlinear Resistive Grid

Table IV shows the results obtained while simulating
the nonlinear resistive circuit grid shown in Fig. 1. The
nonlinear resistance has the following characteristic equa-
tion:

v

1 + e BOr—a?’ (10)

i(v) =
The circuit for which the results are shown had a resis-
tance of 10 k{} to ground, a parasitic capacitance of 1 X
1077 F and parameter values for the nonlinear resistance
ofa =1 x 1073,y =2 X 107° with 8 being swept from
0to 1 X 10° over the simulation interval. A random im-
age was introduced to the network, the dc solution was
found with 8 = 0 (i.e., so that the network was linear),
and then a transient simulation of one second was per-
formed, during which 8 was increased from 0 to 1 x 10°.
The reasons for this type of simulation are explained in
detail in [26].
For the 128 X 128 grid, the CM achieved a speedup of
about a factor of 50. If the serial and parallel results are
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Fig. 8. Linear resistive grid.

TABLE IV
EXPERIMENTAL RESULT: NONLINEAR CIRCUIT GRID
Serial
CM
Size Direct CG ILCG CG
16 x 16 183.13 176.03 126.15 227.88
32 x 32 4027.23 1802.10 1445.75 487.16
64 X 64 (8.86 x 10%) 14 287.90 10 377.90 896.01
128 x 128 (1.95 x 10% (1.13 x 10 (7.45 x 10% 1445.12
256 x 256 (4.28 x 107) (8.99 x 10°) (5.35 x 10%) (2330)
TABLE V
EXPERIMENTAL RESULT: MEAD'S SILICON RETINA WITH CONSTANT INPUT IMAGE
Serial CM
Size Direct CGS ILCGS CGS PCGS
16 x 16 516.15 1911.72 605.22 840.34 436.225
32 x 32 3353.68 8241.03 2532.37 936.89 454.67
64 X 64 (21 790) (35 525) (10 596) 1020.88 461.42
128 x 128 (141 583) (153 142) (44 336) 1048.25 463.89
256 X 256 (919 959) (660 172) (185 510) (1076) (466)

extrapolated to a 256 X 256 grid, the CM should be able
to achieve a speedup of over a factor of 200.

5.3. Mead’s Silicon Retina

Tables V and VI show the results obtained while sim-
ulating Mead’s Silicon Retina as described in [1] and
shown in Fig. 9. Table V shows results obtained when
presenting the circuit with a constant image while Table
VI shows the results obtained when presenting the circuit
with a random input image. The simulations used the same
SPICE MOS level 3 devices in both the serial and parallel
versions.

The Silicon Retina example contains a significant

amount of circuitry in each cell and the block diagonal
preconditioner is quite effective in reducing the CPU time
required to compute the solution. For the examples with
the constant input image, the block diagonal precondi-
tioner reduced the CPU time by approximately a factor of
two over plain CGS for all grid sizes. For the examples
with the random input image, the block diagonal precon-
ditioner reduces the CPU time by up to a factor of four
over plain CGS.

For the 128 X 128 grid, the CM achieved a speedup of
about a factor of 95 for the circuit with the constant input
image and a speedup of over a factor of 144 for the circuit
with the random input image. If the serial and parallel
results are extrapolated to a 256 X 256 grid, the CM
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Fig. 9. Mead’s Silicon Retina. The simulated chip contains 23 MOS level
3 devices per cell for a total of 376 320 devices and 261 888 nodes in a

128 x 128 grid.

TABLE V1
EXPERIMENTAL RESULT: MEAD’S SILICON RETINA WITH RANDOM INPUT IMAGE

Serial CM
Size Direct CGS ILCGS CGS PCGS
16 x 16 1239.50 4405.77 1244.75 1845.34 894.42
32 x 32 10 713.1 25 740.9 7343.03 2414.55 1221.14
64 x 64 9.2 x 10% (1.5 x 10% 4.3 x 10% 4787.49 1303.49
128 x 128 (8.0 x 10°) (8.8 x 10°) (2.5 x 10% 6661.22 1730.36
256 x 256 (6.9 x 10°% (5.1 X 10%) (1.5 x 109 (9268) (2297)

should be able to achieve a speedup of about a factor of
400 for the circuit with the constant input image and a
speedup of over a factor of 650 for the circuit with the
random input image.

5.4. Processing Images

One of the most significant features of CMVSIM is that
the program can be used to investigate how particular vi-
sion circuits process images. To demonstrate this use of
CMVSIM, the results of two experiments are presented
where the same network is subjected to two different types
of continuations, resulting in drastically different output
images (see [26] for detailed treatment of the continua-
tions). The network used is shown in Fig. 1 and uses the
nonlinear element described by (10); let the linear con-
ductance to ground be called \.. Figure 10 shows a 256
X 256 image—a portion of the San Francisco sky line—
used as the input image.

