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Abstract

In this paper, a relaxation and a surface-Newton method for self-consistent 3-D
electromechanical analysis are theoretically and experimentally compared.

1 Introduction

Electrostatic sensors and microactuators are typically controlled by applied voltages which
create electrostatic forces that deform the structure. Therefore, accurately analyzing the
performance of these sensors and actuators requires self-consistent electromechanical analy-
sis. However, self-consistent electromechanical analysis is a difficult computational problem
because the discretization grid used must track the electrostatically deformed boundaries
of the structure.

Self-consistent electromechanical analysis of complicated three-dimensional structures
can be performed by combining a fast multipole-accelerated scheme for electrostatic analysis
with a standard finite-element method for mechanical system analysis. There are two
approaches for combining these analyses, one using a straight-forward relaxation scheme,
and a second based on a surface-Newton method combined with a matrix-free generalized
conjugate residual based solver (SNGCR). In this paper, the convergence properties of
these two methods are examined. In particular, we show that relaxation will converge if
the applied voltage is small enough, or if Young’s modulus is large enough, but will diverge
otherwise. We also show by example that although the SNGCR. algorithm is guaranteed
to converge only given a sufficiently close initial guess, it converges much more frequently
than relaxation. )

2 Self-Consistent Electromechanical Analysis Algorithms

Mechanical analysis programs solve discretized force equilibrium equations to determine
final structure displacements given exterior deformation forces or pressures. For electrome-
chanical analysis, the system of equations which must solved can be written in implicit



form as :
d= FM(zo,FE(d + .’L‘O,V)) (1)

where d is the unknown vector of discretized structure displacements, z, is the vector of
representing the initial structure position. Here, Fg denotes solving Laplace’s equation to
derive the electrostatic force given the structure position and applied potential V', and Fy
denotes solving force-equilibrium equations to yield the structure displacements.

The simplest scheme for solving (1) is to first use a standard electrostatic analysis
program to compute the forces on the structure, and then use the computed forces as input
to a standard mechanical analysis program to compute the deformed structure. Then, the
electrostatic forces can be recomputed on the deformed structure, and these new forces
used to redeform the structure, and the process repeated until the forces and deformation
converges. Such a relaxation process is not guaranteed to converge, and to examine its
convergence properties we consider the relaxation algorithm’s mathematical formulation

d**1 = Fy(z,, Fe(d* + z,,V)), (2)

where k is the relaxation iteration index.
The relaxation will converge for a sufficiently close initial guess if

OF)\ 0Fg
oFs 04 } < 1. (3)

Physically, %} is the change in electrostatic force due to structure displacement, and is
therefore proportional to V2. Also, %IE% is the amount which a structure deforms due to a
change in applied force, and is inversely proportional to the Young’s modulus (or stiffness)
of the structure material. Therefore, (3) will be satisfied if either the material is stiff enough
or if the applied voltage is small enough.

It is also possible to solve (1) using a Newton-like method, but rather than apply-
ing Newton’s method to solving (1) directly, consider that once the displacement of the
structure surface is known, both the surface electrostatic force and the structure’s interior
displacements can be determined by decoupled electrostatic and mechanical analysis. This
suggests that the dimensionality of the coupled problem can be reduced from 3-D to 2-D,
where only surface variables are involved in the coupled equations. Therefore, we can write
a surface-Newton iteration equation as

Fy(d*) + %(dsk“ —-d*) =0 (4)
ad,
where d; is the vector of surface displacements, k is the iteration index, and

Fo(d,*) = di* = Surf [Far(2os, Fu(ds* + 205, V)] (5)

Here, z,; is used to denote the surface of the initial structure and the function Sur f extracts
ds from d.

A matrix-free GCR iterative method can then be used to solve (5), in which case each
GCR iteration involves forming a matrix-vector product. The matrix-vector product can
be computed using finite-differences, hence avoiding explicitly forming %%.



3 Numerical examples

To show that the above analysis lends some practical insight, consider the two bar example
in figure 1, which is intended to model a deformable mirror. In the experiments below, both
the relaxation algorithm and the surface-Newton GCR algorithms were implemented using
the FASTCAP [2] electrostatic analysis program and the finite-element mechanical analysis
program ABAQUS [1]. In figure 2, we show that the relaxation algorithm converges more
slowly and eventually diverges when the potential difference between the bars is increased.
In figure 3, we show that making the material more flexible than silicon (Aluminum Oxide
has a lower Young’s modulus) also leads to nonconvergence. In figures 4 and 5, we show
that applying Newton’s method to a surface formulation of (1), and then solving the so-
generated linear system by a matrix-free generalized conjugate direction method, leads to
a more robustly converging algorithm. The algorithm, denoted SNGCR, is also faster than
the relaxation method when both converge, as shown in figure 6.

4 Conclusions and A cknowledgments

In this paper it is shown that efficient electromechanical analysis can be performed by com-
bining a standard finite-element based mechanical analysis program with a fast boundary-
element based electrostatic solver. Also, we demonstrated that our surface/Newton-GCR
algorithm is faster and more robust than the simpler relaxation scheme.
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Figure 1: Silicon bars at different potentials

Figure 4: SNGCR convergence characteristics at dif-
ferent voltages
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Figure 5: SNGCR convergence characteristics for dif-
ferent materials
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