Fig. 11 shows the output produced by the idealized
nonlinear network with a continuation performed on the
value of 3. The fixed parameter values were @ = 1 X
107,y = 1 X 107°, A, = 3 X 107%; the value of 8 was
linearly varied as a function of time from 8 = 0 to 1 X
10°%. Fig. 11(a) shows the output of the network at the
beginning of the continuation when 8 = 0; Fig. 11(b)
shows the output of the network at an intermediate point
of the continuation when 8 = 2 x 10%; Fig. 11(c) shows

Fig. 10. 256 X 256 image of the San Francisco sky line.

the output of the network at the end of the continuation
when 8 =1 x 10°.

Fig. 12 shows the output produced by the idealized
nonlinear network with a continuation performed on the
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Fig. 11. (a) Output image produced by S-continuation network. Here, the parameter values are « = 1 X 1073, y=1x 1073,
A=3X 1073, and B8 = 0. (b) Output image produced by S-continuation network. Here, the parameter values are o = 1 X
107,y =1x107° A =3 X 1075, and 8 = 2 x 10*. (c) Output image produced by B-continuation network. Here, the
parameter values are @ = 1 X 1073,y = 1 X 107%, A, = 3 X 107, and 8 = 1 x 10°.
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(b)

Fig. 12. (a) Output image produced by A,-continuation network. Here, the parameter values are = 1 X 1073,y =1 x 1073,
g =1 x 10°% and A; = 1. (b) Output image produced by A,-continuation network. Here, the parameter values are o0 = 1 X
1073,y =1 x 1075, 8 = 1 x 10° and A\, = 1 X 107>, (c) Output image produced by A -continuation network. Here, the
parameter values are o = 1 X 107>,y = 1 x 1075, 8 = 1 x 10°% and A\, = 3 X 107°. Note that the final parameter values of
this network are identical to those for the network that produced the results of Fig. 11, but that the output image is much closer
to the input image shown in Fig. 10.
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value of ;. The fixed parameter values were @ = 1 X
1073,y =1 x107% and 8 = 1 X 10°; the value of the
As was linearly varied as a function of time from A, = 1
to 3 X 107°. Fig. 12(a) shows the output of the network
at the beginning of the continuation when A, = 1; Fig.
12(b) shows the output of the network at an intermediate
point of the continuation when Ay =1 X 1073; Fig. 12(c)
shows the output of the network at the end of the contin-
uation when A, = 3 X 1075, Note that the final parameter
values of this network are identical to those for the net-
work that produced the results of Fig. 11.

5.5. Discussion

The 128 X 128 example of Mead’s Silicon Retina con-
tains well over 300 000 MOS level 3 devices, but the ex-
amples with constant and random input images were sim-
ulated in eight min and 29 min, respectively.

It is interesting to note that the improvement provided
by CMVSIM over VSIM was quite a bit higher for the
Silicon Retina examples than for the linear and nonlinear
resistive grid examples. One reason for this is that the
Silicon Retina examples provide a much higher compu-
tation to communication ratio than the linear and nonlin-
ear resistive grids. The linear and nonlinear grids each
have three simple devices, one internal node, and two
connecting nodes per subcircuit, whereas the Silicon Ret-
ina has 23 MOS level 3 devices, 16 internal nodes, and
four connecting nodes per subcircuit. Moreover, simula-
tion of the Silicon Retina with the block diagonal precon-
ditioner also involves a parallel linear system solution
step.

VI. ConcLUSION

In this paper we presented the algorithms in CMVSIM,
a program for performing the transient simulation of grid-
based analog signal processors on a massively parallel
computer. In particular, we showed that by using a grid-
based equation formulation approach, and a block-diag-
onal preconditioned CGS algorithm, CMVSIM is able to
efficiently exploit massive parallelism to simulate a very
general class of grid-based signal processors. Experimen-
tal results presented demonstrate that CMVSIM running
on a full-size CM can provide a 650 times speedup over,
what is to the authors’ knowledge, the best serial algo-
rithm running on a SUN-4/490 workstation. Even with
only the 1/4 size CM-2 available to the authors, it was
possible to simulate a 128 X 128 example of Mead’s Sil-
icon Retina, a circuit with over 300 000 SPICE level 3
MOS devices, in about half an hour. The same circuit
simulated with what our investigation suggested was the
best serial algorithm would take an estimated three SUN-
4/490 CPU days—assuming the workstation had enough
memory to accommodate the problem.

Future work is focused on extending the simulator to
allow more general circuits. For example, CMVSIM cur-
rently only supports Manhattan-style circuit grids, though
more general structures, like hexagonal grids, can be in-
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corporated in a straight-forward manner. Also, CMVSIM
can be enhanced to allow the simulation of circuits which
are ‘‘mostly regular,’’ like dynamic memories, by incor-
porating the ability to run in a hybrid mode. For the dy-
namic memory example, this would mean that the regular
portion of the circuit, the storage array and interconnect,
would be simulated on the CM, but the less regular pe-
ripheral circuitry, like sense amplifiers and row and col-
umn drivers, would be simulated serially on the front-end.
Newer parallel machines, such as the CM-5, should allow
such hybrid simulations to be performed without resorting
to the front-end machine.
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